WO2020108287A1 - 一种硅棒的晶线生长状态检测方法、装置及设备 - Google Patents

一种硅棒的晶线生长状态检测方法、装置及设备 Download PDF

Info

Publication number
WO2020108287A1
WO2020108287A1 PCT/CN2019/117204 CN2019117204W WO2020108287A1 WO 2020108287 A1 WO2020108287 A1 WO 2020108287A1 CN 2019117204 W CN2019117204 W CN 2019117204W WO 2020108287 A1 WO2020108287 A1 WO 2020108287A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon rod
gray value
image
crystal
line
Prior art date
Application number
PCT/CN2019/117204
Other languages
English (en)
French (fr)
Inventor
郭力
李侨
徐战军
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811417468.5A external-priority patent/CN111218714B/zh
Priority claimed from CN201910745478.XA external-priority patent/CN112444516B/zh
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to EP19891140.6A priority Critical patent/EP3800282A4/en
Priority to US17/256,494 priority patent/US12002234B2/en
Publication of WO2020108287A1 publication Critical patent/WO2020108287A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20072Graph-based image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Definitions

  • the invention relates to the technical field of single crystal silicon, in particular to a method, device and equipment for detecting the growth state of the crystal line of a silicon rod.
  • the existing method of automatically detecting the crystal line is to take a real-time photograph of the growing silicon rod and determine the characteristic pixel value of the crystal line. Specifically: scan the captured images line by line, and when a line scans the characteristic pixel value of the crystal line, calculate the height X of the crystal line plane corresponding to the silicon rod according to the characteristic pixel value of the crystal line. 0.5mm, it means that the crystal line is not broken, and the growing silicon rod is single crystal silicon at this time. If the plane height X of the crystal line is equal to 0mm, it means that the crystal line is broken, and the growing silicon rod is polycrystalline silicon.
  • the diameter of the single crystal silicon rod will fluctuate during the actual growth process, and the crystal line characteristics on the surface of the single crystal silicon rod are not obvious, which makes it difficult to accurately determine the pixel value and crystal
  • the height X of the line plane makes the process of detecting the crystal line less accurate.
  • the invention provides a method, a device and a device for detecting the growth state of a crystal rod of a silicon rod, aiming to improve the detection accuracy of the crystal rod of the silicon rod and reduce the operation complexity.
  • an embodiment of the present invention provides a method for detecting the growth state of a silicon rod, the method includes:
  • a detection area is provided on the sample image, the detection area overlaps with the growth line of the crystal line of the silicon rod, and during the process of the equal diameter growth of the silicon rod, the crystal line of the silicon rod follows the crystal Linear growth
  • the growth state of the crystal line on the crystal line growth line is determined.
  • the detection area includes: a line segment perpendicular to the axial direction of the silicon rod, or a rectangular area perpendicular to the axial direction of the silicon rod, wherein the surface of the rectangular area and the silicon The axial direction of the rod is perpendicular.
  • the step of generating a gray value curve of the detection area includes:
  • a gray value curve corresponding to the line segment is generated.
  • the step of generating a gray value curve of the detection area includes:
  • the rectangular area is divided into multiple identical sub-areas;
  • a gray value curve corresponding to the rectangular region is generated.
  • the step of determining the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve includes:
  • the variance value of the gray value is greater than or equal to the variance value threshold, it is determined that the growth state is a continuous state
  • the variance value of the gray value is less than the variance value threshold, it is determined that the growth state is a disconnected state.
  • the step of determining the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve includes:
  • the characteristic peak of the crystal line does not exist on the gray value curve, it is determined that the growth state is a broken state.
  • the method further includes:
  • an embodiment of the present invention provides a device for detecting the growth state of a silicon rod crystal line.
  • the device includes:
  • the sample image acquisition module is used to acquire the sample image of the silicon rod during the process of the silicon rod being in the same diameter growth
  • the detection unit setting module is used to set a detection area on the sample image, the detection area overlaps with the crystal line growth line of the silicon rod, the silicon rod is in the process of equal diameter growth, the silicon rod The crystal line grows along the crystal line growth line;
  • a gray value curve generation module for generating a gray value curve of the detection area
  • the growth state determination module is used for determining the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve.
  • the detection area includes: a line segment perpendicular to the axial direction of the silicon rod, or a rectangular area perpendicular to the axial direction of the silicon rod, wherein the surface of the rectangular area and the silicon The axial direction of the rod is perpendicular.
  • the gray value curve generation module includes:
  • the first generating submodule is used to generate a gray value curve corresponding to the line segment starting from one end of the line segment.
  • the gray value curve generation module includes:
  • a first calculation sub-module for calculating the average gray value of each of the sub-regions
  • the second generation submodule is used to generate a gray value curve corresponding to the rectangular area according to the average gray value of all the sub areas.
  • the growth state determination module includes:
  • a second calculation submodule configured to calculate the gray value variance value of the gray value curve according to the gray value curve
  • a first determining submodule configured to determine that the growth state is a continuous state when the gray value variance value is greater than or equal to the variance value threshold;
  • the second determining submodule is configured to determine that the growth state is a disconnected state when the gray value variance value is less than the variance value threshold.
  • the growth state determination module may further include:
  • a third determining submodule configured to determine that the growth state is a continuous state when there is a crystal line characteristic peak on the gray value curve
  • the fourth determining submodule is configured to determine that the growth state is a disconnected state when the characteristic peak of the crystal line does not exist on the gray value curve.
  • the device further includes:
  • the enhancement module is configured to perform image enhancement processing on the sample image according to a preset image enhancement algorithm.
  • an embodiment of the present invention provides a device for detecting the growth state of a crystal line of a silicon rod.
  • the device includes: an interface, a bus, a first memory and a first processor, and the interface, the first memory and the first A processor is connected through the bus, the first memory is used to store an executable program, and the first processor is configured to run the executable program to implement the steps of the method for detecting the growth state of the crystal line of the silicon rod .
  • a fourth aspect of the present invention provides a computer-readable storage medium storing an executable program on the computer-readable storage medium, the executable program being executed by a first processor to realize the detection of the growth state of the crystal line of the silicon rod Method steps.
  • An embodiment of the present invention provides a method for detecting the growth state of a silicon rod, which includes: acquiring a sample image of the silicon rod during the process of equal-diameter growth of the silicon rod; setting a detection area on the sample image, The detection area overlaps with the crystal line growth line of the silicon rod, and during the process of the silicon rod being in the same diameter growth, the crystal line of the silicon rod grows along the crystal line growth line; generating the detection area According to the gray value curve, determine the growth state of the crystal line of the silicon rod on the crystal line growth line.
  • the growth state of the crystal line of the silicon rod can be determined and reduced
  • the fluctuation of the diameter of the silicon rod and the insignificant influence of the characteristics of the crystal line on the detection process of the crystal line are improved, thereby improving the detection accuracy and efficiency of the crystal line, and the operation is simple.
  • a fifth aspect of the present invention provides a disconnection measurement method, which includes:
  • the moving pixels on the image frame are used to judge whether the single crystal is broken with equal diameter.
  • the wire break measurement method of the present application can adapt to the isometric wire break measurement when the crystal silicon rod diameter fluctuates and the crystal bar crystal line characteristics are not obvious Can improve the measurement accuracy and accurately determine whether the wire is broken.
  • processing each image frame to obtain the number of moving pixels in each image frame includes: selecting an image measurement area; performing data processing on each pixel in the image measurement area to obtain the speed of each pixel Amplitude; if the speed amplitude of the pixel is greater than the preset threshold, the pixel is determined as a moving pixel; the number of moving pixels in the image measurement area is counted.
  • Optical flow method that is, to use the change of pixels in the image sequence in the time domain and the correlation between adjacent frames to find the correspondence between the previous frame and the current frame, so as to calculate the pixel motion between adjacent frames A method of information.
  • the specific optical flow method processing of the present application is specifically: selecting a pixel on the current frame of the image, determining the coordinate point position of the pixel, finding the pixel on the previous frame of the image, and comparing the coordinate point position of the pixel in the current Whether there is a change in the frame, if the position of the coordinate point changes, the change is expressed by the speed amplitude, and the speed amplitude of the pixel is compared with a preset threshold, and if the speed amplitude of the pixel is greater than the preset threshold, the pixel is determined For moving pixels. Then calculate the total number of these moving pixels.
  • the preset threshold can be used to eliminate noise, improve the measurement and judgment accuracy, and is not affected by fluctuations in the diameter of the crystal; when the crystal line characteristics of the ingot are not obvious, the moving pixels of the crystal line characteristics can still be identified for analysis and judgment.
  • selecting the image measurement area includes: selecting the image measurement area on the image frame according to the position of the aperture.
  • the aperture is located at the solid-liquid interface between the solid silicon and the silicon melt below the single crystal silicon rod.
  • This application selects the image measurement area according to the position of the aperture, which is conducive to filtering the darker pixels.
  • selecting the image measurement area includes: selecting the image measurement area on each of the image frames according to the gray value, and the maximum gray value is 200.
  • Select the image measurement area can also be based on the position of the aperture and gray value, the gray value can not exceed 200.
  • performing data processing on the image measurement area to obtain the speed of the pixels in the image measurement area and the corresponding amplitude includes:
  • the speed amplitude of any point of the image in the image measurement area is obtained; the first formula includes:
  • m i represents the velocity amplitude of the pixels in the image measurement area
  • ⁇ i represents the angle between the first direction and the second direction
  • f( ⁇ i ) represents the functional relationship related to ⁇ i
  • u i represents the The speed in one direction
  • v i represents the speed in the second direction.
  • acquiring the speed of the i-th pixel in the image measurement area in the first direction and the speed in the second direction includes: according to the position of the coordinate point of the i-th pixel in the image measurement area, the image acquisition interval time, and The second formula obtains the speed of the pixels in the first direction and the second direction in the image measurement area.
  • x represents the first direction
  • y represents the second direction
  • (x i1 , y i1 ) represents the position of the coordinate point of the ith pixel in the image measurement area at frame s-1
  • (x i2 , y i2 ) represents the The position of the coordinate point of the i-th pixel in the image measurement area at the s frame
  • t represents the interval of image acquisition between the s frame and the s-1 frame.
  • the preset threshold is obtained according to the velocity amplitude of each pixel in the image measurement area, including:
  • the preset threshold value is obtained according to the velocity amplitude of all pixels in the image measurement area, the number of pixels in the image measurement area, and the third formula.
  • the third formula is:
  • Y represents a preset threshold
  • M g represents the velocity amplitude of the g-th pixel in the aperture range
  • g 1, 2, 3, ... k
  • N represents the number of pixels in the aperture range.
  • the preset threshold is the average value of the velocity amplitudes of all pixels in the image measurement area, and the preset threshold can also be set to other values.
  • the preset threshold can be used to eliminate noise, improve the measurement and judgment accuracy, and is not affected by fluctuations in the diameter of the crystal; when the crystal line characteristics of the ingot are not obvious, the moving pixels of the crystal line characteristics can still be identified for analysis and judgment. And the amplitude of the pixels in the image measurement area can be selected to filter out the darker pixels. In actual application, the motion pixels of the crystal rod can be filtered, and the motion pixels of the crystal line characteristics and the aperture are retained.
  • a sixth aspect of the present invention provides a disconnection measurement device, including:
  • the image processing module is used to process the current frame and the previous frame of the acquired single crystal growth image to obtain the number of moving pixels in the current frame of the image;
  • the statistics module is used to obtain the information of the number of moving pixels and the growth time of single crystal in the frame of all images in a unit time;
  • the identification module is used to determine whether the single crystal is broken according to the information.
  • the image processing module includes:
  • the data processing sub-module is used to perform data processing on each pixel in the image measurement area to obtain the velocity amplitude of each pixel;
  • the identification submodule is used to determine the pixel as a moving pixel when the speed amplitude of the pixel is greater than a preset threshold
  • the statistics submodule is used to count the number of moving pixels.
  • the selection sub-module is used to select the image measurement area on the image frame according to the position of the aperture.
  • the data processing submodule includes:
  • the image acquisition unit is used to acquire the velocity of the i-th pixel in the image measurement area in the first direction and the velocity in the second direction;
  • the data processing subunit is used to obtain the velocity amplitude of the ith pixel in the image measurement area according to the speed in the first direction, the speed in the second direction, and the first formula; the first formula includes:
  • m i represents the velocity amplitude of the i-th pixel in the image measurement area
  • ⁇ i represents the angle between the first direction and the second direction
  • f( ⁇ i ) Represents a functional relationship related to ⁇ i
  • u i represents the speed in the first direction
  • v i represents the speed in the second direction.
  • x represents the first direction
  • y represents the second direction
  • (x i1 , y i1 ) represents the position of the coordinate point of the ith pixel in the image measurement area at frame s-1
  • (x i2 , y i2 ) represents the The position of the coordinate point of the i-th pixel in the image measurement area at the s frame
  • t represents the interval of image acquisition between the s frame and the s-1 frame.
  • the identification sub-module is used to obtain a preset threshold value according to the velocity amplitude of all pixels in the image measurement area, the number of pixels in the image measurement area, and the third formula.
  • the third formula is:
  • Y represents a preset threshold
  • M g represents the velocity amplitude of the g-th pixel in the aperture range
  • g 1, 2, 3, ... k
  • N represents the number of pixels in the aperture range.
  • a seventh aspect of the present invention provides a disconnection measurement device.
  • the device includes a second processor and a second memory.
  • the second memory stores at least one instruction.
  • the instruction is loaded and executed by the second processor to implement the disconnection measurement. The operation performed in the method.
  • An eighth aspect of the present invention provides a computer-readable storage medium in which at least one instruction is stored, and the instruction is loaded and executed by a second processor to implement the operation performed in the disconnection measurement method.
  • FIG. 1 shows a flowchart of steps of a method for detecting the growth state of a crystal rod of a silicon rod in Embodiment 1 of the present invention
  • FIG. 2 shows a schematic diagram of a silicon rod preparation device in Embodiment 1 of the present invention
  • FIG. 3 shows a sample image of a silicon rod in Embodiment 1 of the present invention
  • FIG. 5 shows a flowchart of steps of a method for detecting the growth state of a silicon rod in the second embodiment of the present invention
  • FIG. 6 is a schematic diagram of a detection area of a silicon rod in Embodiment 2 of the present invention.
  • FIG. 7 shows a schematic diagram of another silicon rod detection area in the second embodiment of the present invention.
  • Embodiment 9 shows a gray value curve of another detection area in Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram showing the detection result of the crystal line of a silicon rod of the present invention.
  • FIG. 13 is a schematic diagram showing the results of another silicon rod crystal line detection according to the present invention.
  • FIG. 14 shows a structural block diagram of a device for detecting the growth state of a silicon rod in a third embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a logical structure of a device for detecting a growth state of a crystal line of a silicon rod according to an embodiment of the present invention
  • FIG. 17 is a graph showing the variation of the number of moving pixels and the growth time of a single crystal in a disconnection measurement method according to an embodiment of the present disclosure
  • FIG. 19 is a structural diagram of a disconnection measurement device provided in Embodiment 6 of the present disclosure.
  • FIG. 20 is a structural diagram of a disconnection measurement device provided in Embodiment 6 of the present disclosure.
  • FIG. 21 is a structural diagram of a disconnection measurement device provided in Embodiment 6 of the present disclosure.
  • FIG. 22 is a structural diagram of a disconnection measurement device provided in Embodiment 6 of the present disclosure.
  • Embodiment 23 is a structural diagram of a disconnection measurement device provided in Embodiment 7 of the present disclosure.
  • FIG. 1 shows a flowchart of steps of a method for detecting a growth state of a crystal rod of a silicon rod in Embodiment 1 of the present invention.
  • the method may include the following steps:
  • Step 10 Obtain a sample image of the silicon rod while the silicon rod is growing in an equal diameter.
  • FIG. 2 a schematic diagram of a silicon rod preparation device in Embodiment 1 of the present invention is shown.
  • the single crystal furnace 104 is used to melt the high-purity polycrystalline silicon material in the quartz crucible 102, and the lower end of the single crystal seed crystal is immersed in the quartz crucible At the liquid surface of the molten silicon 103, the lower end of the single crystal seed crystal is successively subjected to seeding, shoulder-shouldering, rotating shoulder, equal-diameter growth and finishing processes, and at the same time rotating the single crystal seed crystal and the crucible to complete the preparation of the silicon rod 101.
  • the silicon rod 101 rotates according to a certain period, and the image of the process of the equal-diameter growth of the silicon rod 101 can be sampled at a certain sampling frequency to obtain a sample image of the silicon rod 101.
  • the rotation period of the silicon rod is 6 seconds. During this rotation period, one frame of sample image is collected every 0.25 seconds, then 24 frames of sample image can be collected in one silicon rod rotation cycle.
  • FIG. 3 a sample image of a silicon rod in Embodiment 1 of the present invention is shown.
  • the lower end of the silicon rod 101 is immersed in the liquid surface of the molten silicon 103, and the surface of the silicon rod 101 has crystal lines 105 along the axial direction of the silicon rod.
  • the sample image during the growth of the silicon rod can be collected by an external camera device, and the sample image contains the surface state information within 180 degrees of the silicon rod. Since the process of preparing the single crystal silicon rod is During the diameter growth process, there are four crystal lines distributed at equal intervals along the axial direction on the surface of the single-crystal silicon rod. Therefore, in the sample image collected, at least one crystal line exists, or two crystal lines may exist.
  • Step 11 Set a detection area on the sample image, the detection area overlaps with the growth line of the crystal rod of the silicon rod. During the process of the equal diameter growth of the silicon rod, the crystal line of the silicon rod is along The crystal line growth line grows.
  • a detection area for detecting the growth state of the crystal line of the silicon rod is set on the collected sample image, and the size of the detection area can be set so that the detection area and the crystal line of the silicon rod.
  • the growth lines have overlapping portions, and during the process of the silicon rods being in the same diameter growth, the crystal lines of the silicon rods grow along the crystal line growth lines.
  • the crystal line growth line is a straight line on the surface of the single crystal silicon rod where the continuous crystal line is located. If the silicon rod is a polycrystalline silicon rod, the crystal line grown on the surface will break, but the crystal line is still along the crystal line The growth line grows.
  • the detection area may be a line segment perpendicular to the axial direction of the silicon rod, or may be a rectangular area perpendicular to the axial direction of the silicon rod, wherein the surface of the rectangular area is The axial direction of the silicon rod is perpendicular.
  • the detection area is set on the silicon rod image in the sample image.
  • a line segment perpendicular to the axial direction of the silicon rod 101 is set as the detection area 106, and the detection area 106 intersects with the crystal line 105 on the silicon rod 101 at Point A.
  • Step 12 Generate a gray value curve of the detection area.
  • the gray value curve of the detection area is generated according to the detection area in the sample image.
  • a gray value curve along the detection area is generated according to the gray value of each pixel in the detection area.
  • a gray value curve of a detection area in Embodiment 1 of the present invention is shown.
  • the horizontal axis of the gray value curve represents the position change of the detection area along the direction perpendicular to the axial direction of the silicon rod, corresponding to the detection area
  • the relative position of each pixel, the vertical axis is the gray value of each pixel in the corresponding detection area.
  • Step 13 Determine the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve.
  • the growth state of the crystal line of the silicon rod at this time can be determined, thereby determining whether the silicon rod is a single crystal silicon rod or a polycrystalline silicon rod at this time.
  • the gray value curve corresponding to the detection area includes the gray value of the intersection of the detection area and the crystal line of the silicon rod.
  • the crystal line is darker in color and darker in brightness than other areas on the surface of the silicon rod. Therefore, the gray value corresponding to the crystal line is lower than that corresponding to other areas on the surface of the silicon rod.
  • FIG. 4 shows The gray value curve of the detection area in the first embodiment of the present invention.
  • the gray value curve is the gray value curve corresponding to the detection area 106 in FIG. 3.
  • the rectangular wire frame B in the figure corresponds to the detection area 106 and the crystal line.
  • the gray value curve except the part included in the rectangular wire frame B, the gray value is between 165 and 180, and the gray value of the part B of the rectangular wire frame is gray.
  • the degree value is between 152 and 170, indicating that the gray value of the pixel on the silicon rod 101 in the detection area 106 is high, and the gray value of the pixel around the point A on the crystal line 105 in the detection area 106 is low.
  • the gray value is the color depth of the points in the black-and-white image. Since the color and brightness of each point of the object are different, each point on the corresponding black-and-white photo shows different degrees of gray.
  • the logarithmic relationship between white and black is divided into several levels, called "gray scale", generally ranging from 0 to 255, white is 255, black is 0.
  • the corresponding detection area intersects the crystal line according to the gray value curve of the detection area. If the gray value curve of the detection area shows a low gray value in a certain part, the detection area is explained. The intersection with the crystal line in this area means that the growth state of the crystal line on the surface of the silicon rod is continuous at this time.
  • the silicon rod is a single crystal silicon rod.
  • the gray value curve of the detection area does not fluctuate greatly, and the change of the gray value of the vertical axis is always within a small range, it means that the detection area does not intersect the crystal line, which means that the crystal line at this time
  • the growth state on the surface of the silicon rod is a disconnected state.
  • the silicon rod is a polycrystalline silicon rod.
  • the method for detecting the growth state of the crystal line of a silicon rod includes: acquiring a sample image of the silicon rod during the process of equal diameter growth of the silicon rod; setting a detection area on the sample image.
  • the detection area overlaps with the crystal line growth line of the silicon rod, and during the process of the silicon rod being in the same diameter growth, the crystal line of the silicon rod grows along the crystal line growth line; Gray value curve; according to the gray value curve, determine the growth state of the crystal line on the crystal line growth line.
  • the sample image of the silicon rod during the growth process is collected in real time, and a detection area is set on the sample image.
  • the growth state of the crystal line of the silicon rod can be determined, thereby Determine whether the silicon rod is a single crystal silicon rod.
  • This method reduces the fluctuation of the diameter of the silicon rod and the insignificant influence of the crystal line characteristics on the detection process of the crystal line, thereby improving the detection accuracy and efficiency of the crystal line, and the operation simple.
  • FIG. 5 a flowchart of steps of a method for detecting the growth state of a crystal rod of a silicon rod in Embodiment 2 of the present invention is shown.
  • the method may include the following steps:
  • Step 20 Obtain a sample image of the silicon rod while the silicon rod is growing in the same diameter.
  • step 10 For details of this step, reference may be made to step 10 above, which will not be repeated here.
  • Step 21 Perform image enhancement processing on the sample image according to a preset image enhancement algorithm.
  • the sample image of the silicon rod can be image-enhanced to enhance the characteristics of the crystal line in the sample image, expand the difference between the crystal line in the sample image and other regions, and help to improve the subsequent
  • the gray value curve corresponding to the detection area determines the accuracy of the growth state of the crystal line.
  • the image enhancement algorithm may be median filtering, maximum filtering, minimum filtering, etc. on the sample image. In the embodiments of the present invention, this is not specifically limited.
  • Step 22 Set a detection area on the sample image, the detection area overlaps with the crystal line growth line of the silicon rod.
  • the crystal line of the silicon rod is along The crystal line growth line grows.
  • a detection area for detecting the growth state of the crystal line of the silicon rod is provided on the collected sample image, the detection area overlaps with the crystal line growth line of the silicon rod, and the silicon rod During the process of equal diameter growth, the crystal line of the silicon rod grows along the crystal line growth line.
  • step 22 may specifically include:
  • a detection area is provided on the sample image, and the detection area is a line segment perpendicular to the axial direction of the silicon rod.
  • FIG. 6 a schematic diagram of a detection area of a silicon rod in Embodiment 2 of the present invention is shown.
  • the detection area 106 is a line segment perpendicular to the axial direction of the silicon rod 101, and the line segment is parallel to the silicon rod 101
  • the crystal line 105 intersects at a point C.
  • the length of the line segment may be a preset number of pixels, for example, 500 pixels.
  • step 23 is executed.
  • step 22 may specifically include:
  • Sub-step 222 setting a detection area on the sample image, the detection area being a rectangular area perpendicular to the axial direction of the silicon rod, wherein the surface of the rectangular area is in the axial direction of the silicon rod vertical.
  • FIG. 7 a schematic diagram of another detection area of a silicon rod in Embodiment 2 of the present invention is shown.
  • the detection area 106 is a rectangular area perpendicular to the axial direction of the silicon rod 101.
  • the intersection of the crystal line 105 of the rod 101 is a line segment DE.
  • the length and width of the rectangular area may be a predetermined number of pixels, for example, 500 pixels ⁇ 5 pixels.
  • the detection area is set as a rectangular area, so that in the presence of the crystal line, there are many overlapping parts of the crystal line and the rectangular area, compared with the intersection of the crystal line and the detection area as a line segment, there is only one intersection point. The situation can reduce the influence of environmental factors on the inspection results, thereby improving the accuracy of the inspection results.
  • step 24 is executed.
  • Step 23 When the detection area is a line segment perpendicular to the axial direction of the silicon rod, generate a gray value curve of the detection area.
  • a line segment perpendicular to the axial direction of the silicon rod is set as the detection area on the sample image. Starting from one end of the line segment, according to the gray value of each pixel in the line segment, a The gray value curve of the line segment.
  • a gray value curve of the detection area (line segment) 106 is generated.
  • Step 24 When the detection area is a rectangular area perpendicular to the axial direction of the silicon rod, generate a gray value curve of the detection area.
  • a rectangular area perpendicular to the axial direction of the silicon rod is set as the detection area on the sample image, and the step of generating the gray value curve of the rectangular area specifically includes:
  • Sub-step 241 starting from one end of the rectangular area, divide the rectangular area into a plurality of identical sub-areas.
  • the rectangular area is divided into a plurality of sub-areas of the same size, and the number of the sub-areas may be a fixed value set in advance.
  • the detection area (rectangular area) 106 is divided into a plurality of sub-areas 106-1, 106-2, 106 of the same size along the preset direction 107 -3, 106-4.
  • the rectangular area may be divided into 100 sub-areas of 5 pixels ⁇ 5 pixels in a direction perpendicular to the axial direction of the silicon rod.
  • Sub-step 242 calculating the average gray value of each of the sub-regions.
  • the gray value of each pixel in the sub-area is obtained, and the gray values of all the pixels included in the sub-area are averaged and calculated The average gray value of this sub-region.
  • a gray value curve corresponding to the rectangular area is generated according to the average gray value of all the sub areas.
  • the average gray value of the sub-region is taken as the gray value corresponding to the sub-region, and according to the gray value of each sub-region, the vertical gray of the rectangular region along the axial direction of the silicon rod is generated Value curve.
  • the sub-areas are 100 identical square areas of 5 pixels ⁇ 5 pixels in the direction perpendicular to the axial direction of the silicon rod, according to this
  • the average gray value of 100 sub-regions generates a gray value curve of the rectangular region along the direction perpendicular to the axial direction of the silicon rod.
  • Step 25 Determine the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve.
  • step 25 may specifically include:
  • Sub-step 251 calculating the gray value variance value of the gray value curve according to the gray value curve.
  • the gray value variance of the gray value curve is calculated based on the gray value curve of the detection area. And compare the variance value of the gray value with a preset variance value threshold.
  • gray value variance value of the gray value curve is greater than or equal to the variance value threshold, perform sub-step 252, and if the gray value variance value is less than the variance value threshold, perform sub-step 253 .
  • FIG. 8 a gray value curve of a detection area in Embodiment 2 of the present invention is shown.
  • the gray value of the gray value curve in FIG. 8 ranges from 25 to 30, and the corresponding gray value is The difference is small.
  • FIG. 9 a gray value curve of another detection area in Embodiment 2 of the present invention is shown.
  • the gray value of the gray value curve in FIG. 9 ranges from 25 to 39, and the corresponding gray value The variance value is large.
  • the gray value variance value of the gray value curve is greater than or equal to the variance value threshold, it means that there is a part with a lower gray value in the gray value curve corresponding to the detection area, that is, the sample image
  • the detection area of the X-ray has a part that intersects the crystal line of the silicon rod. Further, it means that the crystal line is detected in the detection area of the sample image at this time.
  • the variance value of the gray value may be 7.5.
  • Sub-step 253 in the case that the variance value of the gray value is less than the variance value threshold, it is determined that the growth state is a disconnected state.
  • the gray value variance value is less than the variance value threshold, it means that the gray value curve of the detection area does not fluctuate greatly, and the change of the gray value of the vertical axis is always a small Within the range of, that is, the portion where the detection area of the sample image does not intersect the crystal line, indicating that no crystal line is detected in the detection area of the sample image at this time.
  • the variance value of the gray value may be 7.5.
  • the calculation of the variance of the gray value and the comparison with the preset variance threshold can be used to determine the growth state of the crystal line of the silicon rod, and further determine whether the silicon rod is Single crystal silicon rod, the process is simple.
  • step 25 may specifically include:
  • a valley detection algorithm can be used to determine whether there is a crystal line characteristic peak on the gray value curve.
  • the valley detection algorithm may first detect the minimum gray value in the gray value curve and the average gray value of the gray value curve, and determine that the minimum gray value and the average gray value are in gray
  • the corresponding horizontal axis coordinate in the degree curve, the difference between the average gray value and the minimum gray value as the amplitude of the characteristic peak of the crystal line, the minimum gray value and the average gray value in gray The difference of the corresponding horizontal axis coordinates in the value curve is taken as the width of the characteristic peak of the crystal line.
  • the amplitude of the characteristic peak of the crystal line is greater than or equal to the preset amplitude value and the width of the characteristic peak of the crystal line is less than or equal to the preset width value, it can be determined that there is a crystal line on the gray value curve Characteristic peaks.
  • the preset amplitude value may be 10, and the preset width value may be 20 pixels. In the embodiments of the present invention, this is not specifically limited.
  • a gray value curve of another detection area in Embodiment 2 of the present invention is shown.
  • the gray value curve in FIG. 10 has a characteristic peak of a crystal line, and the part marked by a rectangular wire frame G in the figure is The characteristic peak of the crystal line indicates that there is a part with a lower gray value in the gray value curve corresponding to the detection area, that is, a part where the detection area of the sample image intersects the crystal line of the silicon rod.
  • a crystal line is detected in the detection area of the image, that is, the growth state of the crystal line on the surface of the silicon rod at this time is a continuous state.
  • the silicon rod is a single crystal silicon rod.
  • sub-step 255 when the characteristic peak of the crystal line does not exist on the gray value curve, it is determined that the growth state is a broken state.
  • a valley detection algorithm can be used to determine whether there is a crystal line characteristic peak on the gray value curve.
  • the valley detection algorithm may first detect the minimum gray value in the gray value curve and the average gray value of the gray value curve, and determine that the minimum gray value and the average gray value are in gray
  • the corresponding horizontal axis coordinate in the degree value curve corresponds to the position of the pixel point corresponding to the minimum gray value and the average gray value on the gray value curve, and the average gray value and the minimum gray value
  • the difference is taken as the amplitude of the characteristic peak of the crystal line
  • the difference of the horizontal axis coordinates of the minimum gray value and the average gray value in the gray value curve is taken as the width of the characteristic peak of the crystal line.
  • the amplitude of the characteristic peak of the crystal line is less than the preset amplitude value, or the width of the characteristic peak of the crystal line is greater than the preset width value, it can be determined that there is no crystal line characteristic peak on the gray value curve.
  • the preset amplitude value may be 10, and the preset width value may be 20 pixels. In the embodiments of the present invention, this is not specifically limited.
  • FIG. 11 there is shown a gray value curve of another detection area in Embodiment 2 of the present invention.
  • FIG. 11 there is no characteristic peak of the crystal line in the gray value curve. It means that the gray value curve of the detection area does not fluctuate greatly, and the change of the gray value of the vertical axis is always within a small range, that is, the part where the detection area of the sample image does not intersect the crystal line. No crystal line was detected in the detection area of the sample image, that is, the growth state of the crystal line on the surface of the silicon rod at this time is a broken state.
  • the silicon rod is a polycrystalline silicon rod.
  • the gray value curve of the detection area it can be determined whether the corresponding detection area intersects the crystal line. If the gray value curve of the detection area has a characteristic peak of the crystal line in a certain part, it means that the detection area and the crystal line There are intersections in this area. At this time, the crystal line is continuously grown on the surface of the silicon rod, and the growth state of the crystal line of the silicon rod is a continuous state. If there is no crystal line characteristic peak in the gray value curve of the detection area, it means that the detection area does not intersect the crystal line. At this time, the crystal line is broken on the surface of the silicon rod, and the growth state of the crystal line of the silicon rod It is disconnected.
  • the growth state of the crystal line of the silicon rod can be determined, and it is further possible to determine whether the silicon rod is a single crystal silicon rod, the process is simple , And the detection accuracy is high.
  • FIG. 12 there is shown a schematic diagram of a test result of a silicon rod crystal line of the present invention.
  • the rotation period T of the silicon rod is 6 seconds, and if the sampling frequency of the sample image is 1.5 seconds, Then, in one rotation period T, four sample images can be collected, and the gray value curve corresponding to the detection area in the four sample images can be synthesized to obtain the gray value in one rotation period T as shown in FIG.
  • FIG. 13 shows a schematic diagram of another silicon rod crystal line detection result of the present invention.
  • the rotation period T of the silicon rod is 6 seconds, and if the sample image acquisition frequency is 1.5 seconds, then In one rotation period T, four sample images can be collected, and the gray value curve corresponding to the detection area in the four sample images can be synthesized to obtain the gray value curve in one rotation period T as shown in FIG.
  • Step 26 Determine the subsequent processing method of the silicon rod according to the growth state of the crystal line of the silicon rod and the length of the silicon rod.
  • the subsequent processing method for the silicon rod during the production of the silicon rod may be determined according to the growth state of the crystal line of the silicon rod and the length of the silicon rod.
  • the preparation of single crystal silicon is continued.
  • the length of the silicon rod at this time can be combined to determine the subsequent processing method of the silicon rod.
  • the silicon rod is a polycrystalline silicon rod
  • the silicon rod is cut, and the silicon obtained by cutting Sticks can be used as related products. If it is detected that the length of the silicon rod is less than 500 mm at this time, the production is ended, and the silicon rod is subjected to melting treatment, and the obtained molten silicon can be used as a raw material for preparing a single crystal silicon rod.
  • the method for detecting the growth state of the crystal line of a silicon rod includes: acquiring a sample image of the silicon rod during the process of equal diameter growth of the silicon rod; setting a detection area on the sample image.
  • the detection area overlaps with the crystal line growth line of the silicon rod, and during the process of the silicon rod being in the same diameter growth, the crystal line of the silicon rod grows along the crystal line growth line; Gray value curve; according to the gray value curve, determine the growth state of the crystal line on the crystal line growth line.
  • the sample image of the silicon rod during the growth process is collected in real time, and a detection area is set on the sample image.
  • the growth state of the crystal line of the silicon rod can be determined, thereby Determine whether the silicon rod is a single crystal silicon rod.
  • This method reduces the fluctuation of the diameter of the silicon rod and the insignificant influence of the crystal line characteristics on the detection process of the crystal line, thereby improving the detection accuracy and efficiency of the crystal line, and the operation simple.
  • FIG. 14 shows a structural block diagram of a device for detecting the growth state of a crystal rod of a silicon rod in Embodiment 3 of the present invention, which may specifically include:
  • the sample image acquisition module 301 is used for acquiring a sample image of the silicon rod during the process of the silicon rod being in the same diameter growth.
  • the detection unit setting module 302 is used to set a detection area on the sample image, the detection area overlaps with the crystal line growth line of the silicon rod, and during the process of the equal diameter growth of the silicon rod, the silicon The crystal line of the rod grows along the crystal line growth line.
  • the detection area includes: a line segment perpendicular to the axial direction of the silicon rod, or a rectangular area perpendicular to the axial direction of the silicon rod, wherein the surface of the rectangular area and the silicon The axial direction of the rod is perpendicular.
  • the gray value curve generation module 303 is used to generate a gray value curve of the detection area.
  • the gray value curve generation module 303 includes:
  • the first generating submodule is used to generate a gray value curve corresponding to the line segment starting from one end of the line segment.
  • the gray value curve generation module 303 includes:
  • a first calculation sub-module for calculating the average gray value of each of the sub-regions
  • the second generation submodule is used to generate a gray value curve corresponding to the rectangular area according to the average gray value of all the sub areas.
  • the growth state determining module 304 is configured to determine the growth state of the crystal line of the silicon rod on the crystal line growth line according to the gray value curve.
  • the growth state determination module 304 includes:
  • a second calculation submodule configured to calculate the gray value variance value of the gray value curve according to the gray value curve
  • a first determining submodule configured to determine that the growth state is a continuous state when the gray value variance value is greater than or equal to the variance value threshold;
  • the second determining submodule is configured to determine that the growth state is a disconnected state when the gray value variance value is less than the variance value threshold.
  • the growth state determination module 304 may further include:
  • a third determining submodule configured to determine that the growth state is a continuous state when there is a crystal line characteristic peak on the gray value curve
  • the fourth determining submodule is configured to determine that the growth state is a disconnected state when the characteristic peak of the crystal line does not exist on the gray value curve.
  • the device may further include:
  • the enhancement module is configured to perform image enhancement processing on the sample image according to a preset image enhancement algorithm.
  • a device for detecting the growth state of a silicon rod's crystal line includes: acquiring a sample image of the silicon rod during the process of equal diameter growth of the silicon rod; setting a detection area on the sample image, so The detection area overlaps with the crystal line growth line of the silicon rod, and during the process of the silicon rod being in the same diameter growth, the crystal line of the silicon rod grows along the crystal line growth line; Gray value curve; according to the gray value curve, determine the growth state of the crystal line on the crystal line growth line.
  • the sample image of the silicon rod during the growth process is collected in real time, and a detection area is set on the sample image.
  • the growth state of the crystal line of the silicon rod can be determined, thereby Determine whether the silicon rod is a single crystal silicon rod.
  • This method reduces the fluctuation of the diameter of the silicon rod and the insignificant influence of the crystal line characteristics on the detection process of the crystal line, thereby improving the detection accuracy and efficiency of the crystal line, and the operation simple.
  • FIG. 15 shows a schematic diagram of a logical structure of a device for detecting a growth state of a crystal line of a silicon rod according to an embodiment of the present invention.
  • the device for detecting the growth state of the crystal line of the silicon rod provided by the embodiment of the present invention may include: an interface 401, a first processor 402, a first memory 403, and a bus 404; wherein, the bus 404 is used to Implementing connection and communication between the interface 401, the first processor 402, and the first memory 403; the first memory 403 stores an executable program, and the first processor 402 is used to execute The executable program stored in the first memory 403 is used to realize the steps of the method for detecting the growth state of the silicon rod in the first or second embodiment shown in FIG. 1 or FIG. 5, and can achieve the same or similar effects In order to avoid repetition, I will not repeat them here.
  • the present invention also provides a computer-readable storage medium that stores one or more executable programs, and the one or more executable programs can be executed by one or more first processors, In order to realize the steps of the method for detecting the growth state of the crystal line of the silicon rod in the first embodiment or the second embodiment as shown in FIG. 1 or FIG. 5, the same or similar effects can be achieved.
  • An embodiment of the present disclosure provides a disconnection measurement method. As shown in FIG. 16, the method includes:
  • Step 30 Use the optical flow method to process the current frame and the previous frame of the obtained single crystal growth image to obtain the number of moving pixels in the current frame of the image.
  • step 30 includes:
  • a CCD camera is used to obtain an image of crystal growth.
  • the angle between the optical axis of the CCD camera camera and the liquid surface of the melt in the crucible is not equal to 90°.
  • Sub-step 301 Select an image measurement area.
  • the image measurement area is selected on the image frame according to the position of the aperture.
  • the aperture is located at the solid-liquid interface between the solid silicon and the silicon melt below the single crystal silicon rod.
  • Sub-step 302 Perform data processing on each pixel in the image measurement area to obtain the velocity amplitude of each pixel.
  • m i represents the velocity amplitude of the i-th pixel in the image measurement area
  • ⁇ i represents the angle between the first direction and the second direction
  • f( ⁇ i ) Represents a functional relationship related to ⁇ i
  • u i represents the speed in the first direction
  • v i represents the speed in the second direction.
  • Obtaining the speed of the i-th pixel in the image measurement area in the first direction and the speed in the second direction includes: obtaining the image measurement area according to the position of the coordinate point of the i-th pixel in the image measurement area, the image acquisition interval time, and the second formula
  • x represents the first direction
  • y represents the second direction
  • (x i1 , y i1 ) represents the position of the coordinate point of the ith pixel in the image measurement area at the s-1 frame (ie, the previous frame)
  • (x i2 , Y i2 ) represents the position of the coordinate point of the i-th pixel in the image measurement area at the s frame (that is,
  • Sub-step 303 If the velocity amplitude of the pixel is greater than a preset threshold, determine the pixel as a moving pixel.
  • the preset threshold is obtained based on the velocity amplitude of each pixel in the image measurement area, including: the preset threshold is obtained according to the velocity amplitude of the pixels in the image measurement area, the number of pixels in the image measurement area, and the third formula.
  • the three formulas are:
  • Y represents a preset threshold
  • M g represents the velocity amplitude of the g-th pixel in the aperture range
  • g 1, 2, 3, ... k
  • N represents the number of pixels in the aperture range.
  • the preset threshold is the average value of the velocity amplitudes of all pixels in the image measurement area, and the preset threshold can also be set to other values.
  • the speed amplitude of the pixel of the i-th pixel is compared with a preset threshold, and if the speed amplitude of the pixel is greater than the preset threshold, the pixel is determined to be a moving pixel.
  • Substep 304 Count the number of moving pixels in the image measurement area.
  • Step 31 In a unit time, statistically obtain information on the number of moving pixels and the growth time of the single crystal in all image frames.
  • Step 32 Determine whether the single crystal is disconnected according to the information.
  • the duration of the interval between two adjacent protrusions in the waveform change curve is greater than the preset time, it is determined that the single crystal is broken.
  • the protrusions of the waveform curve appear periodically.
  • the duration of the interval between adjacent protrusions is set to a preset time period T, adjacent protrusions
  • the duration of the interval from the beginning refers to the end point of the previous bump to the start point of the next bump. If the duration of the interval between the adjacent protrusions is greater than the preset time period T, it is determined that the single crystal is broken in equal diameter.
  • This application selects the image measurement area according to the position of the aperture, which is helpful for filtering the darker pixels, retaining the crystal line characteristics and the moving pixels of the aperture; setting the maximum gray value in the image measurement area to no more than 200, which can ensure light
  • the effect of flow processing; the preset threshold can eliminate noise and improve the measurement judgment accuracy. It can adapt to the equal-diameter broken wire measurement when the crystal silicon rod diameter fluctuations and the crystal rod crystal line characteristics are not obvious, which can improve the measurement accuracy. Low and accurate Determine if the wire is disconnected.
  • An embodiment of the present disclosure provides a disconnection measurement method. As shown in FIG. 18, the method includes:
  • Step 40 Select the image frame.
  • a CCD camera is used to obtain an image of crystal growth.
  • the angle between the optical axis of the CCD camera camera and the liquid surface of the melt in the crucible is not equal to 90°.
  • Step 41 Set the image frame measurement area.
  • step 41 includes:
  • the image measurement area is selected on each image frame according to the position of the aperture 108. As shown in FIG. 19, the aperture 108 is located at the solid-liquid interface between the solid silicon and the silicon melt under the single crystal silicon rod 101.
  • the image frame of the Czochralski single crystal growth is acquired on the CCD camera and input into the industrial control computer through the circuit.
  • the image processing program of the industrial control computer processes the single crystal growth image frame.
  • the specific feature is identified by the feature recognition module in the image processing program. Identify the image measurement area.
  • the image measurement area is set near the aperture, which is conducive to filtering the darker pixels. To ensure the effect of the optical flow method on the image, the gray value in the image measurement area does not exceed 200.
  • Step 42 Obtain the speed of the pixels in the x direction and the speed of the y direction in the image measurement area.
  • step 42 includes:
  • the coordinate point position of the i-th pixel in the image measurement area at frame time, (x i2 , y i2 ) indicates the coordinate point position of the i-th pixel in the image measurement area at frame s
  • t represents the s frame and s-1 Frame image acquisition interval.
  • Step 43 Obtain the real-time pixel speed amplitude.
  • step 43 includes:
  • the velocity amplitude of the real-time pixels in the image measurement area is obtained; the first formula includes:
  • m i represents the velocity amplitude of the i-th pixel in the image measurement area
  • ⁇ i represents the angle between the first direction and the second direction
  • f( ⁇ i ) Represents a functional relationship related to ⁇ i
  • u i represents the speed in the first direction
  • v i represents the speed in the second direction.
  • the optical flow method is used to process the image frame in the image measurement area.
  • the coordinate point position of any point pixel A in the measurement area at the s-1th frame is (105, 105).
  • Step 44 Binary processing.
  • Binarize the amplitude of the real-time pixel speed in the measurement area including:
  • the speed amplitude of the pixels in the image measurement area is processed to obtain a preset threshold; if the speed amplitude of the pixels in the image measurement area is greater than the preset threshold, the pixel in the image measurement area is a moving pixel; the total number of moving pixels is statistically obtained.
  • Processing the velocity amplitude of the pixels in the image measurement area to obtain the preset threshold includes: obtaining the preset threshold according to the velocity amplitude of the pixels in the image measurement area, the number of pixels in the image measurement area, and the third formula, the third formula is :
  • Y represents a preset threshold
  • M g represents the velocity amplitude of the g-th pixel in the aperture range
  • g 1, 2, 3, ... k
  • N represents the number of pixels in the aperture range.
  • Step 45 Determine whether the equal-diameter disconnection occurs.
  • step 45 includes:
  • the present application retains the motion pixels of the crystal line characteristics by setting the threshold value of the real-time pixel speed. According to the change of the total number of moving pixels with the crystal growth time, it is judged whether or not the equal diameter is broken.
  • the protrusions 109 in the waveform curve of the total number of moving pixels with time appear alternately and periodically, and there is a gap 110 between adjacent protrusions 109.
  • 109 shows protrusions, protrusions From 110 to 109 is the interval.
  • the interval 110 is a platform, indicating that no defined moving pixels appear in the time range.
  • the protrusions 109 appear periodically; as shown in the lower part of FIG. 17, the interval 110 between two adjacent protrusions 109 lasts longer than the preset time , The single-diameter equal-diameter disconnection is determined.
  • the numerical values in FIG. 17 do not limit the time period T and the total number of moving pixels in this application, but are examples only.
  • the interval duration is 2.5s, which is greater than the time period T, and when there is no protrusion at all, it can be judged that the equal diameter is broken.
  • This application selects the image measurement area according to the position of the aperture, which is conducive to filtering the darker pixels, retaining the crystal line characteristics and the moving pixels of the aperture; setting the maximum gray value in the image measurement area to 200, which can ensure the optical flow method
  • the effect of processing; the noise can be eliminated through the preset threshold, and the accuracy of measurement judgment can be improved. It can adapt to the measurement of equal-diameter broken wire when the diameter of the crystal silicon rod is fluctuated and the characteristics of the crystal rod crystal line are not obvious. Disconnected.
  • FIG. 20 Another embodiment of the present disclosure provides a disconnection measurement device, as shown in FIG. 20, including:
  • the image processing module 501 is used to process the current frame and the previous frame of the acquired single crystal growth image to obtain the number of moving pixels in the current frame of the image;
  • the statistics module 502 is used to calculate the information of the number of moving pixels and the growth time of single crystal in the frame of all images in a unit time;
  • the identification module 503 is used to determine whether the single crystal is disconnected according to the information.
  • the image processing module 501 includes:
  • the data processing submodule 5012 is used to perform data processing on each pixel in the image measurement area to obtain the velocity amplitude of each pixel;
  • the identification submodule 5013 is used to determine the pixel as a moving pixel if the velocity amplitude of the pixel is greater than a preset threshold;
  • the statistics submodule 5014 is used to count the number of moving pixels in the image measurement area.
  • the selection sub-module is used to select the image measurement area on the image frame according to the position of the aperture.
  • the data processing submodule 5012 includes:
  • the image acquisition unit 50121 is used to acquire the speed of the i-th pixel in the image measurement area in the first direction and the speed in the second direction;
  • the data processing subunit 50122 is used to obtain the velocity amplitude of the ith pixel in the image measurement area according to the speed in the first direction, the speed in the second direction, and the first formula; the first formula includes:
  • m i represents the velocity amplitude of the i-th pixel in the image measurement area
  • ⁇ i represents the angle between the first direction and the second direction
  • f( ⁇ i ) Represents a functional relationship related to ⁇ i
  • u i represents the speed in the first direction
  • v i represents the speed in the second direction.
  • the image acquisition unit 50121 is used to obtain the velocity and the second speed of the pixel in the image measurement area in the first direction according to the position of the coordinate point of the i-th pixel in the image measurement area, the image acquisition interval time, and the second formula
  • x represents the first direction
  • y represents the second direction
  • (x i1 , y i1 ) represents the position of the coordinate point of the ith pixel in the image measurement area at frame s-1
  • (x i2 , y i2 ) represents the The position of the coordinate point of the i-th pixel in the image measurement area at the s frame
  • t represents the interval of image acquisition between the s frame and the s-1 frame.
  • the determination submodule 5023 is used to obtain a preset threshold according to the velocity amplitude of all pixels in the image measurement area, the number of pixels in the image measurement area, and a third formula.
  • the third formula is:
  • Y represents a preset threshold
  • M g represents the velocity amplitude of the g-th pixel in the aperture range
  • g 1, 2, 3, ... k
  • N represents the number of pixels in the aperture range.
  • This application selects the image measurement area according to the position of the aperture, which is helpful for filtering the darker pixels, retaining the crystal line characteristics and the moving pixels of the aperture; setting the maximum gray value in the image measurement area to no more than 200, which can ensure light
  • the effect of flow processing; the preset threshold can eliminate noise and improve the measurement judgment accuracy. It can adapt to the equal-diameter broken wire measurement when the crystal silicon rod diameter fluctuations and the crystal rod crystal line characteristics are not obvious, which can improve the measurement accuracy. Low and accurate Determine if the wire is disconnected.
  • An embodiment of the present disclosure also provides a device for measuring disconnection.
  • the device includes a receiver 601, a transmitter 602, a second processor 603, and a second memory 604.
  • the second memory 604 is connected to the second processor 603 respectively.
  • the second memory 604 stores at least one instruction.
  • the instruction is loaded and executed by the second processor 603 to realize the embodiment shown in FIG. 16 or FIG.
  • the steps of the disconnection measurement method in Example 5 can achieve the same or similar effects. In order to avoid repetition, they are not repeated here.
  • Embodiments of the present disclosure also provide a computer-readable storage medium.
  • the non-transitory computer-readable storage medium may be a read-only memory (English: Read Only Memory, ROM), a random access memory (English: Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • At least one computer instruction is stored in the storage medium, and the instruction is loaded and executed by the second processor to implement the steps of the disconnection measurement method in FIG. 16 or FIG. 18, Embodiment 4 or Embodiment 5, and the same can be achieved Or similar effects, in order to avoid repetition, they are not repeated here.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some or all components in a computing processing device according to an embodiment of the present invention.
  • the present invention may also be implemented as a device or device program (eg, computer program and computer program product) for performing part or all of the method described herein.
  • Such a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 23 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a second processor 603 and a computer program product or computer readable medium in the form of a second memory 604.
  • the second memory 604 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the second memory 604 has a storage space for program code for performing any of the method steps described above.
  • the storage space for the program code may include various program codes for implementing the various steps in the above method, respectively. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is usually the aforementioned portable or fixed storage unit.
  • the storage unit may have storage sections, storage spaces, and the like arranged similarly to the second memory 604 in the computing processing device of FIG. 23.
  • the program code may be compressed in an appropriate form, for example.
  • the storage unit includes computer readable code, that is, code that can be read by, for example, a processor such as these codes, when executed by a computing processing device, causes the computing processing device to perform various steps in the method described above .
  • any reference signs between parentheses should not be constructed as limitations on the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “one” before an element does not exclude the presence of multiple such elements.
  • the invention can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明实提供了一种硅棒的晶线生长状态检测方法、装置及设备,涉及单晶硅技术领域,包括:在硅棒处于等径生长的过程中,获取硅棒的样本图像;在样本图像上设置检测区域,检测区域与所述硅棒的晶线生长线重叠;生成检测区域的灰度值曲线;根据检测区域的灰度值曲线,确定晶线生长线上,硅棒的晶线的生长状态。本发明中,通过实时采集硅棒在生长过程中的样本图像,并在样本图像上设置检测区域,根据所述检测区域的灰度值曲线,就可以确定硅棒的晶线的生长状态,从而判断硅棒是否是单晶硅棒,采用该方法降低了硅棒直径大小的波动及晶线特征不明显对晶线的检测过程的影响,从而提高了晶线的检测精度和检测效率,且操作简单。

Description

一种硅棒的晶线生长状态检测方法、装置及设备
本申请要求在2019年08月13日提交中国专利局、申请号为201910745478.X、发明名称为“一种硅棒的晶线生长状态检测方法、装置及设备”以及2018年11月26日提交中国专利局、申请号为201811417468.5、发明名称为“一种断线测量方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及单晶硅技术领域,特别是涉及一种硅棒的晶线生长状态检测方法、装置及设备。
背景技术
直拉法制备单晶硅的过程中,单晶硅棒的表面沿轴向的方向上存在等间距分布的4条晶线,若单晶硅棒中产生位错或热应力,则会导致晶体由单晶生长转换为多晶生长,单晶硅棒表面的晶线断线,因此,可以以硅棒上是否存在连续的4条晶线来判断该晶棒是单晶硅还是多晶硅。
现有的自动检测晶线的方法,是对正在生长的硅棒进行实时拍摄,并确定晶线的特征像素值。具体为:对拍摄得到的图像逐行进行扫描,在某一行扫描到晶线特征像素值时,根据晶线特征像素值,计算硅棒对应的晶线平面高度X,若晶线平面高度X等于0.5mm,则表明晶线未断线,此时正在生长的硅棒为单晶硅,若晶线平面高度X等于0mm,则表明晶线断线,此时正在生长的硅棒为多晶硅。
但是,在目前的方案中,在实际生长过程中,单晶硅棒的直径大小会发生波动,且单晶硅棒表面的晶线特征不明显,导致难以准确的确定晶线特征像素值和晶线平面高度X,从而使得检测晶线的过程精度较低。
发明内容
本发明提供一种硅棒的晶线生长状态检测方法、装置及设备,旨在提升 硅棒的晶线检测精度并降低操作复杂度。
第一方面,本发明实施例提供了一种硅棒的晶线生长状态检测方法,所述方法包括:
在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;
在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;
生成所述检测区域的灰度值曲线;
根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
可选的,所述检测区域包括:与所述硅棒的轴向方向垂直的线段,或与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,所述生成所述检测区域的灰度值曲线的步骤,包括:
从所述线段的一端开始,生成所述线段对应的灰度值曲线。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,所述生成所述检测区域的灰度值曲线的步骤,包括:
从所述矩形区域的一端开始,将所述矩形区域划分为多个相同的子区域;
计算每一个所述子区域的平均灰度值;
根据所有所述子区域的平均灰度值,生成所述矩形区域对应的灰度值曲线。
可选的,所述根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态的步骤,包括:
根据所述灰度值曲线,计算所述灰度值曲线的灰度值方差值;
在所述灰度值方差值大于或等于方差值阈值的情况下,确定所述生长状态为连续状态;
在所述灰度值方差值小于所述方差值阈值的情况下,确定所述生长状态 为断线状态。
可选的,所述根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态的步骤,包括:
在所述灰度值曲线上存在晶线特征峰的情况下,确定所述生长状态为连续状态;
在所述灰度值曲线上不存在所述晶线特征峰的情况下,确定所述生长状态为断线状态。
可选的,在所述获取所述硅棒的样本图像之后,所述方法还包括:
按照预设的图像增强算法,对所述样本图像进行图像增强处理。
第二方面,本发明实施例提供了一种硅棒的晶线生长状态检测装置,所述装置包括:
样本图像获取模块,用于在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;
检测单元设置模块,用于在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;
灰度值曲线生成模块,用于生成所述检测区域的灰度值曲线;
生长状态确定模块,用于根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
可选的,所述检测区域包括:与所述硅棒的轴向方向垂直的线段,或与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,所述灰度值曲线生成模块,包括:
第一生成子模块,用于从所述线段的一端开始,生成所述线段对应的灰度值曲线。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,所述灰度值曲线生成模块,包括:
划分子模块,用于从所述矩形区域的一端开始,将所述矩形区域划分为 多个相同的子区域;
第一计算子模块,用于计算每一个所述子区域的平均灰度值;
第二生成子模块,用于根据所有所述子区域的平均灰度值,生成所述矩形区域对应的灰度值曲线。
可选的,所述生长状态确定模块,包括:
第二计算子模块,用于根据所述灰度值曲线,计算所述灰度值曲线的灰度值方差值;
第一确定子模块,用于在所述灰度值方差值大于或等于方差值阈值的情况下,确定所述生长状态为连续状态;
第二确定子模块,用于在所述灰度值方差值小于所述方差值阈值的情况下,确定所述生长状态为断线状态。
可选的,所述生长状态确定模块,还可以包括:
第三确定子模块,用于在所述灰度值曲线上存在晶线特征峰的情况下,确定所述生长状态为连续状态;
第四确定子模块,用于在所述灰度值曲线上不存在所述晶线特征峰的情况下,确定所述生长状态为断线状态。
可选的,所述装置还包括:
增强模块,用于按照预设的图像增强算法,对所述样本图像进行图像增强处理。
第三方面,本发明实施例提供了一种硅棒的晶线生长状态检测设备,所述设备包括:接口,总线,第一存储器与第一处理器,所述接口、第一存储器与第一处理器通过所述总线相连接,所述第一存储器用于存储可执行程序,所述第一处理器被配置为运行所述可执行程序实现所述硅棒的晶线生长状态检测方法的步骤。
本发明第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质上存储可执行程序,所述可执行程序被第一处理器运行实现所述硅棒的晶线生长状态检测方法的步骤。
本发明实施例提供的一种硅棒的晶线生长状态检测方法,包括:在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;在所述样本图像上设置 检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;生成所述检测区域的灰度值曲线;根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。本申请中,通过实时采集硅棒在生长过程中的样本图像,并在样本图像上设置检测区域,根据所述检测区域的灰度值曲线,就可以确定硅棒的晶线的生长状态,降低了硅棒直径大小的波动及晶线特征不明显对晶线的检测过程的影响,从而提高了晶线的检测精度和检测效率,且操作简单。
本发明第五方面提供了一种断线测量方法,该方法包括:
对获取的单晶生长图像的当前帧与前一帧进行处理,得到图像当前帧中运动像素的数量;在单位时间内,统计得到所有图像的帧中运动像素的数量和单晶生长时间的信息;根据信息确定单晶是否断线。
该断线测量方法中,由于硅棒在轴线方向具有特征明显的晶线,晶线在硅棒圆周方向均匀分布,所以利用图像帧上的运动像素判断单晶是否等径断线。
与根据晶线平面高度x数据特征差异判断是否断线的方法相比,本申请的断线测量方法能够适应晶体硅棒直径波动、晶棒晶线特征不明显情况下的等径断线测量,能提高测量精度,准确判断是否断线。
在一个实施例中,对每个图像帧进行处理,得到每个图像帧中运动像素的数量包括:选取图像测量区域;对图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值;若像素的速度幅值大于预设阈值,将像素确定为运动像素;统计图像测量区域内运动像素的数量。
光流法:即利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间像素运动信息的一种方法。
本申请的具体的光流法处理具体为:在图像的当前帧上选取一个像素,确定该像素的坐标点位置,在图像的前一帧上找到该像素,对比该像素的坐标点位置在当前帧上是否发生变化,若坐标点位置发生变化,该变化用速度幅值表示,将该像素的速度幅值与预设阈值进行比较,若该像素的速度幅值 大于预设阈值则确定该像素为运动像素。然后将这些运动像素进行统计得出总数。
本申请通过预设阈值能消除噪音,提高测量判断精度,不受晶体直径大小波动的影响;在晶棒晶线特征不明显时,仍可识别出晶线特征的运动像素,进行分析判断。
在一个实施例中,选取图像测量区域包括:根据光圈的位置在图像帧上选取图像测量区域。光圈位于单晶硅棒下方固体硅与硅熔体的固液界面处。
每个图像帧上都会存在光圈,本申请根据光圈的位置选取图像测量区域,有利于将较暗的像素点过滤。
在一个实施例中,选取图像测量区域包括:根据灰度值在每个所述图像帧上选取图像测量区域,最大所述灰度值为200。
选取图像测量区域内也可以根据光圈的位置和灰度值,其灰度值不能超过200。
将图像测量区域内的最大灰度值设置为200,能保证光流法处理的效果。
在一个实施例中,对图像测量区域进行数据处理,得到图像测量区域内像素的速度及其对应的幅值包括:
获取图像测量区域内第i个像素在第一方向的速度和第二方向的速度;
根据第一方向的速度、第二方向的速度及第一公式,得到图像测量区域内图像任意点的速度幅值;第一公式包括:
Figure PCTCN2019117204-appb-000001
其中,m i表示图像测量区域内像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式,u i表示第一方向的速度,v i表示第二方向的速度。
在一个实施例中,获取图像测量区域内图像的第i个像素在第一方向的 速度和第二方向的速度包括:根据图像测量区域内第i个像素的坐标点位置、图像采集间隔时间及第二公式得到图像测量区域内像素在第一方向的速度和第二方向的速度,第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;
其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
在一个实施例中,预设阈值为根据图像测量区域内每个像素的速度幅值得到的,包括:
根据图像测量区域内所有像素的速度幅值、图像测量区域内像素的个数及第三公式得到预设阈值,第三公式为:
Figure PCTCN2019117204-appb-000002
其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
预设阈值也就是图像测量区域内的所有像素速度幅值的平均值,预设阈值也可以设定为其他值。
本申请通过预设阈值能消除噪音,提高测量判断精度,不受晶体直径大小波动的影响;在晶棒晶线特征不明显时,仍可识别出晶线特征的运动像素,进行分析判断。并且选取图像测量区域内像素的幅值可以过滤掉较暗的像素,实际应用中即可过滤晶棒的运动像素,保留晶线特征和光圈的运动像素。
本发明第六方面提供了一种断线测量装置,包括:
图像处理模块,用于对获取的单晶生长图像的当前帧与前一帧进行处理,得到图像当前帧中运动像素的数量;
统计模块,用于在单位时间内,统计得到所有图像的帧中运动像素的数量和单晶生长时间的信息;
认定模块,用于根据信息确定单晶是否断线。
在另一个实施例中,图像处理模块包括:
选取子模块,用于选取图像测量区域;
数据处理子模块,用于对图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值;
认定子模块,用于当像素的速度幅值大于预设阈值时,将像素确定为运动像素;
统计子模块,用于统计运动像素的数量。
选取子模块用于根据光圈的位置在图像帧上选取图像测量区域。
数据处理子模块包括:
图像获取单元,用于获取图像测量区域内第i个像素在第一方向的速度和第二方向的速度;
数据处理子单元,用于根据第一方向的速度、第二方向的速度及第一公式,得到图像测量区域内第i个像素的速度幅值;第一公式包括:
Figure PCTCN2019117204-appb-000003
其中,i=1,2,3,…n;m i表示图像测量区域内第i个像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式,u i表示第一方向的速度,v i表示第二方向的速度。
图像获取单元用于根据图像测量区域内第i个像素的坐标点位置、图像采集间隔时间及第二公式得到图像测量区域内像素在第一方向的速度和第二方向的速度,第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;
其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
认定子模块用于根据图像测量区域内所有像素的速度幅值、图像测量区 域内像素的个数及第三公式得到预设阈值,第三公式为:
Figure PCTCN2019117204-appb-000004
其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
本发明第七方面提供了一种断线测量的设备,设备包括第二处理器和第二存储器,第二存储器中存储有至少一条指令,指令由第二处理器加载并执行以实现断线测量方法中所执行的操作。
本发明第八方面提供了了一种计算机可读存储介质,存储介质中存储有至少一条指令,指令由第二处理器加载并执行以实现断线测量方法中所执行的操作。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例一中的一种硅棒的晶线生长状态检测方法的步骤流程图;
图2示出了本发明实施例一中的一种硅棒制备装置的示意图;
图3示出了本发明实施例一中的一种硅棒的样本图像;
图4示出了本发明实施例一中的一种检测区域的灰度值曲线;
图5示出了本发明实施例二中的一种硅棒的晶线生长状态检测方法的步骤流程图;
图6示出了本发明实施例二中的一种硅棒的检测区域的示意图;
图7示出了本发明实施例二中的另一种硅棒的检测区域的示意图;
图8示出了本发明实施例二中的一种检测区域的灰度值曲线;
图9示出了本发明实施例二中的另一种检测区域的灰度值曲线;
图10示出了本发明实施例二中的另一种检测区域的灰度值曲线;
图11示出了本发明实施例二中的另一种检测区域的灰度值曲线;
图12示出了本发明的一种硅棒的晶线检测结果的示意图;
图13示出了本发明的另一种硅棒的晶线检测结果的示意图;
图14示出了本发明实施例三中的一种硅棒的晶线生长状态检测装置的结构框图;
图15示出了本发明实施例的一种硅棒的晶线生长状态检测设备的逻辑结构示意图;
图16是本公开实施例四提供的一种断线测量方法的流程图;
图17是本公开实施例提供的一种断线测量方法的运动像素的数量与单晶生长时间的变化曲线图;
图18是本公开实施例五提供的一种断线测量方法的流程图;
图19是本公开实施例六提供的一种断线测量装置的结构图;
图20是本公开实施例六提供的一种断线测量装置的结构图;
图21是本公开实施例六提供的一种断线测量装置的结构图;
图22是本公开实施例六提供的一种断线测量装置的结构图;
图23是本公开实施例七提供的一种断线测量装置的结构图。
附图标记说明:101-硅棒、102-坩埚、103-熔融硅、104-单晶炉、105-晶线、106-检测区域、107-预设方向、401-接口、402-第一处理器、403-第一存储器、404-总线、108-光圈、109-凸起、110-间隔、501-图像处理模块、502-统计模块、503-认定模块、5011-选取子模块、5012-数据处理子模块、5013-认定子模块、5014-统计子模块、50121-图像获取单元、50122-数据处理子单元、601-接收器、602-发射器、603-第二处理器、604-第二存储器。
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
参照图1,图1示出了本发明实施例一中的一种硅棒的晶线生长状态检测方法的步骤流程图。该方法可以包括如下步骤:
步骤10,在硅棒处于等径生长的过程中,获取所述硅棒的样本图像。
参照图2,示出了本发明实施例一中的一种硅棒制备装置的示意图。
在本发明实施例中,采用直拉法制备单晶硅时,使用单晶炉104,将高纯度的多晶硅硅料融化在石英坩埚102中,并将单晶籽晶的下端浸入到石英坩埚中的熔融硅103液面,单晶籽晶下端依次进行引晶、放肩、转肩、等径生长和收尾工艺,同时配合转动单晶籽晶、坩埚,从而完成硅棒101的制备。
具体的,在处于等径生长的过程中,硅棒101按照一定的周期进行转动,可以以一定的采样频率对硅棒101的等径生长过程进行图像采样,获取硅棒101的样本图像。
例如,硅棒的转动周期为6秒,在该转动周期内,每间隔0.25秒采集一帧样本图像,则在一个硅棒转动周期内可以采集24帧样本图像。
参照图3,示出了本发明实施例一中的一种硅棒的样本图像。该样本图像中,硅棒101的下端浸入到熔融硅103液面中,硅棒101的表面上具有沿硅棒轴向方向的晶线105。
在本发明实施例中,可以通过外部摄像装置采集硅棒生长过程中的样本图像,所述样本图像包含硅棒180度范围内的表面状态信息,由于制备单晶硅棒的过程中,处于等径生长过程的单晶硅棒表面沿轴向的方向上存在等间距分布的4条晶线,因此,在采集到的样本图像中,至少存在一条沿晶线,也可以存在两条晶线。
步骤11,在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长。
在该步骤中,在采集到的样本图像上,设置用于检测硅棒的晶线的生长状态的检测区域,可以通过设置检测区域的大小,使得所述检测区域与所述硅棒的晶线生长线具有重叠的部分,在所述硅棒处于等径生长的过程中,所 述硅棒的晶线沿所述晶线生长线生长。
具体的,所述晶线生长线为单晶硅棒表面上连续晶线所在的直线,若硅棒为多晶硅棒,其表面生长的晶线会出现断裂,但所述晶线依旧是沿晶线生长线生长。
具体的,所述检测区域可以是与所述硅棒的轴向方向垂直的线段,也可以是与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
进一步的,所述检测区域设置在样本图像中的硅棒图像上。
参见图3,在样本图像中的硅棒101图像上,设置与所述硅棒101的轴向方向垂直的线段作为检测区域106,所述检测区域106与硅棒101上的晶线105相交于点A。
步骤12,生成所述检测区域的灰度值曲线。
在该步骤中,根据样本图像中的检测区域,生成所述检测区域的灰度值曲线。
具体的,在样本图像上设置检测区域之后,从检测区域的一端开始,根据检测区域中每个像素点的灰度值,生成沿检测区域的灰度值曲线。
参见图4,示出了本发明实施例一中的一种检测区域的灰度值曲线,该灰度值曲线横轴表示检测区域沿硅棒的轴向垂直的方向的位置变化,对应检测区域每个像素点的相对位置,纵轴为对应检测区域每个像素点的灰度值。
步骤13,根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
在该步骤中,根据硅棒的样本图像中检测区域对应的灰度值曲线,可以确定此时硅棒的晶线的生长状态,从而判断出此时硅棒是单晶硅棒还是多晶硅棒。
具体的,若样本图像的检测区域与硅棒的晶线有相交的部分,则说明检测区域对应的灰度值曲线中包含检测区域与硅棒晶线的相交部分的灰度值。晶线相对硅棒表面其他区域的颜色较深、亮度较暗,因此,晶线对应的灰度值相对于硅棒表面其他区域对应的灰度值较低。
在本发明实施例中,若样本图像的检测区域与硅棒的晶线有相交的部 分,则在检测区域对应的灰度值曲线中存在灰度值较低的部分,参见图4,示出了本发明实施例一中的一种检测区域的灰度值曲线,该灰度值曲线为图3中检测区域106对应的灰度值曲线,图中矩形线框B对应检测区域106与晶线105相交的A点周围的像素点的灰度值曲线,该灰度值曲线除矩形线框B中包含的部分外,灰度值均在165~180之间,而矩形线框B部分的灰度值在152~170之间,说明检测区域106中硅棒101上的像素点的灰度值较高,检测区域106中晶线105上的A点周围的像素点的灰度值较低。
所述灰度值,是黑白图像中点的颜色深度,由于物体各点的颜色及亮度不同,对应的黑白照片上各点呈现不同程度的灰度。把白色与黑色之间按对数关系分成若干级,称为“灰度等级”,范围一般从0到255,白色为255,黑色为0。
因此,可以根据检测区域的灰度值曲线,判断对应的检测区域与晶线是否有相交的部分,若检测区域的灰度值曲线在某一部分出现灰度值较低的情况,则说明检测区域与晶线在该区域有相交的部分,即说明此时该晶线在硅棒表面的生长状态是连续状态。
进一步的,若在一个硅棒转动周期内,检测到采集的每一张样本图像上的晶线的生长状态均为连续状态,则可以确定在该硅棒转动周期内,硅棒表面存在4条连续生长的晶线,此时硅棒为单晶硅棒。
若检测区域的灰度值曲线没有较大的波动,其纵轴灰度值的变化始终在一个较小的范围内,则说明检测区域与晶线没有相交的部分,即说明此时该晶线在硅棒表面的生长状态是断线状态。
进一步的,若在一个硅棒转动周期内,检测到采集的样本图像中,只要有一张样本图像上的晶线的生长状态均为断线状态,则可以确定在该硅棒转动周期内,硅棒表面不存在4条连续生长的晶线,此时硅棒为多晶硅棒。
在本发明实施例中,硅棒的晶线生长状态检测方法,包括:在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;生成所述检测区域的灰度值曲线;根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶 线的生长状态。本申请中,通过实时采集硅棒在生长过程中的样本图像,并在样本图像上设置检测区域,根据所述检测区域的灰度值曲线,就可以确定硅棒的晶线的生长状态,从而判断硅棒是否是单晶硅棒,采用该方法降低了硅棒直径大小的波动及晶线特征不明显对晶线的检测过程的影响,从而提高了晶线的检测精度和检测效率,且操作简单。
实施例二
参见图5,示出了本发明实施例二中的一种硅棒的晶线生长状态检测方法的步骤流程图,该方法可以包括如下步骤:
步骤20,在硅棒处于等径生长的过程中,获取所述硅棒的样本图像。
该步骤具体可以参照上述步骤10,此处不再赘述。
步骤21,按照预设的图像增强算法,对所述样本图像进行图像增强处理。
在该步骤中,可以对所述硅棒的样本图像进行图像增强,以增强样本图像中晶线的特征,扩大样本图像中晶线与其他区域之间的差别,利于提升后续根据样本图像中的检测区域对应的灰度值曲线,确定晶线的生长状态的准确性。
所述图像增强算法可以是对样本图像进行中值滤波、最大值滤波、最小值滤波等。在本发明实施例中,对此不作具体限定。
步骤22,在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长。
在该步骤中,在采集到的样本图像上,设置用于检测硅棒的晶线的生长状态的检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长。
可选的,在本发明实施例的一种实现方式中,步骤22具体可以包括:
子步骤221,在所述样本图像上设置检测区域,所述检测区域为与所述硅棒的轴向方向垂直的线段。
参见图6,示出了本发明实施例二中的一种硅棒的检测区域的示意图,该检测区域106为一条与所述硅棒101的轴向方向垂直的线段,该线段与硅 棒101的晶线105相交于一点C。
可选的,所述线段的长度可以是预先设定的一个像素数,例如500像素。
在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,执行步骤23。
可选的,本发明实施例的另一种实现方式中,步骤22具体可以包括:
子步骤222,在所述样本图像上设置检测区域,所述检测区域为与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
参见图7,示出了本发明实施例二中的另一种硅棒的检测区域的示意图,该检测区域106为与所述硅棒101的轴向方向垂直的矩形区域,该矩形区域与硅棒101的晶线105相交部分为线段DE。
可选的,所述矩形区域的长度和宽度可以是预先设定的一个像素数,例如500像素×5像素。
在本发明实施例中,设置检测区域为矩形区域,使得在晶线存在的情况下,晶线与矩形区域的重合部分较多,相比晶线与检测区域为线段的重合部分只有一个相交点的情况,可以降低检查结果受环境因素的影响,从而提高检测结果的准确度。
在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,执行步骤24。
步骤23,在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,生成所述检测区域的灰度值曲线。
在该步骤中,在样本图像上设置与所述硅棒的轴向方向垂直的线段作为检测区域,从所述线段的一端开始,根据所述线段中每个像素点的灰度值,生成沿所述线段的灰度值曲线。
参见图6,从检测区域(线段)106的左端开始,沿预设方向107,生成所述检测区域(线段)106的灰度值曲线。
步骤24,在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,生成所述检测区域的灰度值曲线。
在该步骤中,在样本图像上设置与所述硅棒的轴向方向垂直的矩形区域 作为检测区域,生成所述矩形区域的灰度值曲线的步骤,具体包括:
子步骤241,从所述矩形区域的一端开始,将所述矩形区域划分为多个相同的子区域。
在该步骤中,从所述矩形区域的一端开始,将所述矩形区域划分为多个大小相同的子区域,所述子区域的数量可以是预先设定的一个固定数值。
参见图7,从检测区域(矩形区域)106的左端开始,沿预设方向107,将所述检测区域(矩形区域)106划分为多个大小相同的子区域106-1、106-2、106-3、106-4。
例如,若所述矩形区域的大小为500像素×5像素,则可以将所述矩形区域沿与所述硅棒的轴向垂直的方向划分为5像素×5像素的100个子区域。
子步骤242,计算每一个所述子区域的平均灰度值。
在该步骤中,将矩形区域划分成多个相同的子区域之后,获取子区域中每一个像素点的灰度值,对该子区域包含的所有像素点的灰度值求平均值,计算得到该子区域的平均灰度值。
子步骤243,根据所有所述子区域的平均灰度值,生成所述矩形区域对应的灰度值曲线。
在该步骤中,将子区域的平均灰度值作为该子区域对应的灰度值,根据每一个子区域的灰度值,生成所述矩形区域沿硅棒的轴向的垂直方向的灰度值曲线。
例如,若所述矩形区域的大小为500像素×5像素,所述子区域为100个相同的,与所述硅棒的轴向垂直的方向的5像素×5像素的正方形区域,则根据这100个子区域的平均灰度值,生成所述矩形区域沿硅棒的轴向垂直的方向的灰度值曲线。
步骤25,根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
可选的,在本发明实施例的一种实现方式中,步骤25具体可以包括:
子步骤251,根据所述灰度值曲线,计算所述灰度值曲线的灰度值方差值。
在该步骤中,根据所述检测区域的灰度值曲线,计算该灰度值曲线的灰 度值方差值。并将所述灰度值方差值与预设的方差值阈值进行比较。
若所述灰度值曲线的灰度值方差值大于或等于方差值阈值,则执行子步骤252,若所述灰度值方差值小于所述方差值阈值,则执行子步骤253。
参见图8,示出了本发明实施例二中的一种检测区域的灰度值曲线,图8中灰度值曲线的灰度值的范围在25~30之间,对应的灰度值方差值较小。
参见图9,示出了本发明实施例二中的另一种检测区域的灰度值曲线,图9中灰度值曲线的灰度值的范围在25~39之间,对应的灰度值方差值较大。
子步骤252,在所述灰度值方差值大于或等于方差值阈值的情况下,确定所述生长状态为连续状态。
在该步骤中,若所述灰度值曲线的灰度值方差值大于或等于方差值阈值,则说明检测区域对应的灰度值曲线中存在灰度值较低的部分,即样本图像的检测区域与硅棒的晶线有相交的部分,进一步的,说明此时在样本图像的检测区域中检测到了晶线。
优选的,所述灰度值方差值可以为7.5。
子步骤253,在所述灰度值方差值小于所述方差值阈值的情况下,确定所述生长状态为断线状态。
在该步骤中,若所述灰度值方差值小于所述方差值阈值,则说明检测区域的灰度值曲线没有较大的波动,其纵轴灰度值的变化始终在一个较小的范围内,即样本图像的检测区域与晶线没有相交的部分,说明此时在样本图像的检测区域中没有检测到晶线。
优选的,所述灰度值方差值可以为7.5。
在本发明实施例中,采用简单的灰度值方差值的计算,以及与预设的方差值阈值进行比较,就可以确定硅棒的晶线的生长状态,进一步可以判断硅棒是否是单晶硅棒,过程简单。
可选的,本发明实施例的另一种实现方式中,步骤25具体可以包括:
子步骤254,在所述灰度值曲线上存在晶线特征峰的情况下,确定所述生长状态为连续状态。
在该步骤中,可以采用波谷检测算法,判断所述灰度值曲线上是否存在晶线特征峰。
可选的,所述波谷检测算法可以是先检测出灰度值曲线中的最小灰度值以及灰度值曲线的平均灰度值,并确定所述最小灰度值和平均灰度值在灰度值曲线中对应的横轴坐标,将所述平均灰度值和最小灰度值的差值作为该晶线特征峰的幅值,将所述最小灰度值和平均灰度值在灰度值曲线中对应的横轴坐标的差值作为该晶线特征峰的宽度。
进一步的,可以根据所述晶线特征峰的幅值和宽度,确定所述灰度值曲线上是否存在晶线特征峰。
当所述晶线特征峰的幅值大于或等于预设幅值,以及所述晶线特征峰的宽度小于或等于预设宽度值的情况下,可以判断所述灰度值曲线上存在晶线特征峰。
优选的,所述预设幅值可以是10,所述预设宽度值可以是20像素。在本发明实施例中,对此不作具体限定。
参见图10,示出了本发明实施例二中的另一种检测区域的灰度值曲线,图10中灰度值曲线存在晶线特征峰,图中矩形线框G标识出的部分为所述晶线特征峰,说明检测区域对应的灰度值曲线中存在灰度值较低的部分,即样本图像的检测区域与硅棒的晶线有相交的部分,进一步的,说明此时在样本图像的检测区域中检测到了晶线,即此时该晶线在硅棒表面的生长状态是连续状态。
进一步的,若在一个硅棒转动周期内,检测到采集的每一张样本图像上的晶线的生长状态均为连续状态,则可以确定在该硅棒转动周期内,硅棒表面存在4条连续生长的晶线,此时硅棒为单晶硅棒。
子步骤255,在所述灰度值曲线上不存在所述晶线特征峰的情况下,确定所述生长状态为断线状态。
在该步骤中,可以采用波谷检测算法,判断所述灰度值曲线上是否存在晶线特征峰。
可选的,所述波谷检测算法可以是先检测出灰度值曲线中的最小灰度值以及灰度值曲线的平均灰度值,并确定所述最小灰度值和平均灰度值在灰度值曲线中对应的横轴坐标,所述横轴坐标对应灰度值曲线上最小灰度值和平均灰度值对应的像素点的位置,将所述平均灰度值和最小灰度值的差值作为 该晶线特征峰的幅值,将所述最小灰度值和平均灰度值在灰度值曲线中对应的横轴坐标的差值作为该晶线特征峰的宽度。
进一步的,可以根据所述晶线特征峰的幅值和宽度,确定所述灰度值曲线上是否存在晶线特征峰。
当所述晶线特征峰的幅值小于预设幅值,或所述晶线特征峰的宽度大于预设宽度值的情况下,可以判断所述灰度值曲线上不存在晶线特征峰。
优选的,所述预设幅值可以是10,所述预设宽度值可以是20像素。在本发明实施例中,对此不作具体限定。
参见图11,示出了本发明实施例二中的另一种检测区域的灰度值曲线,图11中灰度值曲线不存在晶线特征峰。则说明检测区域的灰度值曲线没有较大的波动,其纵轴灰度值的变化始终在一个较小的范围内,即样本图像的检测区域与晶线没有相交的部分,说明此时在样本图像的检测区域中没有检测到晶线,即此时该晶线在硅棒表面的生长状态是断线状态。
进一步的,若在一个硅棒转动周期内,检测到采集的样本图像中,只要有一张样本图像上的晶线的生长状态均为断线状态,则可以确定在该硅棒转动周期内,硅棒表面不存在4条连续生长的晶线,此时硅棒为多晶硅棒。
因此,可以根据检测区域的灰度值曲线,判断对应的检测区域与晶线是否有相交的部分,若检测区域的灰度值曲线在某一部分存在晶线特征峰,则说明检测区域与晶线在该区域有相交的部分。此时,晶线在硅棒的表面连续生长,所述硅棒的晶线的生长状态为连续状态。若检测区域的灰度值曲线不存在晶线特征峰,则说明检测区域与晶线没有相交的部分,此时,晶线在硅棒的表面断线,所述硅棒的晶线的生长状态为断线状态。
在本发明实施例中,通过判断检测区域的灰度值曲线上是否存在晶线特征峰,就可以确定硅棒的晶线的生长状态,进一步可以判断硅棒是否是单晶硅棒,过程简单,且检测精度较高。
例如,参见图12,示出了本发明的一种硅棒的晶线检测结果的示意图,在该检测结果中,硅棒的转动周期T为6秒,若样本图像的采集频率为1.5秒,则在一个转动周期T内,可以采集四张样本图像,将四张样本图像中检测区域对应的灰度值曲线进行合成,即得到如图12所示的在一个转动周期T 内的灰度值曲线,在该灰度值曲线上,在每一个T/4的时间段内,灰度值曲线上均检测到一个晶线特征峰,分别为F1、F2、F3和F4,且检测到所述晶线特征峰的时间间隔相同,即说明在硅棒上均匀分布有四条连续的晶线,则此时硅棒为单晶硅棒。
参见图13,示出了本发明的另一种硅棒的晶线检测结果的示意图,在该检测结果中,硅棒的转动周期T为6秒,若样本图像的采集频率为1.5秒,则在一个转动周期T内,可以采集四张样本图像,将四张样本图像中检测区域对应的灰度值曲线进行合成,即得到如图12所示的在一个转动周期T内的灰度值曲线,在该灰度值曲线上,在前三个T/4的时间段内,灰度值曲线上均检测到一个晶线特征峰,分别为G1、G2和G3,且检测到所述晶线特征峰的时间间隔相同,但在第四个T/4的时间段内,并未检测到晶线特征峰,即说明在硅棒上只有三条连续的晶线,则此时硅棒为多晶硅棒。
步骤26,根据所述硅棒的晶线的生长状态和所述硅棒的长度,确定所述硅棒的后续处理方式。
在该步骤中,可以根据所述硅棒的晶线的生长状态和所述硅棒的长度,确定生产硅棒的过程中对于所述硅棒的后续处理方式。
具体的,若根据所述硅棒的晶线的生长状态,确定了所述硅棒为单晶硅棒,则继续进行单晶硅的制备。
若根据所述硅棒的晶线的生长状态,确定了所述硅棒为多晶硅棒之后,可以结合此时硅棒的长度,确定所述硅棒的后续处理方式。
在本发明实施例中,确定了所述硅棒为多晶硅棒之后,若检测到此时硅棒的长度大于或等于500毫米,则结束生产,将所述硅棒进行切割处理,切割得到的硅棒可以作为相关产品。若检测到此时硅棒的长度小于500毫米,则结束生产,并将所述硅棒进行熔融处理,得到的熔硅可以作为制备单晶硅棒的原料。
在本发明实施例中,硅棒的晶线生长状态检测方法,包括:在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;生成所述检测区域的 灰度值曲线;根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。本申请中,通过实时采集硅棒在生长过程中的样本图像,并在样本图像上设置检测区域,根据所述检测区域的灰度值曲线,就可以确定硅棒的晶线的生长状态,从而判断硅棒是否是单晶硅棒,采用该方法降低了硅棒直径大小的波动及晶线特征不明显对晶线的检测过程的影响,从而提高了晶线的检测精度和检测效率,且操作简单。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
实施例三
参照图14,示出了本发明实施例三中的一种硅棒的晶线生长状态检测装置的结构框图,具体可以包括:
样本图像获取模块301,用于在硅棒处于等径生长的过程中,获取所述硅棒的样本图像。
检测单元设置模块302,用于在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长。
可选的,所述检测区域包括:与所述硅棒的轴向方向垂直的线段,或与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
灰度值曲线生成模块303,用于生成所述检测区域的灰度值曲线。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,所述灰度值曲线生成模块303,包括:
第一生成子模块,用于从所述线段的一端开始,生成所述线段对应的灰度值曲线。
可选的,在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,所述灰度值曲线生成模块303,包括:
划分子模块,用于从所述矩形区域的一端开始,将所述矩形区域划分为多个相同的子区域;
第一计算子模块,用于计算每一个所述子区域的平均灰度值;
第二生成子模块,用于根据所有所述子区域的平均灰度值,生成所述矩形区域对应的灰度值曲线。
生长状态确定模块304,用于根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
可选的,所述生长状态确定模块304,包括:
第二计算子模块,用于根据所述灰度值曲线,计算所述灰度值曲线的灰度值方差值;
第一确定子模块,用于在所述灰度值方差值大于或等于方差值阈值的情况下,确定所述生长状态为连续状态;
第二确定子模块,用于在所述灰度值方差值小于所述方差值阈值的情况下,确定所述生长状态为断线状态。
可选的,所述生长状态确定模块304,还可以包括:
第三确定子模块,用于在所述灰度值曲线上存在晶线特征峰的情况下,确定所述生长状态为连续状态;
第四确定子模块,用于在所述灰度值曲线上不存在所述晶线特征峰的情况下,确定所述生长状态为断线状态。
可选的,所述装置还可以包括:
增强模块,用于按照预设的图像增强算法,对所述样本图像进行图像增强处理。
在本发明实施例中,硅棒的晶线生长状态检测装置,包括:在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;生成所述检测区域的灰度值曲线;根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。本申请中,通过实时采集硅棒在生长过程中的样本图像,并在样本图像上设置检测区域,根据所述检测区域的灰度值曲线,就可以确定 硅棒的晶线的生长状态,从而判断硅棒是否是单晶硅棒,采用该方法降低了硅棒直径大小的波动及晶线特征不明显对晶线的检测过程的影响,从而提高了晶线的检测精度和检测效率,且操作简单。
图15示出了本发明实施例的一种硅棒的晶线生长状态检测设备的逻辑结构示意图。如图15所述,本发明实施例提供的硅棒的晶线生长状态检测设备可以包括:接口401、第一处理器402、第一存储器403及总线404;其中,所述总线404,用于实现所述接口401、所述第一处理器402和所述第一存储器403之间的连接通信;所述第一存储器403存储有可执行程序,所述第一处理器402,用于执行所述第一存储器403中存储的可执行程序,以实现如图1或图5,实施例一或实施例二中的硅棒的晶线生长状态检测方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个可执行程序,所述一个或者多个可执行程序可被一个或者多个第一处理器执行,以实现如图1或图5,实施例一或实施例二中的硅棒的晶线生长状态检测方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
实施例四
本公开实施例提供一种断线测量方法,如图16所示,该方法包括:
步骤30、利用光流法对获取的单晶生长图像的当前帧与前一帧进行处理,得到图像当前帧中运动像素的数量。
具体的,步骤30包括:
首先采用CCD相机获取晶体生长的图像,CCD相机摄像头的光轴与坩埚中熔体液面之间成夹角,该夹角不等于90°。
子步骤301、选取图像测量区域。
根据光圈的位置在图像帧上选取图像测量区域,光圈位于单晶硅棒下方固体硅与硅熔体的固液界面处。
还可以根据灰度值在图像帧上选取图像测量区域,灰度值不超过200。
子步骤302、对图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值。
获取图像测量区域内像素在第一方向的速度和第二方向的速度;根据第一方向的速度、第二方向的速度及第一公式,得到图像测量区域内像素的速度幅值;第一公式包括:
Figure PCTCN2019117204-appb-000005
其中,i=1,2,3,…n;m i表示图像测量区域内第i个像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式,u i表示第一方向的速度,v i表示第二方向的速度。
获取图像测量区域内第i个像素在第一方向的速度和第二方向的速度包括:根据图像测量区域内第i个像素的坐标点位置、图像采集间隔时间及第二公式得到图像测量区域内第i个像素在第一方向的速度和第二方向的速度,第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧(即前一帧)时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧(即当前帧)时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
子步骤303、若像素的速度幅值大于预设阈值,将像素确定为运动像素。
预设阈值为根据图像测量区域内每个像素的速度幅值得到的,包括:根据图像测量区域内像素的速度幅值、图像测量区域内像素的个数及第三公式得到预设阈值,第三公式为:
Figure PCTCN2019117204-appb-000006
其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
预设阈值也就是图像测量区域内的所有像素速度幅值的平均值,预设阈值也可以设定为其他值。
将第i个像素像素的速度幅值与预设阈值进行比较,若该像素的速度幅值大于预设阈值则确定该像素为运动像素。
子步骤304、统计图像测量区域内运动像素的数量。
步骤31、在单位时间内,统计得到所有图像的帧中运动像素的数量和单晶生长时间的信息。
步骤32、根据信息确定单晶是否断线。
根据所有图像的帧中运动像素的数量和单晶生长时间的波形变化曲线,若波形变化曲线中相邻两个凸起之间间隔的持续时间大于预设时间,则确定单晶断线。
正常情况下,如图17所示,晶体转动时,波形曲线的凸起呈周期性出现,正常情况下,设定相邻凸起之间间隔的持续时间为预设时间周期T,相邻凸起之间间隔的持续时间指的是,前一个凸起的结束点至后一个凸起的开始点。若相邻凸起之间间隔的持续时间大于会大于预设时间周期T,则确定单晶等径断线。
本申请根据光圈的位置选取图像测量区域,有利于将较暗的像素点过滤,保留晶线特征和光圈的运动像素;将图像测量区域内的最大灰度值设置为不超过200,能保证光流法处理的效果;通过预设阈值能消除噪音,提高测量判断精度,能够适应晶体硅棒直径波动、晶棒晶线特征不明显情况下的等径断线测量,能提高测量精度低,准确判断是否断线。
实施例五
本公开实施例提供一种断线测量方法,如图18所示,该方法包括:
步骤40、选取图像帧。
采用CCD相机获取晶体生长的图像,CCD相机摄像头的光轴与坩埚中熔体液面之间成夹角,该夹角不等于90°。
步骤41、设置图像帧测量区域。
具体的,步骤41包括:
根据光圈108的位置在每个图像帧上选取图像测量区域,如图19所示,光圈108位于单晶硅棒101下方固体硅与硅熔体的固液界面处。
还可以根据灰度值在每个图像帧上选取图像测量区域,灰度值不超过200。
直拉单晶硅生长的图像帧在CCD相机上获取后通过电路输入至工控机中,由工控机的图像处理程序对单晶生长图像帧进行处理,具体的由图像处理程序中的特征识别模块识别图像测量区域,图像测量区域设置在光圈附近,有利于将较暗的像素点过滤;为了保证光流法处理图像的效果,图像测量区域内的灰度值不超过200。
步骤42、获取图像测量区域内像素在x方向的速度和y方向的速度。
具体的,步骤42包括:
根据图像测量区域内任意点像素的坐标点位置、图像采集间隔时间及第二公式得到图像测量区域内第i个像素在第一方向和第二方向的速度,第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
步骤43、得到实时像素的速度幅值。
具体的,步骤43包括:
根据x的速度、y的速度及第一公式,得到图像测量区域内实时像素的速度幅值;第一公式包括:
Figure PCTCN2019117204-appb-000007
其中,i=1,2,3,…n;m i表示图像测量区域内第i个像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式,u i表示第一方向的速度,v i表示第二方向的速度。
本实例中,利用光流法对图像测量区域内的图像帧进行处理,假定测量区域内任意点像素A在第s-1帧时的坐标点位置是(105,105),在s帧时,任意点像素A的坐标点位置为(120,140),t=0.2s;则任意点像素A在第一方向和第二方向的速度为:(u A,,v A)=(1535)。由于第一方向和第二方向为相互垂直方向,则求取此点的像素的速度幅值m A
Figure PCTCN2019117204-appb-000008
步骤44、二值化处理。
对测量区域内实时像素速度的幅值进行二值化处理,具体包括:
对图像测量区域内像素的速度幅值进行处理得到预设阈值;若图像测量区域内像素的速度幅值大于预设阈值,则图像测量区域内该像素为运动像素;统计得到运动像素总数。
对图像测量区域内像素的速度幅值进行处理得到预设阈值包括:根据图像测量区域内像素的速度幅值、图像测量区域内像素的个数及第三公式得到预设阈值,第三公式为:
Figure PCTCN2019117204-appb-000009
其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
本实施例中,选取光圈内5pix*5pix的区域,像素总数为25个,根据
Figure PCTCN2019117204-appb-000010
以及实验可求得阈值Y=30;由于m g大于Y,所以第g个像素 为运动像素。
步骤45、判断是否等径断线。
具体的,步骤45包括:
由于硅棒在轴线方向具有特征明显的晶线,晶线在硅棒圆周方向均匀分布,本申请通过设置实时像素速度的阈值,保留出晶线特征的运动像素。根据运动像素个数的总数随晶体生长时间的变化情况,判断是否等径断线。随晶体转动,如图17所示,运动像素个数的总数随时间的波形曲线中的凸起109交替周期性出现,相邻凸起109之间有间隔110。109所示为凸起,凸起109之间为间隔110。本实施例,间隔110为一平台,表明该时间范围内没有所定义的运动像素出现。
如图17的上半部分,单晶生长正常时,凸起109呈周期性出现;如图17的下半部分所示,相邻两个凸起109之间的间隔110持续时间大于预设时间,则确定单晶等径断线。图17中的数值并不对本申请时间周期T、运动像素个数总数构成限制,仅为示例。
本实施例中,正常时,凸起持续1.5s,相邻两个躯体之间的间隔持续1s,即时间周期T=1s;当非运动像素持续2.5s,即相邻两个躯体之间的间隔持续时间2.5s,大于时间周期T,完全没有凸起出现时,可以判断等径断线。
本申请根据光圈的位置选取图像测量区域,有利于将较暗的像素点过滤,保留晶线特征和光圈的运动像素;将图像测量区域内的最大灰度值设置为200,能保证光流法处理的效果;通过预设阈值能消除噪音,提高测量判断精度,能够适应晶体硅棒直径波动、晶棒晶线特征不明显情况下的等径断线测量,能提高测量精度低,准确判断是否断线。
实施例六
本公开的另一个实施例,提供了一种断线测量装置,如图20所示,包括:
图像处理模块501,用于对获取的单晶生长图像的当前帧与前一帧进行处理,得到图像当前帧中运动像素的数量;
统计模块502,用于在单位时间内,统计得到所有图像的帧中运动像素 的数量和单晶生长时间的信息;
认定模块503,用于根据信息确定单晶是否断线。
在另一个实施例中,如图21所示,图像处理模块501包括:
选取子模块5011,用于选取图像测量区域;
数据处理子模块5012,用于对图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值;
认定子模块5013,用于若像素的速度幅值大于预设阈值,将像素确定为运动像素;
统计子模块5014,用于统计图像测量区域运动像素的数量。
在另一个实施例中,选取子模块用于根据光圈的位置在图像帧上选取图像测量区域。
在另一个实施例中,如图22所示,数据处理子模块5012包括:
图像获取单元50121,用于获取图像测量区域内第i个像素在第一方向的速度和第二方向的速度;
数据处理子单元50122,用于根据第一方向的速度、第二方向的速度及第一公式,得到图像测量区域内第i个像素的速度幅值;第一公式包括:
Figure PCTCN2019117204-appb-000011
其中,i=1,2,3,…n;m i表示图像测量区域内第i个像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式,u i表示第一方向的速度,v i表示第二方向的速度。
在另一个实施例中,图像获取单元50121用于根据图像测量区域内第i个像素的坐标点位置、图像采集间隔时间及第二公式得到图像测量区域内像素在第一方向的速度和第二方向的速度,第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;
其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
在另一个实施例中,认定子模块5023用于根据图像测量区域内所有像素的速度幅值、图像测量区域内像素的个数及第三公式得到预设阈值,第三公式为:
Figure PCTCN2019117204-appb-000012
其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
本申请根据光圈的位置选取图像测量区域,有利于将较暗的像素点过滤,保留晶线特征和光圈的运动像素;将图像测量区域内的最大灰度值设置为不超过200,能保证光流法处理的效果;通过预设阈值能消除噪音,提高测量判断精度,能够适应晶体硅棒直径波动、晶棒晶线特征不明显情况下的等径断线测量,能提高测量精度低,准确判断是否断线。
实施例七
本公开实施例还提供一种断线测量的设备,如图23所示,设备包括接收器601、发射器602、第二处理器603和第二存储器604,该接收器601、发射器602、第二存储器604分别与该第二处理器603连接,第二存储器604中存储有至少一条指令,指令由第二处理器603加载并执行,以实现如图16或图18,实施例四或实施例五中的断线测量方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
实施例八
本公开实施例还提供一种计算机可读存储介质,例如,非临时性计算机可读存储介质可以是只读存储器(英文:Read Only Memory,ROM)、随机存取存储器(英文:Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储装置等。该存储介质中存储有至少一条计算机指令,指令由第二处理器加载并执行,以实现如图16或图18,实施例四或实施例五中 的断线测量方法的步骤,并能达到相同或相似的效果,为了避免重复,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图23示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括第二处理器603和以第二存储器604形式的计算机程序产品或者计算机可读介质。第二存储器604可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。第二存储器604具有用于执行上述方法中的任何方法步骤的程序代码的存储空间。例如,用于程序代码的存储空间可以包括分别用于实现上面的方法中的各种步骤的各个程序代码。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为所述的便携式或者固定存储单元。该存储单元可以具有与图23的计算处理设备中的第二存储器604类似布置的存储段、 存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码,即可以由例如诸如之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种硅棒的晶线生长状态检测方法,其特征在于,所述方法包括:
    在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;
    在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;
    生成所述检测区域的灰度值曲线;
    根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
  2. 根据权利要求1所述的方法,其特征在于,所述检测区域包括:与所述硅棒的轴向方向垂直的线段,或与所述硅棒的轴向方向垂直的矩形区域,其中,所述矩形区域的面与所述硅棒的轴向方向垂直。
  3. 根据权利要求2所述的方法,其特征在于,在所述检测区域为与所述硅棒的轴向方向垂直的线段的情况下,所述生成所述检测区域的灰度值曲线的步骤,包括:
    从所述线段的一端开始,生成所述线段对应的灰度值曲线。
  4. 根据权利要求2所述的方法,其特征在于,在所述检测区域为与所述硅棒的轴向方向垂直的矩形区域的情况下,所述生成所述检测区域的灰度值曲线的步骤,包括:
    从所述矩形区域的一端开始,将所述矩形区域划分为多个相同的子区域;
    计算每一个所述子区域的平均灰度值;
    根据所有所述子区域的平均灰度值,生成所述矩形区域对应的灰度值曲线。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态的步骤,包括:
    根据所述灰度值曲线,计算所述灰度值曲线的灰度值方差值;
    在所述灰度值方差值大于或等于方差值阈值的情况下,确定所述生长状态为连续状态;
    在所述灰度值方差值小于所述方差值阈值的情况下,确定所述生长状态为断线状态。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态的步骤,包括:
    在所述灰度值曲线上存在晶线特征峰的情况下,确定所述生长状态为连续状态;
    在所述灰度值曲线上不存在所述晶线特征峰的情况下,确定所述生长状态为断线状态。
  7. 根据权利要求1所述的方法,其特征在于,在所述获取所述硅棒的样本图像之后,所述方法还包括:
    按照预设的图像增强算法,对所述样本图像进行图像增强处理。
  8. 一种硅棒的晶线生长状态检测装置,其特征在于,所述装置包括:
    样本图像获取模块,用于在硅棒处于等径生长的过程中,获取所述硅棒的样本图像;
    检测单元设置模块,用于在所述样本图像上设置检测区域,所述检测区域与所述硅棒的晶线生长线重叠,在所述硅棒处于等径生长的过程中,所述硅棒的晶线沿所述晶线生长线生长;
    灰度值曲线生成模块,用于生成所述检测区域的灰度值曲线;
    生长状态确定模块,用于根据所述灰度值曲线,确定所述晶线生长线上,所述硅棒的晶线的生长状态。
  9. 一种硅棒的晶线生长状态检测设备,其特征在于,所述设备包括:接口,总线,第一存储器与第一处理器,所述接口、第一存储器与第一处理器通过所述总线相连接,所述第一存储器用于存储可执行程序,所述第一处理器被配置为运行所述可执行程序实现如权利要求1至7中任一项所述的硅棒的晶线生长状态检测方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储可执行程序,所述可执行程序被第一处理器运行实现如权利要求1至7中任一项所述的硅棒的晶线生长状态检测方法的步骤。
  11. 一种断线测量方法,其特征在于,包括:
    对获取的单晶生长图像的当前帧与图像的前一帧进行处理,得到所述图像当前帧中运动像素的数量;
    在单位时间内,统计得到所有所述图像的帧中运动像素的数量和单晶生长时间的信息;
    根据所述信息确定所述单晶是否断线。
  12. 根据权利要求11所述的方法,其特征在于,所述对每个所述图像帧进行处理,得到每个所述图像帧中运动像素的数量包括:
    选取图像测量区域;
    对所述图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值;
    当像素的速度幅值大于预设阈值时,将像素确定为运动像素;
    统计所述图像测量区域内的运动像素的数量。
  13. 根据权利要求12所述的方法,其特征在于,所述选取图像测量区域包括:
    根据光圈的位置在每个所述图像帧上选取图像测量区域。
  14. 根据权利要求13所述的方法,其特征在于,所述选取图像测量区域包括:
    根据灰度值在每个所述图像帧上选取图像测量区域,最大所述灰度值为200。
  15. 根据权利要求13所述的方法,其特征在于,所述对所述图像测量区域内的每个像素进行数据处理,得到每个像素的速度幅值包括:
    获取图像测量区域内第i个像素在第一方向的速度和第二方向的速度;
    根据所述第一方向的速度、第二方向的速度及第一公式,得到所述图像测量区域内第i个像素的速度幅值;所述第一公式包括:
    Figure PCTCN2019117204-appb-100001
    其中,i=1,2,3,…n;m i表示图像测量区域内第i个像素的速度幅值,θ i表示第一方向和第二方向之间的夹角,f(θ i)表示与θ i相关的函数关系式, u i表示第一方向的速度,v i表示第二方向的速度。
  16. 根据权利要求15所述的方法,其特征在于,所述获取图像测量区域内任意点像素在第一方向的速度和第二方向的速度包括:
    根据图像测量区域内第i个像素的坐标点位置、图像采集间隔时间及第二公式得到所述图像测量区域内像素在第一方向的速度和第二方向的速度,所述第二公式为:(u i,v i)=[(x i2,y i2)-(x i1,y i1)]/t;
    其中,x表示第一方向,y表示第二方向,(x i1,y i1)表示第s-1帧时图像测量区域内第i个像素的坐标点位置,(x i2,y i2)表示第s帧时图像测量区域内第i个像素的坐标点位置,t表示第s帧与第s-1帧图像采集间隔时间。
  17. 根据权利要求16所述的方法,其特征在于,所述预设阈值为根据所述图像测量区域内每个像素的速度幅值得到的,包括:
    根据图像测量区域内所有像素的速度幅值、图像测量区域内像素的个数及第三公式得到预设阈值,所述第三公式为:
    Figure PCTCN2019117204-appb-100002
    其中,Y表示预设阈值,M g表示光圈范围内第g个像素的速度幅值,g=1,2,3,…k,N表示光圈范围内像素的个数。
  18. 根据权利要求11所述的方法,其特征在于,根据所述信息确定所述单晶是否断线包括:
    根据所有所述图像的帧中运动像素的数量和单晶生长时间的波形变化曲线,若波形变化曲线中相邻两个凸起之间间隔的持续时间大于预设时间,则确定所述单晶断线。
  19. 一种断线测量的设备,其特征在于,包括:第二处理器和第二存储器,所述第二存储器中存储有至少一条指令,所述指令由所述第二处理器加载并执行以实现权利要求11-18任意一项所述断线测量方法中所执行的操作。
  20. 一种计算机可读存储介质,其特征在于,包括:所述存储介质中存储有至少一条指令,所述指令由第二处理器加载并执行以实现权利要求11-18任意一项所述断线测量方法中所执行的操作。
PCT/CN2019/117204 2018-11-26 2019-11-11 一种硅棒的晶线生长状态检测方法、装置及设备 WO2020108287A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19891140.6A EP3800282A4 (en) 2018-11-26 2019-11-11 METHOD, EQUIPMENT AND DEVICE FOR DETECTING THE CRYSTAL GROWING STATE FOR SILICON ROD
US17/256,494 US12002234B2 (en) 2018-11-26 2019-11-11 Crystal line growing state detection method, apparatus and device for silicon rod

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811417468.5A CN111218714B (zh) 2018-11-26 2018-11-26 一种断线测量方法、设备及存储介质
CN201811417468.5 2018-11-26
CN201910745478.XA CN112444516B (zh) 2019-08-13 2019-08-13 一种硅棒的晶线生长状态检测方法、装置及设备
CN201910745478.X 2019-08-13

Publications (1)

Publication Number Publication Date
WO2020108287A1 true WO2020108287A1 (zh) 2020-06-04

Family

ID=70852375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117204 WO2020108287A1 (zh) 2018-11-26 2019-11-11 一种硅棒的晶线生长状态检测方法、装置及设备

Country Status (2)

Country Link
EP (1) EP3800282A4 (zh)
WO (1) WO2020108287A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116255927A (zh) * 2023-03-03 2023-06-13 杭州中为光电技术有限公司 硅棒检测方法及检测设备
US12002234B2 (en) 2018-11-26 2024-06-04 Longi Green Energy Technology Co., Ltd. Crystal line growing state detection method, apparatus and device for silicon rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089290A (ja) * 1999-09-16 2001-04-03 Toshiba Ceramics Co Ltd 単結晶引上装置における液面振動の測定方法およびその装置
CN102787353A (zh) * 2012-08-15 2012-11-21 北京七星华创电子股份有限公司 单晶炉非接触式硅棒晶线测量方法
CN105350071A (zh) * 2015-10-23 2016-02-24 西安理工大学 一种可抑制波动的直拉硅单晶炉液位检测方法
CN107923065A (zh) * 2015-09-15 2018-04-17 胜高股份有限公司 单晶的制造方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846318A (en) * 1997-07-17 1998-12-08 Memc Electric Materials, Inc. Method and system for controlling growth of a silicon crystal
US6175652B1 (en) * 1997-12-31 2001-01-16 Cognex Corporation Machine vision system for analyzing features based on multiple object images
JP4161547B2 (ja) * 2001-06-28 2008-10-08 株式会社Sumco 単結晶引上装置および単結晶引上方法およびプログラムおよび記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089290A (ja) * 1999-09-16 2001-04-03 Toshiba Ceramics Co Ltd 単結晶引上装置における液面振動の測定方法およびその装置
CN102787353A (zh) * 2012-08-15 2012-11-21 北京七星华创电子股份有限公司 单晶炉非接触式硅棒晶线测量方法
CN107923065A (zh) * 2015-09-15 2018-04-17 胜高股份有限公司 单晶的制造方法及装置
CN105350071A (zh) * 2015-10-23 2016-02-24 西安理工大学 一种可抑制波动的直拉硅单晶炉液位检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800282A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002234B2 (en) 2018-11-26 2024-06-04 Longi Green Energy Technology Co., Ltd. Crystal line growing state detection method, apparatus and device for silicon rod
CN116255927A (zh) * 2023-03-03 2023-06-13 杭州中为光电技术有限公司 硅棒检测方法及检测设备
CN116255927B (zh) * 2023-03-03 2024-03-19 杭州中为光电技术有限公司 硅棒检测方法及检测设备

Also Published As

Publication number Publication date
EP3800282A4 (en) 2022-04-06
US20210279905A1 (en) 2021-09-09
EP3800282A1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
CN101907453B (zh) 基于机器视觉的块状农产品尺寸在线测量方法与装置
US11538175B2 (en) Method and apparatus for detecting subject, electronic device, and computer readable storage medium
CN110334635A (zh) 主体追踪方法、装置、电子设备和计算机可读存储介质
CN111462066B (zh) 一种基于机器视觉的螺纹参数检测方法
CN112444516B (zh) 一种硅棒的晶线生长状态检测方法、装置及设备
CN109540917B (zh) 一种多角度模式下纱线外观特征参数提取与分析方法
WO2020108287A1 (zh) 一种硅棒的晶线生长状态检测方法、装置及设备
Constantino et al. Plant height measurement and tiller segmentation of rice crops using image processing
TWI506567B (zh) 圖像處理裝置及其物體輪廓的提取方法
CN111218714B (zh) 一种断线测量方法、设备及存储介质
CN116071362B (zh) 拉晶断苞检测方法、装置、计算机设备和存储介质
CN114369868A (zh) 晶棒断线监测方法、存储介质、终端和拉晶设备
CN102640622B (zh) 采棉机导航信息图像检测方法及系统
CN109472779A (zh) 一种基于形态结构的纱线外观特征参数提取与分析方法
US12002234B2 (en) Crystal line growing state detection method, apparatus and device for silicon rod
KR20180068150A (ko) 영상 분석을 이용한 건해삼 등급 분류 시스템
CN114387251B (zh) 饱满点的监测方法、存储介质、终端和拉晶设备
CN110322391A (zh) 基于多线程的视频告警事件分析方法
CN115727775A (zh) 一种单晶等径变形检测方法及装置
JP4915726B2 (ja) 血流速度の測定方法及び装置
CN114387248A (zh) 一种硅料熔化度监测方法、存储介质、终端和拉晶设备
JP4401842B2 (ja) 画像処理装置及び侵入者検出装置
CN116627380B (zh) 基于三角多项式拟合的电导率异常值识别方法、系统
JP6230877B2 (ja) 画像処理装置
JP2829689B2 (ja) 半導体単結晶製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE