WO2021012391A1 - 一种圆套筒钢木组合节点及其安装方法 - Google Patents
一种圆套筒钢木组合节点及其安装方法 Download PDFInfo
- Publication number
- WO2021012391A1 WO2021012391A1 PCT/CN2019/109295 CN2019109295W WO2021012391A1 WO 2021012391 A1 WO2021012391 A1 WO 2021012391A1 CN 2019109295 W CN2019109295 W CN 2019109295W WO 2021012391 A1 WO2021012391 A1 WO 2021012391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- wood
- round
- shaped
- sleeve
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/26—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
- E04B1/2604—Connections specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/26—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
- E04B1/2604—Connections specially adapted therefor
- E04B2001/2644—Brackets, gussets or joining plates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/26—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
- E04B1/2604—Connections specially adapted therefor
- E04B2001/2652—Details of nailing, screwing, or bolting
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/26—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
- E04B1/2604—Connections specially adapted therefor
- E04B2001/266—Socket type connectors
Definitions
- the invention belongs to the field of wood building node design, and specifically relates to a circular sleeve steel-wood combined node connected with a circular wooden column and an X-shaped wooden beam and an installation method thereof.
- wood structure building As a green building with low energy consumption and light materials, has huge application potential and research value.
- the wooden structure has the characteristics of short construction period, energy saving and environmental protection, and strong seismic energy consumption. It has the advantages of flexible layout, sound insulation and vibration reduction in design.
- the node is one of the most important areas in the entire structure.
- Traditional pure wood joints are prone to damage and loss at the intersection of the columns and beams.
- the current joints are mostly pure steel component joints.
- stress concentration is likely to occur, and The opening direction is prone to cracking along the texture; in addition, in order to ensure the basic force transmission of the beam, the force transmission section of the vertical column is often weakened, and the integrity and force performance are not good, and the seismic performance is relatively weak compared to other positions.
- the present invention provides a new type of circular sleeve steel-wood combined node design, which innovatively designs the connection of FRP circular wooden columns and X-shaped wooden beams to strengthen the force transmission capacity of the vertical columns and ensure that the force transmission of the beams is at the nodes. It will not adversely affect the transmission force of the column, and the installation and operation are simple.
- the present invention is realized by adopting the following technical solutions: a round sleeve steel-wood composite node, including FRP circular wooden columns, X-shaped wooden beams, core connecting members, arc-shaped connectors and splicing outer ring plates; FRP circular The wooden columns are connected by a core connecting member, and the X-shaped wooden beam is connected with the core connecting member through an arc-shaped connecting piece.
- the splicing outer ring plates are arranged at the upper and lower ends of the arc-shaped connecting piece, and the combination is realized by splicing the outer ring plates and bolting. connection;
- the core connecting member includes a round steel cover plate, a connecting sleeve, round solid wood and filled wooden blocks.
- the round solid wood is arranged in the connecting sleeve.
- the connecting sleeve is made of steel.
- the round steel cover plate is provided with a penetrating steel bar. Reinforcement holes, through which the rebar passes through the corresponding rebar holes on the round steel sleeve to connect the FRP circular wooden columns in the axial direction.
- Corresponding rebar holes are also provided on the FRP circular wooden columns; the round steel sleeve is set on the connecting sleeve At the upper and lower ends of the cylinder, the inner diameter of the circular steel sleeve is equal to the outer diameter of the FRP circular wooden column, and the filler wood is arranged around the connecting sleeve between the upper and lower circular steel sleeves and fixed with glue;
- the arc-shaped connector includes an arc-shaped base plate with holes and two arc-shaped steel plates with holes.
- the two arc-shaped steel plates with holes are arranged on the arc-shaped base plate with holes in the opposite direction.
- the space formed matches the shape of the X-shaped wooden beam.
- the arc-shaped connecting piece is arranged around the outer circumference of the core connecting member.
- the arc-shaped base plate with holes is fixed on two adjacent filling wooden blocks by wood screws.
- the arc-shaped steel plate with holes Used to tighten the X-shaped wooden beam; 8 screw holes are provided on the arc-shaped base plate with holes, which correspond to the 4 wood screw holes on each side of each filling block of the core connecting member, and the wood screws pass through the arc with holes
- the base plate is screwed into the wood screw hole, and an arc-shaped connecting piece is fixed on two adjacent filled wooden blocks; the distance between the two arc-shaped steel plates with holes is slightly larger than the thickness of the X-shaped wooden beam web, and the arc-shaped steel plates with holes have vertical To 4 bolt holes and 2 horizontal bolt holes, insert the X-shaped wooden beam web between the arc steel plates with holes, and tighten the horizontal bolt through the arc steel plate, X-shaped wooden beam web, and arc steel nut , The vertical bolts pass through the spliced outer ring plate, the flange of the X-shaped wooden beam, and the arc steel plate, and are tightened with nuts.
- the spliced outer ring plate includes a base plate, an arc-shaped hoop set on one side of the base plate, a bolt hole is provided on the surface of the base plate, and a connecting clamp is also provided on the base plate.
- the adjacent spliced outer ring plates are connected by the connecting clamp After the adjacent spliced outer ring plates are connected, they act as an outer hoop on the middle part of the core connecting member, which is used to tighten the filling wood block, and is connected with the arc-shaped connector and the X-shaped wooden beam through bolts to transfer the internal force of the beam.
- the FRP circular wooden column includes a circular wooden column and an FRP fiber cloth arranged on the outer surface of the circular wooden column.
- the structural strength of the FRP fiber cloth is strengthened by winding the FRP fiber cloth on the outer layer.
- the upper and lower ends of the connecting sleeve are provided with fan-shaped splicing heads
- the circular steel sleeve is provided with a butting slot that matches the fan-shaped splicing head, and the fan-shaped splicing head is clamped into the butting slot to realize the circular steel sleeve and Connection of connecting sleeve.
- the filler wooden block is provided with a through groove matching the penetrating steel bar and a notch matching the fan-shaped splicing head, so as to realize a close fit between the filler wooden block and the round steel sleeve plate.
- connecting chuck and the plane where the substrate is located form an angle of 45° to ensure that the force transmission still passes through the centroid line.
- round steel cover is also provided with a pair of tension bolts for tightening the penetrating steel bars, so as to apply prestress to enhance the integrity and improve the overall performance of the core connecting member.
- the invention also provides a method for installing a round sleeve steel-wood composite node, which includes the following steps:
- the round-sleeve steel-wood composite node proposed in this scheme is a fully spliced structure design.
- the core area of the node is a connecting sleeve design.
- the connecting sleeve with solid wood is connected to the round steel sleeve through the slot, and filled with wood block glue.
- the design of the connecting sleeve can effectively ensure the vertical bearing capacity of the joints, and the prestress of the tension bolts can effectively enhance the seismic resistance of the structure;
- the horizontal load is borne by the annular splicing plate,
- the vertical load is borne by the connecting core components, and the bearing capacity is high, which ensures that the vertical force transmission has no influence, and the horizontal and vertical transmission forces do not cross;
- the site is fully assembled construction and installation, which is only connected by bolts and glue. It is simple to operate, fast in installation, and high in quality. It can meet the design requirements of wood structure buildings with special vertical load. It can be used for vertical load-bearing and strong columns. The extremely demanding wooden structure has huge market potential in middle and high-rise wooden buildings.
- Fig. 1 is a schematic diagram of the overall structure of the steel-wood composite node according to embodiment 1 of the present invention
- FIG. 2 is a schematic diagram of a three-dimensional cross-sectional view of the steel-wood composite node according to Embodiment 1 of the present invention
- FIG. 3 is a schematic diagram of the structure of the FRP circular wooden column according to Embodiment 1 of the present invention.
- FIG. 4 is a schematic diagram of the structure of the X-shaped wooden beam according to the embodiment 1 of the present invention.
- FIG. 5 is a schematic diagram of the structure of the core connecting member according to Embodiment 1 of the present invention.
- Example 6 is a schematic diagram of the structure of the round steel sleeve plate in Example 1 of the present invention.
- FIG. 7 is a schematic diagram of the connection structure of the round steel cover plate, the filling wood block, and the connecting sleeve according to the first embodiment of the present invention.
- FIG. 8 is a schematic top view of the structure of FIG. 7;
- Fig. 9 is a schematic diagram of the structure of the filled wooden block in Fig. 7;
- Figure 10 is a schematic diagram of the structure of the round steel cover plate and round solid wood in Figure 7;
- FIG. 11 is a schematic top view of the structure of FIG. 10;
- FIG. 12 is a schematic diagram of the structure of the arc-shaped connector according to Embodiment 1 of the present invention.
- Figure 13 is a schematic side view of the structure of Figure 12;
- FIG. 14 is a schematic diagram of a top view structure of splicing outer ring plates according to an embodiment of the present invention.
- Example 15 is a schematic diagram of a three-dimensional structure of splicing outer ring plates in Example 1 of the present invention.
- FIG. 16 is a schematic diagram of the structure of the connection chuck in FIG. 14;
- Figure 17 is a schematic diagram of a node installation process in Embodiment 1 of the present invention.
- Embodiment 1 A round sleeve steel-wood composite node, as shown in Figure 1 and Figure 2, includes FRP circular wooden column 1, X-shaped wooden beam 2, core connecting member 3, arc-shaped connecting piece 4 and splicing outer Ring plate 5; the upper and lower adjacent FRP circular wooden columns 1 are connected by the core connecting member 3, after the upper and lower adjacent FRP circular wooden columns 1 are connected, they are connected with the X-shaped wooden beam 2 by the arc-shaped connecting piece 4, and finally pass The splicing outer ring plate 5 will fix the whole;
- the FRP circular wooden column 1 includes a circular wooden column 6 and is arranged on the outer surface of the circular wooden column 6
- the FRP fiber cloth 8 is wound on the outer layer to realize the strengthening of its structural strength.
- a plurality of steel reinforcement holes are uniformly arranged inside the circular wooden column 6 along the length direction of the circular wooden column 6.
- This embodiment is provided with 4 steel
- the hole is inserted with a through steel bar 7 and filled with colloid to form a whole, wherein the diameter of the steel bar hole is larger than the diameter of the through steel bar 7 by 4-8mm, and the through steel bar 7 is a ribbed steel bar; the X-shaped wooden beam 2 is a finished pure wooden beam, and the end of the X-shaped wooden beam 2 is provided with bolt holes corresponding to the arc-shaped connecting piece 4 and the splicing outer ring plate 5.
- the core connecting member 3 includes a round steel sleeve plate 9, a connecting sleeve 10, a round solid wood 11 and a filling block 12, and the round solid wood 11 is arranged
- the connecting sleeve 10 is made of steel. Both ends of the connecting sleeve 10 are also provided with fan-shaped splicing heads 14.
- the circular steel sleeve plate 9 is provided with a butting card slot 15 that matches with the fan-shaped splicing head 14. 14 Clamp into the docking slot 15 to realize the connection between the circular steel sleeve 9 and the connecting sleeve 10.
- the circular steel sleeve 9 is arranged at the upper and lower ends of the connecting sleeve 10.
- the inner diameter of the circular steel sleeve 9 is connected to the FRP circular wooden column
- the outer diameters of 1 are equal, and the filler wood 12 is arranged around the connecting sleeve 10 between the upper and lower round steel plates 9 and fixed with glue; the filler wood 12 has corresponding wood screw holes 16 through which the wood screws pass
- the arc-shaped connector 4 and the wood screw hole 16 are used to fix the arc-shaped connector 4 on the core connecting member 3 in small pieces;
- the round steel sleeve plate 9 is also provided with a reinforcing steel hole that matches the penetrating reinforcing steel 7, and the filler wood
- the block 12 is provided with a through slot 13 that matches with the through steel bars 7 and a notch that matches with the fan-shaped splice 14; 4 through steel bars 7 pass through the corresponding steel holes on the circular steel cover 9 to connect the upper and lower F
- the structural schematic diagram of the arc-shaped connector 4 is shown in Figures 12-13, including an arc-shaped base plate 18 with holes and two arc-shaped steel plates 19 with holes.
- the space P formed between the two arc-shaped steel plates 19 with holes on the arc-shaped substrate 18 matches the shape of the X-shaped wooden beam 2 and is formed by welding in the factory.
- the four arc-shaped connecting pieces 4 form a splicing circle, which is fixed on the filling wood block 12 with wood screws and a perforated arc base plate 18.
- the perforated arc steel plate 19 is used to tighten X Type wooden beam 2; 8 screw holes are provided on the arc-shaped base plate 18 with holes, which correspond to the 4 wood screw holes 16 on each side of each filling block of the core connecting member 3, and the wood screws pass through the arc with holes
- the base plate 18 is screwed into the wood screw hole 16, as shown in Fig. 8, an arc-shaped connecting piece 4 is fixed on two adjacent filling wooden blocks 12; the distance between the two arc-shaped steel plates 19 with holes is slightly larger than the X-shaped wooden beam 2
- the arc steel plate 19 with holes has 4 vertical bolt holes and 2 horizontal bolt holes.
- the X-shaped wooden beam 2 web is inserted between the curved steel plates 19, the horizontal bolts pass through the curved steel plate 19, the X-shaped wooden beam 2 webs, and the curved steel plate 19 are tightened with nuts, and the vertical bolts pass through the splicing outer ring.
- Plate 5 X-shaped wooden beam 2 flange, arc steel plate 19, and tighten with nuts.
- the spliced outer ring plate 5 is composed of 4 steel splicing parts.
- the shape of the spliced outer ring plate 5 is as shown in FIG. 8.
- the adjacent spliced outer ring plates 5 are connected by a connecting clip 20, and the connecting clip 20 It forms an angle of 45° with the horizontal direction.
- the force transmission still passes through the centroid line and is connected by bolts to form a whole. After splicing, it acts as an outer hoop on the middle part of the core connecting member 3 to tighten the filling wood block 12, and the arc
- the connecting piece 4 and the X-shaped wooden beam 2 are connected by bolts to transfer the internal force of the beam as a whole.
- the spliced outer ring plate 5 includes a base plate 21, an arc-shaped hoop 22 arranged on one side of the base plate 21, a bolt hole is provided on the surface of the base plate 21, and a connecting chuck 20 is also provided on the base plate 21.
- the adjacent spliced outer ring plates 5 are connected by a connecting clip 20. After the adjacent spliced outer ring plates 5 are connected, they will act as an outer hoop on the middle part of the core connecting member 3, which is used to tighten the filling wood block 12 and connect it with the arc
- the connecting piece 4 and the X-shaped wooden beam 2 are connected as a whole by bolts to transmit the internal force of the beam.
- connection core area of the node structure of this embodiment a solid wood connection sleeve is connected to the round steel sleeve plate through a card slot, filled with wood blocks for glue connection, and then through the steel bar through a tension bolt, prestress is applied to strengthen the combination, Form a whole; can realize fully assembled construction, fast construction speed, good structural integrity, prestress can effectively enhance the seismic resistance of the structure, the design of the connecting sleeve can effectively ensure the vertical bearing capacity of the node, combined with the arc-shaped connector and the spliced outer ring The clever design of the board can be used for wood structures that require vertical load-bearing and extremely high strength.
- Embodiment 2 Based on the round sleeve steel-wood composite node proposed in Embodiment 1, this embodiment proposes an installation method, as shown in Figure 17, including the following steps. Of course, in specific implementation, the following steps can be based on actual conditions The situation is slightly changed:
- the first step is to put the round steel cover plate 9 on the glued FRP round wooden column 1, and there are opposite pull bolts on the through steel bars, and the fan-shaped splicing head of the connecting sleeve 10 with the round solid wood 11 is rotated by 45 Screw into the docking slot on the corresponding side of the round steel sleeve plate 9;
- the second step is to fix the connecting sleeve 10 between the round steel sleeve plates 9, fill in 4 filling wood blocks 12, and glue them into a whole;
- the third step is to install the filling member 4 on the middle caudal vertebra of the two adjacent wood filling blocks of the core connecting member 3.
- the component 4 is fixed on two adjacent filling wooden blocks, and the four arc-shaped connecting pieces 4 are installed on the corresponding positions of the filling wooden block 12 that is glued together with wood screws.
- the four arc-shaped connecting pieces 4 form a non-compact Round sleeve, but make 4 filled wooden blocks into a whole;
- the fourth step the 4 parts of the spliced outer ring plate 5 are close to the arc-shaped connecting piece 4, and bolted to form a ring, and the filling wood block is tightened, and the splicing outer ring is installed on the upper and lower sides of the arc-shaped connecting piece 4.
- wrap FRP cloth on the upper side of the upper round steel cover plate, or between the spliced outer ring plate and the round cover plate;
- Step 5 Tighten the tension bolts 17 through the steel bars 7, and apply appropriate prestress to make the core connection members 3 tightly connected and strengthen the integrity of the core connection members;
- Step 6 Insert the FRP circular wooden column 1 into the corresponding side sleeve of the circular steel cover plate 9, and inject glue into the steel reinforcement hole; the vertical column and the core connecting member are installed;
- Step 7 Insert one end of the X-shaped wooden beam 2 between the two arc-shaped plates of the arc-shaped connecting piece 4. There are two corresponding horizontal bolt holes on the arc-shaped plate and the web of the X-shaped wooden beam. Bolted;
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
本发明公开一种圆套筒钢木组合节点,包括FRP圆形木柱、X型木梁、核心连接构件、拼接外环板和弧形连接件;所述核心连接构件由上下圆型钢套板、连接套筒、圆实木和填充木块等构成;FRP圆形木柱与核心连接构件相连,通过圆型钢套板和贯穿钢筋插套,并在钢筋孔间隙注胶连接;X型木梁通过弧形连接件与核心连接构件连接,并由拼接外环板和螺栓固定实现组合连接。本方案所述节点结构采用连接套筒设计,承载力高、保证了竖向传力无影响、水平和竖向传力途径无交叉;现场施工安装时,仅由螺栓连接和胶粘合,操作简单、安装快速,完全装配式安装,能满足在有特殊竖向承载的木结构建筑的设计要求,在中高层木建筑中有具有巨大的市场潜力。
Description
本发明属于木建筑节点设计领域,具体涉及一种圆形木柱与X型木梁连接的圆套筒钢木组合节点及其安装方法。
在注重环保的现代建筑领域中,木结构建筑作为一种低耗能、轻材料的绿色环保建筑,具有巨大的应用潜力和研究价值。木结构具有施工周期短、节能环保和抗震耗能能力强的特点,在设计上具有布置灵活、隔音削震的优点。
然而在木结构建筑中,节点处是整个结构中最为重要的区域之一。传统的纯木节点,易发生破坏损耗的位置是柱、梁的传力交叉处,现在的节点多为纯钢构件节点,通过将钢片插入到木头内进行连接,易产生应力集中,且沿开口方向易发生顺纹理开裂;另外,为了保证梁的基本传力,竖向柱的传力截面常常遭削弱,存在整体性、受力性能不好的情况,抗震性能相对其他位置也较弱。
发明内容
本发明提供一种新型的圆套筒钢木组合节点设计,对FRP圆形木柱和X型木梁的连接进行创新设计,以加强竖向柱的传力能力,保证梁的传力在节点处不会对柱的传力造成不良影响,且安装操作简单。
本发明是采用以下的技术方案实现的:一种圆套筒钢木组合节点,包括FRP圆形木柱、X型木梁、核心连接构件、弧形连接件和拼接外环板;FRP圆形木柱之间通过核心连接构件相连,X型木梁通过弧形连接件与核心连接构件相连,拼接外环板设置在弧形连接件的上下两端,通过拼接外环板和螺栓固定实现组合连接;
所述核心连接构件包括圆型钢套板、连接套筒、圆实木和填充木块,圆实木设置在连接套筒内,连接套筒为钢材质,圆型钢套板上设有用以插入贯穿钢筋的钢筋孔,贯穿钢筋穿过圆型钢套板上相应钢筋孔将FRP圆形木柱在轴向连接为一体,FRP圆形木柱上同样设置有对应的钢筋孔;圆型钢套板设置在连接套筒的上下两端,圆型钢套板的内径与FRP圆形木柱的外径相等,填充木块围绕连接套筒设置在上下两块圆型钢套板之间,并用胶粘合固定;
所述弧形连接件包括带孔弧形基板和两块带孔弧型钢板,两块带孔弧型钢板背向设置在带孔弧形基板上,且两块带孔弧型钢板之间所形成的空间与X型木梁的形状匹配,弧形连接件环绕核心连接构件的外圆周设置,带孔弧形基板通过木螺钉固定在相邻的两块填充木块上,带孔弧型钢板用以加紧X型木梁;带孔弧形基板上设有8个螺孔,与核心连接构件的每块填充木块上每侧的4个木螺钉孔对应,木螺钉穿过带孔弧形基板旋入木螺钉孔中,一块弧形连 接件固定在相邻两块填充木块上;两块带孔弧型钢板间距稍大于X型木梁腹板厚度,带孔弧形钢板上有竖向4个螺栓孔、水平2个螺栓孔,X型木梁的腹板插入带孔弧形钢板之间,水平方向螺栓穿过弧形钢板、X型木梁腹板、弧形钢板螺母旋紧,竖直方向螺栓穿过拼接外环板、X型木梁的翼缘、弧形钢板,并用螺母旋紧。
所述拼接外环板包括基板、设置在基板一侧的弧形箍环,基板的表面设置有螺栓孔,基板上还设置有连接卡头,相邻拼接外环板之间通过连接卡头相连,相邻拼接外环板连接后对核心连接构件中间部分起外箍作用,用以箍紧填充木块,并与弧形连接件、X型木梁通过螺栓连接为整体以传递梁内力。
进一步的,所述FRP圆形木柱包括圆形木质柱以及设置在圆形木质柱外表面的FRP纤维布,通过在外层缠绕FRP纤维布实现对其结构强度的加强。
进一步的,所述连接套筒的上下两端设置有扇形拼接头,圆型钢套板上设置有与扇形拼接头相配合的对接卡槽,扇形拼接头卡入对接卡槽实现圆型钢套板和连接套筒的连接。
进一步的,所述填充木块上设置有与贯穿钢筋相配合的通槽以及与扇形拼接头相配合的缺口,实现填充木块与圆型钢套板的紧密配合。
进一步的,所述连接卡头与基板所在平面呈45°夹角,以保证传力仍通过形心线上。
进一步的,所述圆型钢套板上还设置有用以拉紧贯穿钢筋的对拉螺栓,以施加预应力增强整体性,提高核心连接构件的整体性能。
本发明另外还提出一种圆套筒钢木组合节点的安装方法,包括以下步骤:
A、将圆型钢套板套在已注胶的FRP圆形木柱上,在贯穿钢筋上有对拉螺栓,将内有圆实木的连接套筒的扇形拼接头旋入圆型钢套板相应侧的对接卡槽内;
B、将连接套筒固定在圆型钢套板之间,填入4块填充木块,并用胶粘合成整体;
C、用木螺钉将4块弧形连接件安装在填充木块的相应位置,且每一块充填构件固定在相邻两块填充木块上,4块弧形连接件连接后形成一套筒环绕在核心连接构件上;
D、将所述拼接外环板的紧靠弧形连接件安装,并用螺栓连接成环,以箍紧填充木块;
E、旋紧贯穿钢筋上的对拉螺栓,施加适宜预应力,使核心连接构件连接紧密,加强核心连接构件整体性;
F、将FRP圆形木柱插入圆型钢套板相应侧套筒内,并在钢筋孔内注胶,完成竖向FRP圆形木柱和核心连接构件的安装;
G、将X型木梁的一端插入弧形连接件的两块带孔弧型钢板之间,并插入高强螺栓连接;用螺栓将弧形连接件、X型木梁和拼接外环板连接成一个整体,完成水平方向梁的安装,进而完成圆套筒钢木组合节点的安装。
与现有技术相比,本发明的优点和积极效果在于:
本方案所提出的圆套筒钢木组合节点整体为全拼接结构设计,节点核心区为连接套筒设计,内有实木的连接套筒通过卡槽连接圆型钢套板,填入填充木块胶接,再在贯穿钢筋上通过对拉螺栓,连接套筒的设计能够有效保证节点竖向承载力,且通过对拉螺栓的预应力能有效增强结构抗震能力;水平方向荷载由环形拼接板承担,竖向荷载由连接核心构件承担,承载力高,保证了竖向传力无影响,水平和竖向传力无交叉;
现场为完全装配式施工安装,仅由螺栓连接和胶粘合,操作简单、安装快速、质量高,能满足在有特殊竖向承载的木结构建筑的设计要求,可用于竖向承载、强柱要求极高的木结构,在中高层木建筑中有具有巨大的市场潜力。
图1为本发明实施例1所述钢木组合节点整体结构示意图;
图2为本发明实施例1所述钢木组合节点的立体剖视示意图;
图3为本发明实施例1所述FRP圆形木柱的结构示意图;
图4为本发明实施例1所述X型木梁的结构示意图;
图5为本发明实施例1所述核心连接构件的结构示意图;
图6为本发明实施例1圆型钢套板的结构示意图;
图7为本发明实施例1圆型钢套板、填充木块、连接套筒的连接结构示意图;
图8为图7的俯视结构示意图;
图9为图7中填充木块的结构示意图;
图10为图7中圆型钢套板和圆实木的结构示意图;
图11为图10的俯视结构示意图;
图12为本发明实施例1所述弧形连接件的结构示意图;
图13为图12的侧视结构示意图;
图14为本发明实施例拼接外环板的俯视结构示意图;
图15为本发明实施例1拼接外环板的立体结构示意图;
图16为图14中连接卡头配合的结构示意图;
图17为本发明实施例1节点安装过程示意图。
为了能够更清楚的理解本实用新型的上述目的和优点,下面结合附图对本实用新型的具体实施方式做详细地描述:
实施例1、一种圆套筒钢木组合节点,如图1和图2所示,包括FRP圆形木柱1、X型木梁2、核心连接构件3、弧形连接件4和拼接外环板5;上下相邻FRP圆形木柱1之间通过核心连接构件3相连,上下相邻FRP圆形木柱1连接后,通过弧形连接件4与X型木梁2相 连,最终通过拼接外环板5将整体固定;
如图3和4所示,分别为FRP圆形木柱1和X型木梁2的结构示意图,所述FRP圆形木柱1包括圆形木质柱6以及设置在圆形木质柱6外表面的FRP纤维布8,通过在外层缠绕FRP纤维布8实现对其结构强度的加强,沿圆形木质柱6长度方向在其内部均匀设置有多个钢筋孔,本实施例设置有4个,钢筋孔内插设有贯穿钢筋7并灌入胶体填充形成整体,其中,所述钢筋孔的直径大于贯穿钢筋7的直径4-8mm,所述贯穿钢筋7采用带肋钢筋;所述X型木梁2为成品纯木质梁,在X型木梁2的端部设有与弧形连接件4和拼接外环板5对应的螺栓孔。
参考图5-11所示,为核心连接构件的结构示意图,具体的,所述核心连接构件3包括圆型钢套板9、连接套筒10、圆实木11和填充木块12,圆实木11设置在连接套筒10内,连接套筒10为钢材质,其两端还设置有扇形拼接头14,圆型钢套板9上设置有与扇形拼接头14相配合的对接卡槽15,扇形拼接头14卡入对接卡槽15实现圆型钢套板9和连接套筒10的连接,圆型钢套板9设置在连接套筒10的上下两端,圆型钢套板9的内径与FRP圆形木柱1的外径相等,填充木块12围绕连接套筒10设置在上下两块圆型钢套板9之间,并用胶粘合固定;填充木块12上有相应木螺钉孔16,木螺钉穿过弧形连接件4、木螺钉孔16,将弧形连接件4小块固定在核心连接构件3上;圆型钢套板9上同样设置有与贯穿钢筋7相配合的钢筋孔,所述填充木块12上设置有与贯穿钢筋7相配合的通槽13以及与扇形拼接头14相配合的缺口;4根贯穿钢筋7穿过圆型钢套板9上相应钢筋孔将上下FRP圆形木柱1在轴向连接为一体,在圆型钢套板9相应侧,用对拉螺栓17拉紧贯穿钢筋7,施加预应力增强整体性,提高核心连接构件的整体性能。
所述弧形连接件4的结构示意图如图12-13所示,包括带孔弧形基板18和两块带孔弧型钢板19,两块带孔弧型钢板19背向垂直向设置在带孔弧形基板18上,且两块带孔弧型钢板19之间所形成的空间P与X型木梁2的形状匹配,在工厂焊接加工组成。如图7所示,4块弧形连接件4形成一个拼接圆,用木螺钉、带孔弧形基板18,通过木螺钉固定在填充木块12上,带孔弧型钢板19用以加紧X型木梁2;带孔弧形基板18上设有8个螺孔,与核心连接构件3的每块填充木块上每侧的4个木螺钉孔16对应,木螺钉穿过带孔弧形基板18旋入木螺钉孔16中,如图8所示,一块弧形连接件4固定在相邻两块填充木块12上;两块带孔弧型钢板19间距稍大于X型木梁2腹板厚度,带孔弧型钢板19上有竖向4个螺栓孔、水平2个螺栓孔。X型木梁2腹板插入弧形钢板19之间,水平方向螺栓穿过弧形钢板19、X型木梁2腹板、弧形钢板19螺母旋紧,竖直方向螺栓穿过拼接外环板5、X型木梁2翼缘、弧形钢板19,并用螺母旋紧。
所述拼接外环板5,由4块钢制拼接部件组成,拼接外环板5的形状如图8所示,相邻 拼接外环板5之间通过连接卡头20相连,连接卡头20与水平方向成45°夹角,传力仍通过形心线上,并用螺栓连接形成整体,拼接后对核心连接构件3中间部分起外箍作用,用以箍紧填充木块12,与弧形连接件4、X型木梁2通过螺栓连接成整体传递梁内力。
如图14所示,所述拼接外环板5包括基板21、设置在基板21一侧的弧形箍环22,基板21的表面设置有螺栓孔,基板21上还设置有连接卡头20,相邻拼接外环板5之间通过连接卡头20相连,相邻拼接外环板5连接后对核心连接构件3中间部分起外箍作用,用以箍紧填充木块12,并与弧形连接件4、X型木梁2通过螺栓连接为整体以传递梁内力.。
本实施例节点结构的连接核心区,内有实木的连接套筒通过卡槽连接圆型钢套板,填入填充木块胶接,再在贯穿钢筋上通过对拉螺栓,施加预应力加强结合,构成整体;可实现完全装配式施工,施工速度快,结构整体性好,预应力能有效增强结构抗震能力,连接套筒设计能有效保证节点竖向承载力,结合弧形连接件和拼接外环板的巧妙设计,可用于竖向承载、强度要求极高的木结构。
实施例2、基于实施例1所提出的圆套筒钢木组合节点,本实施例提出一种其安装方法,如图17所示,包括以下步骤,当然,具体实施时,以下步骤可以根据实际情况稍作改动:
第一步、将圆型钢套板9套在已注胶的FRP圆形木柱1上,在贯穿钢筋上有对拉螺栓,将内有圆实木11的连接套筒10的扇形拼接头旋转45度旋入圆型钢套板9相应侧的对接卡槽内;
第二步、把连接套筒10固定在圆型钢套板9之间,填入4块填充木块12,用胶粘合成整体;
第三步、将充填构件4安装在核心连接构件3相邻的两块填充木块的中间尾椎上,每侧用4个木螺钉穿过钢板,旋入填充木块中,使每一块充填构件4固定在相邻两块填充木块上,用木螺钉将4块弧形连接件4,安装在胶粘合成整体的填充木块12相应位置,4块弧形连接件4形成非紧密的圆套筒,但是使4块填充木块形成整体;
第四步、将所述拼接外环板5的4块部件紧靠弧形连接件4,并用螺栓连接成环,并箍紧填充木块,在弧形连接件4的上下都安装拼接外环板5,拼接外环板5安装完成后,在上面圆型钢套板的上侧,或在拼接外环板和圆形套板之间缠FRP布;
第五步、旋紧贯穿钢筋7上的对拉螺栓17,施加适宜预应力,使核心连接构件3连接紧密,加强核心连接构件整体性;
第六步、将FRP圆形木柱1插入圆型钢套板9相应侧套筒内,在钢筋孔内注胶;竖向柱和核心连接构件安装完成;
第七步、将X型木梁2的一端插入弧形连接件4的两个弧形板之间,在弧形板和X型木梁腹板上有对应的两个水平螺栓孔,插入高强螺栓连接;
竖直方向拼接外环板、X型木梁翼缘、弧形连接件的弧形板上有对应的2个螺栓孔,螺栓竖向插入孔内,使用特制垫环和螺母旋紧;
用螺栓将弧形连接件4、X型木梁2和拼接外环板5连接成一个整体,水平方向梁安装完成,整个圆套筒钢木组合节点的安装完成。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
Claims (7)
- 一种圆套筒钢木组合节点,包括FRP圆形木柱(1)和X型木梁(2),其特征在于,还包括核心连接构件(3)、弧形连接件(4)和拼接外环板(5);FRP圆形木柱(1)之间通过核心连接构件(3)相连,X型木梁(2)通过弧形连接件(4)与核心连接构件(3)相连,拼接外环板(5)设置在弧形连接件(4)的上下两侧,通过拼接外环板(5)和螺栓固定实现组合连接;所述核心连接构件(3)包括圆型钢套板(9)、连接套筒(10)、圆实木(11)和填充木块(12),圆型钢套板(9)设置在连接套筒(10)的上下两端,圆实木(11)设置在连接套筒(10)内,圆型钢套板(9)的内径与FRP圆形木柱(1)的外径相等,填充木块(12)围绕连接套筒(10)设置在上下两块圆型钢套板(9)之间,并用胶粘合固定;圆型钢套板(9)上还设有用以插入贯穿钢筋(7)的钢筋孔,FRP圆形木柱(1)上同样设置有对应的钢筋孔,贯穿钢筋(7)穿过圆型钢套板(9)上相应钢筋孔将FRP圆形木柱(1)在轴向连接为一体;所述弧形连接件(4)包括带孔弧形基板(18)和两块带孔弧型钢板(19),两块带孔弧型钢板(19)背向设置在带孔弧形基板(18)上,且两块带孔弧型钢板(19)之间所形成的空间与X型木梁(2)的形状匹配,弧形连接件(4)环绕核心连接构件(3)的外圆周设置,且带孔弧形基板(18)通过木螺钉固定在相邻的两块填充木块(12)上;所述拼接外环板(5)包括基板(21)、设置在基板(21)一侧的弧形箍环(22),基板(21)的表面设置有螺栓孔,基板(21)上还设置有连接卡头(20),相邻拼接外环板(5)之间通过连接卡头(20)相连,相邻拼接外环板(5)连接后对核心连接构件(3)中间部分起外箍作用,用以箍紧填充木块(12),并与弧形连接件(4)、X型木梁(2)通过螺栓连接为整体以传递梁内力。
- 根据权利要求1所述的圆套筒钢木组合节点,其特征在于:所述FRP圆形木柱(1)包括圆形木质柱(6)以及设置在圆形木质柱(6)外表面的FRP纤维布(8)。
- 根据权利要求1所述的圆套筒钢木组合节点,其特征在于:所述连接套筒(10)的上下两端设置有扇形拼接头(14),圆型钢套板(9)上设置有与扇形拼接头(14)相配合的对接卡槽(15)。
- 根据权利要求3所述的圆套筒钢木组合节点,其特征在于:所述填充木块(12)上设置有与贯穿钢筋(7)相配合的通槽(13)以及与扇形拼接头(14)相配合的缺口。
- 根据权利要求1所述的圆套筒钢木组合节点,其特征在于:所述连接卡头(20)与基板(21)所在平面呈45°夹角。
- 根据权利要求1所述的圆套筒钢木组合节点,其特征在于:所述圆型钢套板(9)上还设置有用以拉紧贯穿钢筋(7)的对拉螺栓(17)。
- 基于权利要求1-6任一项所述圆套筒钢木组合节点的安装方法,其特征在于:包括以下步 骤:A、将圆型钢套板(9)套在已注胶的FRP圆形木柱(1)上,将内有圆实木(11)的连接套筒(10)的扇形拼接头旋入圆型钢套板(9)相应侧的对接卡槽内;B、将连接套筒(10)固定在圆型钢套板9之间,填入4块填充木块(12),并用胶粘合成整体;C、用木螺钉将4块弧形连接件(4)安装在填充木块(12)的相应位置,且每一块充填构件(4)固定在相邻两块填充木块(12)上,4块弧形连接件(4)连接后形成一套筒围绕在核心连接构件(3)上;D、将所述拼接外环板(5)的紧靠弧形连接件(4)安装,并用螺栓连接成环,以箍紧填充木块(12);E、旋紧贯穿钢筋(7)上的对拉螺栓(17),施加适宜预应力,使核心连接构件(3)连接紧密,加强核心连接构件整体性;F、将FRP圆形木柱(1)插入圆型钢套板(9)相应侧套筒内,并在钢筋孔内注胶,完成竖向FRP圆形木柱(1)和核心连接构件(3)的安装;G、将X型木梁(2)的一端插入弧形连接件(4)的两块带孔弧型钢板(19)之间,并插入螺栓连接,通过螺栓将弧形连接件(4)、X型木梁(2)和拼接外环板(5)连接成一个整体,完成水平方向梁的安装,进而完成圆套筒钢木组合节点的安装。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020539024A JP6948736B2 (ja) | 2019-07-24 | 2019-09-30 | 円スリーブ木材鋼材複合節点及びその取付方法 |
US16/977,108 US10954663B2 (en) | 2019-07-24 | 2019-09-30 | Cylindrical sleeve-type steel-wood composite joint and the assembly method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910669607.1A CN110331782B (zh) | 2019-07-24 | 2019-07-24 | 一种圆套筒钢木组合节点及其安装方法 |
CN201910669607.1 | 2019-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021012391A1 true WO2021012391A1 (zh) | 2021-01-28 |
Family
ID=68147256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/109295 WO2021012391A1 (zh) | 2019-07-24 | 2019-09-30 | 一种圆套筒钢木组合节点及其安装方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6948736B2 (zh) |
CN (1) | CN110331782B (zh) |
WO (1) | WO2021012391A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111561049B (zh) * | 2020-05-21 | 2022-03-04 | 中国建筑第二工程局有限公司 | 抗震钢木框架结构体系及其施工方法 |
CN112127476A (zh) * | 2020-09-30 | 2020-12-25 | 江南大学 | 一种装配式梁柱节点连接装置及其应用 |
CN112431430B (zh) * | 2020-10-21 | 2022-10-28 | 北京工业大学 | 梁柱节点的加固保护装置及其安装方法 |
CN113062458B (zh) * | 2021-04-02 | 2022-06-03 | 西南科技大学 | 一种锚具及带有锚具的木结构连接节点 |
CN113047428B (zh) * | 2021-04-07 | 2022-06-21 | 青岛理工大学 | 螺纹拼接式钢木组合节点及安装方法 |
CN113279482B (zh) * | 2021-04-13 | 2022-03-08 | 青岛理工大学 | 一种模块建筑一体化连接装置及安装方法 |
CN113152666B (zh) * | 2021-04-21 | 2022-03-22 | 青岛理工大学 | 自拉结钢木组合节点及安装方法 |
CN113503058A (zh) * | 2021-07-31 | 2021-10-15 | 中冶(上海)钢结构科技有限公司 | 一种内径可调的用于圆钢管t型连接的转换装置 |
CN113668696A (zh) * | 2021-08-12 | 2021-11-19 | 中冶南方城市建设工程技术有限公司 | 一种节段拼装预应力钢木组合桁架杆件及其安装方法 |
KR102524276B1 (ko) * | 2022-11-29 | 2023-04-21 | 서동식 | 기둥과 보의 연결이음구조 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09291605A (ja) * | 1996-04-25 | 1997-11-11 | Shierutaa:Kk | 建築部材用継手装置 |
CN205116401U (zh) * | 2015-11-06 | 2016-03-30 | 南京林业大学 | 一种竹木结构快速装配式半刚性耗能节点 |
CN208668636U (zh) * | 2018-07-12 | 2019-03-29 | 上海大学 | 一种圆钢管混凝土柱与h型钢梁的装配节点 |
CN109667350A (zh) * | 2019-01-30 | 2019-04-23 | 沈阳建筑大学 | 一种基于螺杆卯榫结构的装配式框架结构节点 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86201080U (zh) * | 1986-03-03 | 1987-04-15 | 铁道部专业设计院标准处 | 齿扣型多功能脚手架 |
JP2002013204A (ja) * | 2000-06-29 | 2002-01-18 | Uesuto:Kk | 木造建築物の接合構造 |
JP5658625B2 (ja) * | 2011-06-30 | 2015-01-28 | ミサワホーム株式会社 | 柱と梁の接合構造 |
JP2013087414A (ja) * | 2011-10-13 | 2013-05-13 | Mikio Tashiro | 木造建築のハイブリット構造用接合金物 |
CN105178448B (zh) * | 2015-09-28 | 2020-04-21 | 沈阳促晋科技有限公司 | 木结构建筑梁柱连接节点结构 |
JP6638905B2 (ja) * | 2016-01-29 | 2020-01-29 | 清水建設株式会社 | 柱梁接合構造および柱梁接合方法 |
CN107338872B (zh) * | 2017-08-23 | 2019-02-05 | 青岛理工大学 | 双套筒钢结构梁柱节点及安装方法 |
CN207919763U (zh) * | 2017-12-21 | 2018-09-28 | 青岛理工大学 | 装配式自恢复圆形钢管混凝土组合节点 |
CN107893481B (zh) * | 2017-12-21 | 2019-03-15 | 青岛理工大学 | 具有恢复功能的全装配钢框架结构体系 |
-
2019
- 2019-07-24 CN CN201910669607.1A patent/CN110331782B/zh not_active Expired - Fee Related
- 2019-09-30 JP JP2020539024A patent/JP6948736B2/ja active Active
- 2019-09-30 WO PCT/CN2019/109295 patent/WO2021012391A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09291605A (ja) * | 1996-04-25 | 1997-11-11 | Shierutaa:Kk | 建築部材用継手装置 |
CN205116401U (zh) * | 2015-11-06 | 2016-03-30 | 南京林业大学 | 一种竹木结构快速装配式半刚性耗能节点 |
CN208668636U (zh) * | 2018-07-12 | 2019-03-29 | 上海大学 | 一种圆钢管混凝土柱与h型钢梁的装配节点 |
CN109667350A (zh) * | 2019-01-30 | 2019-04-23 | 沈阳建筑大学 | 一种基于螺杆卯榫结构的装配式框架结构节点 |
Also Published As
Publication number | Publication date |
---|---|
JP2021526190A (ja) | 2021-09-30 |
JP6948736B2 (ja) | 2021-10-13 |
CN110331782B (zh) | 2023-01-03 |
CN110331782A (zh) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021012391A1 (zh) | 一种圆套筒钢木组合节点及其安装方法 | |
CN110106970B (zh) | 拼装式标准层模块以及干湿工艺结合的标准层建造方法 | |
US10954663B2 (en) | Cylindrical sleeve-type steel-wood composite joint and the assembly method | |
WO2022213492A1 (zh) | Frp钢混凝土柱与钢梁组合节点及安装方法 | |
CN110644619A (zh) | 装配式限位增强钢木磨砂套筒组合节点 | |
CN106638958A (zh) | 一种装配式内嵌型梁柱节点结构 | |
WO2022062285A1 (zh) | 竹节式耗能钢管混凝土节点及安装方法 | |
CN207160226U (zh) | 一种混凝土框架的钢‑砼组合节点 | |
CN114033033B (zh) | 一种钢筋混凝土梁柱—型钢节点组合结构及其施工方法 | |
CA2999942A1 (en) | Fibre reinforced polymer structures | |
WO2022222276A1 (zh) | 自拉结钢木组合节点及安装方法 | |
CN213358962U (zh) | 一种新型装配式耗能型干式连接梁柱节点 | |
CN114108810A (zh) | Frp管材桁架拼装用复合增强型钢套管节点及安装方法 | |
WO2024060627A1 (zh) | 一种由复合连接组件制成的混凝土骨架结构及搭建方法 | |
CN115680116A (zh) | 一种装配式框架梁柱连接节点及其施工方法 | |
CN115075607A (zh) | 一种钢筋混凝土结构及加固方法 | |
CN115110796A (zh) | 梁柱节点三轴预应力异形钢板加固法 | |
CN115387465A (zh) | 一种冷弯薄壁型钢-木组合耗能节点及其安装方法 | |
CN212336010U (zh) | 一种螺母预紧式纤维锚杆连接套筒 | |
CN212336011U (zh) | 一种螺钉预紧式纤维锚杆连接套筒 | |
CN109779025B (zh) | 一种适应原竹直径变化的原竹框架钢管节点施工方法 | |
CN114108808A (zh) | 一种连接节点可调节的pvc-frp管混凝土柱与混凝土叠合梁组合结构及其安装方法 | |
CN111535646A (zh) | 一种蓄能及梯度耗能的钢结构梁柱组合及其装配施工方法 | |
CN215830089U (zh) | 一种混凝土梁金刚取孔处的加固装置 | |
CN115467470B (zh) | 提高圆cfrp-钢管混凝土受拉性能的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020539024 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19938913 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19938913 Country of ref document: EP Kind code of ref document: A1 |