WO2021012394A1 - 一种蓝色荧光粉及其制备方法和应用 - Google Patents

一种蓝色荧光粉及其制备方法和应用 Download PDF

Info

Publication number
WO2021012394A1
WO2021012394A1 PCT/CN2019/109529 CN2019109529W WO2021012394A1 WO 2021012394 A1 WO2021012394 A1 WO 2021012394A1 CN 2019109529 W CN2019109529 W CN 2019109529W WO 2021012394 A1 WO2021012394 A1 WO 2021012394A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue phosphor
compound containing
blue
europium
ion
Prior art date
Application number
PCT/CN2019/109529
Other languages
English (en)
French (fr)
Inventor
王忆
韦飞龙
王梦霞
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021012394A1 publication Critical patent/WO2021012394A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to a blue fluorescent powder, a preparation method and application thereof, and belongs to the technical field of fluorescent powder for light emitting diodes (LED) in the field of lighting and display.
  • LED light emitting diodes
  • LED lighting has become the mainstream trend of modern lighting due to its advantages such as high efficiency, energy saving and environmental protection.
  • the LED industry around the world has continued to innovate and develop phosphor research, and pay more and more attention to applied lighting.
  • LED manufacturing technology is continuously improved and optimized.
  • my country has also begun to pay attention to the field of health lighting and plan and re-layout the LED industry.
  • LED lighting is developing in the direction of healthy, green, high-quality lighting devices.
  • Lighting should be people-oriented has become the consensus of the LED industry. Manufacturers are no longer purely concerned about light efficiency or service life, but more consideration of people's light I hope to create artificial light closer to natural light.
  • the indicators of full-spectrum white light LED have the following requirements: (1) The spectrum range is as wide as possible; (2) Color rendering index Ra>95; (3) All special color rendering indexes R1-R15 are greater than 90.
  • the current yttrium aluminum garnet yellow-green powder and nitride red powder combined blue chip can be packaged to obtain a WLED with a color rendering index of 95, the blue spectrum of the WLED's spectrum is not covered enough, resulting in the WLED's ability to reduce saturated blue.
  • the value of special color rendering index R12 is low, which does not meet the requirements of full spectrum WLED. Therefore, to achieve the illumination spectrum close to the solar spectrum, the luminous intensity of the blue spectrum needs to be increased, so that the LED spectrum can be closer to natural light, which is beneficial to the health of the eyes.
  • the technical problem to be solved by the present invention is: based on the above problem, the present invention relates to a Eu 2+ activated blue phosphor and its preparation method and application.
  • a blue phosphor whose chemical formula is SrAl 2 SiO 6 :nEu 2+ , and the value of n is 0.006-0.008. More preferably, the value of n is 0.007.
  • the luminous intensity of the prepared blue phosphor sample first increases and then decreases with the europium ion concentration, reaching the highest when the europium ion concentration is 0.007 mol, and the excitation efficiency is the highest when the europium ion concentration is 0.007 mol.
  • the emission wavelength of the blue phosphor is 410nm-560nm. More preferably, the emission wavelength of the blue phosphor is 420nm-480nm.
  • the excitation wavelength of the blue phosphor is 250nm-430nm. More preferably, the excitation wavelength of the blue phosphor is 250nm-380nm.
  • the present invention also provides a preparation method of blue phosphor, which includes the following steps:
  • the compound containing strontium ion, the compound containing aluminum ion, and the compound containing europium ion are respectively dissolved in nitric acid, and mixed with the compound containing silicon ion and an organic solvent to obtain a mixture;
  • the dried powder is reduced and calcined to obtain blue phosphor.
  • the compound containing strontium ions is one or more of strontium oxide, strontium hydroxide and strontium carbonate;
  • the compound containing aluminum ions is one or more of alumina, aluminum hydroxide and aluminum carbonate;
  • the europium ion compound is one or more of europium oxide, europium hydroxide and europium nitrate. More preferably, the compound containing strontium ions is strontium carbonate; the compound containing aluminum ions is aluminum hydroxide; and the compound containing europium ions is europium oxide.
  • the silicon ion-containing compound is a silicon-containing organic compound, which is one or more of methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate and butyl orthosilicate; the organic solvent is no Water ethanol. More preferably, the compound containing silicon ions is ethyl orthosilicate.
  • the obtained mixture is stirred at 40-90°C for 15-75 minutes, then dried at 35-120°C for 2-12 hours, and then calcined at 300-800°C for 1-5 hours. More preferably, the resulting mixture is stirred at 50-75°C for 45-75 minutes, and then the sample is dried at 35-120°C for 5-8 hours, and then calcined at 400-600°C for 1-3 hours.
  • the dried powder is subjected to reduction roasting, the reduction roasting time is 1-5 hours, and the reduction roasting temperature is 1000-1200°C.
  • the reduction roasting temperature is calcined in a reducing atmosphere for 2-5 hours, and the calcining temperature is 1050-1150°C. More preferably, the reduction roasting temperature is 1100°C.
  • the firing temperature is 1100°C
  • the prepared blue phosphor sample has a higher luminous intensity, forming a broadband continuous emission spectrum near 447nm, and presenting a bimodal broadband excitation spectrum.
  • the preparation method of Eu 2+ activated strontium aluminum silicate blue phosphor adopts a sol-gel method and includes the following steps:
  • the mixture after roasting is naturally cooled, milled and mixed, and roasted in a reducing atmosphere for 1-5 hours at a roasting temperature of 1000-1200°C;
  • the calcined mixture is naturally cooled, ground and mixed uniformly to obtain strontium aluminum silicate blue phosphor.
  • the present invention also provides the application of blue phosphors.
  • the blue phosphors are excited by ultraviolet and/or near-ultraviolet LED chips to emit blue phosphors to obtain blue light.
  • the phosphor and the green phosphor cooperate to form a relatively broad spectrum of white light.
  • the blue fluorescent powder obtained in the present invention has been tested with a fluorescence spectrometer for luminous intensity and spectrum, and its structure has been studied by X-ray diffraction (XRD) and electron microscope scanning (SEM). The results show that the present invention has the following beneficial effects:
  • the sol-gel method in the present invention can mix the medicines uniformly, the powder activity is high, the later sintering temperature is greatly reduced, the energy is saved, the reaction is easy to proceed, and the purity of the formed sample is good;
  • the preparation process of the strontium aluminum silicate blue phosphor provided by the present invention is simple, the process is easy to operate, the reaction temperature is low (800-1300°C), energy consumption is saved, no exhaust gas is discharged, it is environmentally friendly, and is suitable for industrial production.
  • Fig. 1 is the emission spectra of blue phosphor samples with different europium ion concentrations prepared according to the technical scheme 1-6 of embodiment 1.
  • Figure 2 is the excitation spectra of blue phosphor samples with different europium ion concentrations prepared according to the technical scheme 1-6 of embodiment 1.
  • Fig. 3 is the emission spectrum of the blue phosphor samples prepared according to the technical scheme 3 of the embodiment 1 and the comparative examples 1 and 2.
  • Fig. 5 is an XRD pattern of blue phosphor samples prepared according to technical scheme 3 of embodiment 1 and comparative examples 1 and 2.
  • Fig. 6 is an electron microscope scanning image of a blue phosphor sample prepared according to technical scheme 3 of embodiment 1.
  • the preparation method of the blue phosphor includes the following steps:
  • step (1) Dissolve the strontium carbonate, europium oxide, and aluminum hydroxide weighed in step (1) with nitric acid, and then mix them with the ethyl orthosilicate and absolute ethanol weighed in step (1);
  • step (3) Stir the mixture obtained in step (2) at 60°C for 30 minutes, and dry the sample in an oven for 6 hours;
  • step (3) After the sample in step (3) is completely dried, scrape off and grind, and put the obtained powder in a muffle furnace at 500°C for 2 hours;
  • step (4) Naturally cool the mixture after baking in step (4), grind and mix it, place it in a crucible with carbon powder, and use the double crucible reduction method to bake in a muffle furnace at 1100°C for 3 hours;
  • step (6) Naturally cool the mixture after firing in step (5), grind and mix uniformly to obtain blue phosphor.
  • FIG 1 is an emission spectrum obtained by excitation of blue phosphor samples with different europium ion concentrations under 394nm near ultraviolet light prepared according to the technical scheme 1-6 of Example 1. It can be seen from the figure that with the increase of the europium ion concentration (ie n value), the peak position is basically unchanged, but the luminous intensity of the sample first increases and then decreases.
  • the europium ion concentration is 0.007 mol, that is, Example 1 Technical Solution 3
  • the luminous intensity reaches the maximum, and the spectral peak is located at the broadband emission near 447nm, which extends from 410nm to 560nm, which is represented by the 4f 6 5d 1 ⁇ 4f 7 characteristic transition of bivalent Eu 2+ .
  • the luminous intensity of blue phosphor mainly depends on the content of europium ions doped.
  • the number of luminescent centers increases with the increase of europium ions, and the luminous intensity increases accordingly.
  • concentration of europium ions continues to increase, cascade energy transfer occurs, which leads to The luminous intensity of the sample began to decrease, and the phenomenon of concentration quenching appeared.
  • FIG. 2 is the excitation spectrum of blue phosphor samples with different europium ion concentrations prepared according to the technical scheme 1-6 of Embodiment 1 with blue 447 nm as the monitoring wavelength.
  • the excitation peak range of the blue phosphor of the present invention is very wide, extending from 250nm to 430nm, and can be de-excited by ultraviolet and near ultraviolet light.
  • the excitation spectrum intensity is the highest when the europium ion concentration is 0.007mol, and the excitation spectrum is at the same time It exhibits bimodal broadband excitation, which is characterized by 4f-5d transition absorption of Eu 2+ .
  • step (1) Dissolve the strontium carbonate, europium oxide, and aluminum hydroxide weighed in step (1) with nitric acid, and then mix them with the ethyl orthosilicate and absolute ethanol weighed in step (1);
  • step (3) Stir the mixture obtained in step (2) at 60°C for 30 minutes, and dry the sample in an oven for 6 hours;
  • step (3) After the sample in step (3) is completely dried, scrape off and grind, and put the obtained powder in a muffle furnace at 500°C for 2 hours;
  • step (4) Naturally cool the mixture after firing in step (4), grind and mix it, place it in a crucible with carbon powder, and use the double crucible reduction method to fire in a muffle furnace at 900°C for 3 hours;
  • step (6) Naturally cool the mixture after firing in step (5), grind and mix uniformly to obtain blue phosphor.
  • the steps of the preparation method of the blue phosphor are basically the same as those in Comparative Example 1, except that the baking temperature in the muffle furnace is 1000° C. by the double crucible reduction method.
  • FIG 3 is the emission spectrum of the blue phosphor sample prepared according to the technical scheme 3 of embodiment 1 and comparative examples 1 and 2 (annealed at 1100°C, 900°C, and 1000°C, respectively).
  • the excitation wavelength is 394nm. It can be seen from the figure that when the temperature is 900°C and 1000°C, the emission spectrum is wider, but the luminous intensity is lower. When the temperature is 1100°C, a broadband continuous emission spectrum is formed near 447nm, and the luminous intensity is higher, indicating that the temperature is very important for the formation of the crystal structure, and the trivalent europium ion is basically reduced.
  • FIG 4 is the excitation spectrum of the blue phosphor sample prepared according to the technical scheme 3 of embodiment 1, and comparative examples 1 and 2 (annealed at 1100°C, 900°C, and 1000°C, respectively), using 447nm as Monitor the wavelength.
  • the excitation range is a broadband continuum from 250nm to 430nm.
  • the temperature is 1100°C, it exhibits a double-peak broadband excitation from 250nm to 430nm, indicating that europium ions enter the crystal.
  • Two different types of light-emitting centers are formed after the grid, which can be matched with the near-ultraviolet LED chip.
  • the excitation spectrum intensity is the highest at 1100°C, and the temperature rise promotes the formation of the crystal structure.
  • Fig. 6 is an electron microscope scanning image of a blue phosphor sample prepared according to the technical solution of embodiment 1 technical solution 3.
  • the crystal structure is more regular and exhibits a specific shape, indicating that the crystal formation is better.

Abstract

公开了一种蓝色荧光粉及其制备方法和应用,属于照明和显示领域中的发光二极管(LED)用荧光粉技术领域。以Eu 2+作为激活剂,采用溶胶-凝胶法制备SrAl 2SiO 6:nEu 2+(n=0.006-0.008)蓝色荧光粉。所述的制备方法能将原料混合均匀,粉末活性高,从而使后期烧结温度大大降低,节约能源,反应容易进行,形成的样品纯度好,可与紫外型和/或近紫外型LED芯片匹配,制备工艺简单,生产过程易于操作。

Description

一种蓝色荧光粉及其制备方法和应用 技术领域
本发明涉及一种蓝色荧光粉及其制备方法和应用,属于照明和显示领域中的发光二极管(LED)用荧光粉技术领域。
背景技术
半导体照明因其诸如高效、节能、环保的优点,成为现代照明的主流趋势。近年来,全世界LED产业对荧光粉研究不断创新发展,并且越来越重视应用照明,同时LED的制作工艺也不断改良优化,我国也开始重视健康照明领域并对LED行业进行规划和重新布局。LED照明正向健康、绿色的高色品质照明器件方向发展,“照明应以人为本”已成为LED业界的共识,厂商们不再只是纯粹的关注光效或使用寿命,而更多的考虑人对光的感觉,希望能制造出更接近自然光的人造光。
目前全光谱白光LED(WLED)的指标有如下要求:(1)光谱的范围尽可能的宽;(2)显色指数Ra>95;(3)所有特殊显色指数R1-R15均大于90。虽然利用现在钇铝石榴石黄绿粉和氮化物红粉组合蓝光芯片可以封装得到显色指数达95的WLED,但是由于WLED的光谱中蓝色光谱覆盖不足,导致WLED对饱和蓝色的还原能力较弱,特殊显色指数R12的数值较低,不满足全光谱WLED的要求。因此要实现照明光谱接近太阳光谱,需要提高蓝色光谱部分发光强度,LED光谱才能更加接近自然光,从而有利于眼睛的健康。
发明内容
本发明要解决的技术问题是:基于上述问题,本发明涉及一种Eu 2+激活的蓝色荧光粉及其制备方法和应用。
本发明解决其技术问题所采用的技术方案是:
一种的蓝色荧光粉,其化学式为SrAl 2SiO 6:nEu 2+,n的取值为0.006-0.008。更优选地,n的取值为0.007。所制备蓝色荧光粉样品发光强度随铕离子浓度先增加后降低,在铕离子浓度为0.007mol时达到最高,同时在铕离子浓度为0.007mol时激发效率最高。
优选地,蓝色荧光粉的发射波长为410nm-560nm。更优选地,蓝色荧光粉的发射波长为420nm-480nm。
优选地,蓝色荧光粉的激发波长为250nm-430nm。更优选地,蓝色荧光粉的激发波长为250nm-380nm。
本发明还提供了蓝色荧光粉的制备方法,包括以下步骤:
将含有锶离子的化合物、含有铝离子的化合物、含有铕离子的化合物分别用硝酸溶解,与含有硅离子的化合物和有机溶剂混合,得到混合物;
将得到的混合物进行搅拌,然后干燥,再进行焙烧,得到干燥粉末;
将干燥的粉末再进行还原焙烧,得到蓝色荧光粉。
优选地,含有锶离子的化合物为氧化锶、氢氧化锶和碳酸锶中的一种或几种;含有铝离子的化合物为氧化铝、氢氧化铝和碳酸铝中的一种或几种;含有铕离子的化合物为氧化铕、氢氧化铕和硝酸铕中的一种或者几种。更优选地,含有锶离子的化合物为碳酸锶;含有铝离子的化合物为氢氧化铝;含有铕离子的化合物为氧化铕。
优选地,含有硅离子的化合物为含硅的有机化合物,为正硅酸甲酯、正硅酸乙酯、正硅酸丙酯和正硅酸丁酯中的一种或几种;有机溶剂为无水乙醇。更优选地,含有硅离子的化合物为正硅酸乙酯。
优选地,将得到的混合物在40-90℃下搅拌15-75分钟,然后在35-120℃下干燥2-12小时,再在300-800℃下进行焙烧1-5小时。更优选地,将得到的混合物在50-75℃下搅拌45-75分钟,然后将样品在35-120℃中干燥5-8小时,再在400-600℃下进行焙烧1-3小时。
优选地,将干燥的粉末再进行还原焙烧,还原焙烧时间为1-5小时,还原焙烧温度为1000-1200℃。优选地,在还原气氛下焙烧2-5小时,焙烧温度为1050-1150℃。更优选地,还原焙烧温度为1100℃。当焙烧温度为1100℃时,所制备蓝色荧光粉样品发光强度较高,在447nm附近形成宽带连续发射光谱,并呈现双峰宽带激发光谱。
具体地,Eu 2+激活的硅酸锶铝盐蓝色荧光粉的制备方法,采用溶胶-凝胶法,包括以下步骤:
以含有碳酸锶、氢氧化铝、氧化铕、正硅酸乙酯为原料,按化学式SrAl 2SiO 6:nEu 2+(n=0.006-0.008)中对应元素的相对分子质量和分子式称取各原料;
将称取的碳酸锶、氢氧化铝、氧化铕分别用硝酸溶解,再与正硅酸乙酯和无水乙醇混合均匀,得到混合物;
将得到的混合物在40-90℃下搅拌15-75分钟,然后将样品在35-120℃中干燥2-12小时;
样品干燥完全后用刮下来碾磨,得到的粉末在空气气氛下焙烧1-5小时,焙烧温度300-800℃;
将焙烧后混合物自然冷却,碾磨混匀,在还原气氛下焙烧1-5小时,焙烧温度1000-1200℃;
将上述焙烧后混合物自然冷却,研磨混匀,得到硅酸锶铝蓝色荧光粉。
本发明还提供了蓝色荧光粉的应用,将所述的蓝色荧光粉通过紫外型和/或近紫外型LED芯片发光来激发本发明蓝色荧光粉得到蓝光,与其他由蓝光激发的红色荧光粉和绿色荧光粉 配合形成比较宽谱的白光。
本发明所得蓝色荧光粉,经荧光分光计测试发光强度及光谱图,并经X射线衍射(XRD)以及电子显微镜扫描(SEM)对其结构进行了研究。结果显示,本发明具有如下有益效果:
(1)本发明采用溶胶-凝胶法能将药品混合均匀,粉末活性高,使后期烧结温度大大降低,节约能源,反应容易进行,形成的样品纯度好;
(2)本发明采用溶胶-凝胶法制备的SrAl 2SiO 6:nEu 2+(n=0.006-0.008)荧光粉,在紫光-绿光区域具有很宽的发射光谱(从410nm延伸到560nm),发射主峰位于447nm左右;
(3)本发明采用溶-凝胶法制备的SrAl 2SiO 6:nEu 2+(n=0.006-0.008)荧光粉,当监视波长为447nm时,在紫外-近紫外区域内(250nm-430nm)出现双峰宽带激发,可以与紫外光和/或近紫外光LED芯片匹配;
(4)本发明提供的硅酸锶铝蓝色荧光粉制备工艺简单,过程易于进行操作,反应温度低(800-1300℃),节省能耗,无废气排放对环境友好,适用于工业生产。
附图说明
下面结合附图对本发明进一步说明。
图1是按实施例1技术方案1-6制备的不同铕离子浓度蓝色荧光粉样品的发射光谱。
图2是按实施例1技术方案1-6制备的不同铕离子浓度蓝色荧光粉样品的激发光谱。
图3是按实施例1技术方案3、对比例1和2制备得到的蓝色荧光粉样品的发射光谱。
图4是按实施例1技术方案3、对比例1和2制备得到的蓝色荧光粉样品的激发光谱。
图5是按实施例1技术方案3、对比例1和2制备得到的蓝色荧光粉样品的XRD图。
图6是按实施例1技术方案3制备得到的蓝色荧光粉样品的电镜扫描图。
具体实施方式
现结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
本实施例考察n值对蓝色荧光粉发光性能的影响。
该蓝色荧光粉的制备方法,包括以下步骤:
(1)按化学式SrAl 2SiO 6: nEu 2+中对应元素的相对分子质量和分子式称取碳酸锶、氧化铕、氢氧化铝、正硅酸乙酯以及无水乙醇,具体用量见表1;
(2)将步骤(1)中称取的碳酸锶、氧化铕、氢氧化铝分别用硝酸溶解,再与步骤(1)中称取的正硅酸乙酯、无水乙醇混合均匀;
(3)将步骤(2)中得到的混合物在60℃下搅拌30分钟,在烘箱将样品干燥6小时;
(4)待步骤(3)的样品干燥完全后用刮下来碾磨,得到的粉末放入马弗炉500℃焙烧2小时;
(5)将步骤(4)焙烧后混合物自然冷却,碾磨混匀,放置于有碳粉的坩埚中,利用双坩埚还原法在马弗炉中1100℃焙烧3小时;
(6)将步骤(5)焙烧后混合物自然冷却,研磨混匀,得到蓝色荧光粉。
(7)使用F-4600型荧光分光计测试所得蓝色荧光粉的发射光谱和激发光谱,将荧光分光计电压设置为400V,狭缝宽度2.5nm,扫描速度1200nm/min,激发波长为394nm的近紫外光,监视波长为447nm。
表1 SrAl 2SiO 6:nEu 2+样品的制备原料用量(溶胶-凝胶法)
Figure PCTCN2019109529-appb-000001
参见附图1,其是按实施例1技术方案1-6制备的不同铕离子浓度蓝色荧光粉样品在394nm近紫外光下激发得到的发射光谱。从图中可以看出,随着铕离子浓度(即n值)的增加,峰值位置基本不变,但是样品的发光强度先增加后降低,在铕离子浓度为0.007mol时,即采用实施例1技术方案3发光强度达到最大,光谱峰值位于447nm附近的宽带发射,从410nm延伸至560nm,表现为二价Eu 2+的4f 65d 1→4f 7特征跃迁。蓝色荧光粉的发光强度主要取决掺入铕离子的含量,发光中心的数量随着铕离子增加而提高,发光强度随之增强,当铕离子浓度继续增加时,产生级联能量传递,从而导致样品的发光强度开始降低,出现浓度猝灭现象。
参见附图2,其是按实施例1技术方案1-6制备的不同铕离子浓度蓝色荧光粉样品以蓝光447nm为监视波长得到的激发光谱。从图中看出本发明蓝色荧光粉激发峰范围很宽,从250nm一直延伸到430nm,可以用紫外和近紫外光去激发,在铕离子浓度为0.007mol时激发光谱强度最高,同时激发谱呈现双峰宽带激发,表现为Eu 2+的4f-5d特征跃迁吸收。
对比例1
(1)按实施例1技术方案3原料用量称取碳酸锶、氧化铕、氢氧化铝、正硅酸乙酯以及无水乙醇;
(2)将步骤(1)中称取的碳酸锶、氧化铕、氢氧化铝分别用硝酸溶解,再与步骤(1)中称取的正硅酸乙酯、无水乙醇混合均匀;
(3)将步骤(2)中得到的混合物在60℃下搅拌30分钟,在烘箱将样品干燥6小时;
(4)待步骤(3)的样品干燥完全后用刮下来碾磨,得到的粉末放入马弗炉500℃焙烧2小时;
(5)将步骤(4)焙烧后混合物自然冷却,碾磨混匀,放置于有碳粉的坩埚中,利用双坩埚还原法在马弗炉中900℃焙烧3小时;
(6)将步骤(5)焙烧后混合物自然冷却,研磨混匀,得到蓝色荧光粉。
(7)使用F-4600型荧光分光计测试所得蓝色荧光粉的发射光谱和激发光谱,将荧光分光计电压设置为400V,狭缝宽度2.5nm,扫描速度1200nm/min,激发波长为394nm的近紫外光,检测波长为447nm。
对比例2
除利用双坩埚还原法在马弗炉中焙烧温度为1000℃,该蓝色荧光粉的制备方法步骤和对比例1基本一致。
参见附图3,其是按实施例1技术方案3、对比例1和2制备(分别在1100℃、900℃、1000℃温度下退火)得到的蓝色荧光粉样品的发射光谱,激发波长为394nm。从图中可以看出,当温度在900℃和1000℃时发射谱较宽,但发光强度较低。当温度为1100℃时在447nm附近形成宽带连续发射谱,发光强度较高,说明温度对于晶体结构的形成至关重要,而且三价铕离子基本还原完全。
参见附图4,其是按实施例1技术方案3、对比例1和2制备(分别在1100℃、900℃、1000℃温度下退火)得到的蓝色荧光粉样品的激发光谱,用447nm作监视波长。从图中可以看出,当温度为900℃和1000℃时,激发范围为从250nm至430nm的宽带连续谱,当温度为1100℃时在250nm至430nm呈现双峰宽带激发,说明铕离子进入晶格后形成两种不同类型的发光中心,可与近紫外光LED芯片匹配,在1100℃时激发光谱强度最高,温度升高促进晶体结构的形成。
参见附图5,其是按实施例1技术方案3、对比例1和2技术方案制备(分别在1100℃、900℃、1000℃温度下退火)得到的蓝色荧光粉样品的XRD图,从图中可以看出,测试样品的XRD衍射峰可以跟pdf76-1494标准XRD衍射卡片数据大部分匹配,说明生成结晶物为 SrAl 2SiO 6
参见附图6,其是按实施例1技术方案3技术方案制备得到的蓝色荧光粉样品的电镜扫描图,图中晶体结构较有规则,呈现特定形状,说明晶体形成较好。

Claims (10)

  1. 一种蓝色荧光粉,其特征在于,所述蓝色荧光粉的化学式为SrAl 2SiO 6:nEu 2+,n的取值为0.006-0.008。
  2. 根据权利要求1所述的蓝色荧光粉,其特征在于,其发射波长为410nm-560nm。
  3. 根据权利要求1所述的蓝色荧光粉,其特征在于,其激发波长为250nm-430nm。
  4. 权利要求1-3中任一项所述的蓝色荧光粉的制备方法,其特征在于,包括以下步骤:
    将含有锶离子的化合物、含有铝离子的化合物、含有铕离子的化合物分别用硝酸溶解,与含有硅离子的化合物和有机溶剂混合,得到混合物;
    将得到的混合物进行搅拌,然后干燥,再进行焙烧,得到干燥粉末;
    将干燥的粉末再进行还原焙烧,得到蓝色荧光粉。
  5. 根据权利要求4所述的蓝色荧光粉的制备方法,其特征在于,含有锶离子的化合物为氧化锶、氢氧化锶和碳酸锶中的一种或几种;含有铝离子的化合物为氧化铝、氢氧化铝和碳酸铝中的一种或几种;含有铕离子的化合物为氧化铕、氢氧化铕和硝酸铕中的一种或者几种。
  6. 根据权利要求4所述的蓝色荧光粉的制备方法,其特征在于,含有硅离子的化合物为正硅酸甲酯、正硅酸乙酯、正硅酸丙酯和正硅酸丁酯中的一种或几种;有机溶剂为无水乙醇。
  7. 根据权利要求4所述的蓝色荧光粉的制备方法,其特征在于,将得到的混合物在40-90℃下搅拌15-75分钟,然后在35-120℃下干燥2-12小时,再在300-800℃下进行焙烧1-5小时。
  8. 根据权利要求4所述的蓝色荧光粉的制备方法,其特征在于,将干燥的粉末再进行还原焙烧,还原焙烧时间为1-5小时,还原焙烧温度为1000-1200℃。
  9. 权利要求1-3中任一项所述的蓝色荧光粉的应用,其特征在于,通过紫外型和/或近紫外型LED芯片发光来激发权利要求1-3中任一项所述的蓝色荧光粉得到蓝色光。
  10. 一种光源,包括权利要求1-3中任一项所述的蓝色荧光粉和匹配的LED芯片。
PCT/CN2019/109529 2019-07-19 2019-09-30 一种蓝色荧光粉及其制备方法和应用 WO2021012394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910655811.8A CN110330967A (zh) 2019-07-19 2019-07-19 一种蓝色荧光粉及其制备方法和应用
CN201910655811.8 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012394A1 true WO2021012394A1 (zh) 2021-01-28

Family

ID=68146011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109529 WO2021012394A1 (zh) 2019-07-19 2019-09-30 一种蓝色荧光粉及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110330967A (zh)
WO (1) WO2021012394A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284166A1 (en) * 2008-07-03 2010-11-11 Eun-Wook Lee Method for fabrication of thin film phosphor, thin film phosphor, and phosphor prouct using the same
KR20140036090A (ko) * 2012-09-14 2014-03-25 부산대학교 산학협력단 인광입자를 포함한 염료감응형 태양전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284166A1 (en) * 2008-07-03 2010-11-11 Eun-Wook Lee Method for fabrication of thin film phosphor, thin film phosphor, and phosphor prouct using the same
KR20140036090A (ko) * 2012-09-14 2014-03-25 부산대학교 산학협력단 인광입자를 포함한 염료감응형 태양전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANRONG QUI , M KAWASAKI , K TANAKA , Y SHIMIZUGAWA , K HIRAO: "Phenomenon and mechanism of long-lasting phosphorescence in Eu<2+>-doped aluminosilicate glasses", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 59, no. 9, 1 September 1998 (1998-09-01), pages 1521 - 1525, XP002514843, ISSN: 0022-3697, DOI: 10.1016/S0022-3697(98)00070-5 *
LUITEL HOM NATH: "Preparation and Properties of Long Persistent Sr4Al14O25 Phosphors Activated by Rare Earth Metal Ions", THESIS, 1 March 2010 (2010-03-01), pages 1 - 145, XP055775106 *

Also Published As

Publication number Publication date
CN110330967A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
Guo et al. Preparation and luminescent properties of phosphor MGd2 (MoO4) 4: Eu3+ (M= Ca, Sr and Ba)
CN113185977B (zh) 一种铕掺杂的超宽带红色荧光材料及其制备方法和应用
CN105623657B (zh) 一种含氮发光颗粒及其制备方法、含氮发光体和发光器件
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
CN112011332A (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
CN111575004A (zh) 一种Eu2+掺杂的蓝-绿光可控的荧光粉及其制备方法和应用
CN106833636A (zh) 可被近紫外和蓝光激发的红色荧光粉、制备方法及应用
CN110028964B (zh) 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法
CN111434749B (zh) 一种近紫外激发暖白光荧光粉及其制备方法和应用
CN101412911A (zh) 一种铝硅酸盐蓝色荧光粉及其制备方法
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN108531174B (zh) 一种Eu3+掺杂的铌酸盐基红色发光材料及其制备方法
CN113999671B (zh) 一种照明显示白光led用荧光粉及其制备和应用
WO2021012394A1 (zh) 一种蓝色荧光粉及其制备方法和应用
WO2016065725A1 (zh) 荧光材料及其制造方法和包含该荧光材料的组合物
CN115287066A (zh) 一种Eu2+激活的含卤素硼酸盐青光荧光粉及其制备方法和应用
CN107099291A (zh) 一种可被近紫外光激发的红色荧光材料、制备方法及应用
CN111961469A (zh) 一种高性能钼酸盐红色荧光粉及其制备方法
CN106085421A (zh) 一种Eu3+激活的正硅酸镁钾荧光粉及其制备方法和应用
KR101190719B1 (ko) 칼슘-보레이트-실리케이트계 녹색 발광 형광체
CN105524615A (zh) 一种白光led用铌酸盐红色荧光粉及其制备方法
CN114686224B (zh) 一种钛酸稀土盐红色荧光粉及其制备方法和应用
CN104031640B (zh) 一种白光led用橙黄色荧光粉及其制备方法
CN109536167B (zh) 一种红色荧光粉及其制备方法
CN116410745B (zh) 一种荧光粉材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939008

Country of ref document: EP

Kind code of ref document: A1