WO2021012887A1 - 机电设备散热量测量方法 - Google Patents

机电设备散热量测量方法 Download PDF

Info

Publication number
WO2021012887A1
WO2021012887A1 PCT/CN2020/098715 CN2020098715W WO2021012887A1 WO 2021012887 A1 WO2021012887 A1 WO 2021012887A1 CN 2020098715 W CN2020098715 W CN 2020098715W WO 2021012887 A1 WO2021012887 A1 WO 2021012887A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
cooling medium
heat dissipation
liquid
heat
Prior art date
Application number
PCT/CN2020/098715
Other languages
English (en)
French (fr)
Inventor
纪玉龙
刘闯
邝海浪
Original Assignee
大连海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910656645.3A external-priority patent/CN110274711B/zh
Priority claimed from CN201921141609.5U external-priority patent/CN209878178U/zh
Application filed by 大连海事大学 filed Critical 大连海事大学
Priority to GB2201946.7A priority Critical patent/GB2603053B/en
Priority to JP2022503456A priority patent/JP7229617B2/ja
Publication of WO2021012887A1 publication Critical patent/WO2021012887A1/zh
Priority to US17/578,783 priority patent/US11885693B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/10Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the present invention relates to the field of heat dissipation testing, in particular, to a method for measuring heat dissipation of electromechanical equipment.
  • the heat dissipation of mechanical and electrical equipment during operation is one of the main heat loads and thermal pollution in industrial production and life, which directly affects the design energy consumption, cooling capacity and air volume parameters of the air conditioning and ventilation system of the relevant premises, and also affects the liquid cooling system Design energy consumption, flow and pressure difference.
  • traditional electromechanical systems generally use fans to dissipate heat, which is the main source of noise during the operation of the equipment, which has many adverse effects on the physical and mental health of production personnel working in it.
  • the heat dissipation index of related electromechanical equipment should become an important content of the design, evaluation and selection of electromechanical equipment.
  • the heat dissipation index provides experimental data support for the efficient cooling scheme of air conditioning and ventilation systems and electromechanical equipment.
  • the present invention mainly uses the air inlet, liquid inlet, liquid outlet, air outlet and the inner and outer walls of the box body to be equipped with measuring elements respectively, so as to calculate the heat taken away by the cooling medium and test the box body convection and radiation heat exchange absorption The sum of the heat is the heat dissipation of the equipment to be measured.
  • a method for measuring heat dissipation of electromechanical equipment includes the following steps:
  • the measuring device includes a box body, the front end of the box body has an airtight door for the intended measuring equipment to enter and exit, the inner center of the box body is provided with an equipment support base for carrying the intended measuring equipment, the The bottom wall of the box is provided with an air inlet for gas cooling medium to enter, a liquid inlet for liquid cooling medium to enter, and a liquid outlet for liquid cooling medium to discharge.
  • the top of the box is provided with a gas collecting hood, so An air outlet is provided on the top of the air collecting hood, and the air inlet, the liquid inlet, the liquid outlet, the air outlet, and the inner and outer walls of the box body are respectively provided with measuring elements;
  • the gas cooling medium flows in from the air inlet at the bottom, and flows from the top air outlet after rotating around the intended measuring device.
  • the liquid cooling medium flows in from the liquid inlet, and flows out from the liquid outlet after passing through the intended measuring device; measured by the measuring element
  • T 1 the temperature of the liquid inlet
  • T 2 the temperature of the inlet
  • T 3 the temperature of the inlet
  • T 4 the temperature of the inner wall of the box
  • T 5 the temperature of the outer wall
  • T 6 the total area of the inner wall of the box is measured as A
  • the thickness of the box wall is L;
  • Q 1 is the heat taken away by the cooling medium calculated according to the inlet and outlet temperature
  • Q 2 is the heat absorbed by the convection and radiation heat exchange of the test box
  • the heat Q 1 taken away by the cooling medium is calculated according to the following formula:
  • Q 3 is the heat taken away by the liquid cooling medium
  • Q 4 is the heat taken away by the air as the cooling medium.
  • m is the mass flow of the corresponding cooling medium flowing through the box
  • c p is the specific heat capacity of the corresponding cooling medium
  • T 1 and T 2 are the inlet and outlet temperatures under liquid cooling
  • T 3 and T 4 are air cooling, respectively The temperature of the inlet and outlet under the circumstances;
  • k is the total heat transfer coefficient of the box structure of the test box
  • A is the total area of the inner wall of the box
  • L is the thickness of the box structure
  • T 5 and T 6 are the temperatures of the inner and outer walls of the box, respectively;
  • the heat dissipation Q is finally calculated.
  • Q 1 is the heat taken away by the cooling medium calculated according to the inlet and outlet temperature
  • Q 2 is the heat absorbed by the convection and radiation heat exchange of the test box
  • the heat dissipation measurement experimental data can be considered valid, and Q 1 and Q 2 can be used to calculate the heat dissipation Q of the device. Otherwise, the system operating parameters need to be adjusted to meet the above requirements If necessary, the measurement system can be re-adjusted and checked; that is, when the above formula is greater than 5%, the mass flow of the cooling medium needs to be increased to enhance the effect of the cooling medium taking away the heat dissipation of the equipment, which is beneficial to reduce the above formula The Q 2 value.
  • the four corners of the inner wall of the box are provided with arc-shaped deflectors.
  • the air inlet provided at the bottom of the box is tangent to the arc structure of the deflector to form a tangential air inlet, and the tangential air inlet is 0°-60° from the horizontal bottom surface. °Inclination angle, tilt up setting.
  • the bottom wall of the box body is provided with a power interface.
  • the air collecting hood has a funnel-shaped structure and is inverted on the upper part of the box body, and the box body and the inner cavity of the air collecting hood constitute a test space.
  • box body and the gas hood have a three-layer structure, and from the outside to the inside are a metal shell layer, a heat insulation layer and a radiation protection layer;
  • the total heat transfer coefficient k can be calculated by the following formula:
  • k 1 , k 2 and k 3 are the thermal conductivity of the metal shell of the test box, the thermal insulation layer and the anti-radiation layer respectively;
  • L 1 , L 2 and L 3 are the metal shell of the test box, the thermal insulation layer And the thickness of the radiation protection layer.
  • the airtight door has a visible window with a double glass structure.
  • the equipment support base is arranged at the bottom of the box body and is a detachable galvanized grid structure.
  • the gas cooling medium is air
  • the liquid cooling medium is a common liquid cooling medium such as water, antifreeze or lubricating oil.
  • the method for measuring the heat dissipation of electromechanical equipment of the present invention can measure the heat dissipation of the electromechanical equipment under working conditions.
  • the box and the air collecting cover form a closed chamber, and the equipment to be measured is placed in the chamber.
  • the external connections are air inlet, liquid inlet, liquid outlet and air outlet.
  • Measuring elements are used to measure the temperature of the air inlet, air outlet, liquid inlet, liquid outlet and the inner and outer walls of the box, and calculate the cooling medium band
  • the sum of the amount of heat that travels and the heat absorbed by the convection and radiation heat transfer of the test box is the heat dissipation of the equipment to be measured, which provides a design reference for the heat dissipation design of the electromechanical equipment, and reduces the heat load and thermal pollution during the operation of the electromechanical equipment. And to ensure the energy consumption of the air-cooled or liquid-cooled design, improve the air quality of the relevant working places and reduce the noise pollution of the equipment.
  • Figure 1 is a front view of the measuring device of the present invention.
  • Figure 2 is a side view of the measuring device of the present invention.
  • Figure 3 is a top view of the internal structure of the box of the measuring device of the present invention.
  • Figure 4 is a schematic diagram of the principle of the present invention.
  • Figure 5 is a schematic cross-sectional view of the box of the present invention.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom”, etc. indicate the orientation Or positional relationship is usually based on the positional or positional relationship shown in the drawings, which is only used to facilitate the description of the present invention and simplify the description. Unless otherwise stated, these positional words do not indicate or imply the pointed device or element It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation of the protection scope of the present invention: the orientation word “inner and outer” refers to the inside and outside relative to the contour of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on It's under the device or structure”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • the present invention provides a method for measuring heat dissipation of electromechanical equipment, which includes the following steps:
  • the measuring device includes a box body 1, an airtight door 2, an air collecting hood 3, an air inlet 4, an air outlet 5, a liquid inlet 6, a liquid outlet 7 and an equipment support base 9.
  • the box body 1 The front end has an airtight door 2 for entering and exiting the intended measuring equipment 15.
  • the inner center of the box body 1 is provided with an equipment support base 9 for carrying the intended measuring equipment 15, and the bottom side wall of the box body 1 is successively arranged
  • the top of the box 1 is provided with a gas collecting hood 3, the gas collecting
  • the top of the cover 3 is provided with an air outlet 5; the air inlet 4, the liquid inlet 6, the liquid outlet 7, the air outlet 5, and the inner and outer walls of the box 1 are respectively provided with measuring elements.
  • the measuring elements are pressure sensors and temperature sensors.
  • the equipment to be measured 15 is placed on the equipment support base 9, and the gas cooling medium flows from the bottom air inlet 4 and rotates around the equipment to be measured 15 (ie, the electromechanical equipment under test), and is collected by the gas hood. Finally, it flows out from the top outlet 5, the liquid cooling medium flows into the liquid inlet 6 through the intended measuring device 15, and then flows out from the liquid outlet 7.
  • the measuring element is used to measure the mass flow m corresponding to each cooling medium flowing through the box.
  • the temperature of the liquid inlet is T 1
  • the temperature of the liquid outlet is T 2
  • the temperature of the air inlet is measured as T 3
  • the temperature of the outlet is T 4
  • the temperature of the inner wall of the box is measured as T 5
  • the wall temperature is T 6
  • the total area of the inner wall of the box is measured as A
  • the thickness of the box wall is L.
  • Q 1 is the heat taken away by the cooling medium calculated according to the inlet and outlet temperature
  • Q 2 is the heat absorbed by the convection and radiation heat exchange of the test box
  • the heat Q 1 taken away by the cooling medium is calculated according to the following formula:
  • Q 3 is the heat taken away by the liquid cooling medium
  • Q 4 is the heat taken away by the air as the cooling medium.
  • m is the mass flow of the corresponding cooling medium flowing through the box
  • c p is the specific heat capacity of the corresponding cooling medium
  • T 1 and T 2 are respectively the temperature of the inlet and outlet under liquid cooling conditions
  • T 3 and T 4 are respectively air cooling conditions The temperature of the lower inlet and outlet;
  • k is the total heat transfer coefficient of the box structure of the test box
  • A is the total area of the inner wall of the box
  • L is the thickness of the box structure
  • T 5 and T 6 are the temperatures of the inner and outer walls of the box, respectively;
  • the heat dissipation Q is finally calculated.
  • the liquid inlet 6 and the liquid outlet 7 through which the liquid cooling medium is transported are connected to the liquid cooling pipeline of the intended measuring device 15 itself.
  • the intended measuring device 15 has no liquid cooling part, only the calculation The amount of heat taken away by the gas.
  • the final heat dissipation must be verified, and the verification conditions are as follows:
  • Q 1 is the heat taken away by the cooling medium calculated according to the inlet and outlet temperature
  • Q 2 is the heat absorbed by the convection and radiation heat exchange of the test box
  • the heat dissipation measurement experimental data can be considered valid, and Q 1 and Q 2 can be used to calculate the heat dissipation Q of the device. Otherwise, the system operating parameters need to be adjusted to meet the above requirements If necessary, the measurement system can be re-adjusted and checked, that is, when the above formula is greater than 5%, the mass flow of the cooling medium needs to be increased to enhance the effect of the cooling medium taking away the heat dissipation of the equipment, which is beneficial to reduce the above formula The Q 2 value.
  • each temperature used is the average temperature of multiple sampling points at the same location over a period of time, which can effectively reduce the system error caused by the changes in the measurement system state parameters, and the system reaches thermal balance.
  • reconfirm the formula of the trust criterion or the formula of the effective criterion, and the final calculated heat dissipation Q can be calculated by the following formula:
  • the four corners of the inner wall of the box body 1 are provided with arc-shaped baffles 8, and the air inlet provided at the bottom of the box body corresponds to the arc structure of the baffle plate 8.
  • the tangential air inlet 17 is formed by cutting, and the tangential air inlet 17 is inclined at an angle of 0°-60° with the horizontal bottom surface, and is inclined upward, so that the gas cooling medium spirally rises around the measurement device 15 to facilitate the gas cooling medium Flow makes the measurement data more accurate.
  • the air inlet 4 is arranged at the bottom of the box body and is tangent to the arc structure of the deflector 8 and forms an inclination angle of 5° with the ground.
  • This inclination structure ensures that the gas cooling medium can spirally rise. , The number of rotations is guaranteed, and the heat exchange efficiency between the gas cooling medium and the intended measurement device 15 is enhanced.
  • the inclination angle can be other options, such as 8°, 12°, and 15° Or 30°, etc., whose purpose is to adjust the inlet inclination angle of the gas cooling medium to adjust the circulation efficiency of the gas cooling medium under the premise of ensuring sufficient heat exchange between the gas cooling medium and the intended measurement device 15, to ensure the stability of the gas cooling medium in and out, and to strengthen the measurement Accuracy.
  • the box body 1 is a cylindrical box body, the structure of which results in a better gas rotation cooling effect, or the box body 1 adopts a rectangular parallelepiped structure, which is beneficial to processing and manufacturing and saves processing costs.
  • the box body 1 of the present invention can be designed into a specified shape according to design requirements to meet the advantages of better cooling effect or relatively simple processing effect.
  • the bottom side wall of the box body 1 is provided with a power interface 10 to ensure the operation and power supply of the equipment 15 to be measured.
  • the air collecting hood 3 has a funnel-shaped structure, which is inverted on the upper part of the box body 1.
  • the inner cavity of the box body 1 and the air collecting hood 3 constitute a test space, and the box body 1 and The gas collecting hood 3 together constitutes the test space of the proposed measuring equipment 15.
  • the gas outlet 5 is arranged at the highest point of the gas collecting hood.
  • the gas cooling medium spirally rises from the bottom of the box 1, and is collected by the gas collecting hood 3 and discharged through the gas outlet 5. Provide space for the flow of gas cooling medium and ensure its smooth fluidity.
  • the gas collecting hood 3 has a funnel-shaped structure with a height of 300mm and is inverted on the upper part of the box body 1, and the gas outlet 5 with an outer diameter of 108mm is arranged at the uppermost part of the gas collecting hood 3. Air port 5 is discharged.
  • the box body 1 and the gas hood 3 have a three-layer structure, from the outside to the inside are the metal shell layer, the heat insulation layer and the radiation protection layer, and the total heat transfer coefficient k is from below Formula calculation can be obtained:
  • k 1 , k 2 and k 3 are the thermal conductivity of the metal shell of the test box, the thermal insulation layer and the anti-radiation layer respectively;
  • L 1 , L 2 and L 3 are the metal shell of the test box, the thermal insulation layer And the thickness of the radiation protection layer.
  • the thermal insulation layer 16 includes, but is not limited to, thermal insulation materials with low thermal conductivity such as polyurethane, rock wool, foam, etc.
  • the radiation protection layer of the inner layer is a low thermal conductivity material covered with a radiation-proof aluminum foil.
  • the metal shell layer of the layer is a high-strength metal shell to ensure the strength of the box.
  • the thermal insulation layer 16 of the box body 1 and the air collecting hood 3 is polyurethane, and the inner layer is a density board covered with radiation-proof aluminum foil.
  • the thermal insulation The layer 16 and the inner layer can be made of other materials, the purpose of which is to achieve the overall heat insulation of the box 1 and the gas hood 3, and to ensure the low thermal conductivity of the inner wall, which can effectively reduce the error caused by the heat absorption of the device during the measurement process .
  • the airtight door 2 has a visible window with a double-glazed structure to facilitate observation of the actual effect during the measurement process.
  • the equipment support base 9 is arranged at the bottom of the cabinet 1 and has a detachable galvanized grid structure, which is conducive to the circulation of gas cooling medium.
  • the device support base 9 may have other structures, the purpose of which is to ensure sufficient contact between the gas cooling medium and the equipment to be measured 15 and ensure the fluidity of the gas cooling medium and enhance its heat exchange efficiency.
  • the equipment support base 9 is a galvanized grid structure with a length and width of 600mm and an inner hole of 100mm ⁇ 40mm in length and width.
  • the air at the bottom of the equipment can flow upward through the grid, which is beneficial to the circulation of internal air and the cooling of the equipment. .
  • the gas cooling medium is air
  • the liquid cooling medium is a common liquid cooling medium such as water, antifreeze or lubricating oil.
  • the gas cooling medium can be other components to ensure accurate measurement or low cost of acquisition.
  • the intended measurement device 15 is set in a closed chamber.
  • This chamber is formed by a box 1 and an air collecting hood 3, which communicates with the outside and includes a pipe with a cooling medium 14.
  • Road attachment 13, air inlet 4, liquid inlet 6, liquid outlet 7 and air outlet 5, and the first measuring element 11 is used to measure the temperature of the liquid cooling medium at the liquid inlet 6 and the gas cooling medium at the air inlet 4
  • the cooling medium includes a gas cooling medium and a liquid cooling medium.
  • the second measuring element 12 is used to measure the temperature and pressure of the liquid cooling medium at the liquid outlet 7 and the gas cooling medium at the gas outlet 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种机电设备散热量测量方法,包括以下步骤:S1、建立测量装置;S2、获取测量数据;采用测量元件测得流过箱体的各冷却介质对应的质量流量m,测得进液口的温度为T 1,出液口的温度为T 2,测得进气口的温度为T 3,出气口的温度为T 4,测得箱体内壁面的温度为T 5,外壁面的温度为T 6,测得箱体的内壁总面积为A,箱体壁厚度为L;S3、散热量计算,最终计算得到散热量Q。测量机电设备在工作状况下的散热量,采用测量元件测量进气口、出气口、进液口、出液口以及箱体的内壁和外壁的温度,计算得出散热量,为机电设备的散热设计提供设计参考,减少机电设备运行过程中的热负荷和热污染,且保证风冷或液冷设计的能耗。

Description

机电设备散热量测量方法 技术领域
本发明涉及散热测试领域,具体而言,尤其涉及一种机电设备散热量测量方法。
背景技术
机电设备在运行过程中的散热量是工业生产和生活中的主要热负荷和热污染之一,直接影响相关处所空调通风系统的设计能耗、制冷量和风量的参数,还影响液冷系统的设计能耗、流量和压差。另一方面,传统的机电系统普遍采用风扇散热,是设备运行过程中主要的噪声来源,给在其中工作的生产人员身心健康带来诸多不良的影响。
为降低空调通风系统和液冷系统等系统能耗,改善相关工作处所的空气质量并减少设备噪声污染,相关机电设备的散热量指标理应成为机电设备设计、考核和选择的一项重要内容。为满足相关作业处所节能环保绿色低能耗、低噪声和大气环境质量的更高要求,很有必要开展机电设备散热量测量与控制研究,通过相关测量性试验,估算机电设备的热负荷情况,确定散热量指标,从而为空调通风系统和机电设备高效冷却方案提供实验数据支持。
因此,现有技术中急需一种用于测量机电设备散热量的方法。
发明内容
根据上述提出缺少一种用于机电设备测量散热量方法的技术问题,而提供一种机电设备散热量测量方法。本发明主要利用进气口、进液口、出液口、出气口以及箱体的内壁和外壁分别设有测量元件,从而计算冷却介质带走的热量和测试箱箱体对流和辐射换热吸收的热量之和,即为拟测量设备的散热量。
本发明采用的技术手段如下:
一种机电设备散热量测量方法,包括以下步骤:
S1、建立测量装置;
所述测量装置,包括箱体,所述的箱体前端具有供拟测量设备进出的气密门,所述的箱体内部中心设有用于承载所述供拟测量设备的设备支撑底座,所述箱体底部侧壁依次设有供气体冷却介质进入的进气口、供液体冷却介质进入的进液口以及供液体冷却介质排出的出液口,所述箱体顶部设有集气罩,所述集气罩顶端设有出气口,所述进气口、进液口、出液口、出气口以及箱体的内壁和外壁分别设有测量元件;
S2、获取测量数据;
气体冷却介质从底部的进气口流入,经过拟测量设备四周旋转运动后从顶部出气口流出,液体冷却介质从进液口流入,经过拟测量设备后从出液口流出;采用测量元件测得流过箱体的各冷却介质对应的质量流量m,测得进液口的温度为T 1,出液口的温度为T 2,测得进气口的温度为T 3,出气口的温度为T 4,测得箱体内壁面的温度为T 5,外壁面的温度为T 6,测得箱体的内壁总面积为A,箱体壁厚度为L;
S3、散热量计算;
具体算法如下:
Q=Q 1+Q 2
其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
由冷却介质带走的热量Q 1按照如下公式进行计算:
Q 1=Q 3+Q 4
其中,Q 3为液体冷却介质带走的热量,Q 4为以空气为冷却介质带走的热量,计算公式分别如下:
Q 3=m ×c p液×(T 2-T 1)
Q 4=m ×c p气×(T 4-T 3)
其中,m分别为对应冷却介质流过箱体的质量流量,c p是对应冷却介质的比热容,T 1和T 2分别为液冷情况下进出口的温度,T 3和T 4分别为空气冷却情况下进出口的温度;
测试箱箱体对流和辐射换热吸收的热量Q 2按照如下方式进行计算:
Q 2=k×A×[(T 5-T 6)/L]
其中,k为测试箱箱体结构的总传热系数,A为箱内壁面的总面积,L为箱体结构的厚度,T 5和T 6分别为箱体内壁面和外壁面的温度;
最终计算得到散热量Q。
进一步地,最终散热量的获取,需经过验证,验证条件如下:
Figure PCTCN2020098715-appb-000001
其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
当且仅当Q 1和Q 2满足如上公式时,方可认为散热量测量实验数据有效,可利用Q 1和Q 2计算设备散热量Q,否则,需要对系统运行参数进行调节以满足上述要求,必要时可对测量系统进行重新调试校核;即,当上述公式大于5%时,需要加大冷却介质的质量流量,增强冷却介质带走设备散热量的效果,有利于减小上式中的Q 2值。
进一步地,所述的箱体内壁四角位置设有圆弧状导流板。
进一步地,设置于所述箱体底部的进气口与所述导流板的圆弧结构相切,形成切向进气口,且所述切向进气口与水平底面呈0°~60°倾角,向上倾斜设置。
进一步地,所述的箱体底部侧壁设有电源接口。
进一步地,所述的集气罩为漏斗形结构,倒置在所述箱体的上部,所述箱体与集气罩内腔构成测试空间。
进一步地,所述箱体和集气罩具有三层结构,从外至内分别为金属壳体层、隔热保温层和防辐射层;
总传热系数k由下式计算可得:
Figure PCTCN2020098715-appb-000002
其中,k 1,k 2和k 3分别为测试箱金属壳层、隔热保温层和防辐射层的导热系数;L 1,L 2和L 3分别为测试箱金属壳层、隔热保温层和防辐射层的厚度。
进一步地,所述的气密门上具有双层玻璃结构的可视窗口。
进一步地,所述设备支撑底座布置于箱体底部,为可拆卸的镀锌格栅结构。
进一步地,所述气体冷却介质为空气,所述液体冷却介质为水、防冻液或润滑油等常用液体冷却介质。
与现有技术相比较,本发明所述的机电设备散热量测量方法,可以测量机电设备在工作状况下的散热量,箱体和集气罩形成密闭腔室,拟测量设备放置于腔室内,其对外连接为进气口、进液口、出液口和出气口,采用测量元件测量进气口、出气口、进液口、出液口及箱体内壁和外壁的温度,计算冷却介质带走的热量和测试箱箱体对流和辐射换热吸收的热量之和,即为拟测量设备的散热量,为机电设备的散热设计提供设计参考,减少机电设备运行过程的热负荷和热污染,且保证风冷或液冷设计的能耗,改善相关工作处所的空气质量并减少设备噪声污染。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以下简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明测量装置主视图。
图2为本发明测量装置侧视图。
图3为本发明测量装置箱体内部结构俯视图。
图4为本发明原理示意图。
图5为本发明箱体截面示意图。
图中:1、箱体,2、气密门,3、集气罩,4、进气口,5、出气口,6、进液口,7、出液口,8、导流板,9、设备支撑底座,10、电源接口,11、第一测量元件,12、第二测量元件,13、管路附件,14、冷却介质,15、拟测量设备,16、隔热保温层,17、切向进气口。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或 元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1至图5所示,本发明提供了一种机电设备散热量测量方法,包括以下步骤:
S1、建立测量装置;
所述测量装置,包括箱体1、气密门2、集气罩3、进气口4、出气口5、进液口6、出液口7和设备支撑底座9,所述的箱体1前端具有供拟测量设备15进出的气密门2,所述的箱体1内部中心设有用于承载所述供拟测量设备15的设备支撑底座9,所述箱体1底部侧壁依次设有供气体冷却介质进入的进气口4、供液体冷却介质进入的进液口6以及供液体冷却介质排出的出液口7,所述箱体1顶部设有集气罩3,所述集气罩3顶端设有出气口5;所述进气口4、进液口6、出液口7、出气口5以及箱体1的内壁和外壁分别设有测量元件。所述测量元件为压力传感器和温度传感器。
S2、获取测量数据;
在测量过程中,拟测量设备15放置于设备支撑底座9上,气体冷却介质 从底部进气口4流入绕拟测量设备15(即被测机电设备)四周旋转运动后,经过集气罩收集,最终从顶部出气口5流出,液体冷却介质从进液口6流入经拟测量设备15后从出液口7流出,采用测量元件测得流过箱体的各冷却介质对应的质量流量m,测得进液口的温度为T 1,出液口的温度为T 2,测得进气口的温度为T 3,出气口的温度为T 4,测得箱体内壁面的温度为T 5,外壁面的温度为T 6,测得箱体的内壁总面积为A,箱体壁厚度为L。
S3、散热量计算;
具体算法如下:
Q=Q 1+Q 2
其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
由冷却介质带走的热量Q 1按照如下公式进行计算:
Q 1=Q 3+Q 4
其中,Q 3为液体冷却介质带走的热量,Q 4为以空气为冷却介质带走的热量,计算公式分别如下:
Q 3=m ×c p液×(T 2-T 1)
Q 4=m ×c p气×(T 4-T 3)
其中,m分别为对应冷却介质流过箱体的质量流量,c p是对应冷却介质的比热容,T 1和T 2分别液冷情况下进出口的温度,T 3和T 4分别为空气冷却情况下进出口的温度;
测试箱箱体对流和辐射换热吸收的热量Q 2按照如下方式进行计算:
Q 2=k×A×[(T 5-T 6)/L]
其中,k为测试箱箱体结构的总传热系数,A为箱内壁面的总面积,L为箱体结构的厚度,T 5和T 6分别为箱体内壁面和外壁面的温度;
最终计算得到散热量Q。
在本发明的实施方式中,液体冷却介质输送的进液口6和出液口7连通拟测量设备15自身具有的液冷管路,当拟测量设备15自身无液冷部分时,可只计算气体带走的散热量。
在本发明的实施方式中,最终散热量的获取,需经过验证,验证条件如下:
Figure PCTCN2020098715-appb-000003
其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
当且仅当Q 1和Q 2满足如上公式时,方可认为散热量测量实验数据有效, 可利用Q 1和Q 2计算设备散热量Q,否则,需要对系统运行参数进行调节以满足上述要求,必要时可对测量系统进行重新调试校核,即,当上述公式大于5%时,需要加大冷却介质的质量流量,增强冷却介质带走设备散热量的效果,有利于减小上式中的Q 2值。
本申请的热平衡判定中,用到的各个温度均为多处相同位置采样点在一段时间内的平均温度,可有效减少因测量系统状态参数的变化所产生的系统误差,且在系统达到热平衡的判定标准之外,重新确认信赖准则公式或有效准则公式,最终计算所得的散热量Q由下式计算可得:
Q=Q 1+Q 2
基于热传导理论,计算测试箱箱体结构的总传热系数k,对箱体在测量过程中的吸热量进行计算,当满足公式
Figure PCTCN2020098715-appb-000004
时,我们认为计算得到的Q 2是可信赖的,利用测得的热量Q 2对测量装置测得的热量Q 1进行修正补偿。
在本发明的实施方式中,所述的箱体1内壁四角位置设有圆弧状导流板8,设置于所述箱体底部的进气口与所述导流板8的圆弧结构相切,形成切向进气口17,且所述切向进气口17与水平底面呈0°~60°倾角,向上倾斜设置,使气体冷却介质围绕拟测量设备15螺旋上升,利于气体冷却介质流动,使测量数据更加精准。优选的,所述导流板8靠近进气管4侧为2个R=200mm的四分之一圆弧结构,靠近气密门2侧为2个R=150mm的四分之一圆弧结构。优选的,所述进气口4布置于箱体底部并与导流板8圆弧结构相切,并与地面成5°的倾角,此倾角结构,在保证气体冷却介质能够螺旋上升的前提下,保证了其旋转圈数,加强了气体冷却介质和拟测量设备15的热交换效率,当然,在本发明的其他实施方式中,该倾角可以为其他选择,为8°、12°、15°或30°等,其目的是在保证气体冷却介质和拟测量设备15充分热交换的前提下,通过调节其入口倾角,调整气体冷却介质的循环效率,保证气体冷却介质进出的稳定性,加强测量精准度。当然,在本发明的其他实施方式中,所述箱体1为圆筒状箱体,其结构导致气体旋转冷却效果更好,或所述箱体1采用长方体结构,利于加工制造,节省加工成本,本发明所述的箱体1能够根据设计需要,设计成指定形状,以满足较好的冷却效果,或较为简单的加工效果等优点。
在本发明的实施方式中,所述的箱体1底部侧壁设有电源接口10,用于保证拟测量设备15的运行供电。
在本发明的实施方式中,所述的集气罩3为漏斗形结构,倒置在所述箱体1的上部,所述箱体1与集气罩3内腔构成测试空间,箱体1与集气罩3一起构成拟测量设备15的测试空间,出气口5布置于集气罩最高点,气体冷却介质从箱体1底部螺旋上升后,经集气罩3收集后通过出气口5排出,为气体冷却介质的流动,提供空间,且保证其顺滑流动性。
优选的,所述集气罩3高为300mm的漏斗形结构,倒置在箱体1上部,外径108mm出气口5布置于集气罩3最上部,高温气体经集气罩3收集后通过出气口5排出。
在本发明的实施方式中,所述箱体1和集气罩3具有三层结构,从外至内分别为金属壳体层、隔热保温层和防辐射层,总传热系数k由下式计算可得:
Figure PCTCN2020098715-appb-000005
其中,k 1,k 2和k 3分别为测试箱金属壳层、隔热保温层和防辐射层的导热系数;L 1,L 2和L 3分别为测试箱金属壳层、隔热保温层和防辐射层的厚度。
优选的,所述隔热保温层16包括但不限于聚氨酯、岩棉和泡沫等低导热系数的隔热保温材料,内层的防辐射层为表面覆盖有防辐射铝箔的低导热系数材料,外层的金属壳体层为高强度金属壳体,保证了箱体的强度。
优选的,所述箱体1及集气罩3的隔热保温层16为聚氨酯,内层为覆盖有防辐射铝箔的密度板,当然,在本发明的其他实施方式中,所述隔热保温层16和内层可为其他材料,其目的是实现箱体1及集气罩3的整体隔热,以及保证内壁的低导热性,可有效减少测量过程中因装置自身吸热所造成的误差。
在本发明的实施方式中,所述的气密门2上具有双层玻璃结构的可视窗口,方便观察测量过程中的实际效果。
在本发明的实施方式中,所述设备支撑底座9为布置于箱体1底部,为可拆卸的镀锌格栅结构,有利于气体冷却介质的流通,当然,在本发明的其他实施方式中,所述设备支撑底座9可以为其他结构,其目的为保证气体冷却介质和拟测量设备15的充分接触,且保证气体冷却介质的流动性,加强其热交换效率。
优选的,所述设备支撑底座9为长宽均为600mm,内孔长宽为100mm×40mm的镀锌格栅结构,设备底部空气可穿过格栅向上流动,有利于内部空气的流通和设备的冷却。
在本发明的实施方式中,所述气体冷却介质为空气,所述液体冷却介质为水、防冻液或润滑油等常用液体冷却介质,当然在本发明的其他实施方式中,所述气体冷却介质和所述液体冷却介质可以为其他成分,以保证其测量精准,或获取成本低廉。
在本发明的实施方式中,如图4所示,将拟测量设备15设于密闭的腔室内,此腔室采用箱体1和集气罩3形成,其对外连通包括具有冷却介质14的管路附件13、进气口4、进液口6、出液口7和出气口5,并且采用第一测量元件11测量进液口6的液体冷却介质和进气口4的气体冷却介质的温度和压力,所述冷却介质包括气体冷却介质和液体冷却介质,采用第二测量元件12测量出液口7的液体冷却介质和出气口5的气体冷却介质的温度和压力。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种机电设备散热量测量方法,其特征在于,包括以下步骤:
    S1、建立测量装置;
    所述测量装置,包括箱体,所述的箱体前端具有供拟测量设备进出的气密门,所述的箱体内部中心设有用于承载所述拟测量设备的设备支撑底座,所述箱体底部侧壁依次设有供气体冷却介质进入的进气口、供液体冷却介质进入的进液口以及供液体冷却介质排出的出液口,所述箱体顶部设有集气罩,所述集气罩顶端设有出气口,所述进气口、进液口、出液口、出气口以及箱体的内壁和外壁分别设有测量元件;
    S2、获取测量数据;
    气体冷却介质从底部的进气口流入,经过拟测量设备四周旋转运动后从顶部出气口流出,液体冷却介质从进液口流入,经过拟测量设备后从出液口流出;采用测量元件测得流过箱体的各冷却介质对应的质量流量m,测得进液口的温度为T 1,出液口的温度为T 2,测得进气口的温度为T 3,出气口的温度为T 4,测得箱体内壁面的温度为T 5,外壁面的温度为T 6,测得箱体的内壁总面积为A,箱体壁厚度为L;
    S3、散热量计算;
    具体算法如下:
    Q=Q 1+Q 2
    其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
    由冷却介质带走的热量Q 1按照如下公式进行计算:
    Q 1=Q 3+Q 4
    其中,Q 3为以液体冷却介质带走的热量,Q 4为以空气为冷却介质带走的热量,计算公式分别如下:
    Q 3=m ×c p液×(T 2-T 1)
    Q 4=m ×c p气×(T 4-T 3)
    其中,m分别为对应冷却介质流过箱体的质量流量,c p是对应冷却介质的比热容,T 1和T 2分别为液冷情况下进出口的温度,T 3和T 4分别为空气冷却情况下进出口的温度;
    测试箱箱体对流和辐射换热吸收的热量Q 2按照如下方式进行计算:
    Q 2=k×A×[(T 5-T 6)/L]
    其中,k为测试箱箱体结构的总传热系数,A为箱内壁面的总面积,L为箱体结构的厚度,T 5和T 6分别为箱体内壁面和外壁面的温度;
    最终计算得到散热量Q。
  2. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,
    Figure PCTCN2020098715-appb-100001
    其中,Q 1为根据进出口温度计算的由冷却介质带走的热量,Q 2为测试箱箱体对流和辐射换热吸收的热量;
    当且仅当Q 1和Q 2满足如上公式时,方可认为散热量测量实验数据有效,利用Q 1和Q 2计算设备散热量Q,否则,需要对系统运行参数进行调节以满足上述要求,必要时可对测量系统进行重新调试校核;即,当上述公式大于5%时,需要加大冷却介质的质量流量,增强冷却介质带走设备散热量的效果,有利于减小上式中的Q 2值。
  3. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述的箱体内壁四角位置设有圆弧状导流板。
  4. 根据权利要求3所述的机电设备散热量测量方法,其特征在于,设置于所述箱体底部的进气口与所述导流板的圆弧结构相切,形成切向进气口,且所述切向进气口与水平底面呈0°~60°倾角,向上倾斜设置。
  5. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述的箱体底部侧壁设有电源接口。
  6. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述的集气罩为漏斗形结构,倒置在所述箱体的上部,所述箱体与集气罩内腔构成测试空间。
  7. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述箱体和集气罩具有三层结构,从外至内分别为金属壳体层、隔热保温层和防辐射层;
    总传热系数k由下式计算可得:
    Figure PCTCN2020098715-appb-100002
    L=L 1+L 2+L 3
    其中,k 1,k 2和k 3分别为测试箱金属壳层、隔热保温层和防辐射层的导热系数;L 1,L 2和L 3分别为测试箱金属壳层、隔热保温层和防辐射层的厚度。
  8. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述的气密门上具有双层玻璃结构的可视窗口。
  9. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述设备支撑底座布置于箱体底部,为可拆卸的镀锌格栅结构。
  10. 根据权利要求1所述的机电设备散热量测量方法,其特征在于,所述气体冷却介质为空气,所述液体冷却介质为水、防冻液或润滑油。
PCT/CN2020/098715 2019-07-19 2020-06-29 机电设备散热量测量方法 WO2021012887A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2201946.7A GB2603053B (en) 2019-07-19 2020-06-29 Method for measuring heat dissipation of electromechanical device
JP2022503456A JP7229617B2 (ja) 2019-07-19 2020-06-29 電気機械設備の放熱量の測定方法
US17/578,783 US11885693B2 (en) 2019-07-19 2022-01-19 Method for measuring heat dissipation of electromechanical device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921141609.5 2019-07-19
CN201910656645.3 2019-07-19
CN201910656645.3A CN110274711B (zh) 2019-07-19 2019-07-19 机电设备散热量测量方法
CN201921141609.5U CN209878178U (zh) 2019-07-19 2019-07-19 机电设备散热量测量装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/578,783 Continuation-In-Part US11885693B2 (en) 2019-07-19 2022-01-19 Method for measuring heat dissipation of electromechanical device

Publications (1)

Publication Number Publication Date
WO2021012887A1 true WO2021012887A1 (zh) 2021-01-28

Family

ID=74193221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098715 WO2021012887A1 (zh) 2019-07-19 2020-06-29 机电设备散热量测量方法

Country Status (4)

Country Link
US (1) US11885693B2 (zh)
JP (1) JP7229617B2 (zh)
GB (1) GB2603053B (zh)
WO (1) WO2021012887A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047222A (zh) * 2021-11-02 2022-02-15 北京石油化工学院 水下高压干法gmaw焊接电弧能量耗散测量装置
EP4269970A1 (en) * 2022-04-29 2023-11-01 Abb Schweiz Ag Method and apparatus for monitoring thermal load
EP4269971A1 (en) * 2022-04-29 2023-11-01 Abb Schweiz Ag Method and apparatus for monitoring cooling of enclosure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430947A1 (de) * 1984-08-22 1986-03-06 Martin Dr. 8000 München Alexander Verfahren und vorrichtung zur ermittlung der in einem waermetauscher ausgetauschten waermemenge
CN101968509A (zh) * 2010-09-07 2011-02-09 乌云翔 大功率变流器的电力电子器件能量损耗的测量方法
CN105928639A (zh) * 2016-04-27 2016-09-07 深圳市博恩实业有限公司 服务器、通信机柜或空调的散热计费系统
CN106556479A (zh) * 2016-10-31 2017-04-05 中国航空工业集团公司洛阳电光设备研究所 一种热耗测量装置及其热耗测量方法
CN109769381A (zh) * 2019-03-01 2019-05-17 深圳市建恒测控股份有限公司 散热系统及其控制方法、电子设备
CN110274711A (zh) * 2019-07-19 2019-09-24 大连海事大学 机电设备散热量测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886938B2 (ja) * 1990-04-06 1999-04-26 理学電機株式会社 ガス流機能を備えた熱分析装置
JP3289552B2 (ja) 1995-07-03 2002-06-10 富士電機株式会社 イメージセンサの感度調整方法
JPH10267763A (ja) * 1997-03-28 1998-10-09 Ishikawajima Harima Heavy Ind Co Ltd 放射性廃棄体の発熱量測定装置
JP2004212005A (ja) 2003-01-08 2004-07-29 Jp Steel Plantech Co アーク溶解設備における熱量監視装置
JP2004228335A (ja) 2003-01-23 2004-08-12 Sony Corp 水蒸気酸化装置
JP5917267B2 (ja) 2012-04-26 2016-05-11 株式会社 サーマルデザインラボ 発熱量検出方法及び発熱量検出装置
JP2018105558A (ja) 2016-12-27 2018-07-05 三星電子株式会社Samsung Electronics Co.,Ltd. 冷蔵庫
CN107328807B (zh) * 2017-05-08 2023-04-11 广东工业大学 一种机柜散热测试装置
CN113945605A (zh) * 2020-07-17 2022-01-18 中国电力科学研究院有限公司 一种变压器散热量测定装置及测定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430947A1 (de) * 1984-08-22 1986-03-06 Martin Dr. 8000 München Alexander Verfahren und vorrichtung zur ermittlung der in einem waermetauscher ausgetauschten waermemenge
CN101968509A (zh) * 2010-09-07 2011-02-09 乌云翔 大功率变流器的电力电子器件能量损耗的测量方法
CN105928639A (zh) * 2016-04-27 2016-09-07 深圳市博恩实业有限公司 服务器、通信机柜或空调的散热计费系统
CN106556479A (zh) * 2016-10-31 2017-04-05 中国航空工业集团公司洛阳电光设备研究所 一种热耗测量装置及其热耗测量方法
CN109769381A (zh) * 2019-03-01 2019-05-17 深圳市建恒测控股份有限公司 散热系统及其控制方法、电子设备
CN110274711A (zh) * 2019-07-19 2019-09-24 大连海事大学 机电设备散热量测量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047222A (zh) * 2021-11-02 2022-02-15 北京石油化工学院 水下高压干法gmaw焊接电弧能量耗散测量装置
CN114047222B (zh) * 2021-11-02 2023-10-27 北京石油化工学院 水下高压干法gmaw焊接电弧能量耗散测量装置
EP4269970A1 (en) * 2022-04-29 2023-11-01 Abb Schweiz Ag Method and apparatus for monitoring thermal load
EP4269971A1 (en) * 2022-04-29 2023-11-01 Abb Schweiz Ag Method and apparatus for monitoring cooling of enclosure

Also Published As

Publication number Publication date
JP7229617B2 (ja) 2023-02-28
US20220136912A1 (en) 2022-05-05
GB202201946D0 (en) 2022-03-30
GB2603053B (en) 2023-06-07
JP2022541045A (ja) 2022-09-21
US11885693B2 (en) 2024-01-30
GB2603053A (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2021012887A1 (zh) 机电设备散热量测量方法
CN108513513A (zh) 一种双层集装箱数据中心
CN205619659U (zh) 一种低温冷却液循环泵
CN110274711B (zh) 机电设备散热量测量方法
JP6205576B2 (ja) 除湿装置
CN108776520A (zh) 一种便于快速散热的计算机机箱
CN106793705A (zh) 具有散热机构的密闭式户外通信机柜
CN109661158A (zh) 数据中心机房新型专用空调系统
CN111935951A (zh) 一种大数据服务器机箱
CN106091286A (zh) 一种精密测量仪器工作间
CN207698460U (zh) 一种车载储油罐
CN105040854B (zh) 一种自落式热交换节能墙及传热计算方法
CN209690854U (zh) 一种配置能够自动开关显示器的计算机
CN210983106U (zh) 一种用于生产单水氢氧化锂的冷却塔的自控液位装置
CN208821133U (zh) 防结露机柜
CN207321765U (zh) 一种变频器内部防凝露结构
CN209181313U (zh) 侧装机架空调蒸发器布置结构
CN208063666U (zh) 水氟转换空调
CN208620463U (zh) 除湿机
CN206487689U (zh) 一种消防型离心风机箱
CN206817666U (zh) 一种水冷空调
CN205690563U (zh) 半导体制冷除湿器
CN208227570U (zh) 一种双层集装箱数据中心
CN218864450U (zh) 一种带隔热帘的进风管
CN210994356U (zh) 一种气体腐蚀试验箱外循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202201946

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200629

122 Ep: pct application non-entry in european phase

Ref document number: 20844775

Country of ref document: EP

Kind code of ref document: A1