WO2021012445A1 - 一种液口距确定方法、装置及单晶炉 - Google Patents

一种液口距确定方法、装置及单晶炉 Download PDF

Info

Publication number
WO2021012445A1
WO2021012445A1 PCT/CN2019/114786 CN2019114786W WO2021012445A1 WO 2021012445 A1 WO2021012445 A1 WO 2021012445A1 CN 2019114786 W CN2019114786 W CN 2019114786W WO 2021012445 A1 WO2021012445 A1 WO 2021012445A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
boundary point
lower edge
target image
distance
Prior art date
Application number
PCT/CN2019/114786
Other languages
English (en)
French (fr)
Inventor
郭力
李侨
徐战军
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2021012445A1 publication Critical patent/WO2021012445A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • This application relates to the field of solar photovoltaic technology, in particular to a method, device and single crystal furnace for determining the liquid gap distance.
  • the liquid port distance is the distance between the lower edge of the deflector in the single crystal furnace and the molten silicon level in the crucible of the single crystal furnace.
  • the change of the liquid gap directly affects the content of carbon and oxygen in the drawn ingot. Carbon and oxygen will form substitutional carbon and interstitial oxygen impurities in the ingot.
  • the production of solar cell products from the crystal rods containing the above-mentioned impurities will affect the photoelectric conversion efficiency, the yield rate and the fragmentation rate in the production process. Therefore, it is particularly important to accurately obtain the liquid orifice distance.
  • the liquid port distance is determined based on the triangulation displacement measurement. Specifically, send the laser so that the laser is irradiated on the lower edge of the guide tube to form two rectangular spots on the lower edge of the guide tube and the molten silicon surface, measure the pixel distance between the two rectangular spots, and obtain it in advance The corresponding relationship between the pixel distance between the two rectangular light spots and the liquid opening distance is calculated according to the pixel distance between the two rectangular light spots and the corresponding relationship.
  • the applicant found that the above prior art solution has the following shortcomings: during the crystal growth process, the temperature of the molten silicon in the single crystal furnace reaches about 1450°C, and the brightness of the molten silicon surface is high, which makes the laser The image of the light spot on the molten silicon liquid surface is not obvious, which makes it impossible to accurately measure the pixel distance between the two light spots, which makes the detection accuracy of the liquid mouth distance low; moreover, it is necessary to adjust the laser direction multiple times to irradiate the laser exactly on The lower edge of the guide tube is complicated to operate.
  • the present application provides a method, a device and a single crystal furnace for determining the liquid port distance, aiming to improve the accuracy of the liquid port distance and reduce the operation complexity.
  • an embodiment of the present application provides a method for determining a liquid orifice distance, including:
  • the target image includes: a first sub-image of the lower edge of the diversion cylinder and a second sub-image of the reflection of the lower edge of the diversion cylinder on the molten silicon liquid surface;
  • the liquid opening distance from the lower edge of the flow guide tube to the molten silicon liquid surface is determined.
  • the determining the boundary point of the lower edge of the flow guide tube in the target image and determining the reflection point corresponding to the boundary point includes:
  • edge detection is performed on the target image to determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point.
  • the method before determining the boundary point of the lower edge of the flow guide tube in the target image and determining the reflection point corresponding to the boundary point, the method further includes:
  • the calibration image includes: a third sub-image of the lower edge of the deflector and a fourth sub-image of the reflection of the lower edge of the deflector on the molten silicon liquid surface;
  • the determining the boundary point of the lower edge of the flow guide tube in the target image and determining the reflection point corresponding to the boundary point includes:
  • a point is arbitrarily selected, and the point is determined as the boundary point of the lower edge of the guide tube;
  • the intersection point of the second straight line and the molten silicon surface is selected as the reflection point corresponding to the boundary point.
  • the method before determining the boundary point of the lower edge of the flow guide tube in the target image and determining the reflection point corresponding to the boundary point, the method further includes:
  • the target image is acquired by an image acquisition module
  • the included angle between the axis of the lens of the image acquisition module and the molten silicon liquid surface is a preset angle
  • the preset coefficient includes: the sine value of the preset angle.
  • the method before the determining the liquid opening distance from the bottom edge of the flow guide cylinder to the molten silicon surface according to the pixel distance and a preset coefficient, the method further includes:
  • the preset coefficient is determined based on the difference between the first height and the second height, and the sine value of the preset angle.
  • the description further includes:
  • the crystal pulling speed and/or the rising speed of the molten silicon liquid level are adjusted to control the liquid opening distance to be located at the preset liquid opening Within the range.
  • an embodiment of the present application provides a device for determining a liquid port distance, including:
  • An image acquisition module configured to acquire a target image; the target image includes: a first sub-image of the lower edge of the diversion cylinder and a second sub-image of the lower edge of the diversion cylinder on the surface of the molten silicon image;
  • a first determining module configured to determine a boundary point of the lower edge of the flow guide tube in the target image, and determine a reflection point corresponding to the boundary point;
  • a second determining module configured to determine the pixel distance between the boundary point and the reflection point corresponding to the boundary point
  • the third determining module is configured to determine the liquid opening distance from the lower edge of the flow guide cylinder to the molten silicon liquid level according to the pixel distance and a preset coefficient.
  • an embodiment of the present application provides a single crystal furnace, the single crystal furnace includes: an interface, a bus, a memory and a processor, the interface, the memory and the processor are connected through the bus, the memory It is used to store an executable program, and the processor is configured to run the executable program to implement the steps of the method for determining the liquid port distance.
  • the fourth aspect of the present application provides a computer program that, when the computer program runs on a computing processing device, causes the computing processing device to execute any one of the foregoing liquid port distance determination methods.
  • a fifth aspect of the present application provides a computer-readable storage medium on which the aforementioned computer program is stored.
  • a target image is obtained; the target image includes: a first sub-image of the lower edge of the deflector and a second sub-image of the lower edge of the deflector on the molten silicon surface.
  • Sub-image determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point; determine the boundary point and the reflection point corresponding to the boundary point.
  • the pixel distance according to the pixel distance and a preset coefficient, determine the liquid opening distance from the bottom edge of the flow guide tube to the molten silicon surface.
  • the bottom of the diversion cylinder can be measured in the target image.
  • the pixel distance between the boundary point of the edge and the corresponding reflection point can be obtained according to the pixel distance and the preset coefficient.
  • the determination of the liquid opening distance will not be interfered by external factors such as the temperature of the molten silicon, so that the accuracy of the determined liquid opening distance is high; on the other hand, only the target image needs to be acquired, and the target image includes the lower part of the deflector.
  • the boundary point along the mouth and the corresponding reflection point are sufficient, and the operation is simple.
  • Figure 1 shows a flow chart of the steps of a method for determining the liquid orifice distance in the first embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a single crystal furnace in the first embodiment of the present application
  • Fig. 3 shows a relative schematic diagram of the deflector and molten silicon in the first embodiment of the present application
  • FIG. 4 shows a schematic diagram of acquiring a target image in Embodiment 1 of the present application
  • Figure 5 shows a flow chart of the steps of a method for determining the liquid orifice distance in the second embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a liquid port distance determining device in the third embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of another liquid port distance determining device in the third embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the logical structure of a single crystal furnace according to an embodiment of the present application.
  • Fig. 9 schematically shows a block diagram of a computing processing device for executing the method according to the present application.
  • Fig. 10 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present application.
  • FIG. 1 shows a flow chart of a method for determining a liquid opening distance in Embodiment 1 of the present application.
  • the method may include the following steps:
  • Step 101 Obtain a target image; the target image includes: a first sub-image of the bottom edge of the flow guide tube and a second sub-image of the bottom edge of the flow guide tube on the molten silicon liquid surface.
  • FIG. 2 shows a schematic diagram of the structure of the single crystal furnace in the first embodiment of the present application.
  • the single crystal furnace is provided with a diversion tube 121 and a molten silicon 122 is provided under the diversion tube 121.
  • the guide tube 121 can reduce the heating power, increase the longitudinal temperature gradient of the thermal field, and reduce the crystal oxygen content.
  • Right above the molten silicon 122 corresponds to the hollow ring-shaped deflector 121.
  • the single crystal furnace may include an image acquisition module 11.
  • the image acquisition module 11 may be a camera or the like, which is not specifically limited in the embodiment of the present application.
  • the included angle between the axis of the lens of the image acquisition module 11 and the liquid surface of the molten silicon 122 is a preset angle ⁇ .
  • the ⁇ may not be 90°, that is, the lens of the image acquisition module 11 does not collect the target image vertically to the guide tube 121.
  • the lens of the image acquisition module 11 can collect the reflection of the deflector 121 on the liquid surface of the molten silicon 122.
  • the image acquisition module 11 is mainly configured to acquire a target image.
  • the lower edge of the flow guide tube is an end of the flow guide tube 121 close to the molten silicon. Since the flow guide tube 121 is ring-shaped, the lower edge of the flow guide tube 121 may be an annular plane inside one end of the flow guide tube 121 close to the molten silicon 122. In the embodiments of the present application, this is not specifically limited.
  • FIG. 3 shows a schematic diagram of the flow guide tube and the molten silicon in the first embodiment of the present application.
  • 1211 in FIG. 3 may be the lower edge of the guide tube 121.
  • the distance between the lower edge 1211 of the deflector cylinder 121 and the molten silicon 122 is the liquid opening distance h.
  • h D ⁇ sin ⁇ .
  • D is the actual distance between the boundary point A1 of the lower edge 1211 of the flow deflector 121 and the reflection point A2 of the boundary point A1 on the molten silicon.
  • is the angle between the axis of the lens of the image acquisition module 11 and the liquid surface of the molten silicon 122.
  • the target image may be acquired through the image acquisition module 11 described above.
  • the target image may include: a first sub-image of the bottom edge of the diversion cylinder 121 and a second sub-image of the bottom edge of the diversion cylinder 121 on the molten silicon liquid surface. That is, the target image acquired by the image acquisition module 11 not only includes the first sub-image of the lower edge of the diversion cylinder 121, but also the second sub-image of its reflection on the liquid surface of the molten silicon 122.
  • FIG. 4 shows a schematic diagram of acquiring a target image in one embodiment of the present application.
  • the second sub-image of the reflection of the lower edge 1211 of the diversion cylinder 121 on the liquid surface of the molten silicon 122 may be a circular ring shown in 13.
  • Step 102 Determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point.
  • the boundary point of the lower edge 1211 of the diversion cylinder 121 can be selected at will, or the same boundary point can be selected every time. In the embodiments of the present application, this is not specifically limited.
  • the boundary point of the lower edge 1211 of the diversion cylinder 121 in the first sub-image may be any point on the lower edge 1211 of the diversion cylinder 121 in the first sub-image.
  • the reflection point corresponding to the boundary point is determined.
  • the reflection point needs to be located in the shadow of the deflector 121 at the same time, and the reflection point needs to be located in the molten silicon liquid surface.
  • the reflection point is located on the intersection of the second sub-image of the reflection in the target image and the liquid surface of the molten silicon 122.
  • the inner ring can be the intersection line of the second sub-image reflected in the target image and the liquid level of the molten silicon 122.
  • any point on the lower edge 1211 of the diversion cylinder 121 is the boundary point, and the intersection of the second sub-image reflected in the target image and the molten silicon surface On the top, determine the reflection point corresponding to the boundary point of the bottom edge of the guide tube.
  • the above step 102 may include: acquiring a grayscale gradient of a pixel of the target image; performing edge detection on the target image according to the grayscale gradient, so as to Determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point.
  • the grayscale gradient of each pixel of the target image can be obtained.
  • the grayscale gradient is usually used to separate different objects in the target image, or the grayscale gradient is used to perform edge detection on each object in the target image.
  • the edge detection of the target image is performed, and the first sub-image of the lower edge of the diversion tube, the sub-image of the molten silicon surface, and the sub-image of the molten silicon surface are divided into the target image.
  • the second sub-image of the reflection of the bottom edge of the deflector is referred to the target image.
  • the grayscale gradient can accurately divide each sub-image included in the target image, thereby helping to improve the accuracy of obtaining the boundary points and the corresponding reflection points, and improving the accuracy of the liquid gap.
  • A1 may be a boundary point determined in the first sub-image
  • A2 may be a reflection point corresponding to the determined boundary point A1 in the second sub-image.
  • the acquired image only needs to include the boundary point of the lower edge of the deflector and the reflection point corresponding to the boundary point, and the reflection point is smaller. Even if the area of the molten silicon surface gradually decreases as the crystal pulls proceed, the reflection point still exists in the molten silicon surface. Furthermore, in the whole process of pulling crystals, the liquid gap can be accurately obtained in real time.
  • the foregoing target image may be subjected to noise reduction processing.
  • the noise reduction processing can be to filter the above-mentioned target image, etc., to eliminate the noise signal in the target image acquired by the image acquisition module, which is beneficial to improve the accuracy of the subsequently acquired boundary points and corresponding reflection points, and is beneficial to improve the liquid port Distance accuracy.
  • the aforementioned noise reduction processing may be to perform median filtering, maximum filtering, minimum filtering, etc. on the target image acquired by the image acquisition module, so as to eliminate noise signals in the target image acquired by the image acquisition module as much as possible. In the embodiments of the present application, this is not specifically limited.
  • Step 103 Determine the pixel distance between the boundary point and the reflection point corresponding to the boundary point.
  • a length measuring tool or the like can be used to measure the pixel distance between the boundary point and the reflection point corresponding to the boundary point in the above-mentioned target image.
  • the pixel distance between the boundary point and the reflection point corresponding to the boundary point may be the length distance between the boundary point and the reflection point corresponding to the boundary point in the target image.
  • this is not specifically limited. Only need to obtain the target image, the target image includes the boundary point of the bottom edge of the diversion tube and the reflection point corresponding to the boundary point, and measure the boundary point of the bottom edge of the diversion tube in the target image. According to the pixel distance between the corresponding reflection points, the liquid opening distance from the lower edge of the flow guide tube to the molten silicon liquid surface can be calculated subsequently, and the operation is simple.
  • the pixel distance between the boundary point and the corresponding reflection point in the target image may be the pixel distance d between the boundary point A1 and the reflection point A2 corresponding to the boundary point A1 in FIG.
  • Step 104 Determine the liquid opening distance from the lower edge of the flow guide tube to the molten silicon liquid level according to the pixel distance and a preset coefficient.
  • the conversion ratio K between the liquid port distance obtained by the target image and the actual liquid port distance.
  • h K ⁇ d ⁇ sin ⁇ .
  • K ⁇ sin ⁇ the conversion ratio between the liquid opening distance obtained by the target image and the actual liquid opening distance.
  • is the angle between the axis of the lens of the image acquisition module 11 and the liquid surface of the molten silicon 122, and sin ⁇ is the sine value of ⁇ .
  • the included angle between the axis of the lens of the image acquisition module 11 and the liquid surface of the molten silicon 122 is a preset angle ⁇ .
  • the preset coefficient may be: K ⁇ sin ⁇ , and the preset coefficient includes the sine value sin ⁇ of the preset angle ⁇ .
  • a target image is obtained; the target image includes: a first sub-image of the lower edge of the deflector and a second sub-image of the lower edge of the deflector on the molten silicon surface.
  • Sub-image determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point; determine the boundary point and the reflection point corresponding to the boundary point.
  • the pixel distance according to the pixel distance and a preset coefficient, determine the liquid opening distance from the bottom edge of the flow guide tube to the molten silicon surface.
  • the bottom of the diversion cylinder can be measured in the target image.
  • the pixel distance between the boundary point of the edge and the corresponding reflection point can be obtained according to the pixel distance and the preset coefficient.
  • the determination of the liquid opening distance will not be interfered by external factors such as the temperature of the molten silicon, so that the accuracy of the determined liquid opening distance is high; on the other hand, only the target image needs to be acquired, and the target image includes the lower part of the deflector.
  • the boundary point along the mouth and the corresponding reflection point are sufficient, and the operation is simple.
  • Fig. 5 shows a flow chart of a method for determining a liquid port distance in the second embodiment of the present application.
  • the method includes the following steps:
  • Step 201 Obtain a target image; the target image includes: a first sub-image of the lower edge of the diversion tube and a second sub-image of the lower edge of the diversion tube on the molten silicon liquid surface.
  • step 201 For the foregoing step 201, reference may be made to the relevant record of the foregoing step 101, and in order to avoid repetition, it is not repeated here.
  • Step 202 Obtain a calibration image; the calibration image includes: a third sub-image of the lower edge of the flow deflector and a fourth sub-image of the reflection of the bottom edge of the deflector on the molten silicon liquid surface .
  • the calibration image can be acquired through the above-mentioned image acquisition module 11 or other image acquisition modules, and the calibration image includes: the third sub-image of the lower edge 1211 of the diversion cylinder 121 and its reflection on the liquid surface of the molten silicon 122 The fourth sub-image.
  • the relative position of the lens of the image acquisition module for acquiring the calibration image and the liquid surface of the molten silicon 122 is the same as when the target image is acquired, the image acquisition module 11 and the liquid surface of the molten silicon 122 are the same.
  • the position of the diversion tube remains unchanged, thereby ensuring that the first straight line passing through the boundary point and the reflection point corresponding to the boundary point in the calibration image, and the reflection point corresponding to the boundary point and the boundary point in the target image
  • the second straight line of the point is parallel.
  • Step 203 In the calibration image, obtain a first straight line passing through the boundary point of the lower edge of the flow guide tube and the reflection point corresponding to the boundary point.
  • the calibration image acquired by the image acquisition module passes through the lower edge of the diversion tube 121
  • the first straight line between the boundary point of 1211 and its reflection point, and the direction of the second straight line passing through the boundary point of the lower edge 1211 of the diversion cylinder 121 and its reflection point in the subsequent target image acquired by the image acquisition module 11 Or the angle is also fixed.
  • the above-mentioned first straight line can be used as a reference, and when the installation position of the image acquisition module 11 is fixed and the installation position of the diversion tube 121 is fixed, the lower edge of the diversion tube 121 can be determined in the target image acquired by the image acquisition module.
  • a certain boundary point may be marked at the lower edge of the flow guide tube, etc., and then in the fourth sub-image of the calibration image, the corresponding point of the shape is marked and determined as the boundary point corresponding Reflection point. In the embodiments of the present application, this is not specifically limited.
  • Step 204 In the first sub-image, a point is arbitrarily selected, and the point is determined as the boundary point of the lower edge of the flow guide tube.
  • the first sub-image of the lower edge of the diversion tube can be divided in the target image by boundary division, etc., in the first sub-image, any point can be selected, and this point can be used as the guide The boundary point of the lower edge of the flow tube.
  • the boundary point A1 in the first sub-image of the target image, can be a boundary point of the lower edge of the diversion tube.
  • Step 205 Acquire a second straight line passing through the boundary point in the target image, so that the second straight line is parallel to the first straight line.
  • the installation position of the image acquisition module 11 when the installation position of the image acquisition module 11 is fixed and the installation position of the deflector 121 is fixed, among the calibration images acquired by the image acquisition module,
  • the first straight line passing through the boundary point of the lower edge 1211 of the diversion cylinder 121 and its reflection point, and the boundary of the lower edge 1211 of the diversion cylinder 121 in the subsequent target image acquired by the image acquisition module 11 The direction or angle of the second straight line between the point and its reflection point is also fixed. Therefore, in the target image, a second straight line passing through the aforementioned boundary point can be acquired so that the second straight line is parallel to the aforementioned first straight line. Then, the reflection point corresponding to the boundary point is located on the second straight line.
  • the first straight line between the acquired boundary point and its reflection point is like straight line b1 Shown. If the selected boundary point in the target image in FIG. 4 is A1, then a second straight line passing through the boundary point A1 can be obtained in the target image, and it is necessary to ensure that the second straight line is parallel to the first straight line. Then, the reflection point corresponding to the boundary point A1 is located on the second straight line.
  • Step 206 In the second sub-image, select the intersection point of the second straight line and the molten silicon surface as a reflection point corresponding to the boundary point.
  • the reflection point of the boundary point is the reflection of the boundary point on the molten silicon liquid surface, and the reflection point is located on the molten silicon liquid surface. At the same time, the reflection point of the boundary point is located on the second straight line. Then, in the second sub-image, the intersection point of the second straight line and the molten silicon liquid surface may be the reflection point corresponding to the aforementioned boundary point.
  • the intersection of the second straight line that passes through the boundary point A1 and is parallel to the first straight line b1 and the liquid surface of the molten silicon 122 is A2, then A2 can be regarded as The reflection point corresponding to the boundary point A1.
  • Step 207 Determine the pixel distance between the boundary point and the corresponding reflection point in the target image.
  • step 207 In the embodiment of the present application, reference may be made to the relevant record of step 103 for this step 207, and in order to avoid repetition, it will not be repeated here.
  • Step 208 Obtain the first height between the lower edge of the guide tube and the molten silicon liquid level at the first moment.
  • the first moment may be any moment. In the embodiments of the present application, this is not specifically limited.
  • the first height of the lower edge 1211 of the diversion cylinder 121 and the liquid level of the molten silicon 122 at the first moment can be obtained by a height measuring tool or the like. That is, the liquid gap at the first moment is measured.
  • Step 209 Obtain the second height of the lower edge of the guide tube and the molten silicon liquid level at the second moment.
  • the second moment may be any moment when the liquid port distance or the second height is different from the first height. In the embodiments of the present application, this is not specifically limited.
  • the second height of the lower edge 1211 of the flow guide cylinder 121 and the liquid level of the molten silicon 122 at the second time can be obtained by a height measuring tool or the like. That is, the liquid gap at the second moment is measured.
  • Step 210 Determine the preset coefficient based on the difference between the first height and the second height, and the sine value of the preset angle.
  • the above-mentioned first height and the second height can be made a difference to obtain the difference between the two heights, and the difference can be a positive value. If the difference between the first height and the second height is a negative value, the difference may be the absolute value of the above negative value. In the embodiments of the present application, this is not specifically limited.
  • the target image at the first time can be acquired, and the target image at the second time can be acquired.
  • the first pixel distance between the boundary point and the corresponding reflection point is determined.
  • the second pixel distance between the boundary point and the corresponding reflection point is determined.
  • the difference between the first pixel distance and the second pixel distance is used to obtain a pixel distance difference, which may also be a positive value.
  • the difference between the first height and the second height may be divided by the difference between the first pixel distance and the second pixel distance to obtain the preset coefficient K ⁇ sin ⁇ . It should be noted that when the installation position of the image acquisition module 11 is fixed, ⁇ is also fixed, and the above-mentioned angle ⁇ can be measured to obtain sin ⁇ . In the embodiments of the present application, this is not specifically limited.
  • the first pixel distance d1 between the boundary point acquired at the first time T1 and its corresponding reflection point is 20mm
  • T2 if the crucible 123 rises by 5mm, at the second time T2
  • the second pixel distance d2 between the boundary point obtained at the moment and its corresponding reflection point is 10mm
  • the first height of the bottom edge of the flow guide tube and the molten silicon surface at the first time and the flow guide tube at the second time The difference ⁇ h between the lower edge of the lower edge and the second height of the molten silicon surface is 5 mm
  • the difference between the first pixel distance and the second pixel distance is 10 mm.
  • h K ⁇ d ⁇ sin ⁇
  • ⁇ h K ⁇ d ⁇ sin ⁇ .
  • the above-mentioned first height or second height can be obtained through multiple measurements.
  • the operation is more complicated or time-consuming, etc.
  • the preset coefficient can be used directly to quickly determine the liquid outlet distance. In the subsequent process of determining the liquid port distance, the operations are relatively simple, time-consuming and highly accurate.
  • Step 211 Determine a liquid opening distance from the lower edge of the flow guide tube to the molten silicon liquid level according to the pixel distance and a preset coefficient.
  • step 211 reference may be made to the relevant description of the aforementioned step 104.
  • the pixel distance d between the determined boundary point and the corresponding reflection point is 23 mm.
  • Step 212 in the case that the liquid opening distance is outside the preset liquid opening distance range, adjust the crystal pulling speed and/or the rising speed of the molten silicon liquid level, and control the liquid opening distance to be located at the predetermined liquid opening distance. Set within the range of liquid port distance.
  • the preset liquid orifice distance range may be the corresponding liquid orifice distance when the content of carbon and oxygen in the drawn ingot is low.
  • the preset liquid orifice distance can be set according to specific requirements for the content of carbon and oxygen in the drawn ingot, which is not specifically limited in the embodiment of the present application.
  • the content of carbon and oxygen in the pulled crystal rod may be higher If high, it will affect the quality of the ingot, then the pulling speed and/or the rising speed of the molten silicon liquid level can be adjusted so that the liquid opening distance is within the preset liquid opening distance range, so that the pulling out of the ingot The content of carbon and oxygen is low, which meets the corresponding quality requirements.
  • the rising or falling speed of the crucible 123 can be adjusted by the single crystal furnace, and the rising or falling speed of the molten silicon 122 can be adjusted. In the embodiments of the present application, this is not specifically limited.
  • a target image is obtained; the target image includes: a first sub-image of the lower edge of the deflector and a second sub-image of the lower edge of the deflector on the molten silicon surface.
  • Sub-image determine the boundary point of the lower edge of the flow guide tube in the target image, and determine the reflection point corresponding to the boundary point; determine the boundary point and the reflection point corresponding to the boundary point.
  • the pixel distance according to the pixel distance and a preset coefficient, determine the liquid orifice distance from the lower edge of the diversion cylinder to the molten silicon surface.
  • the bottom of the diversion cylinder can be measured in the target image.
  • the pixel distance between the boundary point of the edge and its corresponding reflection point can obtain the liquid opening distance from the bottom edge of the diversion cylinder to the molten silicon surface.
  • the determination of the liquid opening distance will not be interfered by external factors such as the temperature of the molten silicon, so that the accuracy of the determined liquid opening distance is high;
  • the boundary point along the mouth and the corresponding reflection point are sufficient, and the operation is simple.
  • FIG. 6 shows a schematic structural diagram of a liquid port distance determining device in the third embodiment of the present application.
  • the liquid port distance determining device includes: an image acquisition module 11, a first determining module 12, and a second determining module 14.
  • the image acquisition module 11 is connected to the first determination module 12.
  • the connection may be a wired connection or a wireless connection, etc., which is not specifically limited in the embodiment of the present application.
  • the image acquisition module 11 is configured to acquire a target image; the target image may include: the first sub-image of the lower edge 1211 of the diversion cylinder 121 and the diversion cylinder 121 on the liquid level of the molten silicon 122 The second sub-image of the reflection of the lower edge 1211.
  • the image acquisition module 11 and the first determination module 12 may exchange data, and the image acquisition module 11 may send the above-mentioned target image to the first determination module 12.
  • the first determining module 12 is configured to determine the boundary point of the lower edge 1211 of the flow guide tube 121 in the target image, and determine the reflection point corresponding to the boundary point.
  • the first determination module 12 may be connected to the second determination module 14.
  • the connection may be a wired connection or a wireless connection, etc., which is not specifically limited in the embodiment of the present application.
  • the second determining module 14 is configured to determine the pixel distance between the boundary point and the reflection point corresponding to the boundary point.
  • the second determination module 14 may be connected to the third determination module 15.
  • the connection may be a wired connection or a wireless connection, etc., which is not specifically limited in the embodiment of the present application.
  • the third determining module 15 is configured to determine the liquid opening distance from the bottom edge 1211 of the diversion cylinder 121 to the liquid level of the molten silicon 122 according to the aforementioned pixel distance and the preset coefficient.
  • FIG. 7 shows a schematic structural diagram of another liquid orifice distance determining device in the third embodiment of the present application.
  • the device for determining the liquid opening distance may further include a control module 16.
  • the control module 16 is connected to the third determination module 15 described above. It can be wired or wireless.
  • the control module 16 is configured to adjust the crystal pulling speed and/or the rising speed of the liquid level of the molten silicon 122 under the condition that the aforementioned liquid opening distance is outside the preset liquid opening distance range, and control the aforementioned liquid opening distance to be positioned at the aforementioned preset liquid opening speed. Within the range of mouth distance. Specifically, the control module 16 can adjust the liquid port distance to be within the aforementioned preset liquid port distance range by controlling the aforementioned speed of the crucible 123, etc. In the embodiments of the present application, this is not specifically limited.
  • control module 16 may also be a sub-module of the third determination module 15. In the embodiments of the present application, this is not specifically limited.
  • the functions of the various parts of the device for determining the liquid orifice distance can be specifically referred to related records in the foregoing embodiments, and the same beneficial effects can be achieved. In order to avoid repetition, details are not repeated here.
  • the device for determining the liquid gap distance includes: an image acquisition module, a first determination module, a second determination module, and a third determination module;
  • the image acquisition module is configured to acquire a target image;
  • the target image includes : The first sub-image of the lower edge of the deflector and the second sub-image of the lower edge of the deflector on the molten silicon liquid surface;
  • the first determining module is configured to Determine the boundary point of the lower edge of the guide tube in the image, and determine the reflection point corresponding to the boundary point;
  • the second determining module is configured to determine the boundary point and the reflection point corresponding to the boundary point
  • the third determining module is configured to determine the liquid opening distance from the bottom edge of the flow guide tube to the molten silicon surface according to the pixel distance and a preset coefficient.
  • the diversion tube can be measured in the target image
  • the pixel distance between the boundary point of the lower edge of the lower edge and its corresponding reflection point, according to the pixel distance and a preset coefficient, the liquid mouth distance from the lower edge of the diversion cylinder to the molten silicon surface can be obtained.
  • the determination of the liquid opening distance will not be interfered by external factors such as the temperature of the molten silicon, so that the accuracy of the determined liquid opening distance is high; on the other hand, only the target image needs to be acquired, and the target image includes the lower part of the deflector.
  • the boundary point along the mouth and the corresponding reflection point are sufficient, and the operation is simple.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • FIG. 8 shows a schematic diagram of the logical structure of a single crystal furnace according to an embodiment of the present application.
  • the single crystal furnace provided by the embodiment of the present application may include: an interface 41, a processor 42, a memory 43, and a bus 44; wherein, the bus 44 is used to implement the interface 41, the processor 42 and the memory 43; the memory 43 stores an executable program, and the processor 42 is configured to execute the executable program stored in the memory 43, so as to realize as shown in FIG. 1 or 5
  • the steps of the method for determining the liquid orifice distance in the first embodiment or the second embodiment can achieve the same or similar effects. In order to avoid repetition, the details are not repeated here.
  • This application also provides a computer program, including computer-readable code, when the computer-readable code runs on a computing processing device, the computing processing device is shown in FIG. 1 or FIG. 5, embodiment one or embodiment two
  • the present application also provides a computer-readable medium that stores the above-mentioned computer program, and the computer program can be executed by one or more processors, so as to realize as shown in FIG. 1 or FIG.
  • the steps of the method for determining the liquid orifice distance in the second embodiment can achieve the same or similar effects. In order to avoid repetition, the details are not repeated here.
  • Each component embodiment of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all components in the computing processing device according to the embodiments of the present application.
  • This application can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present application may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.
  • FIG. 9 shows a computing processing device that can implement the method according to the present application.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above method. These program codes can be read out from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are generally portable or fixed storage units as described with reference to FIG. 10.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 9.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be implemented by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种液口距确定方法、装置及单晶炉,该方法包括:获取目标图像,该目标图像包括:导流筒(121)的下沿口(1211)的第一子图像和在熔硅(122)液面上的导流筒(121)的下沿口(1211)倒影的第二子图像(13)(步骤101);在该目标图像中确定导流筒(121)的下沿口(1211)的边界点(A1),并确定边界点(A1)对应的倒影点(A2)(步骤102);确定边界点(A1)和边界点(A1)对应的倒影点(A2)之间的像素距离(步骤103);根据该像素距离及预设系数,确定导流筒(121)的下沿口(1211)至熔硅(122)液面的液口距(步骤104)。该方法只需通过获取目标图像,在目标图像中测量导流筒(121)的下沿口(1211)的边界点(A1)与其对应的倒影点(A2)之间的像素距离,根据像素距离以及预设系数即可以得到导流筒(121)的下沿口(1211)至熔硅(122)液面的液口距,确定的液口距准确性高,且操作简单。

Description

一种液口距确定方法、装置及单晶炉
本申请要求在2019年7月22日提交中国专利局、申请号为201910662728.3、申请名称为“一种液口距确定方法、装置及单晶炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能光伏技术领域,特别是涉及一种液口距确定方法、装置及单晶炉。
背景技术
在利用单晶炉进行直拉单晶晶棒的过程中,液口距为单晶炉中的导流筒的下沿口与单晶炉的坩埚中的熔硅液面的距离。液口距的变化直接影响拉出晶棒中碳和氧的含量。碳、氧会在晶棒中形成代位碳、间隙氧杂质。由含有上述杂质的晶棒制作太阳能电池产品,会影响光电转换效率、成品率和生产过程中的碎片率等。因此准确获取液口距显得尤为重要。
目前,根据三角位移测量确定液口距。具体的,发送激光,使得激光正好照射在导流筒下沿口,以在导流筒下沿口和熔硅液面上形成两个矩形光斑,测量两个矩形光斑间的像素距离,提前获取两个矩形光斑间的像素距离与液口距的对应关系,根据两个矩形光斑间的像素距离以及该对应关系计算得到液口距。
申请人在研究上述现有技术的过程中发现,上述现有技术方案存在如下缺点:在晶体生长过程中单晶炉内的熔硅温度达到1450℃左右,熔硅表面的亮度较高,使得激光在熔硅液面上的光斑图像不明显,导致无法准确测量两个光斑间的像素距离,使得对液口距的检测准确度低;而且,需要多次调整激光方向,才能将激光正好照射在导流筒下沿口,操作复杂。
申请内容
本申请提供一种液口距确定方法、装置及单晶炉,旨在提升液口距的准确度并降操作复杂度。
第一方面,本申请实施例提供了一种液口距确定方法,包括:
获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;
在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;
确定所述边界点和所述边界点对应的倒影点之间的像素距离;
根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
可选的,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点,包括:
获取所述目标图像的像素点的灰度梯度;
根据所述灰度梯度,对所述目标图像进行边缘检测,以在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点。
可选的,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点之前,还包括:
获取标定图像;所述标定图像包括:所述导流筒的下沿口的第三子图像和在熔硅液面上的所述导流筒的下沿口倒影的第四子图像;
在所述标定图像中,获取穿过所述导流筒下沿口的边界点与所述边界点对应的倒影点的第一直线;
所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点,包括:
在所述第一子图像中,任意选取一个点,并将所述点确定为所述导流筒的下沿口的边界点;
在所述目标图像中,获取穿过所述边界点的第二直线,使得所述第二直线与所述第一直线平行;
在所述第二子图像中,选取所述第二直线与所述熔硅液面的交点,为所述边界点对应的倒影点。
可选的,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点之前,还包括:
对所述目标图像进行降噪处理。
可选的,所述目标图像由图像获取模块获取;
所述图像获取模块的镜头的轴线与所述熔硅液面的夹角为预设角度;
所述预设系数包括:所述预设角度的正弦值。
可选的,所述根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距之前,还包括:
获取第一时刻所述导流筒的下沿口与熔硅液面的第一高度;
获取第二时刻所述导流筒的下沿口与熔硅液面的第二高度;
基于所述第一高度和所述第二高度的差值,以及所述预设角度的正弦值,确定所述预设系数。
可选的,所述还包括:
在所述液口距位于预设液口距范围之外的情况下,调整拉晶速度、和/或所述熔硅液面的上升速度,控制所述液口距位于所述预设液口距范围之内。
第二方面,本申请实施例提供了一种液口距确定装置,包括:
图像获取模块,配置为获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;
第一确定模块,配置为在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;
第二确定模块,配置为确定所述边界点和所述边界点对应的倒影点之间的像素距离;
第三确定模块,配置为根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
第三方面,本申请实施例提供了一种单晶炉,所述单晶炉包括:接口,总线,存储器与处理器,所述接口、存储器与处理器通过所述总线相连接,所述存储器用于存储可执行程序,所述处理器被配置为运行所述可执行程序实现前述的液口距确定方法的步骤。
本申请第四方面提供一种计算机程序,当所述计算机程序在计算处理设备上运行时,导致所述计算处理设备执行前述的任一个所述的液口距确定方法。
本申请第五方面提供一种计算机可读存储介质,所述计算机可读存储介质上存储有前述计算机程序。
在本申请实施例中,获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;确定所述边界点和所述边界点对应的倒影点之间的像素距离;根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。本申请中,只需通过获取包括导流筒的下沿口的第一子图像和其在熔硅液面的倒影的第二子图像的目标图像,在目标图像中测量得到导流筒的下沿口的边界点与其对应的倒影点之间的像素距离,根据像素距离以及预设系数即可以得到导流筒的下沿口至熔硅液面的液口距。一方面,液口距的确定不会受到熔硅温度等外界因素的干扰,使得确定的液口距准确性高;另一方面,只需获取目标图像,该目标图像上包括导流筒的下沿口的边界点与其对应的倒影点即可,操 作简单。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例一中的一种液口距确定方法的步骤流程图;
图2示出了本申请实施例一中的一种单晶炉的结构示意图;
图3示出了本申请实施例一中的导流筒与熔硅的相对示意图;
图4示出了本申请实施例一中的一种获取到目标图像的示意图;
图5示出了本申请实施例二中的一种液口距确定方法的步骤流程图;
图6示出了本申请实施例三中的一种液口距确定装置的结构示意图;
图7示出了本申请实施例三中的另一种液口距确定装置的结构示意图;
图8示出了本申请实施例的一种单晶炉的逻辑结构示意图。
图9示意性地示出了用于执行根据本申请的方法的计算处理设备的框图;
图10示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
附图标记说明:11-图像获取模块、12-第一确定模块、121-导流筒、122-熔硅、123-坩埚、13-第二子图像、14-第二确定模块、15-第三确定模块、16-控制模块、1211-导流筒的下沿口、A1-边界点、A2-边界点对应的倒影点、41-接口、42-处理器、43-存储器、44-总线。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
参照图1,图1示出了本申请实施例一中的一种液口距确定方法的步骤流程图。该方法可以包括如下步骤:
步骤101,获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像。
参照图2所示,图2示出了本申请实施例一中的单晶炉的结构示意图,该单晶炉中设置有导流筒121,导流筒121下方设置有熔硅122。导流筒121可以起到降低加热功率,增加热场的纵向温度梯度,降低晶体氧含量的作用。熔硅122正上方对应着中空环状的导流筒121。
在本申请实施例中,该单晶炉可以包括图像获取模块11。该图像获取模块11可以为摄像头等,在本申请实施例中,对此不作具体限定。图像获取模块11镜头的轴线与熔硅122液面的夹角为预设角度θ。该θ可以不为90°,即,图像获取模块11的镜头对导流筒121并不是垂直采集目标图像。或者说,图像获取模块11的镜头能够采集到导流筒121在熔硅122液面的倒影。
该图像获取模块11主要配置为获取目标图像。具体的,导流筒的下沿口为导流筒121靠近熔硅的一端。由于导流筒121为环状,导流筒121的下沿口可以为导流筒121靠近熔硅122的一端内侧的环形平面。在本申请实施例中,对此不作具体限定。
参照图3所示,图3示出了本申请实施例一中的导流筒与熔硅的相对示意图。图3中1211可以为导流筒121的下沿口。导流筒121的下沿口1211与熔硅122的距离即为液口距h。由图3可以得出:h=D×sinθ。其中,D为导流筒121的下沿口1211的边界点A1与边界点A1在熔硅上的倒影点A2之间的实际距离。θ为图像获取模块11镜头的轴线与熔硅122液面的夹角。
在本申请实施例中,可以通过上述图像获取模块11获取目标图像。该目标图像可以包括:导流筒121下沿口的第一子图像和在熔硅液面上的导流筒121下沿口倒影的第二子图像。即,通过图像获取模块11获取的目标图像中不仅包括有导流筒121下沿口的第一子图像,还采集到了其在熔硅122液面倒影的第二子图像。
参照图4所示,图4示出了本申请实施例一中的一种获取到目标图像的示意图。导流筒121下沿口1211在熔硅122液面的倒影的第二子图像可以为13所示的圆环。
步骤102,在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点。
在本申请实施例中,在目标图像中的第一子图像中,导流筒121的下沿 口1211的边界点可以随意选取等,或者每次都选择同一个的边界点。在本申请实施例中,对此不作具体限定。
在本申请实施例中,第一子图像中导流筒121的下沿口1211的边界点可以为第一子图像中,导流筒121的下沿口1211上的任意一点。
在本申请实施例中,在目标图像中的倒影中,确定边界点对应的倒影点。该倒影点需要同时位于导流筒121的影子中,且该倒影点需要位于熔硅液面中。则,倒影点位于目标图像中倒影的第二子图像与熔硅122液面交线上。参照图4所示,内侧圆环即可以为目标图像中倒影的第二子图像与熔硅122液面的交线。
在本申请实施例中,在第一子图像中,导流筒121的下沿口1211上任意一个点即为边界点,在目标图像中倒影的第二子图像与熔硅液面的交线上,确定导流筒下沿口的边界点对应的倒影点。
在本申请实施例中,可选的,上述步骤102可以包括:获取所述目标图像的像素点的灰度梯度;根据所述灰度梯度,对所述目标图像进行边缘检测,以在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点。
具体的,可以获取目标图像的各个像素点的灰度梯度,该灰度梯度通常用于分离目标图像中不同对象,或者,该灰度梯度用于对目标图像中的各个对象进行边缘检测。通过上述灰度梯度,对上述目标图像进行边缘检测,在目标图像中划分出包括的导流筒的下沿口的第一子图像、熔硅液面的子图像、在熔硅液面上的导流筒的下沿口倒影的第二子图像等。然后在第一子图像上,任意选取边界点,在熔硅液面的子图像和在熔硅液面上的导流筒的下沿口倒影的第二子图像的交线上选取该边界点对应的倒影点。通过灰度梯度能够准确对目标图像包括的各个子图像进行划分,进而有助于提升获取到边界点和对应的倒影点的准确性,有利于提升液口距的准确性。
例如,参照图4所示,A1可以为在第一子图像中确定的一个边界点,A2可以为在第二子图像中,确定的边界点A1对应的倒影点。
在本申请实施例中,获取的图像只需要包括导流筒的下沿口的边界点,以及该边界点对应的倒影点即可,而倒影点较小。即使随着拉晶的进行,熔硅液面的面积逐渐减小,倒影点还是存在与熔硅液面中。进而在拉晶的整个过程中,都能够实时准确获取液口距。
在本申请实施例中,可选的,在上述步骤102之前,可以对上述目标图像进行降噪处理。该降噪处理可以是对上述目标图像进行滤波等,以消除由图像获取模块获取的目标图像中的噪声信号,利于提升后续获取的边界 点和对应的倒影点的准确性,有利于提升液口距的准确性。
上述降噪处理可以是对图像获取模块获取的目标图像进行中值滤波、最大值滤波、最小值滤波等,以尽可能的消除由图像获取模块获取的目标图像中的噪声信号。在本申请实施例中,对此不作具体限定。
步骤103,确定所述边界点和所述边界点对应的倒影点之间的像素距离。
在本申请实施例中,可以通过长度测量工具等,在上述目标图像中,测量出边界点和该边界点对应的倒影点之间的像素距离。该边界点和该边界点对应的倒影点之间的像素距离可以为在目标图像中,该边界点和该边界点对应的倒影点之间的长度距离等。在本申请实施例中,对此不作具体限定。只需获取目标图像,该目标图像中包括导流筒的下沿口的边界点及该边界点对应的倒影点即可,并在目标图像中测量获得导流筒的下沿口的边界点,与其对应的倒影点之间的像素距离,后续即可计算得到导流筒下沿口至熔硅液面的液口距,操作简单。
例如,参照图4所示,目标图像中,边界点和对应的倒影点之间的像素距离可以为图4中,边界点A1和边界点A1对应的倒影点A2之间的像素距离d。
步骤104,根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
在本申请实施例中,由于液口距h=D×sinθ。其中,D为导流筒121的下沿口1211的边界点A1与边界点A1在熔硅上的倒影点A2之间的实际距离。目标图像是将边界点A1和边界点A1在熔硅上的倒影点A2进行了成像,因此,上述对应关系依然成立。导流筒121的下沿口1211的边界点A1与边界点A1在熔硅上的倒影点A2之间的实际距离D,成像后,在目标图像中,边界点A1和边界点A1对应的倒影点A2之间的像素距离为d。但是由于目标图像与实体之间尺寸的差距,需要乘以目标图像获取的液口距与实际液口距之间的转换比例K。则,h=K×d×sinθ。则,用上述像素距离d乘以预设系数,即可以得到导流筒121的下沿口至熔硅122液面的液口距h。该预设系数可以为:K×sinθ。其中,K为目标图像获取的液口距与实际液口距之间的转换比例。θ为图像获取模块11镜头的轴线与熔硅122液面的夹角,sinθ为θ的正弦值。
在本申请实施例中,参照图3所示,图像获取模块11的镜头的轴线与熔硅122液面的夹角为预设角度θ。预设系数可以为:K×sinθ,该预设系数包括了该预设角度θ的正弦值sinθ。通过该预设系数及目标图像中边界点与该边界点对应的倒影点之间的像素距离,可以准确确定出液口距。
在本申请实施例中,获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;确定所述边界点和所述边界点对应的倒影点之间的像素距离;根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。本申请中,只需通过获取包括导流筒的下沿口的第一子图像和其在熔硅液面的倒影的第二子图像的目标图像,在目标图像中测量得到导流筒的下沿口的边界点与其对应的倒影点之间的像素距离,根据像素距离以及预设系数即可以得到导流筒的下沿口至熔硅液面的液口距。一方面,液口距的确定不会受到熔硅温度等外界因素的干扰,使得确定的液口距准确性高;另一方面,只需获取目标图像,该目标图像上包括导流筒的下沿口的边界点与其对应的倒影点即可,操作简单。
实施例二
参照图5,图5示出了本申请实施例二中的一种液口距确定方法的步骤流程图。参照图5所示,该方法包括如下步骤:
步骤201,获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像。
上述步骤201可以参照前述步骤101的有关记载,为了避免重复,此处不再赘述。
步骤202,获取标定图像;所述标定图像包括:所述导流筒的下沿口的第三子图像和在熔硅液面上的所述导流筒的下沿口倒影的第四子图像。
具体的,可以通过上述图像获取模块11或其他的图像获取模块获取标定图像,该标定图像包括:导流筒121的下沿口1211的第三子图像和其在熔硅122液面的倒影的第四子图像。此处获取标定图像的图像获取模块的镜头与熔硅122液面的相对位置,与获取上述目标图像时,图像获取模块11与熔硅122液面的相对位置相同,且在获取标定图像和获取目标图像时,导流筒的位置保持不变,进而能够保证标定图像中穿过边界点与边界点对应的倒影点的第一直线,与目标图像中穿过边界点与边界点对应的倒影点的第二直线平行。
步骤203,在所述标定图像中,获取穿过所述导流筒下沿口的边界点与所述边界点对应的倒影点的第一直线。
在本申请实施例中,在图像获取模块11的安装位置固定,导流筒121的安装位置固定的情况下,通过该图像获取模块获取的标定图像中,穿过导流筒121的下沿口1211的边界点与其倒影点的第一直线,与后续通过该图像获取模块11获取的目标图像中,穿过导流筒121的下沿口1211的边界 点与其倒影点的第二直线的方向或角度也固定不变。可以以上述第一直线为基准,在图像获取模块11的安装位置固定,导流筒121的安装位置固定的情况下,通过该图像获取模块获取的目标图像中确定导流筒121的下沿口1211的边界点与其倒影点。
在本申请实施例中,可以在导流筒下沿口对某个边界点进行形状标记等,然后在标定图像的第四子图像中,将该形状标记对应的点,确定为该边界点对应的倒影点。在本申请实施例中,对此不作具体限定。
步骤204,在所述第一子图像中,任意选取一个点,并将所述点确定为所述导流筒的下沿口的边界点。
在本申请实施例中,可以通过边界划分等,在目标图像中划分出导流筒的下沿口的第一子图像,在第一子图像中,任意选取一个点,该点即可以为导流筒的下沿口的边界点。
例如,参照图4,目标图像的第一子图像中,边界点A1即可以为导流筒的下沿口的一个边界点。
步骤205,在所述目标图像中,获取穿过所述边界点的第二直线,使得所述第二直线与所述第一直线平行。
在本申请实施例中,获取标定图像时和获取目标图像时,在图像获取模块11的安装位置固定,导流筒121的安装位置固定的情况下,通过该图像获取模块获取的标定图像中,穿过导流筒121的下沿口1211的边界点与其倒影点的第一直线,与后续通过该图像获取模块11获取的目标图像中,穿过导流筒121的下沿口1211的边界点与其倒影点的第二直线的方向或角度也固定不变。因此,可以在目标图像中,获取穿过上述边界点的第二直线,使得第二直线与上述第一直线平行。则,上述边界点对应的倒影点则位于该第二直线上。
如图4所示,在图像获取模块11的安装位置固定,导流筒121的安装位置固定的情况下,在标定图像中,获取的边界点与其倒影点之间第一直线若如直线b1所示。若在目标图像图4中,选取的边界点为A1,则,可以在目标图像中获取穿过该边界点A1的第二直线,且需要保证该第二直线与上述第一直线平行。则,该边界点A1对应的倒影点位于第二直线上。
步骤206,在所述第二子图像中,选取所述第二直线与所述熔硅液面的交点,为所述边界点对应的倒影点。
在本申请实施例中,边界点的倒影点为边界点在熔硅液面的倒影,则,该倒影点位于熔硅液面上。同时,该边界点的倒影点又位于上述第二直线上。则,在第二子图像中,第二直线与熔硅液面的交点可以为上述边界点对应的倒影点。
参照图4所示,目标图像中的第二子图像中,穿过边界点A1且与第一直线b1平行的第二直线与熔硅122液面的交点为A2,则,A2即可以为边界点A1对应的倒影点。
步骤207,在所述目标图像中,确定所述边界点和对应的倒影点之间的像素距离。
在本申请实施例中,该步骤207可以参照前述步骤103的相关记载,为了避免重复,此处不再赘述。
步骤208,获取第一时刻所述导流筒的下沿口与熔硅液面的第一高度。
在本申请实施例中,第一时刻可以为任意时刻。在本申请实施例中,对此不作具体限定。
在本申请实施例中,可以通过高度测量工具等,获取到第一时刻导流筒121的下沿口1211与熔硅122液面的第一高度。即,测量获得第一时刻的液口距。
步骤209,获取第二时刻所述导流筒的下沿口与熔硅液面的第二高度。
在本申请实施例中,第二时刻可以为液口距或上述第二高度与上述第一高度不同的任意时刻。在本申请实施例中,对此不作具体限定。
在本申请实施例中,可以通过高度测量工具等,获取到第二时刻导流筒121的下沿口1211与熔硅122液面的第二高度。即,测量获得第二时刻的液口距。
步骤210,基于所述第一高度和所述第二高度的差值,以及所述预设角度的正弦值,确定所述预设系数。
在本申请实施例中,可以将上述第一高度和第二高度作差,得到两个高度的差值,该差值可以为正值。若第一高度和第二高度作差为负值,则,该差值可以为上述负值的绝对值。在本申请实施例中,对此不作具体限定。
在本申请实施例中,可以获取第一时刻的目标图像,获取第二时刻的目标图像。在第一时刻的目标图像中,确定边界点和对应的倒影点之间的第一像素距离。在第二时刻的目标图像中,确定边界点和对应的倒影点之间的第二像素距离。用第一像素距离和第二像素距离作差,得到像素距离差值,该像素距离差值也可以为正值。
在本申请实施例中,可以用上述第一高度与第二高度的差值,除以上述第一像素距离和第二像素距离的差值,得到上述预设系数K×sinθ。需要说明的是,在图像获取模块11安装位置固定的情况下,θ也固定,可以测量获得上述角度θ,进而得到sinθ。在本申请实施例中,对此不作具体限定。
例如,若在第一时刻T1时刻获取的边界点和其对应的倒影点之间的第一像素距离d1为20mm,在T1时刻后,参照图2,若坩埚123上升5mm,在第二时刻T2时刻获取的边界点和其对应的倒影点之间的第二像素距离d2为10mm,则,第一时刻导流筒的下沿口与熔硅液面的第一高度和第二时刻导流筒的下沿口与熔硅液面的第二高度的差值Δh为5mm,第一像素距离和第二像素距离作差得到Δd为10mm。根据h=K×d×sinθ,则,Δh=K×Δd×sinθ。则,预设系数K×sinθ=Δh/Δd。即,K×sinθ=5/10=0.5。
在本申请实施例中,需要说明的是,需要尽可能地保证测量的上述第一高度、第二高度等较为准确。例如,可以通过多次测量的方式,获取上述第一高度或第二高度。虽然在获取第一高度或第二高度的过程中,操作较为复杂或耗时较长等,但是在确定上述预设系数之后,后续可以直接使用该预设系数即可以快速确定出液口距,在后续确定液口距的过程中,操作均较为简单,耗时短且准确性高。
步骤211,根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
在本申请实施例中,该步骤211可以参照前述步骤104的相关记载。
例如,在第三时刻,若获取的目标图像中,确定的边界点和对应的倒影点之间的像素距离d为23mm。根据h=K×d×sinθ,若K×sinθ为0.5,则,液口距h=23×0.5=11.5mm。
步骤212,在所述液口距位于预设液口距范围之外的情况下,调整拉晶速度、和/或所述熔硅液面的上升速度,控制所述液口距位于所述预设液口距范围之内。
在本申请实施例中,预设液口距范围可以为拉出晶棒中碳和氧的含量较低的情况下,对应的液口距。该预设液口距可以根据对拉出晶棒中碳和氧的含量的具体要求进行设定,在本申请实施例中,对此不作具体限定。
在本申请实施例中,在拉晶过程中,在上述液口距位于预设液口距范围之外的情况下,说明此种情况下,拉出晶棒中的碳和氧的含量可能较高,会影响晶棒的品质,则,可以调整拉晶速度、和/或熔硅液面的上升速度,使得液口距位于上述预设液口距范围之内,进而使得拉出晶棒中的碳和氧的含量较低,达到相应的品质要求。
具体的,参照图2所示,可以通过单晶炉调整坩埚123的上升或下降速度等,可以调整熔硅122液面的上升或下降速度等。在本申请实施例中,对此不作具体限定。
在本申请实施例中,获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图 像;在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;确定所述边界点和所述边界点对应的倒影点之间的像素距离;根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。本申请中,只需通过获取包括导流筒的下沿口的第一子图像和其在熔硅液面的倒影的第二子图像的目标图像,在目标图像中测量得到导流筒的下沿口的边界点与其对应的倒影点之间的像素距离,根据像素距离以及预设系数即可以得到导流筒的下沿口至熔硅液面的液口距。一方面,液口距的确定不会受到熔硅温度等外界因素的干扰,使得确定的液口距准确性高;另一方面,只需获取目标图像,该目标图像上包括导流筒的下沿口的边界点与其对应的倒影点即可,操作简单。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
实施例三
参照图6,图6示出了本申请实施例三中的一种液口距确定装置的结构示意图,该液口距确定装置包括:图像获取模块11、第一确定模块12、第二确定模块14、第三确定模块15。
在本申请实施例中,该图像获取模块11与第一确定模块12连接。该连接可以为有线连接或无线连接等,在本申请实施例中,对此不作具体限定。
在本申请实施例中,图像获取模块11配置为获取目标图像;该目标图像可以包括:导流筒121的下沿口1211的第一子图像和在熔硅122液面上的导流筒121的下沿口1211倒影的第二子图像。具体可以参照前述实施例中的相关记载,且能达到相同的有益效果,为了避免重复,此处不再赘述。
图像获取模块11与第一确定模块12之间可以进行数据交互,图像获取模块11可以将上述目标图像发送至第一确定模块12。
第一确定模块12配置为在目标图像中确定导流筒121的下沿口1211的边界点,并确定上述边界点对应的倒影点。
第一确定模块12可以和第二确定模块14连接。该连接可以为有线连接或无线连接等,在本申请实施例中,对此不作具体限定。
第二确定模块14配置为确定上述边界点和上述边界点对应的倒影点之 间的像素距离。
第二确定模块14可以和第三确定模块15连接。该连接可以为有线连接或无线连接等,在本申请实施例中,对此不作具体限定。
第三确定模块15配置为根据上述像素距离及预设系数,确定导流筒121的下沿口1211至熔硅122液面的液口距。具体可以参照前述实施例中的相关记载,且能达到相同的有益效果,为了避免重复,此处不再赘述。
在本申请实施例中,可选的,参照图7,图7示出了本申请实施例三中的另一种液口距确定装置的结构示意图。在上图6的基础上,该液口距确定装置还可以包括:控制模块16。控制模块16与上述第三确定模块15连接。可以为有线连接或无线连接等。
控制模块16配置为在前述液口距位于预设液口距范围之外的情况下,调整拉晶速度、和/或熔硅122液面的上升速度,控制前述液口距位于上述预设液口距范围之内。具体的,该控制模块16可以通过控制坩埚123的上述速度等,将液口距调整为位于上述预设液口距范围之内。在本申请实施例中,对此不作具体限定。
在本申请实施例中,可选的,控制模块16还可以为第三确定模块15的一个子模块。在本申请实施例中,对此不作具体限定。
在本申请实施例中,该液口距确定装置中各个部分的功能等,具体可以参照前述实施例中的相关记载,且能达到相同的有益效果,为了避免重复,此处不再赘述。
在本申请实施例中,液口距确定装置,包括:图像获取模块、第一确定模块、第二确定模块、第三确定模块;所述图像获取模块配置为获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;所述第一确定模块,配置为在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;所述第二确定模块,配置为确定所述边界点和所述边界点对应的倒影点之间的像素距离;所述第三确定模块,配置为根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。本申请中,只需通过图像获取模块获取包括导流筒的下沿口的第一子图像和其在熔硅液面的倒影第二子图像的目标图像,在目标图像中测量得到导流筒的下沿口的边界点与其对应的倒影点之间的像素距离,根据像素距离以及预设系数即可以得到导流筒的下沿口至熔硅液面的液口距。一方面,液口距的确定不会受到熔硅温度等外界因素的干扰,使得确定的液口距准确性高;另一方面,只需获取目标图像,该目标图像上包括导流筒的下沿口的边界点与其对应的倒影点即可,操作简单。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
图8示出了本申请实施例的一种单晶炉的逻辑结构示意图。如图8所示,本申请实施例提供的单晶炉可以包括:接口41、处理器42、存储器43及总线44;其中,所述总线44,用于实现所述接口41、所述处理器42和所述存储器43之间的连接通信;所述存储器43存储有可执行程序,所述处理器42,用于执行所述存储器43中存储的可执行程序,以实现如图1或图5,实施例一或实施例二中的液口距确定方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
本申请还提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备如图1或图5,实施例一或实施例二中的液口距确定方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
本申请还提供一种计算机可读介质,所述计算机可读介质存储有上述计算机程序,所述计算机程序可被一个或者多个处理器执行,以实现如图1或图5,实施例一或实施例二中的液口距确定方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图9示出了可以实现根据本申请的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间 1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图10所述的便携式或者固定存储单元。该存储单元可以具有与图9的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种液口距确定方法,其特征在于,包括:
    获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;
    在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;
    确定所述边界点和所述边界点对应的倒影点之间的像素距离;
    根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点,包括:
    获取所述目标图像的像素点的灰度梯度;
    根据所述灰度梯度,对所述目标图像进行边缘检测,以在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点之前,还包括:
    获取标定图像;所述标定图像包括:所述导流筒的下沿口的第三子图像和在熔硅液面上的所述导流筒的下沿口倒影的第四子图像;
    在所述标定图像中,获取穿过所述导流筒下沿口的边界点与所述边界点对应的倒影点的第一直线;
    所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点,包括:
    在所述第一子图像中,任意选取一个点,并将所述点确定为所述导流筒的下沿口的边界点;
    在所述目标图像中,获取穿过所述边界点的第二直线,使得所述第二直线与所述第一直线平行;
    在所述第二子图像中,选取所述第二直线与所述熔硅液面的交点,为所述边界点对应的倒影点。
  4. 根据权利要求1所述的方法,其特征在于,所述在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点之前,还包括:
    对所述目标图像进行降噪处理。
  5. 根据权利要求1至4中任一所述的方法,其特征在于,所述目标图像由图像获取模块获取;
    所述图像获取模块的镜头的轴线与所述熔硅液面的夹角为预设角度;
    所述预设系数包括:所述预设角度的正弦值。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距之前,还包括:
    获取第一时刻所述导流筒的下沿口与熔硅液面的第一高度;
    获取第二时刻所述导流筒的下沿口与熔硅液面的第二高度;
    基于所述第一高度和所述第二高度的差值,以及所述预设角度的正弦值,确定所述预设系数。
  7. 根据权利要求1至6中任一所述的方法,其特征在于,还包括:
    在所述液口距位于预设液口距范围之外的情况下,调整拉晶速度、和/或所述熔硅液面的上升速度,控制所述液口距位于所述预设液口距范围之内。
  8. 一种液口距确定装置,其特征在于,包括:
    图像获取模块,配置为获取目标图像;所述目标图像包括:导流筒的下沿口的第一子图像和在熔硅液面上的所述导流筒的下沿口倒影的第二子图像;
    第一确定模块,配置为在所述目标图像中确定所述导流筒的下沿口的边界点,并确定所述边界点对应的倒影点;
    第二确定模块,配置为确定所述边界点和所述边界点对应的倒影点之间的像素距离;
    第三确定模块,配置为根据所述像素距离及预设系数,确定所述导流筒的下沿口至所述熔硅液面的液口距。
  9. 一种单晶炉,其特征在于,所述单晶炉包括:接口,总线,存储器与处理器,所述接口、存储器与处理器通过所述总线相连接,所述存储器用于存储可执行程序,所述处理器被配置为运行所述可执行程序实现如权利要求1至7中任一项所述的液口距确定方法的步骤。
  10. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-7中的任一个所述的液口距确定方法。
  11. 一种计算机可读介质,其中存储了如权利要求10所述的计算机程序。
PCT/CN2019/114786 2019-07-22 2019-10-31 一种液口距确定方法、装置及单晶炉 WO2021012445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910662728.3A CN112281208B (zh) 2019-07-22 2019-07-22 一种液口距确定方法、装置及单晶炉
CN201910662728.3 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021012445A1 true WO2021012445A1 (zh) 2021-01-28

Family

ID=74192812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114786 WO2021012445A1 (zh) 2019-07-22 2019-10-31 一种液口距确定方法、装置及单晶炉

Country Status (2)

Country Link
CN (1) CN112281208B (zh)
WO (1) WO2021012445A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607241A (zh) * 2021-08-05 2021-11-05 包头美科硅能源有限公司 一种用于提升液位检测精度及灵敏度的方法
CN113862782A (zh) * 2021-08-30 2021-12-31 浙江晶阳机电股份有限公司 一种液面自动补偿方法
CN114252018A (zh) * 2021-12-29 2022-03-29 西安奕斯伟材料科技有限公司 晶体直径检测方法、系统及计算机程序产品
CN114399488A (zh) * 2022-01-12 2022-04-26 苏州天准科技股份有限公司 一种液口距的监测方法、存储介质、终端和拉晶设备
CN114941172A (zh) * 2021-12-24 2022-08-26 大连耐视科技有限公司 基于数学模型的全局高精度单晶炉液位检测方法
CN115613126A (zh) * 2021-07-15 2023-01-17 内蒙古中环协鑫光伏材料有限公司 一种适于熔接时埚位确定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215653B (zh) * 2021-04-28 2022-03-11 北京图知天下科技有限责任公司 一种确定液口距的方法和系统
CN113295103B (zh) * 2021-05-28 2022-02-18 曲靖阳光新能源股份有限公司 一种以导流筒为参照的单晶炉液口距双点测量方法及装置
CN113249781B (zh) * 2021-05-28 2022-02-22 曲靖阳光新能源股份有限公司 一种以导流筒为参照的单晶炉液口距单点测量方法及装置
CN114808115B (zh) * 2022-04-28 2023-08-15 晶科能源股份有限公司 液口距测量方法及液口距测试装置
CN115265391B (zh) * 2022-09-30 2023-02-17 杭州利珀科技有限公司 一种单晶硅棒制备过程中硅料液距检测方法
CN117604618B (zh) * 2023-11-24 2024-08-06 保定景欣电气有限公司 一种确定拉晶过程中的液口距的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242589A (en) * 1979-01-15 1980-12-30 Mobil Tyco Solar Energy Corporation Apparatus for monitoring crystal growth
CN101168848A (zh) * 2006-10-23 2008-04-30 北京有色金属研究总院 一种直拉硅单晶炉的熔硅液面位置的控制方法
CN101748478A (zh) * 2008-12-15 2010-06-23 北京有色金属研究总院 一种测量坩埚中硅熔体水平面相对高度的方法
CN102995111A (zh) * 2012-11-07 2013-03-27 北京七星华创电子股份有限公司 单晶炉非接触式硅料液面位置测量方法及装置
CN103017657A (zh) * 2012-12-07 2013-04-03 中国工程物理研究院流体物理研究所 一种危险目标源尺寸光学测量方法及装置
CN109829638A (zh) * 2019-01-23 2019-05-31 内蒙古中环协鑫光伏材料有限公司 一种基于图像的埚位控制装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171391B1 (en) * 1998-10-14 2001-01-09 Memc Electronic Materials, Inc. Method and system for controlling growth of a silicon crystal
CN101748479A (zh) * 2008-12-15 2010-06-23 北京有色金属研究总院 熔体硅液面位置的测量方法和装置
CN101782414A (zh) * 2010-01-28 2010-07-21 杭州慧翔电液技术开发有限公司 直拉硅单晶炉的硅熔体液面位置及单晶棒直径的测量方法
JP5678635B2 (ja) * 2010-12-13 2015-03-04 株式会社Sumco シリコン単結晶の製造装置、シリコン単結晶の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242589A (en) * 1979-01-15 1980-12-30 Mobil Tyco Solar Energy Corporation Apparatus for monitoring crystal growth
CN101168848A (zh) * 2006-10-23 2008-04-30 北京有色金属研究总院 一种直拉硅单晶炉的熔硅液面位置的控制方法
CN101748478A (zh) * 2008-12-15 2010-06-23 北京有色金属研究总院 一种测量坩埚中硅熔体水平面相对高度的方法
CN102995111A (zh) * 2012-11-07 2013-03-27 北京七星华创电子股份有限公司 单晶炉非接触式硅料液面位置测量方法及装置
CN103017657A (zh) * 2012-12-07 2013-04-03 中国工程物理研究院流体物理研究所 一种危险目标源尺寸光学测量方法及装置
CN109829638A (zh) * 2019-01-23 2019-05-31 内蒙古中环协鑫光伏材料有限公司 一种基于图像的埚位控制装置和方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613126A (zh) * 2021-07-15 2023-01-17 内蒙古中环协鑫光伏材料有限公司 一种适于熔接时埚位确定方法
CN113607241A (zh) * 2021-08-05 2021-11-05 包头美科硅能源有限公司 一种用于提升液位检测精度及灵敏度的方法
CN113862782A (zh) * 2021-08-30 2021-12-31 浙江晶阳机电股份有限公司 一种液面自动补偿方法
CN114941172A (zh) * 2021-12-24 2022-08-26 大连耐视科技有限公司 基于数学模型的全局高精度单晶炉液位检测方法
CN114941172B (zh) * 2021-12-24 2024-02-13 大连耐视科技有限公司 基于数学模型的全局高精度单晶炉液位检测方法
CN114252018A (zh) * 2021-12-29 2022-03-29 西安奕斯伟材料科技有限公司 晶体直径检测方法、系统及计算机程序产品
CN114252018B (zh) * 2021-12-29 2024-04-30 西安奕斯伟材料科技股份有限公司 晶体直径检测方法、系统及计算机程序产品
CN114399488A (zh) * 2022-01-12 2022-04-26 苏州天准科技股份有限公司 一种液口距的监测方法、存储介质、终端和拉晶设备
CN114399488B (zh) * 2022-01-12 2022-11-25 苏州天准科技股份有限公司 一种液口距的监测方法、存储介质、终端和拉晶设备

Also Published As

Publication number Publication date
CN112281208B (zh) 2022-04-05
CN112281208A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2021012445A1 (zh) 一种液口距确定方法、装置及单晶炉
CN112381807B (zh) 一种直拉单晶生产中晶体直径检测方法、系统及设备
US10018467B2 (en) System and method for measuring a distance to an object
JP7541194B2 (ja) 同心楕円の弦長比に基づく単結晶シリコン直径検出方法及び装置
CN100436657C (zh) 基于霍夫变换的直拉单晶硅棒直径的测量方法
CN103628131B (zh) 一种单晶硅拉晶炉的熔融硅液面检测方法及测量装置
WO2020108287A1 (zh) 一种硅棒的晶线生长状态检测方法、装置及设备
WO2022121562A1 (en) Devices and methods for temperature measurment
CN105928841B (zh) 一种浸入式在线多相测量仪及测量方法
WO2020243992A1 (zh) 坡口缺陷检测方法及装置
CN111962145A (zh) 检测熔体液面位置的方法、装置、设备及计算机存储介质
CN104990510A (zh) 一种直拉单晶硅直径测量方法
CN101561249A (zh) 手术刀片配合尺寸自动检测装置及其检测方法
CN101748478B (zh) 一种测量坩埚中硅熔体水平面相对高度的方法
CN110528070B (zh) 直拉单晶直径测量方法
CN103245296A (zh) 一种基于图像测量与处理的丝杠螺纹参数测量方法
CN101748479A (zh) 熔体硅液面位置的测量方法和装置
CN113215653B (zh) 一种确定液口距的方法和系统
Xiang et al. Melt level measurement for the CZ crystal growth using an improved laser triangulation system
US20240060822A1 (en) Method and apparatus for detecting fire spots, electronic device, and storage medium
CN102538691B (zh) 一种用图像识别技术测量高温钢管直径的方法
TW201823527A (zh) 單結晶之製造方法
JP6583565B2 (ja) 計数システムおよび計数方法
Wang et al. A novel method for diameter measurement of silicon single crystal
CN207610670U (zh) 一种液膜厚度测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938355

Country of ref document: EP

Kind code of ref document: A1