WO2021012954A1 - 分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用 - Google Patents

分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用 Download PDF

Info

Publication number
WO2021012954A1
WO2021012954A1 PCT/CN2020/100846 CN2020100846W WO2021012954A1 WO 2021012954 A1 WO2021012954 A1 WO 2021012954A1 CN 2020100846 W CN2020100846 W CN 2020100846W WO 2021012954 A1 WO2021012954 A1 WO 2021012954A1
Authority
WO
WIPO (PCT)
Prior art keywords
germanium
silicon
ternary alloy
nanomaterials
decomposing
Prior art date
Application number
PCT/CN2020/100846
Other languages
English (en)
French (fr)
Inventor
夏盛清
贺彦清
刘超
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2021012954A1 publication Critical patent/WO2021012954A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal

Definitions

  • the invention relates to a method for preparing silicon or germanium nanomaterials by decomposing a ternary alloy, silicon or germanium nanomaterials and applications, and belongs to the technical field of nanomaterial preparation.
  • Silicon and germanium are important semiconductor materials and have a wide range of uses in the field of optoelectronics.
  • the corresponding nanomaterials are used in aerospace, nuclear physical detection, optical fiber communications, infrared optics, solar cells, chemical catalysts, biomedicine, lithium ion batteries and other fields. Especially important applications.
  • the current preparation methods of silicon and germanium nanomaterials are divided into physical methods and chemical methods.
  • the physical method mainly uses silicon or germanium bulk as the raw material, and uses heating evaporation, laser ablation, magnetron sputtering and other means to obtain silicon or germanium atomic vapor or high-temperature plasma, and then obtain nanometers by substrate deposition or solution dispersion. Particles.
  • Such methods are limited by equipment and are only suitable for small batch laboratory preparation, and cannot be applied to large-scale industrial production.
  • Another method of physical preparation is high-energy ball milling.
  • the particle size distribution of the powder material obtained by pure silicon or germanium elemental ball milling is relatively wide, and uniformly-sized nanoparticles cannot be obtained, which cannot meet actual application requirements.
  • the most representative method for preparing nanoparticles by chemical method is pyrolysis of organosilicon or organic germanium precursors, which is also a more mature batch preparation method; in addition, the high temperature reduction of silicon or germanium oxides by active alkali metals or alkaline earth metals Precursors are also the most researched schemes.
  • the above-mentioned complex chemical synthesis processes often involve high-temperature reactions or require expensive reagents, such as silane, sodium magnesium metal, etc., and these raw materials are lively and flammable, which can easily bring safety hazards.
  • chemical reduction methods are difficult to control the reaction process and easily lead to silicon Oxygen or germanium oxygen impurities and alloy compounds, so cumbersome post-treatment procedures are required. The above reasons have caused the current high industrial production cost of silicon or germanium nanomaterials, which severely restricts the application of the materials.
  • Chinese Patent Document CN102616785A discloses a method for preparing nano-silicon powder particles by reducing silicon tetrachloride by zinc.
  • the metallic zinc particles are transformed into zinc vapor through the melter gasifier, and are brought into the tubular reactor under the condition of argon as protective gas and carrier gas.
  • Silicon tetrachloride is slowly introduced into the tubular reactor in liquid form. After chemically reacting with zinc, a mixture of silicon powder particles and zinc chloride is generated, and nano silicon powder particles are obtained by pickling and vacuum freeze drying.
  • this patent requires the vaporization of metallic zinc and silicon tetrachloride, which consumes high energy; and needs to be carried by carrier gas, so the reaction yield is low; at the same time, it involves reduction reaction, the required reaction temperature is as high as about 1000°C, and the cost is high.
  • the reaction is not easy to control; the separation step of the mixture of the obtained silicon powder particles and the zinc chloride is relatively complicated, and the obtained silicon powder particles have a large particle size and a wide distribution; the above-mentioned limits the application of the silicon powder particles.
  • Chinese patent document CN104985177A discloses a one-step method for synthesizing surface passivated nano-germanium particles; this method uses an inductively coupled plasma enhanced chemical vapor deposition system, using liquid germanium and water as the reaction source , One-step direct synthesis of surface passivation nano-germanium particles.
  • the invention eliminates the hidden dangers of inflammability and explosion of the reaction source, it needs to use carrier gas to carry germanium source and water, the reaction yield is low, the required inductively coupled plasma enhanced chemical vapor deposition system is complicated, and it is not suitable for large-scale preparation.
  • Cispheral Patent Document CN102764896A discloses a method for preparing germanium nanoparticles capable of stabilizing nanogermanium; this method is to dissolve GeO 2 in an alkaline solution to obtain a germanate ion precursor solution, and then add a biocompatible natural biological large The molecules are stirred and mixed at high speed to obtain the reactant solution and then mixed with the reducing agent under high-speed stirring.
  • the reduced reaction solution is subjected to dialysis bag dialysis treatment, centrifuged and freeze-dried to obtain germanium nanoparticles.
  • the obtained germanium nanoparticles have better dispersibility and smaller particle size, but natural biological macromolecules are used as stabilizers and are not easily removed from the product, which also greatly limits the practical application ability of the product.
  • the present invention provides a method for efficiently and gently preparing silicon or germanium nanomaterials under room temperature conditions, as well as silicon or germanium nanomaterials and applications thereof.
  • the method of the present invention does not need to use toxic and flammable expensive organosilicon or germanium reagents, nor does it need to rely on highly active and flammable sodium magnesium metal as a reducing agent, but uses relatively stable chemical properties of Li-Zn-Si and Li-Zn- Ge ternary alloy compound is the precursor.
  • silicon or germanium nanomaterials with small subcrystalline size, uniform particle size and high purity can be prepared in batches.
  • the raw materials used in the present invention are low in cost, non-toxic and safe; the reaction conditions are mild, the process is stable, the yield is high, and the cost is low. There is no need for complex and tedious post-treatment processes. It is suitable for large-scale production of nano silicon or germanium materials and has a huge market Competitive advantages.
  • a method for preparing silicon or germanium nanomaterials by decomposing a ternary alloy including the steps:
  • Li-Zn-Si or Li-Zn-Ge ternary alloy compound is decomposed to prepare silicon or germanium nanomaterials.
  • the Li-Zn-Si ternary alloy compound is Li 2 ZnSi, Li 2 ZnSi 3 or Li 8 Zn 2 Si 3 ;
  • the Li-Zn-Ge ternary alloy compound is LiZnGe, Li 2 ZnGe, Li 2 ZnGe 3 or Li 8 Zn 2 Ge 3 .
  • the method for solid-phase synthesis of Li-Zn-Si ternary alloy compound is as follows: simple metal lithium, zinc, silicon, or binary compounds corresponding to metal lithium, zinc, and silicon The mixture is obtained by mixing with chemical formula and metering ratio; then, under the protection of vacuum or inert atmosphere, the temperature is raised to 500-800°C at a heating rate of 150-250°C/h for constant-temperature solid-phase reaction for 2-5 hours, cooled and ground until there is no metallic luster; Under the protection of vacuum or inert atmosphere, the product is heated to 600-900°C at a temperature rising rate of 150-250°C/h, and solid-phase reaction is maintained at a constant temperature for 2-7h, cooled and ground until there is no metallic luster to obtain Li-Zn-Si ternary alloy Compound.
  • the binary compounds corresponding to metal lithium, zinc, and silicon refer to two or three types selected from the group consisting of binary compounds composed of lithium and zinc, binary compounds composed of zinc and silicon, and binary compounds composed of lithium and silicon. .
  • the inert atmosphere is argon.
  • the method for solid-phase synthesis of Li-Zn-Ge ternary alloy compound is as follows: simple metal lithium, zinc, and germanium, or binary compounds corresponding to metal lithium, zinc, and germanium, The mixture is obtained by mixing with chemical formula and metering ratio; then under the protection of vacuum or inert atmosphere, the temperature is raised to 300 ⁇ 500°C at a temperature rising rate of 60 ⁇ 100°C/h for 10 ⁇ 15h at a constant temperature and solid phase reaction at 60 ⁇ 100°C/h The temperature rise rate is raised to 700-900°C under a constant temperature solid-phase reaction for 40-60 hours, and the Li-Zn-Ge ternary alloy compound is obtained after grinding until there is no metallic luster.
  • the binary compound corresponding to the metal lithium, zinc, and germanium refers to two or three selected from the group consisting of a binary compound composed of lithium and zinc, a binary compound composed of zinc and germanium, and a binary compound composed of lithium and germanium. .
  • the inert atmosphere is argon.
  • the decomposition method is: slow oxidation decomposition, weak acid solution decomposition or mechanical ball milling decomposition.
  • the slow oxidation and decomposition step is: placing the Li-Zn-Si or Li-Zn-Ge ternary alloy compound in an oxygen-containing continuous gas flow, and slowly oxidizing at room temperature until the compound is completely decomposed.
  • the slow oxidative decomposition can prepare porous structured nanoparticles.
  • the oxygen-containing continuous gas flow is air.
  • the oxidation time is ten to thirty days.
  • the step of decomposing the weak acid solution is: mixing Li-Zn-Si or Li-Zn-Ge ternary alloy compound with a weak acid buffer solution, stirring at a constant temperature of 15-40°C until the compound is completely decomposed, and then After filtering, washing, and drying, silicon or germanium nanomaterials are prepared.
  • the mass ratio of the ternary alloy compound to the volume of the buffer solution is 0.5-1.5: 500 g/ml.
  • the weakly acidic buffer solution is a solution prepared with glacial acetic acid, anhydrous sodium acetate and deionized water with a pH of 5-7.
  • the stirring time is 15-40h.
  • the mechanical ball milling decomposition step is: placing the Li-Zn-Si or Li-Zn-Ge ternary alloy compound in a ball milling tank, and ball milling under vacuum or inert gas protection at room temperature until the compound is completely decomposed.
  • the inert gas is argon.
  • the rotation speed of the ball mill is 250-350 r/min; and the time of the ball mill is 24 to 48 hours.
  • an annealing treatment is required at 350-450°C for 4-6 hours.
  • the decomposition method is slow oxidative decomposition or mechanical ball milling decomposition
  • the resulting product needs to be separated and purified, and finally silicon or germanium nanomaterials are prepared.
  • the separation and purification includes the steps of: the product obtained after decomposition of the Li-Zn-Si or Li-Zn-Ge ternary alloy compound is pickled, filtered, washed, and vacuum dried to obtain silicon or germanium nanomaterials.
  • the separation and purification includes one or more of the following conditions:
  • Pickling is the process of decomposing the Li-Zn-Si or Li-Zn-Ge ternary alloy compound in 0.1-2mol/L hydrochloric acid and stirring and reacting for 30 minutes;
  • the filtration uses a mixed cellulose ester filter membrane with a pore size of 200 nm;
  • the washing is washing with deionized water or absolute ethanol;
  • the vacuum drying conditions are: vacuum drying at 60-80°C for 1-6 hours.
  • the present invention also provides a silicon or germanium nano material, which is prepared according to the method for preparing silicon or germanium nano material by decomposing a ternary alloy, and has a porous structure with a particle size of 10-100 nm.
  • 0.1 g of the silicon or germanium nanomaterial is dispersed in 500 mL of a pentanol or ethanol solution, and the obtained silicon and germanium dispersion solution is left for seven days without precipitation at room temperature.
  • the present invention also provides a silicon nano material, which is prepared according to the method for preparing silicon or germanium nano material by decomposing the ternary alloy.
  • the silicon nano material has a porous structure and has a particle size of 20-50 nm.
  • the present invention also provides a germanium nanomaterial, which is prepared according to the method for preparing silicon or germanium nanomaterial by decomposing a ternary alloy.
  • the germanium nanomaterial has a porous structure and has a particle size of 10-50nm.
  • the invention also provides the application of the silicon or germanium nanomaterials in the fields of aerospace, nuclear physical detection, optical fiber communication, infrared optics, solar cells, chemical catalysts, biomedicine, and lithium ion batteries.
  • the Li-Zn-Si or Li-Zn-Ge ternary alloy compound of the present invention can be prepared by simple solid-phase reaction, is easy to prepare, and the raw materials used are cheap and easily available.
  • the present invention uses Li-Zn-Si or Li-Zn-Ge ternary alloy compound as the precursor, does not need to use highly active sodium or magnesium as a reducing agent, and avoids flammable and explosive expensive organic silicon or germanium reagents, and costs It is cheaper and safer to produce.
  • the preparation of the nano-silicon or germanium material of the present invention is obtained by slowly decomposing the Li-Zn-Si or Li-Zn-Ge ternary alloy compound at room temperature, avoiding the problem of uneven particles caused by high-temperature side reaction processes and direct dealloying; decomposition;
  • the nano-zinc formed in the process can protect the silicon or germanium nano crystal grains, and it is easy to obtain high-purity and low-oxygen nano-silicon or germanium materials;
  • the process of the invention is simple, and the reaction and product size and morphology are easy to control.
  • the invention does not need to use hydrofluoric acid, surfactants, stabilizers and other post-treatment reagents, the product separation and purification process is simple, no external pollution is introduced, and the purity of the obtained nano silicon or germanium materials is further improved.
  • the method of the present invention is easy to implement, has a high reaction yield (>90%), and can be prepared on a large scale; the obtained nano silicon or germanium material has a porous structure, small particle size (10-100nm), narrow particle size distribution, and uniform particle size , High purity and low oxygen, good dispersion performance, strong applicability.
  • Figure 1 shows the XRD of the nano silicon material powder prepared in Example 1.
  • Example 2 is a transmission electron microscope image of the nano silicon material prepared in Example 1.
  • FIG. 3 shows XRD of the nano-germanium material powder prepared in Example 2.
  • Example 4 is a transmission electron microscope image of the nano-germanium material prepared in Example 2.
  • Figure 6 is a transmission electron microscope image of the nano-germanium material prepared in Example 3.
  • Example 7 shows the XRD of the nano-germanium material powder prepared in Example 4.
  • Example 8 is a transmission electron micrograph of the nano-germanium material prepared in Example 4.
  • FIG. 9 is an ethanol dispersion of the nano silicon material prepared in Example 1.
  • Example 10 is a pentanol dispersion of the nano-germanium material prepared in Example 2.
  • Example 11 is a pentanol dispersion of the nano-germanium material prepared in Example 3.
  • FIG. 12 is a pentanol dispersion of the nano-germanium material prepared in Example 4.
  • the method for preparing nanometer silicon material by decomposing Li 2 ZnSi ternary alloy compound by mechanical ball milling includes the following steps:
  • the elemental Li, Zn, and Si are mixed and sealed in a metal tantalum container at a molar ratio of 2:1:1, and the metal tantalum container is placed in a vacuum environment at a temperature of 190°C/h The temperature rise rate is increased to 600°C for 3 hours, and the furnace is cooled.
  • the metal tantalum container is opened in an argon atmosphere glove box, and the material obtained by the solid phase reaction is ground until there is no metallic luster. Subsequently, the ground material was sealed in a metallic tantalum container for a second time, and the metallic tantalum was placed in a vacuum environment, and the temperature was raised to 770°C at a heating rate of 210°C/h for 4 hours.
  • the metal tantalum container is opened in an argon atmosphere glove box, and the Li-Zn-Si ternary alloy compound obtained by the solid-phase reaction is ground until there is no metallic luster to obtain the Li 2 ZnSi ternary alloy compound.
  • the above powder was annealed at 400°C under vacuum for 5 hours and then acid washed (500ml 1.2mol/L dilute hydrochloric acid was added per 0.5g powder), stirred for 30 minutes, filtered through a mixed cellulose ester filter with a pore size of 200nm, washed with deionized water, Vacuum drying at 70°C for 3 hours to obtain a crystalline nano-Si material.
  • Fig. 1 The X-ray diffraction pattern of the nano-Si material obtained in this embodiment is shown in Fig. 1; it can be seen from the figure that the nano-Si prepared by this method is cubic crystal form without impurities.
  • the transmission electron micrograph of the nano Si material prepared in this embodiment is shown in Figure 2; it can be seen from the figure that the nano Si prepared by this method has a porous structure with a particle size of 20-50 nm.
  • the method for preparing nano-germanium material by slowly oxidizing and decomposing LiZnGe ternary alloy compound includes the steps:
  • the elemental Li, Zn, and Ge are mixed and sealed in a metal tantalum container at a molar ratio of 1:1:1, and the metal tantalum container is placed in a vacuum environment at a temperature of 80°C/hr.
  • the heating rate was increased to 400°C for 12 hours, and then the temperature was increased to 850°C for 48 hours at a heating rate of 80°C/hr.
  • the metal tantalum container is opened in an argon atmosphere glove box, and the Li-Zn-Ge ternary alloy compound obtained by the solid-phase reaction is ground until there is no metallic luster to obtain the LiZnGe ternary alloy compound.
  • the X-ray diffraction pattern of the product obtained after the decomposition of the LiZnGe ternary alloy compound in this example and the nano-germanium material is shown in Fig. 3.
  • the products of the complete decomposition of the LiZnGe ternary alloy compound are Ge, Zn and ZnO, Li
  • the compound is difficult to calibrate in the X-ray diffraction pattern. After treatment with dilute hydrochloric acid solution, only cubic nano-Ge is left without impurities.
  • the TEM characterization result of the nano-Ge material obtained in this example is shown in FIG. 4; it can be seen from FIG. 4 that the obtained nano-Ge has a nano-porous structure with a particle size of about 100 nm.
  • the method for preparing nano-germanium materials by decomposing LiZnGe ternary alloy compound in weak acid solution includes the steps:
  • the powder line diffraction pattern of the nano-Ge material obtained in this embodiment is shown in FIG. 5; it can be seen from FIG. 5 that the cubic phase nano-Ge prepared by this method is free of impurities.
  • the transmission electron microscope image of the nano-Ge material prepared in this embodiment is shown in FIG. 6; it can be seen from FIG. 6 that the nano-Ge prepared by this method has a porous structure with a particle size of 10-100 nm.
  • the method for preparing nano-germanium material by decomposing LiZnGe ternary alloy compound by mechanical ball milling includes the steps:
  • the transmission electron microscope image of the nano-Ge particles prepared in this embodiment is shown in FIG. 8; it can be seen from FIG. 8 that the nano-Ge particles prepared by this method have a porous structure with a particle size of 10-50 nm.
  • Test sample the nano-germanium or silicon material obtained in Examples 1-4.
  • Test method Disperse 0.1g sample in 500mL pentanol or ethanol solution and ultrasonic for 0.5h to obtain nanometer silicon or germanium pentanol or ethanol dispersion.
  • Figures 9-12 are the ethanol dispersion of nano-silicon materials prepared in Example 1, the pentanol dispersion of nano-germanium materials prepared in Example 2, the pentanol dispersion of nano-germanium materials prepared in Example 3, and Example 4
  • the photograph of the prepared pentanol dispersion of the nano-germanium material shows that the nano-germanium or silicon material obtained in the present invention has better dispersibility.
  • the obtained dispersion solution of silicon and germanium did not precipitate after standing for seven days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

一种分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用,该方法包括步骤:Li-Zn-Si或Li-Zn-Ge三元合金化合物的固相合成;Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解制备得到硅或锗纳米材料。该方法使用的原料造价低廉、无毒安全;反应条件温和,工艺稳定,产率高,成本低,无需复杂繁琐的后处理过程,适合纳米硅或锗材料的规模化生产,具有极大的市场竞争优势。所得纳米硅或锗材料为多孔结构,粒径小(10~100nm),粒径分布窄,颗粒尺寸均匀,高纯低氧,分散性能好,应用性强。

Description

分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用 技术领域
本发明涉及分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用,属于纳米材料制备技术领域。
背景技术
硅、锗是重要的半导体材料,在光电领域具有广泛的用途,相应的纳米材料在航空航天、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学、锂离子电池等领域具有尤为重要的应用。
目前的硅、锗纳米材料制备方法分为物理法与化学法两类。物理法主要以硅或锗块体单质为原料,利用加热蒸发、激光烧蚀、磁控溅射等手段,获得硅或锗的原子蒸气或高温等离子体,再通过衬底沉积或溶液分散获得纳米颗粒。此类方法受限于仪器设备,仅适合小批量实验室制备,无法应用于规模化工业生产。物理法的另一种制备方式为高能球磨,然而单纯以硅或锗单质球磨获得的粉体材料颗粒粒径分布较宽,无法获得尺寸均一的纳米颗粒,无法满足实际应用需求。化学法制备纳米颗粒最具代表性的方法是高温裂解有机硅或有机锗前体,这也是目前较成熟的批量制备手段;此外,通过活泼的碱金属或碱土金属高温还原硅或锗的氧化物前体也是目前研究较多的方案。上述复杂的化学合成工艺,往往涉及高温反应或需要昂贵试剂,如硅烷、钠镁金属等,且这些原料活泼易燃,容易带来安全隐患,加上化学还原方法难以控制反应进程,容易导致硅氧或锗氧杂质以及合金化合物,因此还需要繁琐的后处理工序。上述原因造成了目前硅或锗纳米材料的工业化生产成本居高不下,严重限制了材料的应用。
关于纳米硅材料的制备:如中国专利文献CN102616785A公开了一种锌还原四氯化硅制备纳米硅粉颗粒的方法。金属锌粒经过熔融气化器变为锌蒸气,在氩气做保护气和载气的条件下带入管式反应器中,四氯化硅以液态的形式缓慢引入到管式反应器中气化后与锌反应,生成硅粉颗粒与氯化锌的混合物,经过酸洗和真空冷冻干燥处理即得到纳米硅粉颗粒。但该专利需要将金属锌以及四氯化硅气化,耗能高;且需要使用载气携带,反应产率较低;同时涉及还原反应,所需反应温度高达1000℃左右,成本高,且反应不易控制;所得硅粉颗粒与氯化锌的混合物分离步骤较为繁琐,同时所得硅粉颗粒粒径较大、分布较宽;上述使得硅粉颗粒的应用受到限制。
关于纳米锗材料的制备:如中国专利文献CN104985177A公开了一种一步法合成表面钝化的纳米锗颗粒的方法;该方法采用电感耦合等离子体增强化学气相沉积系统,使用液态锗和 水作为反应源,一步直接合成表面钝化的纳米锗颗粒。该发明虽然消除了反应源易燃易爆的隐患,但需要使用载气携带锗源和水,反应产率较低,所需的电感耦合等离子体增强化学气相沉积系统复杂,不适用规模化制备;并且,纳米颗粒表面钝化虽然避免了团聚,但是钝化实际上形成了表面氧化物,无法获得高纯低氧样品,产品应用受限。又如,中国专利文献CN102764896A公开了一种可稳定纳米锗的锗纳米颗粒制备方法;该方法是将GeO 2溶于碱液中,得到锗酸根离子前驱液,然后加入生物相容的天然生物大分子,高速搅拌混合,得到反应物溶液后在高速搅拌的条件下与还原剂混合反应,最后将还原反应液经过透析袋透析处理,离心冷冻干燥,获得锗纳米颗粒。所得锗纳米颗粒具有较好的分散性和较小的粒度,但是天然生物大分子作为稳定剂,不易从产品中移除,同样会极大限制产品的实际应用能力。
发明内容
针对现有技术存在的不足,本发明提供一种室温条件下高效温和制备硅或锗纳米材料的方法,以及硅或锗纳米材料及其应用。本发明方法既无需使用毒性易燃的昂贵有机硅或锗试剂,亦无需依赖高活性易燃的钠镁金属为还原剂,而是采用化学性质相对稳定的Li-Zn-Si和Li-Zn-Ge三元合金化合物为前体,通过简单的氧化、酸处理或低速球磨处理,即可批量制备亚晶尺寸小、粒度均一以及纯度高的硅或锗纳米材料。本发明使用的原料造价低廉、无毒安全;反应条件温和,工艺稳定,产率高,成本低,无需复杂繁琐的后处理过程,适合纳米硅或锗材料的规模化生产,具有极大的市场竞争优势。
本发明的技术方案如下:
一种分解三元合金制备硅或锗纳米材料的方法,包括步骤:
(1)Li-Zn-Si或Li-Zn-Ge三元合金化合物的固相合成;
(2)Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解制备得到硅或锗纳米材料。
根据本发明优选的,步骤(1)中,所述Li-Zn-Si三元合金化合物为Li 2ZnSi、Li 2ZnSi 3或Li 8Zn 2Si 3;Li-Zn-Ge三元合金化合物为LiZnGe、Li 2ZnGe、Li 2ZnGe 3或Li 8Zn 2Ge 3
优选的,步骤(1)中,所述固相合成Li-Zn-Si三元合金化合物的方法为:将金属锂、锌、硅单质,或者金属锂、锌、硅对应的二元化合物,按化学式计量比混合得到混合物;然后在真空或惰性气氛保护下、以150~250℃/h的升温速率升温至500~800℃下恒温固相反应2~5h,冷却、研磨至无金属光泽;所得产物在真空或惰性气氛保护下、以150~250℃/h的升温速率升温至600~900℃下恒温固相反应2~7h,冷却、研磨至无金属光泽得Li-Zn-Si三元合金化合物。
所述金属锂、锌、硅对应的二元化合物是指选自锂和锌组成的二元化合物、锌和硅组成的二元化合物、锂和硅组成的二元化合物中的两种或三种。
进一步优选的,所述惰性气氛均为氩气。
优选的,步骤(1)中,所述固相合成Li-Zn-Ge三元合金化合物的方法为:将金属锂、锌、锗单质,或者金属锂、锌、锗对应的二元化合物,按化学式计量比混合得到混合物;然后在真 空或惰性气氛保护下、以60~100℃/h的升温速率升温至300~500℃下恒温固相反应10~15h,然后以60~100℃/h的升温速率升温至700~900℃下恒温固相反应40~60h,经研磨至无金属光泽即得Li-Zn-Ge三元合金化合物。
所述金属锂、锌、锗对应的二元化合物是指选自锂和锌组成的二元化合物、锌和锗组成的二元化合物、锂和锗组成的二元化合物中的两种或三种。
进一步优选的,所述惰性气氛为氩气。
根据本发明优选的,步骤(2)中,所述分解方式为:缓慢氧化分解、弱酸溶液分解或机械球磨分解。
优选的,所述缓慢氧化分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物置于含氧连续气流中,室温缓慢氧化至化合物完全分解。所述缓慢氧化分解可制备多孔结构纳米颗粒。
进一步优选的,所述含氧连续气流为空气。
进一步优选的,所述氧化时间为十天到三十天。
优选的,所述弱酸溶液分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物与弱酸性缓冲溶液混合,在恒温15~40℃条件下,搅拌至化合物完全分解,然后经过滤、洗涤、干燥制得硅或锗纳米材料。
进一步优选的,所述三元合金化合物的质量与缓冲溶液的体积比为0.5-1.5:500g/ml。
进一步优选的,所述弱酸性缓冲溶液为冰醋酸、无水醋酸钠和去离子水配制的pH值为5~7的溶液。
进一步优选的,所述搅拌时间为15~40h。
优选的,所述机械球磨分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物置于球磨罐中,在真空或惰性气体保护下,室温球磨至化合物完全分解。
进一步优选的,所述惰性气体为氩气。
进一步优选的,所述球磨的转速为250-350r/min;所述球磨时间为24~48小时。
进一步优选的,所述机械球磨分解步骤后还需于350-450℃下退火处理4-6h。
优选的,分解方式为缓慢氧化分解或机械球磨分解时,所得产物还需进行分离纯化的步骤,最后制备得到硅或锗纳米材料。
进一步优选的,所述分离纯化包括步骤:Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解后所得产物经酸洗、过滤、洗涤、真空干燥即得硅或锗纳米材料。
进一步优选的,所述分离纯化包括以下条件中的一项或多项:
a、酸洗是将Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解后所得产物于0.1-2mol/L的盐酸中搅拌反应30min;
b、所述过滤是使用孔径为200nm的混合纤维素酯滤膜;
c、所述洗涤是用去离子水或无水乙醇洗涤;
d、所述真空干燥条件为:60-80℃下真空干燥1-6h。
本发明还提供了一种硅或锗纳米材料,按照上述分解三元合金制备硅或锗纳米材料的方法制备,为多孔结构,粒径为10~100nm。
优选的,0.1g硅或锗纳米材料分散于500mL戊醇或乙醇溶液中,在室温下,所得硅、锗分散溶液放置七天没有沉淀。
本发明还提供了一种硅纳米材料,按照上述分解三元合金制备硅或锗纳米材料的方法制备,所述硅纳米材料具有多孔结构,粒径在20-50nm。
本发明还提供了一种锗纳米材料,按照上述分解三元合金制备硅或锗纳米材料的方法制备,所述锗纳米材料具有多孔结构,粒径在10-50nm。
本发明还提供了上述硅或锗纳米材料在航空航天、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学、锂离子电池领域中的应用。
本发明的技术特点及有益效果如下:
1、本发明Li-Zn-Si或Li-Zn-Ge三元合金化合物只需简单的固相反应即可制备得到,易于制备,且所用原料廉价易得。本发明采用Li-Zn-Si或Li-Zn-Ge三元合金化合物为前体,无需使用高活性的钠或镁作为还原剂,且避免了易燃易爆的昂贵有机硅或锗试剂,成本更为低廉,生产更为安全。本发明纳米硅或锗材料的制备通过Li-Zn-Si或Li-Zn-Ge三元合金化合物在室温缓慢分解获得,避免了高温副反应过程以及直接去合金化导致的颗粒不均一问题;分解过程中形成的纳米锌可以对硅或锗纳米晶粒形成保护,易获得高纯低氧的纳米硅或锗材料;本发明工艺简单,反应以及产品尺寸形貌易于控制。本发明无需使用氢氟酸,表面活性剂,稳定剂等后处理试剂,产品分离纯化工艺简单,无外来引入污染,进一步提高了所得纳米硅或锗材料的纯度。
2、本发明方法易于实现,反应收率高(>90%),能够大规模制备;所得纳米硅或锗材料为多孔结构,粒径小(10~100nm),粒径分布窄,颗粒尺寸均匀,高纯低氧,分散性能好,应用性强。
附图说明
图1为实施例1中制备的纳米硅材料粉末XRD。
图2为实施例1中制备的纳米硅材料的透射电镜图。
图3为实施例2中制备的纳米锗材料粉末XRD。
图4为实施例2中制备的纳米锗材料的透射电镜图。
图5为实施例3中制备的纳米锗材料粉末XRD。
图6为实施例3中制备的纳米锗材料的透射电镜图.
图7为实施例4中制备的纳米锗材料粉末XRD。
图8为实施例4中制备的纳米锗材料的透射电镜图。
图9为实施例1中制备的纳米硅材料的乙醇分散液。
图10为实施例2中制备的纳米锗材料的戊醇分散液。
图11为实施例3中制备的纳米锗材料的戊醇分散液。
图12为实施例4中制备的纳米锗材料的戊醇分散液。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但不限于此。
同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
机械球磨分解Li 2ZnSi三元合金化合物制备纳米硅材料的方法,包括步骤:
(1)在氩气氛手套箱中,将单质Li、Zn、Si按2:1:1的摩尔比混合密封到金属钽容器中,将金属钽容器放置于真空环境中,以190℃/h的升温速率升温至600℃保温3h,随炉冷却,在氩气氛手套箱中将金属钽容器打开,将固相反应得到的料研磨至无金属光泽。随后将研磨后的料二次密封到金属钽容器中,将金属钽放置于真空环境中,以210℃/h的升温速率升温至770℃保温4h。在氩气氛手套箱中将金属钽容器打开,将固相反应得到的Li-Zn-Si三元合金化合物研磨至无金属光泽得到Li 2ZnSi三元合金化合物。
(2)在氩气氛手套箱中,将Li 2ZnSi三元合金化合物粉末装入玛瑙球磨罐中,玛瑙球磨罐外用不锈钢罐体密封;将球磨罐放在行星式球磨机上,在氩气氛围下以300r/min的自转速度室温球磨36h;球磨结束后在氩气氛手套箱中将球磨罐打开,收集罐内的粉末。所得粉末的X射线衍射图谱如图1所示,所得的纳米硅材料为无定形。将上述粉末在400℃真空下进行退火5h后酸洗(每0.5g粉末加入500ml1.2mol/L稀盐酸),搅拌30min后经孔径为200nm的混合纤维素酯滤膜过滤、去离子水洗涤、70℃下真空干燥3h得到晶形纳米Si材料。
本实施例所得纳米Si材料的X射线衍射图谱如图1所示;由图可知,该方法制备的纳米Si为立方晶型,无杂质。
本实施例制备的纳米Si材料的透射电镜图如图2所示;由图可知,该方法制备的纳米Si具有多孔结构,颗粒度在20-50nm。
实施例2
缓慢氧化分解LiZnGe三元合金化合物制备纳米锗材料的方法,包括步骤:
(1)在氩气氛手套箱中,将单质Li、Zn、Ge按1:1:1的摩尔比混合密封到金属钽容器中,将金属钽容器放置于真空环境中,以80℃/hr的升温速率升温至400℃保温12hr,随后以80℃/hr的升温速率升温至850℃保温48hr。在氩气氛手套箱中将金属钽容器打开,将固相反应得到的Li-Zn-Ge三元合金化合物研磨至无金属光泽得到LiZnGe三元合金化合物。
(2)在氩气氛手套箱中,将LiZnGe三元合金化合物粉末装入玻璃容器内,将玻璃容器放置在空气中30天至完全分解。取1g粉末加入500ml的1.2mol/L的稀盐酸中,搅拌反应30min洗去其它成分,经孔径为200nm的混合纤维素酯滤膜过滤、去离子水洗涤、70℃下真空干燥3h得到纳米Ge材料。
本实施例LiZnGe三元合金化合物分解后所得产物与纳米锗材料的X射线衍射图谱如图3所示;由图3可知,LiZnGe三元合金化合物完全分解的产物为Ge、Zn及ZnO,Li的化合物在X射线衍射图谱中难以标定。经过稀盐酸溶液处理后,只留下立方相纳米Ge,无杂质。
本实施例所得纳米Ge材料的透射电镜表征结果如图4所示;由图4可知,所得纳米Ge具有纳米多孔结构,颗粒度在100nm左右。
实施例3
弱酸溶液分解LiZnGe三元合金化合物制备纳米锗材料的方法,包括步骤:
(1)LiZnGe三元合金化合物的制备如实施例2所述。
(2)用冰醋酸、无水醋酸钠和去离子水配制pH=6的酸性缓冲溶液,经计算冰醋酸与醋酸钠的摩尔比为0.056:1;取LiZnGe三元合金化合物粉末1g加入500ml的酸性缓冲溶液和搅拌磁子装入氩气氛的玻璃容器中;玻璃容器浸在30℃水浴中,磁力搅拌调整至玻璃容器内有旋涡产生,不间断搅拌反应24h后,在空气中打开玻璃容器,将玻璃容器内的溶液进行过滤,所得沉淀经去离子水洗涤、70℃下真空干燥3h得到纳米Ge材料。
本实施例所得纳米Ge材料的粉末线衍射图谱如图5所示;由图5可知,该方法制备的立方相纳米Ge,无杂质。
本实施例制备的纳米Ge材料的透射电镜图如图6所示;由图6可知,该方法制备的纳米Ge具有多孔结构,颗粒度在10-100nm。
实施例4
机械球磨分解LiZnGe三元合金化合物制备纳米锗材料的方法,包括步骤:
(1)LiZnGe三元合金化合物的制备如实施例2所述。
(2)在氩气氛手套箱中,将LiZnGe三元合金化合物粉末装入玛瑙球磨罐中,玛瑙球磨罐外用不锈钢罐体密封;将球磨罐放在行星式球磨机上,在氩气氛围中以300r/min的自转速度球磨36h;球磨结束后在氩气氛手套箱中将球磨罐打开,收集罐内的粉末;所得粉末的X射线衍射图谱如图7所示,所得粉末中有锗的宽化峰,说明其具有晶态,无需退火处理。取1g粉末加入500ml的1.2mol/L的稀盐酸,搅拌反应30min洗去其它成分,经孔径为200nm的混合纤维素酯滤膜过滤、去离子水洗涤、60℃下真空干燥3h得到纳米Ge材料。
本实施例LiZnGe三元合金化合物粉末球磨后所得产物与纳米Ge颗粒的X射线衍射图谱如图7所示;由图可知,LiZnGe三元合金化合物粉末经过球磨处理后完全转化成纳米Ge和Zn,经过稀盐酸溶液酸洗过后,留下立方相纳米Ge,无杂质。
本实施例制备的纳米Ge颗粒的透射电镜图如图8所示;由图8可知,该方法制备的纳米Ge具有多孔结构,颗粒度在10-50nm。
试验例1
分散性能测试
试验样品:实施例1-4所得纳米锗或硅材料。
试验方法:将0.1g样品分散于500mL戊醇或乙醇溶液中,超声0.5h得到纳米硅或锗的戊醇或乙醇分散液。
图9-12依次是实施例1制备的纳米硅材料的乙醇分散液、实施例2制备的纳米锗材料的戊醇分散液、实施例3制备的纳米锗材料的戊醇分散液和实施例4制备的纳米锗材料的戊醇分散液的照片,由图可知,本发明所得纳米锗或硅材料分散性较好。在室温下,所得硅、锗分散溶液放置七天仍没有沉淀。

Claims (18)

  1. 一种分解三元合金制备硅或锗纳米材料的方法,包括步骤:
    (1)Li-Zn-Si或Li-Zn-Ge三元合金化合物的固相合成;
    (2)Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解制备得到硅或锗纳米材料。
  2. 根据权利要求1所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,步骤(1)中,所述Li-Zn-Si三元合金化合物为Li 2ZnSi、Li 2ZnSi 3或Li 8Zn 2Si 3;Li-Zn-Ge三元合金化合物为LiZnGe、Li 2ZnGe、Li 2ZnGe 3或Li 8Zn 2Ge 3
  3. 根据权利要求2所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述固相合成Li-Zn-Si三元合金化合物的方法为:将金属锂、锌、硅单质,或者金属锂、锌、硅对应的二元化合物,按化学式计量比混合得到混合物;然后在真空或惰性气氛保护下、以150~250℃/h的升温速率升温至500~800℃下恒温固相反应2~5h,冷却、研磨至无金属光泽;所得产物在真空或惰性气氛保护下、以150~250℃/h的升温速率升温至600~900℃下恒温固相反应2~7h,冷却、研磨至无金属光泽得Li-Zn-Si三元合金化合物。
  4. 根据权利要求2所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述固相合成Li-Zn-Ge三元合金化合物的方法为:将金属锂、锌、锗单质,或者金属锂、锌、锗对应的二元化合物,按化学式计量比混合得到混合物;然后在真空或惰性气氛保护下、以60~100℃/h的升温速率升温至300~500℃下恒温固相反应10~15h,然后以60~100℃/h的升温速率升温至700~900℃下恒温固相反应40~60h,经研磨至无金属光泽即得Li-Zn-Ge三元合金化合物。
  5. 根据权利要求1所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,步骤(2)中,所述分解方式为:缓慢氧化分解、弱酸溶液分解或机械球磨分解。
  6. 根据权利要求5所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述缓慢氧化分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物置于含氧连续气流中,室温缓慢氧化至化合物完全分解。
  7. 根据权利要求6所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,包括以下条件中的一项或多项:
    a、所述含氧连续气流为空气;
    b、所述氧化时间为十天到三十天。
  8. 根据权利要求5所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述弱酸溶液分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物与弱酸性缓冲溶液混合,在恒温15~40℃条件下,搅拌至化合物完全分解,然后经过滤、洗涤、干燥制得硅或锗纳米材料。
  9. 根据权利要求8所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,包括以下条件中的一项或多项:
    a、所述三元合金化合物的质量与缓冲溶液的体积比为0.5-1.5:500g/ml;
    b、所述弱酸性缓冲溶液为冰醋酸、无水醋酸钠和去离子水配制的pH值为5~7的溶液;
    c、所述搅拌时间为15~40h。
  10. 根据权利要求5所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述机械球磨分解步骤为:将Li-Zn-Si或Li-Zn-Ge三元合金化合物置于球磨罐中,在真空或惰性气体保护下,室温球磨至化合物完全分解。
  11. 根据权利要求10所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,包括以下条件中的一项或多项:
    a、所述球磨的转速为250-350r/min;所述球磨时间为24~48小时;
    b、所述机械球磨分解步骤后还需于350-450℃下退火处理4-6h。
  12. 根据权利要求5所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,分解方式为缓慢氧化分解或机械球磨分解时,所得产物还需进行分离纯化的步骤,最后制备得到硅或锗纳米材料;所述分离纯化包括步骤:Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解后所得产物经酸洗、过滤、洗涤、真空干燥即得硅或锗纳米材料。
  13. 根据权利要求12所述分解三元合金制备硅或锗纳米材料的方法,其特征在于,所述分离纯化包括以下条件中的一项或多项:
    a、酸洗是将Li-Zn-Si或Li-Zn-Ge三元合金化合物经分解后所得产物于0.1-2mol/L的盐酸中搅拌反应30min;
    b、所述过滤是使用孔径为200nm的混合纤维素酯滤膜;
    c、所述洗涤是用去离子水或无水乙醇洗涤;
    d、所述真空干燥条件为:60-80℃下真空干燥1-6h。
  14. 一种硅或锗纳米材料,其特征在于,按照权利要求1所述的方法制备,为多孔结构,粒径为10~100nm。
  15. 根据权利要求14所述的硅或锗纳米材料,其特征在于,0.1g硅或锗纳米材料分散于500mL戊醇或乙醇溶液中,在室温下,所得硅、锗分散溶液放置七天没有沉淀。
  16. 一种硅纳米材料,其特征在于,按照权利要求1所述的方法制备,所述的硅纳米材料具有多孔结构,粒径在20-50nm。
  17. 一种锗纳米材料,其特征在于,按照权利要求1所述的方法制备,所述的锗纳米材料具有多孔结构,粒径在10-50nm。
  18. 权利要求14所述的硅或锗纳米材料在航空航天、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学、锂离子电池领域中的应用。
PCT/CN2020/100846 2019-07-23 2020-07-08 分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用 WO2021012954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910667413.8A CN110284037B (zh) 2019-07-23 2019-07-23 一种分解三元合金制备硅或锗纳米材料的方法
CN201910667413.8 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012954A1 true WO2021012954A1 (zh) 2021-01-28

Family

ID=68023844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100846 WO2021012954A1 (zh) 2019-07-23 2020-07-08 分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用

Country Status (2)

Country Link
CN (1) CN110284037B (zh)
WO (1) WO2021012954A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284037B (zh) * 2019-07-23 2020-06-05 山东大学 一种分解三元合金制备硅或锗纳米材料的方法
CN112038616B (zh) * 2020-07-25 2021-09-21 山东大学 碳族元素单质材料的氧化研磨制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090151A1 (en) * 2005-02-23 2006-08-31 University Of Durham Process of forming a nanocrystalline metal alloy
CN101682027A (zh) * 2007-02-22 2010-03-24 国家科学研究中心 包含14族元素的新材料
CN103118976A (zh) * 2010-09-17 2013-05-22 古河电气工业株式会社 多孔质硅粒子及多孔质硅复合体粒子、以及它们的制造方法
CN106495161A (zh) * 2016-10-24 2017-03-15 中南大学 一种基于金属介入金属热还原制备纳米硅的方法
CN108493417A (zh) * 2018-03-22 2018-09-04 山东大学 一种梯度纳米多孔硅金属的复合材料及其制备方法
CN108640118A (zh) * 2018-04-25 2018-10-12 山东大学 一种高纯多孔硅的制备方法
CN108698836A (zh) * 2016-07-27 2018-10-23 盈保发展有限公司 硅纳米粒子的生产改进及其用途
CN110284037A (zh) * 2019-07-23 2019-09-27 山东大学 一种分解三元合金制备硅或锗纳米材料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695585B2 (ja) * 1992-12-28 1997-12-24 キヤノン株式会社 光起電力素子及びその製造方法、並びにそれを用いた発電装置
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
CN103107279B (zh) * 2013-02-22 2015-06-10 山东大学 一种高温热电材料及其制备方法
CN107278198A (zh) * 2014-12-23 2017-10-20 埃西勒国际通用光学公司 一种用于通过超临界溶剂热合成制造表面改性的金属氧化物纳米颗粒的连续流动方法
CN106241812A (zh) * 2016-07-29 2016-12-21 中国科学技术大学 制备硅纳米材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090151A1 (en) * 2005-02-23 2006-08-31 University Of Durham Process of forming a nanocrystalline metal alloy
CN101682027A (zh) * 2007-02-22 2010-03-24 国家科学研究中心 包含14族元素的新材料
CN103118976A (zh) * 2010-09-17 2013-05-22 古河电气工业株式会社 多孔质硅粒子及多孔质硅复合体粒子、以及它们的制造方法
CN108698836A (zh) * 2016-07-27 2018-10-23 盈保发展有限公司 硅纳米粒子的生产改进及其用途
CN106495161A (zh) * 2016-10-24 2017-03-15 中南大学 一种基于金属介入金属热还原制备纳米硅的方法
CN108493417A (zh) * 2018-03-22 2018-09-04 山东大学 一种梯度纳米多孔硅金属的复合材料及其制备方法
CN108640118A (zh) * 2018-04-25 2018-10-12 山东大学 一种高纯多孔硅的制备方法
CN110284037A (zh) * 2019-07-23 2019-09-27 山东大学 一种分解三元合金制备硅或锗纳米材料的方法

Also Published As

Publication number Publication date
CN110284037A (zh) 2019-09-27
CN110284037B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Zhang et al. A cost-effective method to fabricate VO2 (M) nanoparticles and films with excellent thermochromic properties
Li et al. Near monodisperse TiO2 nanoparticles and nanorods
Janbandhu et al. CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst
CN101434418A (zh) 磁场作用下水热法制备Co3O4纳米材料的方法
WO2021012954A1 (zh) 分解三元合金制备硅或锗纳米材料的方法、硅或锗纳米材料及应用
JP2008013846A (ja) 金属ナノ粒子の製造方法および金属ナノ粒子
Tseng et al. Synthesis of 1D, 2D, and 3D ZnO polycrystalline nanostructures using the sol-gel method
Salek et al. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique
Qu et al. Synthesis of Cu2O nano-whiskers by a novel wet-chemical route
Wang et al. Controlled synthesis of Cu2O cubic and octahedral nano‐and microcrystals
CN109650379A (zh) 一种单壁碳纳米管梯度氧化纯化方法
Luan et al. Facile synthesis of bismuth oxide nanoparticles by a hydrolysis solvothermal route and their visible light photocatalytic activity
Su et al. A simple, convenient, mild hydrothermal route to nanocrystalline CuSe and Ag2Se
CN1911799A (zh) 从蛇纹石中制备纳米SiO2的方法
Ajeel et al. New magnesio-thermal reduction technique to produce high-purity crystalline nano-silicon via semi-batch reactor
Zhou et al. A facile method for preparation ZnO with different morphology and their optical property
Wang et al. Growth of ZnO nanoparticles from nanowhisker precursor with a simple solvothermal route
Jing et al. Aqueous germanate ion solution promoted synthesis of worm-like crystallized Ge nanostructures under ambient conditions
CN108163820B (zh) 一种低温制备二硒化锡纳米线的方法
CN102990075A (zh) 一种制备碳包铁纳米粒子的方法
CN1546370A (zh) 一种立方相纳米氮化锆粉体的还原氮化制备方法
CN113753866B (zh) 一种六方氮化硼纳米晶及其固相制备方法
Wang et al. Modified monoclinic metastable β-MoO3 submicrospheres: controllable preparation, phase identification, and their formation mechanisms
Liu et al. One-step synthesis of SnO hierarchical architectures under room temperature and their photocatalytic properties
Abaas et al. A sight of view on hydrothermal synthesis of copper oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843420

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20843420

Country of ref document: EP

Kind code of ref document: A1