WO2021012967A1 - 用于多联机空调系统的膨胀阀控制方法 - Google Patents

用于多联机空调系统的膨胀阀控制方法 Download PDF

Info

Publication number
WO2021012967A1
WO2021012967A1 PCT/CN2020/101316 CN2020101316W WO2021012967A1 WO 2021012967 A1 WO2021012967 A1 WO 2021012967A1 CN 2020101316 W CN2020101316 W CN 2020101316W WO 2021012967 A1 WO2021012967 A1 WO 2021012967A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
difference
expansion valve
temperature
preset
Prior art date
Application number
PCT/CN2020/101316
Other languages
English (en)
French (fr)
Inventor
禚百田
时斌
程绍江
张锐钢
王军
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US17/629,509 priority Critical patent/US20220282885A1/en
Priority to EP20844195.6A priority patent/EP4006437B1/en
Publication of WO2021012967A1 publication Critical patent/WO2021012967A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the invention belongs to the field of heat exchange technology, and in particular relates to an expansion valve control method for a multi-line air conditioning system.
  • a multi-line air conditioning system includes an outdoor unit and a plurality of indoor units connected to the outdoor unit, and each indoor unit is equipped with an expansion valve to control the refrigerant flow between the outdoor unit and each indoor unit.
  • the air conditioning system can control the refrigerant flow rate of the indoor unit by controlling the expansion valve of the indoor unit.
  • the expansion valve of the indoor unit needs to be completely closed, and if the entire air conditioning system is in heating operation, the expansion valve of the indoor unit Need to keep a small opening.
  • the expansion valve of the existing multi-line air-conditioning system often fails to reach the preset closing degree due to leakage problems, which causes the entire air-conditioning system to malfunction.
  • the air-conditioning system when an indoor unit is turned off, if the entire air-conditioning system is in the state of cooling operation, and the expansion valve of the indoor unit is not completely closed due to leakage problems, the air-conditioning system is prone to liquid back problems. It may even cause the compressor to be burnt due to liquid shock; at the same time, if the entire air conditioning system is in heating operation, and the expansion valve of the indoor unit is not closed to the preset opening due to leakage, it will easily cause other startups
  • the indoor unit has the problem of poor heating effect, which may even cause abnormal pressure parameters of the entire air-conditioning system, thereby affecting the normal operation of the compressor.
  • the expansion valve of the indoor unit leaks, the compressor of the air-conditioning system is easily burned, which will seriously affect the user experience. It can be seen that it is particularly important to detect the leakage of the expansion valve in a timely and accurate manner and to perform effective automatic repair operations in time after the leakage of the expansion valve is detected.
  • the art needs a new expansion valve control method for multi-line air conditioning systems to solve the above problems.
  • the present invention provides an expansion valve for the multi-line air conditioning system
  • the multi-line air conditioning system includes an outdoor unit and a plurality of indoor units connected to the outdoor unit, each indoor unit is connected to the outdoor unit through a first pipeline and a second pipeline
  • the valve control method includes: acquiring the indoor temperature of the environment in which the indoor unit is located; acquiring the temperature of the first pipeline of the indoor unit and the temperature of the second pipeline of the indoor unit when the indoor unit is in a shutdown state Temperature; Determine the leakage of the expansion valve of the indoor unit according to the indoor temperature of the environment where the indoor unit is located, the temperature of the first pipeline of the indoor unit, and the temperature of the second pipeline of the indoor unit.
  • the step of determining the leakage of the expansion valve of the indoor unit specifically includes: according to the temperature of the first pipeline of the indoor unit and the indoor unit The difference between the temperature of the second pipe of the indoor unit and the difference between the indoor temperature of the environment where the indoor unit is located and the temperature of the first pipe of the indoor unit or the indoor temperature of the environment where the indoor unit is located The temperature difference of the second pipeline of the indoor unit determines the leakage of the expansion valve of the indoor unit.
  • the step of determining the leakage of the expansion valve of the indoor unit specifically includes: if the first cooling difference is continuously greater than or equal to the first preset cooling difference and less than the second preset cooling difference for the first preset time, And the second cooling difference is continuously greater than the third cooling preset difference and less than or equal to the fourth cooling preset difference for the first preset time, or the third cooling difference is continuously greater than the fifth cooling preset difference And is less than or equal to the sixth preset cooling difference and reaches the first preset time, it is determined that the expansion valve of the indoor unit is in a lightly leaking
  • the The step of determining the leakage of the expansion valve of the indoor unit according to the temperature of a pipeline and the temperature of the second pipeline of the indoor unit specifically includes: according to the temperature of the first pipeline of the indoor unit and the The difference between the temperature of the second pipeline of the indoor unit and the difference between the temperature of the second pipeline of the indoor unit and the indoor temperature of the environment in which the indoor unit is located determines the leakage of the expansion valve of the indoor unit .
  • the step of determining the difference between the temperature of the second pipeline of the indoor unit and the indoor temperature of the environment in which the indoor unit is located, and determining the leakage of the expansion valve of the indoor unit specifically includes: if the first heating difference is continuously greater than The first heating preset difference reaches the second preset time, and the second heating difference continues to be greater than the second heating preset difference and less than or equal to the third heating preset difference to reach the second preset If the time is set, it is determined that the expansion valve of the indoor unit is in a slight leakage state; if the first heating difference is continuously greater than the fourth heating preset difference and less than or equal to the first heating preset difference Value reaches the second preset time, and the second heating difference is continuously greater than the third heating preset difference and less than or equal to the fifth heating preset difference
  • the first cooling preset difference is -1°C
  • the second cooling preset difference is -0.5°C
  • the The preset difference of the three coolings is 4°C
  • the preset difference of the fourth cooling is 6°C
  • the preset difference of the fifth cooling is 5°C
  • the preset difference of the sixth cooling is 8°C
  • the seventh cooling preset difference is -3°C
  • the eighth cooling preset difference is 8°C
  • the ninth cooling preset difference is 10°C
  • the first preset time is 5 min
  • the first heating preset difference is 10°C
  • the second heating preset difference is 20°C
  • the third heating preset difference is 25°C
  • the difference is 7°C
  • the fifth heating preset difference is 30°C
  • the sixth heating preset difference is 5°C
  • the second preset time is 5 min.
  • the expansion valve control method when the expansion valve of the indoor unit is in a lightly leaking state, the expansion valve control method further includes: controlling the expansion valve The first preset opening degree is closed; after the third preset time, if the expansion valve is still in a slightly leaking state, the above steps are performed again.
  • the expansion valve control method when the expansion valve of the indoor unit is in a moderately leaking state, the expansion valve control method further includes: controlling the expansion valve Close the second preset opening; after the fourth preset time, if the expansion valve is still in a leaking state, perform the above steps again; wherein, the second preset opening is greater than the first preset opening degree.
  • the control method further includes: controlling the expansion valve to open a third preset opening degree; controlling the fan of the indoor unit to turn on; after a fifth preset time, controlling the expansion valve to close The fourth preset opening degree; controlling the fan of the indoor unit to turn off; after the sixth preset time, if the expansion valve is still in a leaking state, perform the above steps again; wherein, the fourth preset opening degree Greater than the third preset opening degree.
  • the expansion valve control method when the expansion valve of the indoor unit is in a severely leaking state, the expansion valve control method further includes: controlling the expansion valve to open Fifth preset opening degree; controlling the fan of the indoor unit to turn on; after the seventh preset time, controlling the expansion valve to close the sixth preset opening degree; controlling the fan of the indoor unit to turn off; After setting the time, if the expansion valve is still in a leaking state, the above steps are performed again; wherein the sixth preset opening degree is greater than the fifth preset opening degree.
  • the multi-line air conditioning system of the present invention includes an outdoor unit and a plurality of indoor units connected to the outdoor unit, and each indoor unit passes through a first pipeline and a second The two pipelines are connected to the outdoor unit.
  • the expansion valve control method of the present invention includes: acquiring the indoor temperature of the environment where the indoor unit is located; acquiring the temperature of the first pipeline of the indoor unit and the first pipeline of the indoor unit when the indoor unit is shut down Second, the temperature of the pipeline; determine the leakage of the expansion valve of the indoor unit according to the indoor temperature of the environment where the indoor unit is located, the temperature of the first pipeline of the indoor unit, and the temperature of the second pipeline of the indoor unit.
  • the present invention combines the indoor temperature of the environment where the indoor unit is located and the inlet and outlet temperature of the indoor unit. To accurately determine the leakage of the expansion valve of the indoor unit; at the same time, since the temperature changes are all real-time, the present invention can judge the leakage of the expansion valve of each indoor unit in a more timely manner by judging by the temperature value.
  • Figure 1 is a schematic diagram of the structure of the multi-connected air conditioning system of the present invention.
  • FIG. 2 is a flowchart of the main steps of the expansion valve control method of the present invention.
  • Fig. 4 is a flowchart of specific steps of a second preferred embodiment of the expansion valve control method of the present invention.
  • Figure 1 is a schematic structural diagram of the multi-connected air conditioning system of the present invention.
  • the multi-line air-conditioning system of the present invention includes an outdoor unit and a plurality of indoor units connected to the outdoor unit; it should be noted that the present invention does not affect the number of indoor units included in the multi-line air-conditioning system. Any restriction can be set by technicians according to actual usage requirements.
  • the indoor unit 1 is connected to the outdoor unit through a first pipeline and a second pipeline, and the expansion valve of the indoor unit 1 is arranged on the second pipeline.
  • the first pipeline When the indoor unit 1 is operating under cooling conditions, the first pipeline is the outlet pipe, and the second pipeline is the liquid inlet pipe; when the indoor unit 1 is operating under heating conditions, the first pipeline is the inlet pipe. Air pipe, the second pipeline is a liquid outlet pipe.
  • the present invention does not impose any restrictions on the specific structures of the first pipeline and the second pipeline. The technicians can set the specific structure of the multi-connected air conditioning system according to actual use requirements. This structure The change does not deviate from the basic principle of the present invention, and should belong to the protection scope of the present invention.
  • the multi-line air-conditioning system of the present invention further includes a first temperature sensor, a second temperature sensor, and a first indoor temperature sensor.
  • the first temperature sensor can detect the first temperature of the indoor unit 1.
  • the second temperature sensor can detect the temperature of the second pipeline of the indoor unit 1
  • the first indoor temperature sensor can detect the indoor temperature of the room where the indoor unit 1 is located. It should be noted that the present invention does not impose any restrictions on the specific types of the first temperature sensor, the second temperature sensor, and the first indoor temperature sensor, and technicians can make their own selection according to actual usage requirements.
  • the multi-line air conditioning system further includes a controller that can acquire detection data of the first temperature sensor, the second temperature sensor, and the first indoor temperature sensor, and the controller can also control The operation of the multi-line air conditioning system, for example, controls the opening degree of the expansion valve of the indoor unit 1 and the like.
  • the controller may be the original controller of the air-conditioning system, or it may be used to implement the present invention.
  • the invented expansion valve control method is a separate controller, and the technician can set the specific structure and model of the controller according to actual use requirements.
  • the expansion valve control method mainly includes the following steps:
  • S3 Determine the leakage of the expansion valve of the indoor unit according to the indoor temperature of the environment where the indoor unit is located, the temperature of the first pipeline of the indoor unit, and the temperature of the second pipeline of the indoor unit.
  • step S1 the controller can obtain the indoor temperature of the room in which the indoor unit 1 is located through the first indoor temperature sensor; it is understandable that The indoor temperature of the room where the indoor unit 1 is located will inevitably affect the temperature of the first pipeline and the second pipeline of the indoor unit 1. Therefore, the temperature of the first pipeline and the second pipeline are very high. It is easy to cause misjudgment. In order to effectively ensure the accuracy of the judgment result, the present invention also participates in the judgment by collecting the indoor temperature of the room where the indoor unit 1 is located as a basic parameter. Of course, it should be noted that the present invention does not impose any restrictions on the way the controller obtains the indoor temperature.
  • the technician can obtain the indoor temperature of the room where the indoor unit 1 is located through the temperature sensor set by the multi-line air conditioning system itself.
  • the indoor temperature can also be acquired through an external temperature sensor, as long as the controller can acquire the indoor temperature of the room where the indoor unit 1 is located.
  • step S2 when the indoor unit 1 is in the shutdown state, the controller can obtain the temperature of the first pipeline of the indoor unit 1 through the first temperature sensor, and obtain the indoor temperature through the second temperature sensor.
  • the temperature of the second pipeline of the unit 1 it can be understood that when the indoor unit 1 is shut down, there is almost no refrigerant flowing in the first pipeline and the second pipeline, or only a small amount of refrigerant The refrigerant is flowing.
  • the controller can participate in judging the actual opening of the expansion valve by acquiring the temperature of the first pipeline and the temperature of the second pipeline as basic parameters, thereby determining Leakage of the expansion valve of the indoor unit 1.
  • step S1 and step S2 can be set by itself, and the controller can also first obtain the temperature of the first pipeline and the second pipeline, and then obtain the indoor temperature, or The controller can also obtain these three temperature parameters at the same time.
  • This change of the specific execution sequence does not deviate from the basic principle of the present invention and belongs to the protection scope of the present invention.
  • the controller can determine the temperature of the indoor unit 1 according to the indoor temperature of the environment in which the indoor unit 1 is located, the temperature of the first pipeline of the indoor unit 1, and the temperature of the second pipeline of the indoor unit 1
  • the leakage of the expansion valve it should be noted that the present invention does not impose any restrictions on its specific determination method.
  • the controller can determine the leakage of the expansion valve by judging the temperature range of each temperature difference, or by The preset function is used to determine the leakage of the expansion valve.
  • the technician can set the specific determination method according to the actual use needs, as long as the indoor temperature of the environment where the indoor unit is located and the first tube of the indoor unit are used in this method.
  • the temperature of the circuit and the temperature of the second pipeline of the indoor unit as basic parameters belong to the protection scope of the present invention.
  • FIG. 3 is a flowchart of specific steps of the first preferred embodiment of the expansion valve control method of the present invention.
  • the preferred embodiment of the expansion valve control method specifically includes the following steps:
  • S102 Acquire the temperature of the first pipeline of the indoor unit and the temperature of the second pipeline of the indoor unit when the indoor unit is in the shutdown state;
  • S103 Calculate the difference between the temperature of the first pipeline and the temperature of the second pipeline, and record it as the first cooling difference Tl1; calculate the difference between the indoor temperature and the temperature of the first pipeline, and record it as the second cooling difference Tl2; Calculate the difference between the indoor temperature and the temperature of the second pipe and record it as the third cooling difference Tl3;
  • the first pipeline is an air outlet pipe
  • the second pipeline is an inlet pipe.
  • the flow direction of the refrigerant is from the second pipeline to the indoor unit 1 and then into the first pipeline.
  • the indoor unit 1 When the indoor unit 1 is shut down, that is, when the expansion valve is normally closed, there should be no refrigerant flowing in the indoor unit 1, so the temperature of the first pipeline and the second pipeline should be the same as the indoor temperature Basically the same; however, in the case that the expansion valve leaks and cannot be closed normally, since the indoor unit 1 is shut down and its fan is also in a stopped state, the liquid refrigerant in the inlet pipe can only Relying on part of the air in contact with the pipeline to absorb heat and achieve evaporation into a gaseous refrigerant, there will inevitably be some refrigerant that cannot be evaporated during this process. At the same time, the factor of temperature detection deviation is also taken into consideration.
  • the first cooling difference Tl1 ⁇ -0.5°C it means that there is no refrigerant flow in the indoor unit 1, that is, there is no leakage; and the smaller the first cooling difference Tl1, That is, the greater the difference between the temperature of the first pipeline and the temperature of the second pipeline, the more serious the leakage of the expansion valve.
  • the controller can obtain the indoor temperature of the room where the indoor unit 1 is located through the first indoor temperature sensor; it should be noted that the present invention does not affect the way the controller obtains the indoor temperature. Regardless of any limitation, the technician can obtain the indoor temperature of the room where the indoor unit 1 is located through the temperature sensor set by the multi-line air conditioning system itself, or obtain the indoor temperature through an external temperature sensor, as long as the controller can obtain The indoor temperature of the room where the indoor unit 1 is located is sufficient.
  • step S102 is executed, that is, the controller can obtain the temperature of the first pipeline of the indoor unit 1 through the first temperature sensor, and pass the second temperature The sensor acquires the temperature of the second pipeline of the indoor unit 1; of course, it should be noted that the execution order of step S101 and step S102 can be set by itself.
  • the controller can also acquire the temperature of the first pipeline first. The temperature and the temperature of the second pipeline are then obtained, or the controller can also obtain these three temperature parameters at the same time. This change in the specific execution sequence does not deviate from the basic principle of the present invention and belongs to the present invention. protected range.
  • step S103 is executed, that is, the controller It can calculate the difference between the temperature of the first pipe and the temperature of the second pipe, which is recorded as the first cooling difference Tl1; the difference between the indoor temperature and the temperature of the first pipe is calculated, and it is recorded as the second cooling difference Tl2 ; Calculate the difference between the indoor temperature and the temperature of the second pipe and record it as the third cooling difference Tl3.
  • this preferred embodiment judges the leakage of the expansion valve by judging the temperature interval in which the first cooling difference Tl1, the second cooling difference Tl2, and the third cooling difference Tl3 are located; Obviously, technicians can also set other judgment conditions by themselves. As long as the first refrigeration difference Tl1, the second refrigeration difference Tl2, and the third refrigeration difference Tl3 are used as parameters in the judgment process, it belongs to the protection scope of the present invention.
  • the controller judges the leakage of the expansion valve by judging the temperature interval in which the first cooling difference Tl1, the second cooling difference Tl2, and the third cooling difference Tl3 are located. Specifically, if the duration of -1°C ⁇ Tl1 ⁇ -0.5°C reaches 5min, and the duration of 4°C ⁇ Tl2 ⁇ 6°C reaches 5min or the duration of 5°C ⁇ Tl3 ⁇ 8°C reaches 5min, then The controller judges that the expansion valve is in a slight leakage state; if the duration of -3°C ⁇ Tl1 ⁇ -1°C reaches 5min, and the duration of 6°C ⁇ Tl2 ⁇ 8°C reaches 5min or 8°C ⁇ Tl3 ⁇ 10°C If the duration of Tl1 ⁇ -3°C reaches 5min, and the duration of Tl2>8°C reaches 5min or Tl3>10, the controller determines that the expansion valve is in a moderately leaking state.
  • the controller determines that the expansion valve is in a severely leaking state; in addition, if the relationship between Tl1, Tl2, and Tl3 does not meet the above three conditions, the controller determines that the expansion valve is not Leakage occurs, that is, the expansion valve can be normally closed and no leakage occurs in the closed state.
  • the refrigeration preset differences used in this preferred embodiment are all preferred values obtained after multiple tests; however, these specific values are obviously only exemplary, and technical personnel can use them according to actual use. Need to be set by yourself.
  • the first preset time in this preferred embodiment is 5 minutes; however, it is obvious that a technician can also set the length of the first preset time according to actual usage requirements.
  • FIG. 4 is a flowchart of specific steps of the second preferred embodiment of the expansion valve control method of the present invention.
  • a preferred embodiment of the expansion valve control method specifically includes the following steps:
  • S202 Acquire the temperature of the first pipeline of the indoor unit and the temperature of the second pipeline of the indoor unit when the indoor unit is in the shutdown state;
  • S203 Calculate the difference between the temperature of the first pipeline and the temperature of the second pipeline, and record it as the first heating difference Th1; calculate the difference between the temperature of the second pipeline and the indoor temperature, and record it as the second heating Difference Th2;
  • the first pipeline is the intake pipe
  • the second pipeline is the outlet pipe.
  • the flow direction of the refrigerant is from the first pipeline through the indoor unit 1 and then into the second pipeline.
  • the expansion valve needs to maintain a small opening under normal conditions. Of course, it is only a small opening, although the indoor unit 1 is in the shutdown state and its fan is stopped.
  • the gas refrigerant in the intake pipe can only rely on the part of the air in contact with the pipe to release heat and realize liquefaction into liquid refrigerant; however, because the opening of the expansion valve is small at this time, it flows through all
  • the high-temperature gaseous refrigerant in the first pipeline basically becomes a medium-temperature liquid refrigerant.
  • the first heating difference Th1 is usually relatively large, that is, the temperature difference between the inlet pipe and the outlet pipe is relatively large.
  • the controller can obtain the indoor temperature of the room where the indoor unit 1 is located through the first indoor temperature sensor; it should be noted that the present invention does not affect the way the controller obtains the indoor temperature. Regardless of any limitation, the technician can obtain the indoor temperature of the room where the indoor unit 1 is located through the temperature sensor set by the multi-line air conditioning system itself, or obtain the indoor temperature through an external temperature sensor, as long as the controller can obtain The indoor temperature of the room where the indoor unit 1 is located is sufficient.
  • step S202 is executed, that is, the controller can obtain the temperature of the first pipeline of the indoor unit 1 through the first temperature sensor, and the second temperature The sensor acquires the temperature of the second pipeline of the indoor unit 1; of course, it should be noted that the execution order of step S201 and step S202 can be set by itself.
  • the controller can also acquire the temperature of the first pipeline first. The temperature and the temperature of the second pipeline are then obtained, or the controller can also obtain these three temperature parameters at the same time. This change in the specific execution sequence does not deviate from the basic principle of the present invention and belongs to the present invention. protected range.
  • step S203 is executed, that is, the controller Able to calculate the difference between the temperature of the first pipe and the temperature of the second pipe, which is recorded as the first heating difference Th1; the difference between the temperature of the second pipe and the indoor temperature is calculated, and it is recorded as the second heating difference Value Th2.
  • the controller judges the leakage of the expansion valve by judging the temperature interval in which the first heating difference Th1 and the second heating difference Th2 are located. Specifically, if the durations of Th1>10°C and 20°C ⁇ Th2 ⁇ 25°C both reach 5min, the controller determines that the expansion valve is in a lightly leaking state; if 7°C ⁇ Th1 ⁇ 10°C and 25°C If the duration of °C ⁇ Th2 ⁇ 30°C all reach 5min, the controller judges that the expansion valve is in a moderate leakage state; if the duration of 5°C ⁇ Th1 ⁇ 7°C and Th2>30°C both reach 5min, then The controller determines that the expansion valve is in a severely leaking state; in addition, if the relationship between Th1 and Th2 does not satisfy the above three conditions, the controller determines that the expansion valve does not leak, that is, the expansion valve can Normally closed and there is no leakage in the closed state.
  • heating preset difference values used in this preferred embodiment are all preferred values obtained after multiple tests; however, these specific values are obviously only exemplary, and technical personnel can follow the actual conditions. Set your own requirements for use.
  • the second preset time in this preferred embodiment is 5 minutes; however, it is obvious that the technician can also set the length of the second preset time according to actual usage requirements.
  • the controller can try to automatically solve the problem of the expansion valve leakage by controlling the action of the expansion valve.
  • the specific control method is as follows:
  • the controller can control the expansion valve to close the first preset opening degree based on the current closed state. For example, if the specification of the expansion valve is 500 steps, when the multi-line air-conditioning system is in a cooling condition, when the expansion valve has slight leakage, the controller controls the expansion valve Continue to close for 200 steps, so that the opening of the expansion valve can be further reduced, and then try to close the expansion valve completely. It should be noted that when the expansion valve has a slight leakage, the leakage is often caused by the manufacturing error of the expansion valve or the adjustment of the expansion valve body is out of step. In this case Next, continuing to reduce the opening of the expansion valve can often solve this leakage problem.
  • the controller can again control the expansion valve to close the first preset opening based on the current closed state.
  • the third preset time is 30 minutes.
  • technicians can also set the length of the third preset time according to actual usage requirements.
  • the controller can control the expansion valve to close the second preset opening on the basis of the current closed state; wherein, the The second preset opening degree is greater than the first preset opening degree.
  • the controller controls the The expansion valve continues to be closed for 500 steps, so that the opening degree of the expansion valve can be further reduced, and an attempt is made to close the expansion valve completely.
  • the controller can try to solve the leakage problem by greatly reducing the opening of the expansion valve.
  • the controller again controls the expansion valve to close the second preset opening based on the current closed state, In order to try to solve this leakage again.
  • the fourth preset time is 30 minutes.
  • technicians can also set the length of the fourth preset time according to actual usage requirements.
  • the controller controls the expansion valve to close the second preset opening degree for the number of times reaching the first preset number of times, if the expansion valve is still in a leaking state, it indicates that the expansion valve is leaking It is not caused by the serious manufacturing error of the expansion valve or the serious out-of-step adjustment of the expansion valve body. Therefore, the controller needs to try other control methods to solve the leakage problem.
  • the first preset number of times is 3 times.
  • a technician can also set the specific value of the first preset number of times according to actual use requirements.
  • the leakage problem of the expansion valve may be caused by impurities in the valve body; in view of this, the controller can control the expansion valve to open the third preset opening degree, so that the refrigerant It can flow through the valve body of the expansion valve, and then try to use refrigerant to wash away the impurities in the valve body; at the same time, in order to effectively ensure the degree of heat exchange of the refrigerant and avoid liquid back problems in the air conditioning system, the controller also The fan of the indoor unit needs to be controlled to turn on in order to speed up the heat exchange process of the refrigerant; after the fifth preset time, the controller can control the expansion valve to close the fourth preset opening to try The expansion valve is closed to a preset state; then, the controller controls the fan of the indoor unit to turn off to complete a deep self-repair operation.
  • the controller can control the expansion valve to open 32 steps first, that is, it can meet the minimum opening of the refrigerant flow to ensure the refrigerant flow; at the same time, the The controller controls the fan of the indoor unit to turn on at the minimum speed so as not to affect the user experience; after 2 minutes, the controller controls the expansion valve to close for 700 steps; finally, the controller controls the indoor unit again The fan is off. After completing a deep self-repair and the sixth preset time has passed, the controller can again determine the leakage of the expansion valve. If the controller determines that the expansion valve still leaks, then The controller can perform a deep self-repair operation again by the indoor unit.
  • the sixth preset time is 30 minutes.
  • technicians can also set the specific value of the sixth preset time according to actual use requirements.
  • the multi-connected air conditioning system can The information about the failure of the expansion valve is fed back to the technician, so that the technician can repair the expansion valve in time to avoid greater losses.
  • the controller can control the expansion valve to open the fifth preset opening degree, so that the refrigerant can pass through the expansion valve.
  • the valve body flows, and then try to use the refrigerant to wash away the impurities in the valve body; at the same time, in order to effectively ensure the degree of heat exchange of the refrigerant and avoid the problem of liquid back in the air conditioning system, the controller also needs to control the indoor unit
  • the fan is turned on to speed up the heat exchange process of the refrigerant; after the seventh preset time, the controller controls the expansion valve to close the sixth preset opening degree, so as to try to close the expansion valve to a preset degree Set the state; then, the controller controls the fan of the indoor unit to turn off, thereby completing a deep self-repair operation.
  • the controller can control the expansion valve to open 32 steps first, that is, it can meet the minimum opening of the refrigerant flow to ensure the refrigerant flow; at the same time, the The controller controls the fan of the indoor unit to turn on at the minimum speed so as not to affect the user experience; after 2 minutes, the controller controls the expansion valve to close for 700 steps; finally, the controller controls the indoor unit again The fan is off. After completing a deep self-repair and the eighth preset time has elapsed, the controller can again determine the leakage of the expansion valve. If the controller determines that the expansion valve still leaks, then The controller can perform a deep self-repair operation again by the indoor unit.
  • the eighth preset time is 30 minutes.
  • technicians can also set the specific value of the eighth preset time according to actual usage requirements.
  • the controller can control all The multi-line air-conditioning system is shut down, and the failure information of the expansion valve is fed back to the technicians so that the technicians can repair the expansion valve in time to avoid greater losses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于换热技术领域,具体涉及一种用于多联机空调系统的膨胀阀控制方法。本发明旨在解决现有检测方式难以准确而及时地检测出多联机空调系统的膨胀阀的泄漏问题。为此,本发明的多联机空调系统包括室外机以及与室外机相连的多个室内机,每个室内机均通过第一管路和第二管路与室外机相连,本发明的膨胀阀控制方法包括:获取室内机所处环境的室内温度;在室内机处于关机状态时,获取室内机的第一管路的温度和室内机的第二管路的温度;根据室内机所处环境的室内温度、室内机的第一管路的温度以及室内机的第二管路的温度,确定室内机的膨胀阀的泄漏情况,以便多联机空调系统能够及时而准确地检测出膨胀阀的泄漏情况。

Description

用于多联机空调系统的膨胀阀控制方法 技术领域
本发明属于换热技术领域,具体涉及一种用于多联机空调系统的膨胀阀控制方法。
背景技术
为了维持舒适的环境温度,空调器已经成为人们生活中必不可少的一种设备。近年来,为了有效提高换热效率、节省换热成本,多联机空调系统开始得到越来越广泛的应用。通常地,多联机空调系统包括一个室外机以及与该室外机相连的多个室内机,每个室内机均配置有一个膨胀阀,以便控制室外机与每个室内机之间的冷媒流量大小。当某个室内机开始运行时,空调系统可以通过控制该室内机的膨胀阀来控制该室内机的冷媒流量。同时,当某个室内机关闭时,如果整个空调系统处于制冷运行的状态,则该室内机的膨胀阀需要完全关闭,而如果整个空调系统处于制热运行的状态,则该室内机的膨胀阀需要保持一个较小的开度。然而,现有多联机空调系统的膨胀阀常常因为泄漏问题而无法达到预设关闭程度,从而导致整个空调系统出现故障。
具体而言,当某个室内机关闭时,如果整个空调系统处于制冷运行的状态,而该室内机的膨胀阀又因为泄漏问题没有完全关闭,则该空调系统就容易出现回液问题,严重时甚至会导致压缩机出现液击而烧毁;同时,如果整个空调系统处于制热运行的状态,而该室内机的膨胀阀因泄漏问题没有关闭至预设开度,则容易导致其他处于开机状态的室内机出现制热效果差的问题,甚至还可能导致整个空调系统的压力参数异常,从而影响压缩机的正常运行。综上可知,一旦室内机的膨胀阀出现泄漏问题,空调系统的压缩机就很容易被烧毁,进而严重影响用户的使用体验。由此可见,及时而准确地对膨胀阀的泄漏情况进行检测以及在检测到膨胀阀出现泄漏后及时执行有效的自动修复操作就显得尤为重要。
相应地,本领域需要一种新的用于多联机空调系统的膨胀阀控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有检测方式难以准确而及时地检测出多联机空调系统的膨胀阀的泄漏问题,本发明提供了一种用于多联机空调系统的膨胀阀控制方法,所述多联机空调系统包括室外机以及与所述室外机相连的多个室内机,每个室内机均通过第一管路和第二管路与所述室外机相连,所述膨胀阀控制方法包括:获取所述室内机所处环境的室内温度;在所述室内机处于关机状态时,获取所述室内机的第一管路的温度和所述室内机的第二管路的温度;根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在所述室内机处于制冷工况时,“根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值或所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值,确定所述室内机的膨胀阀的泄漏情况。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,“根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值或所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:如果第一制冷差值持续大于或等于第一制冷预设差值且小于第二预设制冷差值达到第一预设时间,并且第二制冷差值持续大于第三制冷预设差值且小于或等于第四制冷预设差值达到所述第一预设时间,或者第三制冷差值持续大于第五制冷预设差值且小于或等于第六制冷预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于轻度泄漏 状态;如果所述第一制冷差值持续大于或等于第七制冷预设差值且小于所述第一制冷预设差值达到所述第一预设时间,并且所述第二制冷差值持续大于所述第四制冷预设差值且小于或等于第八制冷预设差值达到所述第一预设时间,或者所述第三制冷差值持续大于所述第六制冷预设差值且小于或等于第九制冷预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于中度泄漏状态;如果所述第一制冷差值持续小于所述第七制冷预设差值达到所述第一预设时间,并且所述第二制冷差值持续大于所述第八制冷预设差值达到所述第一预设时间,或者所述第三制冷差值持续大于所述第九预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于重度泄漏状态;其中,所述第一制冷差值为所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值,所述第二制冷差值为所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值,所述第三制冷差值为所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在所述室内机处于制热工况时,“根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值,确定所述室内机的膨胀阀的泄漏情况。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,“根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:如果第一制热差值持续大于第一制热预设差值达到第二预设时间,并且第二制热差值持续大于第二制热预设差值且小于或等于第三制热预设差值达到所述第二预设时间,则确定所述室内机的膨胀阀处于轻度泄漏状态;如果所述第一制热差值持续大于第四制热预设差值且小于或等于所述第一制热预设差值达到所述第二预设时间,并且所述第二制热差值持续大于所述第三制热预设差值且小于或等于第五制热预设差值达到 所述第二预设时间,则确定所述室内机的膨胀阀处于中度泄漏状态;如果所述第一制热差值持续大于第六制热预设差值且小于或等于所述第四制热预设差值达到所述第二预设时间,并且所述第二制热差值持续大于所述第五制热预设差值达到所述第二预设时间,则确定所述室内机的膨胀阀处于重度泄漏状态;所述第一制热差值为所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值,所述第二制热差值为所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,所述第一制冷预设差值为﹣1℃,所述第二制冷预设差值为﹣0.5℃,所述第三制冷预设差值为4℃,所述第四制冷预设差值为6℃,所述第五制冷预设差值为5℃,所述第六制冷预设差值为8℃,所述第七制冷预设差值为﹣3℃,所述第八制冷预设差值为8℃,所述第九制冷预设差值为10℃,所述第一预设时间为5min;或者所述第一制热预设差值为10℃,所述第二制热预设差值为20℃,所述第三制热预设差值为25℃,所述第四制热预设差值为7℃,所述第五制热预设差值为30℃,所述第六制热预设差值为5℃,所述第二预设时间为5min。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在所述室内机的膨胀阀处于轻度泄漏状态的情况下,所述膨胀阀控制方法还包括:控制所述膨胀阀关闭第一预设开度;经过第三预设时间后,如果所述膨胀阀依然处于轻微泄漏状态,则再次执行上述步骤。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在所述室内机的膨胀阀处于中度泄漏状态的情况下,所述膨胀阀控制方法还包括:控制所述膨胀阀关闭第二预设开度;经过第四预设时间后,如果所述膨胀阀依然处于泄漏状态,则再次执行上述步骤;其中,所述第二预设开度大于所述第一预设开度。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在控制所述膨胀阀关闭所述第二预设开度的次数达到第一预设次数的情况下,如果所述膨胀阀依然处于泄漏状态,则所述控制方法还包括:控制所述膨胀阀开启第三预设开度;控制所述室内机的风机开启;经过第五预设时间后,控制所述膨胀阀关闭第四预设开度;控制所述室内机的风机关闭;经过第六预设时间后,如果所述膨胀阀依然处于泄漏 状态,则再次执行上述步骤;其中,所述第四预设开度大于所述第三预设开度。
在上述用于多联机空调系统的膨胀阀控制方法的优选技术方案中,在所述室内机的膨胀阀处于重度泄漏状态的情况下,所述膨胀阀控制方法还包括:控制所述膨胀阀开启第五预设开度;控制所述室内机的风机开启;经过第七预设时间后,控制所述膨胀阀关闭第六预设开度;控制所述室内机的风机关闭;经过第八预设时间后,如果所述膨胀阀依然处于泄漏状态,则再次执行上述步骤;其中,所述第六预设开度大于所述第五预设开度。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的多联机空调系统包括室外机以及与室外机相连的多个室内机,每个室内机均通过第一管路和第二管路与室外机相连,本发明的膨胀阀控制方法包括:获取室内机所处环境的室内温度;在室内机处于关机状态时,获取室内机的第一管路的温度和室内机的第二管路的温度;根据室内机所处环境的室内温度、室内机的第一管路的温度以及室内机的第二管路的温度,确定室内机的膨胀阀的泄漏情况。可以理解的是,无论多联机空调系统处于制冷工况还是制热工况,每个室内机与室外机之间的冷媒流通都需要依靠各个室内机的膨胀阀实现控制,当室内机与室外机之间的冷媒流通情况不同时,该室内机的第一管路和第二管路的温度自然有所不同,因此,本发明通过结合室内机所处环境的室内温度以及室内机的进出口温度来准确判断该室内机的膨胀阀的泄漏情况;同时,由于温度变化都是实时的,因此,本发明通过温度值来进行判断能够更加及时地判断各个室内机的膨胀阀的泄漏情况。
附图说明
图1是本发明的多联机空调系统的结构示意图;
图2是本发明的膨胀阀控制方法的主要步骤流程图;
图3是本发明的膨胀阀控制方法的第一优选实施例的具体步骤流程图;
图4是本发明的膨胀阀控制方法的第二优选实施例的具体步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
首先参阅图1,该图是本发明的多联机空调系统的结构示意图。如图1所示,本发明的多联机空调系统包括是室外机以及与所述室外机相连的多个室内机;需要说明的是,本发明不对多联机空调系统所包括的室内机的数量作任何限制,技术人员可以根据实际使用需求自行设定。以室内机1为例,室内机1通过第一管路和第二管路与所述室外机相连,并且室内机1的膨胀阀设置在所述第二管路上。在室内机1运行制冷工况时,所述第一管路为出气管,所述第二管路为进液管;在室内机1运行制热工况时,所述第一管路为进气管,所述第二管路为出液管。本领域技术人员能够理解的是,本发明并不对第一管路和第二管路的具体结构作任何限制,技术人员可以根据实际使用需求自行设定多联机空调系统的具体结构,这种结构改变并不偏离本发明的基本原理,应当属于本发明的保护范围。
进一步地,还是以室内机1为例,本发明的多联机空调系统还包括第一温度传感器、第二温度传感器和第一室内温度传感器,所述第一温度传感器能够检测室内机1的第一管路的温度,所述第二温度传感器能够检测室内机1的第二管路的温度,所述第一室内温度传感器能够检测室内机1所处房间的室内温度。需要说明的是,本发明不对所述第一温度传感器、所述第二温度传感器和所述第一室内温度传感器的具体类型作任何限制,技术人员可以根据实际使用需求自行选定。所述多联机空调系统还包括控制器,所述控制器能够获取所述第一温度传感器、所述第二温度传感器和所述第一室内温度传感器的检测数据,并且所述控制器还能够控制所述多联机空调系统的运行,例如,控制室内机1的膨胀阀的开度等。此外,本领域技术人员能够理解的是,本发明不对所 述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述空调系统原有的控制器,也可以是为执行本发明的膨胀阀控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的具体结构和型号。
下面参阅图2,该图是本发明的膨胀阀控制方法的主要步骤流程图。如图2所示,基于上述优选实施例中所述的多联机空调系统的结构,所述膨胀阀控制方法主要包括下列步骤:
S1:获取室内机所处环境的室内温度;
S2:在室内机处于关机状态时,获取室内机的第一管路的温度和室内机的第二管路的温度;
S3:根据室内机所处环境的室内温度、室内机的第一管路的温度以及室内机的第二管路的温度,确定室内机的膨胀阀的泄漏情况。
进一步地,以确定室内机1的膨胀阀的泄漏情况为例,在步骤S1中,所述控制器能够通过所述第一室内温度传感器获取室内机1所处房间的室内温度;可以理解的是,室内机1所处房间的室内温度必然会对室内机1的第一管路和第二管路的温度造成一定影响,因此,单独使用第一管路的温度和第二管路的温度很容易造成误判,为了有效保证判断结果的准确性,本发明还通过采集室内机1所处房间的室内温度作为基础参数来参与判断。当然,需要说明的是,本发明不对所述控制器获取室内温度的方式作任何限制,技术人员可以通过所述多联机空调系统自身设置的温度传感器来获取室内机1所处房间的室内温度,也可以通过外部的温度传感器获取该室内温度,只要所述控制器能够获取到室内机1所处房间的室内温度即可。
进一步地,在步骤S2中,在室内机1处于关机状态时,所述控制器能够通过所述第一温度传感器获取室内机1的第一管路的温度,通过所述第二温度传感器获取室内机1的第二管路的温度;可以理解的是,当室内机1处于关机状态时,所述第一管路和所述第二管路中几乎没有冷媒在流动,或者仅有很少的冷媒在流动,在此情形下,所述控制器能够通过获取所述第一管路的温度和所述第二管路的温度作为基础参数参与判断所述膨胀阀的实际开度大小,从而判断室内机1的膨胀阀的泄漏情况。此外,需要说明的是,步骤S1和步骤S2的执行顺序是可以 自行设定的,所述控制器还可以先获取第一管路和第二管路的温度,再获取室内温度,或者,所述控制器还可以同时获取这三个温度参数,这种具体执行顺序的改变并不偏离本发明的基本原理,属于本发明的保护范围。
进一步地,在步骤S3中,所述控制器能够根据室内机1所处环境的室内温度、室内机1的第一管路的温度以及室内机1的第二管路的温度确定室内机1的膨胀阀的泄漏情况;需要说明的是,本发明不对其具体确定方式作任何限制,所述控制器既可以通过判断各个温度差值所处的温度范围来判断膨胀阀的泄漏情况,也可以通过预设函数来判断膨胀阀的泄漏情况,技术人员可以根据实际使用需求自行设定其具体确定方式,只要该方式中采用所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度作为基础参数就属于本发明的保护范围。本领域技术人员能够理解的是,其他室内机的膨胀阀的泄漏情况也可依据上述步骤进行判断。
接着参阅图3,该图是本发明的膨胀阀控制方法的第一优选实施例的具体步骤流程图。如图3所示,基于上述优选实施例中所述的多联机空调系统,在所述多联机空调系统运行制冷工况时,所述膨胀阀控制方法的优选实施例具体包括下列步骤:
S101:获取室内机所处环境的室内温度;
S102:在室内机处于关机状态时,获取室内机的第一管路的温度和室内机的第二管路的温度;
S103:计算第一管路的温度与第二管路的温度的差值,记作第一制冷差值Tl1;计算室内温度与第一管路的温度的差值,记作第二制冷差值Tl2;计算室内温度与第二管路的温度的差值,记作第三制冷差值Tl3;
S104:如果﹣1℃≤Tl1<﹣0.5℃且【4℃<Tl2≤6℃或5℃<Tl3≤8℃】持续达到5min,则确定膨胀阀处于轻度泄漏状态;
S105:如果﹣3℃≤Tl1<﹣1℃且【6℃<Tl2≤8℃或8℃<Tl3≤10℃】持续达到5min,则确定膨胀阀处于中度泄漏状态;
S106:如果Tl1<﹣3℃且【Tl2>8℃或Tl3>10℃】持续达到5min,则确定膨胀阀处于重度泄漏状态;
S107:如果Tl1、Tl2和Tl3的关系不满足这三种情况,则确定膨胀阀没有出现泄漏情况。
需要说明的是,以确定室内机1的膨胀阀的泄漏情况为例,在室内机1运行制冷工况时,所述第一管路为出气管,所述第二管路为进液管,冷媒流动方向为从所述第二管路流经室内机1后再流入所述第一管路。在室内机1关机时,即在所述膨胀阀正常关闭的情况下,室内机1中应该没有冷媒流动,因而所述第一管路与所述第二管路的温度应该与所述室内温度基本相同;但是,在所述膨胀阀出现泄漏而无法正常关闭的情况下,由于此时的室内机1处于关机状态且其风机也处于停止运转的状态,因而进液管中的液态冷媒只能依靠与其管路接触的部分空气来吸收热量而实现蒸发变为气态冷媒,这个过程中必然会存在部分无法蒸发的冷媒。同时,还考虑到温度检测偏差的因素,因而当第一制冷差值Tl1≥﹣0.5℃时,则说明室内机1中没有冷媒流动,即不存在泄漏;而第一制冷差值Tl1越小,即所述第一管路的温度与所述第二管路的温度相差越大,则说明所述膨胀阀的泄漏情况越严重。
进一步地,在步骤S101中,所述控制器能够通过所述第一室内温度传感器获取室内机1所处房间的室内温度;需要说明的是,本发明不对所述控制器获取室内温度的方式作任何限制,技术人员可以通过所述多联机空调系统自身设置的温度传感器来获取室内机1所处房间的室内温度,也可以通过外部的温度传感器获取该室内温度,只要所述控制器能够获取到室内机1所处房间的室内温度即可。
进一步地,在室内机1处于关机状态的情况下,执行步骤S102,即,所述控制器能够通过所述第一温度传感器获取室内机1的第一管路的温度,通过所述第二温度传感器获取室内机1的第二管路的温度;当然,需要说明的是,步骤S101和步骤S102的执行顺序是可以自行设定的,例如,所述控制器还可以先获取第一管路的温度和第二管路的温度,再获取室内温度,或者,所述控制器还可以同时获取这三个温度参数,这种具体执行顺序的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在所述控制器获取到室内机1所处房间的室内温度以及室内机1的第一管路的温度和第二管路的温度之后,执行步骤 S103,即,所述控制器能够计算第一管路的温度与第二管路的温度的差值,记作第一制冷差值Tl1;计算室内温度与第一管路的温度的差值,记作第二制冷差值Tl2;计算室内温度与第二管路的温度的差值,记作第三制冷差值Tl3。本领域技术人员能够理解的是,虽然本优选实施例是通过判断第一制冷差值Tl1、第二制冷差值Tl2和第三制冷差值Tl3所在的温度区间来判断膨胀阀的泄漏情况;但是,技术人员显然还可以自行设定其他判断条件,只要判断过程中使用第一制冷差值Tl1、第二制冷差值Tl2和第三制冷差值Tl3作为参数参与判断就属于本发明的保护范围。
进一步地,在本发明的优选实施例中,所述控制器通过判断第一制冷差值Tl1、第二制冷差值Tl2和第三制冷差值Tl3所在的温度区间来判断膨胀阀的泄漏情况。具体而言,如果﹣1℃≤Tl1<﹣0.5℃的持续时间达到5min,并且4℃<Tl2≤6℃的持续时间达到5min或5℃<Tl3≤8℃的持续时间达到5min,则所述控制器判断所述膨胀阀处于轻度泄漏状态;如果﹣3℃≤Tl1<﹣1℃的持续时间达到5min,并且6℃<Tl2≤8℃的持续时间达到5min或8℃<Tl3≤10℃的持续时间达到5min,则所述控制器判断所述膨胀阀处于中度泄漏状态;同时,如果Tl1<﹣3℃的持续时间达到5min,并且Tl2>8℃的持续时间达到5min或Tl3>10℃的持续时间达到5min,则所述控制器判断所述膨胀阀处于重度泄漏状态;此外,如果Tl1、Tl2和Tl3的关系不满足上述三种情况,则所述控制器判断所述膨胀阀没有出现泄漏情况,即所述膨胀阀能够正常关闭且在关闭状态下没有出现泄漏情况。需要说明的是,本优选实施例中所采用的制冷预设差值都是经过多次试验后得出的优选取值;但是,这些具体数值显然仅是示例性的,技术人员可以根据实际使用需求自行设定。此外,虽然本优选实施例中所述的第一预设时间为5min;但是,技术人员显然还可以根据实际使用需求自行设定所述第一预设时间的长短。
接着参阅图4,该图是本发明的膨胀阀控制方法的第二优选实施例的具体步骤流程图。如图4所示,基于上述优选实施例中所述的多联机空调系统,在所述多联机空调系统运行制热工况时,所述膨胀阀控制方法的优选实施例具体包括下列步骤:
S201:获取室内机所处环境的室内温度;
S202:在室内机处于关机状态时,获取室内机的第一管路的温度和室内机的第二管路的温度;
S203:计算第一管路的温度与第二管路的温度的差值,记作第一制热差值Th1;计算第二管路的温度与室内温度的差值,记作第二制热差值Th2;
S204:如果Th1>10℃且20℃<Th2≤25℃持续达到5min,则确定膨胀阀处于轻度泄漏状态;
S205:如果7℃<Th1≤10℃且25℃<Th2≤30℃持续达到5min,则确定膨胀阀处于中度泄漏状态;
S206:如果5℃<Th1≤7℃且Th2>30℃持续达到5min,则确定膨胀阀处于重度泄漏状态;
S207:如果Th1和Th2的关系不满足这三种情况,则确定膨胀阀没有出现泄漏情况。
需要说明的是,以确定室内机1的膨胀阀的泄漏情况为例,在室内机1运行制热工况时,所述第一管路为进气管,所述第二管路为出液管,冷媒流动方向为从所述第一管路流经室内机1后再流入所述第二管路。在室内机1关机时,所述膨胀阀在正常情况下需要维持一个较小的开度,当然,仅是一个较小的开度,虽然此时的室内机1处于关机状态且其风机处于停止运转的状态,进气管中的气态冷媒只能依靠与其管路接触的部分空气来释放热量而实现液化变为液态冷媒;但是,由于此时所述膨胀阀的开度很小,因而流经所述第一管路的高温气态冷媒基本都会变为中温液态冷媒,在此情形下,第一制热差值Th1通常都比较大,即进气管和出液管的温差都比较大。而在所述膨胀阀出现泄漏的情况下,由于流经管路的气态冷媒增多,在其风机不运转的情况下,必然存在部分高温气态冷媒无法冷却为液态冷媒,从而导致第二管路的温度变高,进而导致第一制热差值Th1变小;由此可见,第一制热差值Th1越小,即进气管和出液管的温差越小,则说明流经的气态冷媒越多,即所述膨胀阀的泄漏程度越严重。
进一步地,在步骤S201中,所述控制器能够通过所述第一室内温度传感器获取室内机1所处房间的室内温度;需要说明的是,本发明不对所述控制器获取室内温度的方式作任何限制,技术人员可以通 过所述多联机空调系统自身设置的温度传感器来获取室内机1所处房间的室内温度,也可以通过外部的温度传感器获取该室内温度,只要所述控制器能够获取到室内机1所处房间的室内温度即可。
进一步地,在室内机1处于关机状态的情况下,执行步骤S202,即,所述控制器能够通过所述第一温度传感器获取室内机1的第一管路的温度,通过所述第二温度传感器获取室内机1的第二管路的温度;当然,需要说明的是,步骤S201和步骤S202的执行顺序是可以自行设定的,例如,所述控制器还可以先获取第一管路的温度和第二管路的温度,再获取室内温度,或者,所述控制器还可以同时获取这三个温度参数,这种具体执行顺序的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在所述控制器获取到室内机1所处房间的室内温度以及室内机1的第一管路的温度和第二管路的温度之后,执行步骤S203,即,所述控制器能够计算第一管路的温度与第二管路的温度的差值,记作第一制热差值Th1;计算第二管路的温度与室内温度的差值,记作第二制热差值Th2。本领域技术人员能够理解的是,虽然本优选实施例是通过判断第一制热差值Th1和第二制热差值Th2所在的温度区间来判断膨胀阀的泄漏情况;但是,技术人员显然还可以自行设定其他判断条件,只要判断过程中使用第一制热差值Th1和第二制热差值Th2作为参数参与判断就属于本发明的保护范围。
进一步地,在本发明的优选实施例中,所述控制器通过判断第一制热差值Th1和第二制热差值Th2所在的温度区间来判断膨胀阀的泄漏情况。具体而言,如果Th1>10℃和20℃<Th2≤25℃的持续时间均达到5min,则所述控制器判断所述膨胀阀处于轻度泄漏状态;如果7℃<Th1≤10℃和25℃<Th2≤30℃的持续时间均达到5min,则所述控制器判断所述膨胀阀处于中度泄漏状态;如果5℃<Th1≤7℃和Th2>30℃的持续时间均达到5min,则所述控制器判断所述膨胀阀处于重度泄漏状态;此外,如果Th1和Th2的关系不满足上述三种情况,则所述控制器判断所述膨胀阀没有出现泄漏情况,即所述膨胀阀能够正常关闭且在关闭状态下没有出现泄漏情况。需要说明的是,本优选实施例中所采用的制热预设差值都是经过多次试验后得出的优选取值;但是,这些具体数值显 然仅是示例性的,技术人员可以根据实际使用需求自行设定。此外,虽然本优选实施例中所述的第二预设时间为5min;但是,技术人员显然还可以根据实际使用需求自行设定所述第二预设时间的长短。
基于上述优选实施例中提供的方法判断出膨胀阀的泄漏情况之后,所述控制器能够通过控制所述膨胀阀动作尝试自动解决膨胀阀泄漏的问题,其具体控制方式如下:
在所述控制器判断出所述膨胀阀处于轻度泄漏状态的情况下,所述控制器能够控制所述膨胀阀在当前关闭状态的基础上再关闭第一预设开度。例如,如果所述膨胀阀的规格为500步,在所述多联机空调系统处于制冷工况的情况下,当所述膨胀阀出现轻度泄漏现象时,则所述控制器控制所述膨胀阀继续关闭200步,以使所述膨胀阀的开度能够进一步减小,进而尝试使得所述膨胀阀完全关闭。需要说明的是,当所述膨胀阀出现轻度泄漏现象时,这种泄漏现象的产生常常是由于所述膨胀阀的制造误差或者所述膨胀阀阀体调节失步而造成的,在此情形下,继续调小所述膨胀阀的开度往往就能够解决这种泄漏问题。此外,在经过所述第三预设时间后,如果所述膨胀阀依然处于轻微泄漏状态,则所述控制器能够再次控制所述膨胀阀在当前关闭状态的基础上再关闭第一预设开度,以便再次尝试解决这种轻度泄漏现象。优选地,所述第三预设时间为30分钟,当然,技术人员也可以根据实际使用需求自行设定所述第三预设时间的长短。
在所述控制器判断出所述膨胀阀处于中度泄漏状态的情况下,所述控制器能够控制所述膨胀阀在当前关闭状态的基础上再关闭第二预设开度;其中,所述第二预设开度大于所述第一预设开度。作为一种示例,如果所述膨胀阀的规格为500步,在所述多联机空调系统处于制冷工况的情况下,当所述膨胀阀出现中度泄漏现象时,则所述控制器控制所述膨胀阀继续关闭500步,以使所述膨胀阀的开度能够进一步减小,进而尝试使得所述膨胀阀完全关闭。需要说明的是,当所述膨胀阀出现中度泄漏现象时,这种中度泄漏现象的产生可能是由于所述膨胀阀的严重制造误差或者所述膨胀阀阀体调节严重失步而造成的,在此情形下,所述控制器可以通过大幅调小所述膨胀阀的开度来尝试解决这种泄漏问题。此外,在经过所述第四预设时间后,如果所述膨胀阀依然处于 泄漏状态,则所述控制器再次控制所述膨胀阀在当前关闭状态的基础上再关闭第二预设开度,以便再次尝试解决这种泄漏现象。优选地,所述第四预设时间为30分钟,当然,技术人员也可以根据实际使用需求自行设定所述第四预设时间的长短。在所述控制器控制所述膨胀阀关闭第二预设开度的次数达到所述第一预设次数的情况下,如果所述膨胀阀依然处于泄漏状态,则说明所述膨胀阀的泄漏现象不是由于膨胀阀的严重制造误差或者膨胀阀阀体调节严重失步而造成的,因此,所述控制器还需要尝试其他控制方式解决泄漏问题。需要说明的是,优选地,所述第一预设次数为3次,当然,技术人员也可以根据实际使用需求自行设定所述第一预设次数的具体数值。作为一种可能性,所述膨胀阀的泄漏问题可能是由于阀体内存在杂质而导致的;鉴于此,所述控制器能够控制所述膨胀阀开启所述第三预设开度,以使冷媒能够穿过所述膨胀阀的阀体而流动,进而尝试用冷媒将阀体中的杂质冲走;同时,为了有效保证冷媒的换热程度而避免空调系统出现回液问题,所述控制器还需要控制所述室内机的风机开启,以便加快冷媒的换热过程;经过所述第五预设时间后,所述控制器能够控制所述膨胀阀关闭所述第四预设开度,以便尝试使得所述膨胀阀关闭至预设状态;接着,所述控制器控制所述室内机的风机关闭,完成一次深度自我修复的操作。作为一个优选示例,如果所述膨胀阀的规格为500步,所述控制器能够控制所述膨胀阀先开启32步,即能够满足冷媒流动的最小开度,以便保证冷媒流动;同时,所述控制器控制所述室内机的风机以最小转速开启,以免影响用户体验;经过2分钟后,所述控制器控制所述膨胀阀关闭700步;最后,所述控制器再控制所述室内机的风机关闭。在完成一次深度自我修复且经过所述第六预设时间后,所述控制器能够再次判断所述膨胀阀的泄漏情况,如果所述控制器判断出所述膨胀阀依然存在泄漏现象,则所述控制器能够所述室内机再次执行一次深度自我修复的操作。优选地,所述第六预设时间为30分钟,当然,技术人员也可以根据实际使用需求自行设定所述第六预设时间的具体数值。此外,在所述室内机已经三次执行深度自我修复的操作而依然存在泄漏现象的情况下,则说明所述膨胀阀已经出现无法自我修复的故障,在此情形下,所述多联机空调系统能够将所述膨 胀阀产生故障的信息反馈给技术人员,以便技术人员能够及时对该膨胀阀进行修复,以免造成更大损失。
在所述控制器判断出所述膨胀阀处于重度泄漏状态的情况下,所述控制器能够控制所述膨胀阀开启所述第五预设开度,以使冷媒能够穿过所述膨胀阀的阀体而流动,进而尝试用冷媒将阀体中的杂质冲走;同时,为了有效保证冷媒的换热程度而避免空调系统出现回液的问题,所述控制器还需要控制所述室内机的风机开启,以便加快冷媒的换热过程;经过所述第七预设时间后,所述控制器控制所述膨胀阀关闭所述第六预设开度,以便尝试使得所述膨胀阀关闭至预设状态;接着,所述控制器控制所述室内机的风机关闭,从而完成一次深度自我修复的操作。作为一个优选示例,如果所述膨胀阀的规格为500步,所述控制器能够控制所述膨胀阀先开启32步,即能够满足冷媒流动的最小开度,以便保证冷媒流动;同时,所述控制器控制所述室内机的风机以最小转速开启,以免影响用户体验;经过2分钟后,所述控制器控制所述膨胀阀关闭700步;最后,所述控制器再控制所述室内机的风机关闭。在完成一次深度自我修复且经过所述第八预设时间后,所述控制器能够再次判断所述膨胀阀的泄漏情况,如果所述控制器判断出所述膨胀阀依然存在泄漏现象,则所述控制器能够所述室内机再次执行一次深度自我修复的操作。优选地,所述第八预设时间为30分钟,当然,技术人员也可以根据实际使用需求自行设定所述第八预设时间的具体数值。此外,在所述室内机已经三次执行深度自我修复的操作而依然存在泄漏现象的情况下,则说明所述膨胀阀已经出现无法自我修复的故障,在此情形下,所述控制器能够控制所述多联机空调系统停机,并将所述膨胀阀产生故障的信息反馈给技术人员,以便技术人员能够及时对该膨胀阀进行修复,以免造成更大损失。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于多联机空调系统的膨胀阀控制方法,所述多联机空调系统包括室外机以及与所述室外机相连的多个室内机,每个室内机均通过第一管路和第二管路与所述室外机相连,所述第一管路和所述第二管路中的一个是制冷剂流入管路,所述第一管路和所述第二管路中的另一个是制冷剂流出管路,
    其特征在于,所述膨胀阀控制方法包括:
    获取所述室内机所处环境的室内温度;
    在所述室内机处于关机状态时,获取所述室内机的第一管路的温度和所述室内机的第二管路的温度;
    根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况。
  2. 根据权利要求1所述的膨胀阀控制方法,其特征在于,在所述室内机处于制冷工况时,“根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:
    根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值或所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值,确定所述室内机的膨胀阀的泄漏情况。
  3. 根据权利要求2所述的膨胀阀控制方法,其特征在于,“根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值或所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:
    如果第一制冷差值持续大于或等于第一制冷预设差值且小于第二预设制冷差值达到第一预设时间,并且第二制冷差值持续大于第三制冷预 设差值且小于或等于第四制冷预设差值达到所述第一预设时间,或者第三制冷差值持续大于第五制冷预设差值且小于或等于第六制冷预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于轻度泄漏状态;
    如果所述第一制冷差值持续大于或等于第七制冷预设差值且小于所述第一制冷预设差值达到所述第一预设时间,并且所述第二制冷差值持续大于所述第四制冷预设差值且小于或等于第八制冷预设差值达到所述第一预设时间,或者所述第三制冷差值持续大于所述第六制冷预设差值且小于或等于第九制冷预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于中度泄漏状态;
    如果所述第一制冷差值持续小于所述第七制冷预设差值达到所述第一预设时间,并且所述第二制冷差值持续大于所述第八制冷预设差值达到所述第一预设时间,或者所述第三制冷差值持续大于所述第九预设差值达到所述第一预设时间,则确定所述室内机的膨胀阀处于重度泄漏状态;
    其中,所述第一制冷差值为所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值,所述第二制冷差值为所述室内机所处环境的室内温度与所述室内机的第一管路的温度的差值,所述第三制冷差值为所述室内机所处环境的室内温度与所述室内机的第二管路的温度的差值。
  4. 根据权利要求1所述的膨胀阀控制方法,其特征在于,在所述室内机处于制热工况时,“根据所述室内机所处环境的室内温度、所述室内机的第一管路的温度以及所述室内机的第二管路的温度,确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:
    根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值,确定所述室内机的膨胀阀的泄漏情况。
  5. 根据权利要求4所述的膨胀阀控制方法,其特征在于,“根据所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值以及所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值, 确定所述室内机的膨胀阀的泄漏情况”的步骤具体包括:
    如果第一制热差值持续大于第一制热预设差值达到第二预设时间,并且第二制热差值持续大于第二制热预设差值且小于或等于第三制热预设差值达到所述第二预设时间,则确定所述室内机的膨胀阀处于轻度泄漏状态;
    如果所述第一制热差值持续大于第四制热预设差值且小于或等于所述第一制热预设差值达到所述第二预设时间,并且所述第二制热差值持续大于所述第三制热预设差值且小于或等于第五制热预设差值达到所述第二预设时间,则确定所述室内机的膨胀阀处于中度泄漏状态;
    如果所述第一制热差值持续大于第六制热预设差值且小于或等于所述第四制热预设差值达到所述第二预设时间,并且所述第二制热差值持续大于所述第五制热预设差值达到所述第二预设时间,则确定所述室内机的膨胀阀处于重度泄漏状态;
    其中,所述第一制热差值为所述室内机的第一管路的温度与所述室内机的第二管路的温度的差值,所述第二制热差值为所述室内机的第二管路的温度与所述室内机所处环境的室内温度的差值。
  6. 根据权利要求3或5所述的膨胀阀控制方法,其特征在于,所述第一制冷预设差值为﹣1℃,所述第二制冷预设差值为﹣0.5℃,所述第三制冷预设差值为4℃,所述第四制冷预设差值为6℃,所述第五制冷预设差值为5℃,所述第六制冷预设差值为8℃,所述第七制冷预设差值为﹣3℃,所述第八制冷预设差值为8℃,所述第九制冷预设差值为10℃,所述第一预设时间为5min;或者
    所述第一制热预设差值为10℃,所述第二制热预设差值为20℃,所述第三制热预设差值为25℃,所述第四制热预设差值为7℃,所述第五制热预设差值为30℃,所述第六制热预设差值为5℃,所述第二预设时间为5min。
  7. 根据权利要求3或5所述的膨胀阀控制方法,其特征在于,在所述室内机的膨胀阀处于轻度泄漏状态的情况下,所述膨胀阀控制方法还包括:
    控制所述膨胀阀关闭第一预设开度;
    经过第三预设时间后,如果所述膨胀阀依然处于轻微泄漏状态,则再次执行上述步骤。
  8. 根据权利要求7所述的膨胀阀控制方法,其特征在于,在所述室内机的膨胀阀处于中度泄漏状态的情况下,所述膨胀阀控制方法还包括:
    控制所述膨胀阀关闭第二预设开度;
    经过第四预设时间后,如果所述膨胀阀依然处于泄漏状态,则再次执行上述步骤;
    其中,所述第二预设开度大于所述第一预设开度。
  9. 根据权利要求8所述的膨胀阀控制方法,其特征在于,在控制所述膨胀阀关闭所述第二预设开度的次数达到第一预设次数的情况下,如果所述膨胀阀依然处于泄漏状态,则所述控制方法还包括:
    控制所述膨胀阀开启第三预设开度;
    控制所述室内机的风机开启;
    经过第五预设时间后,控制所述膨胀阀关闭第四预设开度;
    控制所述室内机的风机关闭;
    经过第六预设时间后,如果所述膨胀阀依然处于泄漏状态,则再次执行上述步骤;
    其中,所述第四预设开度大于所述第三预设开度。
  10. 根据权利要求3或5所述的膨胀阀控制方法,其特征在于,在所述室内机的膨胀阀处于重度泄漏状态的情况下,所述膨胀阀控制方法还包括:
    控制所述膨胀阀开启第五预设开度;
    控制所述室内机的风机开启;
    经过第七预设时间后,控制所述膨胀阀关闭第六预设开度;
    控制所述室内机的风机关闭;
    经过第八预设时间后,如果所述膨胀阀依然处于泄漏状态,则再次执行上述步骤;
    其中,所述第六预设开度大于所述第五预设开度。
PCT/CN2020/101316 2019-07-23 2020-07-10 用于多联机空调系统的膨胀阀控制方法 WO2021012967A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/629,509 US20220282885A1 (en) 2019-07-23 2020-07-10 Expansion valve control method for multi-connection air-conditioning system
EP20844195.6A EP4006437B1 (en) 2019-07-23 2020-07-10 Expansion valve control method for multi-split air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910667960.6A CN112361541B (zh) 2019-07-23 2019-07-23 用于多联机空调系统的膨胀阀控制方法
CN201910667960.6 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012967A1 true WO2021012967A1 (zh) 2021-01-28

Family

ID=74192985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101316 WO2021012967A1 (zh) 2019-07-23 2020-07-10 用于多联机空调系统的膨胀阀控制方法

Country Status (4)

Country Link
US (1) US20220282885A1 (zh)
EP (1) EP4006437B1 (zh)
CN (1) CN112361541B (zh)
WO (1) WO2021012967A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754413B (zh) * 2022-04-11 2023-10-27 青岛海信日立空调系统有限公司 一种多联机空调系统及故障定位方法
CN116951662A (zh) * 2022-04-20 2023-10-27 广东美的制冷设备有限公司 用于检测冷媒泄漏位置的方法和存储介质、空调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294293A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 空気調和機
JP2009145005A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 多室形空気調和機の制御方法
CN105485869A (zh) * 2016-01-04 2016-04-13 广东美的暖通设备有限公司 电子膨胀阀故障检测方法和装置
CN105953483A (zh) * 2016-04-25 2016-09-21 广东美的暖通设备有限公司 多联机系统及其室内机节流元件的失效检测方法
CN109405173A (zh) * 2018-10-26 2019-03-01 宁波奥克斯电气股份有限公司 一种电子膨胀阀内漏的检测方法及多联机空调系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915819B2 (ja) * 2005-07-07 2007-05-16 ダイキン工業株式会社 空気調和装置
JP4926098B2 (ja) * 2008-03-14 2012-05-09 三菱電機株式会社 冷凍装置
US11022346B2 (en) * 2015-11-17 2021-06-01 Carrier Corporation Method for detecting a loss of refrigerant charge of a refrigeration system
CN107576112A (zh) * 2017-09-19 2018-01-12 青岛海尔空调器有限总公司 用于制冷剂泄漏的检测方法及装置、空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294293A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 空気調和機
JP2009145005A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 多室形空気調和機の制御方法
CN105485869A (zh) * 2016-01-04 2016-04-13 广东美的暖通设备有限公司 电子膨胀阀故障检测方法和装置
CN105953483A (zh) * 2016-04-25 2016-09-21 广东美的暖通设备有限公司 多联机系统及其室内机节流元件的失效检测方法
CN109405173A (zh) * 2018-10-26 2019-03-01 宁波奥克斯电气股份有限公司 一种电子膨胀阀内漏的检测方法及多联机空调系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006437A4 *

Also Published As

Publication number Publication date
US20220282885A1 (en) 2022-09-08
EP4006437A4 (en) 2022-09-28
CN112361541B (zh) 2022-06-24
EP4006437A1 (en) 2022-06-01
EP4006437B1 (en) 2023-12-27
CN112361541A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2021012967A1 (zh) 用于多联机空调系统的膨胀阀控制方法
CN103162461B (zh) 空调器和应用于该空调器的除霜控制方法
KR20140056965A (ko) 공기조화기 및 그 제어 방법
CN104344622B (zh) 风冷热泵冷热水机及其换热器防冻方法、系统
CN107289599A (zh) 一种检测空调冷媒泄露量的装置和方法
CN104634009A (zh) 空调循环装置的控制方法
CN208567193U (zh) 空调系统
CN111271821A (zh) 一种四通阀换向异常控制方法、存储介质及空调
WO2022183986A1 (zh) 多联机空调系统的控制方法
US11585560B2 (en) Method of judging lack-of-freon in air conditioner, and air conditioner control method
WO2020233116A1 (zh) 用于空调器的除霜控制方法
JPH06180166A (ja) 空気調和機
CN106705305A (zh) 空调器及空调器用蓄热组件工作状态的检测方法
CN103940158A (zh) 空调室外机、空调系统和空调系统的操作方法
CN105954052A (zh) 一种毛细管堵塞检测系统及方法
CN103913005A (zh) 制冷系统及其控制方法和具该制冷系统的空调
WO2018054178A1 (zh) 空调系统的室内机的节流阀体的检测方法
US11982487B2 (en) Defrosting control method, central controller and heating system
CN106766435A (zh) 一种用吸气温度控制空气源热泵除霜的控制方法及热水器
WO2023160065A1 (zh) 一种多联机系统控制方法
TW202004096A (zh) 應用溫度感應流量控制閥完成冰水回路的節能系統
CN211119901U (zh) 一种空调冷热水阀控制装置
CN210602376U (zh) 用于制冷系统的控制装置及制冷系统
WO2020168771A1 (zh) 用于热泵机组的自动补水系统以及补水方法
CN110608513B (zh) 一种空调系统的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844195

Country of ref document: EP

Effective date: 20220223