WO2021012077A1 - 一种位置估算方法、设备、移动机器人及存储介质 - Google Patents

一种位置估算方法、设备、移动机器人及存储介质 Download PDF

Info

Publication number
WO2021012077A1
WO2021012077A1 PCT/CN2019/096736 CN2019096736W WO2021012077A1 WO 2021012077 A1 WO2021012077 A1 WO 2021012077A1 CN 2019096736 W CN2019096736 W CN 2019096736W WO 2021012077 A1 WO2021012077 A1 WO 2021012077A1
Authority
WO
WIPO (PCT)
Prior art keywords
actual distance
gripping device
rectification
pulse
movement
Prior art date
Application number
PCT/CN2019/096736
Other languages
English (en)
French (fr)
Inventor
陈旭
马晨旭
张倩
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980008147.6A priority Critical patent/CN111742486A/zh
Priority to PCT/CN2019/096736 priority patent/WO2021012077A1/zh
Publication of WO2021012077A1 publication Critical patent/WO2021012077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/68Structural association with auxiliary mechanical devices, e.g. with clutches or brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel

Definitions

  • the invention relates to the field of control technology, and in particular to a position estimation method, equipment, mobile robot and storage medium.
  • the mobile robot mainly determines the position information of the mobile robot by setting a position sensor on the mobile robot.
  • this method cannot determine the position of the mobile robot when there is no position sensor or there is a problem with the position sensor (such as broken). Location information of the robot. Therefore, how to more effectively determine the position of a mobile robot without a position sensor is of great significance.
  • the embodiment of the present invention provides a position estimation method, equipment, mobile robot and storage medium, which can realize position estimation without position sensor to determine the opening size of the jaws and the lifting height of the jaws. It can be positioned more accurately during the holding process, which improves the user experience.
  • an embodiment of the present invention provides a position estimation method, which is applied to a mobile robot, the mobile robot includes a gripping device, and the method includes:
  • the position of the gripping device is estimated.
  • an embodiment of the present invention provides a position estimation device, which is applied to a mobile robot, and the mobile robot includes a gripping device, including: a memory and a processor;
  • the memory is used to store programs
  • the processor is used to call the program, and when the program is executed, it is used to perform the following operations:
  • the position of the gripping device is estimated.
  • an embodiment of the present invention provides a mobile robot, including:
  • the power system configured on the fuselage is used to provide mobile power for the drone;
  • the power system includes: a power component; one or more motors for driving the power component to rotate to provide power for the mobile robot to move;
  • the processor is configured to obtain the actual distance of the movement of the gripping device; obtain the rectification pulse generated by the movement of the gripping device; determine the correspondence between each rectification pulse and the actual distance according to the actual distance and the rectification pulse of the movement of the gripping device Relationship; According to the corresponding relationship between each rectification pulse and the actual distance, estimate the position of the clamping device.
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the method described in the first aspect.
  • the rectification pulse generated by the movement of the gripping device is obtained, and the actual distance between each rectification pulse and the actual distance is determined according to the actual distance and the rectification pulse of the movement of the gripping device According to the corresponding relationship between each rectification pulse and the actual distance, the position of the gripping device can be estimated, and the position of the gripping device can be estimated to determine the opening of the gripper without a position sensor. Size, so as to better grip or put down objects, and reduce costs.
  • Figure 1a is a schematic structural diagram of a clamping jaw provided by an embodiment of the present invention.
  • Fig. 1b is a schematic diagram of a three-dimensional structure of a driving component provided by an embodiment of the present invention
  • FIG. 1c is another three-dimensional structural diagram of a driving component provided by an embodiment of the present invention.
  • Figure 1d is a schematic plan view of a drive component provided by an embodiment of the present invention.
  • Figure 1e is a schematic plan view of another drive component provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the current of a brushed DC motor provided by an embodiment of the present invention
  • Figure 3 is a schematic diagram of a current and rectified pulse provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a position estimation system provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a location estimation method provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a position estimation device provided by an embodiment of the present invention.
  • the position estimation method provided in the embodiment of the present invention can be applied to a position estimation system provided in a mobile robot and executed by a position estimation device in the position estimation system.
  • the position estimation system includes a position estimation device and a mobile robot.
  • the position estimation device may be installed on the gripping device; in some embodiments, the position estimation device may be spatially independent of the gripping device.
  • a communication connection is established between the position estimation device and the mobile robot.
  • the mobile robot includes a clamping device, and the clamping device may include a clamping jaw.
  • the clamping jaw includes a driving part, a first clamping jaw, and a second clamping jaw; in some embodiments, the driving part includes But it is not limited to one or more motors, gears, lead screws and other components; in some embodiments, the motor is used to provide power for the clamping device to implement the clamping action and/or power for the lifting movement, the motor
  • the rotation of the clamping device drives the clamping jaws to perform clamping actions and/or lifting movements; in some embodiments, the clamping action includes the clamping jaws from closing to opening and/or from opening to closing Movement; the lifting movement includes the gripping device in a direction perpendicular to the horizontal plane from bottom to top or from top to bottom.
  • the motor includes, but is not limited to, a DC brushed motor.
  • the position estimation device can detect the movement state of the gripping device on the mobile robot, and obtain the rectification pulse generated by the movement state of the gripping device, thereby estimating the gripping device based on the movement state and the rectification pulse of the gripping device.
  • the position of the claw can detect the movement state of the gripping device on the mobile robot, and obtain the rectification pulse generated by the movement state of the gripping device, thereby estimating the gripping device based on the movement state and the rectification pulse of the gripping device. The position of the claw.
  • the driving part in the gripping device of the mobile robot can drive the gripping jaws to perform gripping actions, raising or lowering; in some embodiments, the schematic diagram of the structure of the gripping jaws is shown in Fig. 1a, Figure 1a is a schematic structural diagram of a clamping jaw provided by an embodiment of the present invention.
  • the clamping jaws include a driving part 100, a first clamping jaw 101, and a second clamping jaw 102.
  • the driving component 100 can drive the first clamping jaw 101 and the second clamping jaw 102 to perform a clamping action; in some embodiments, the clamping action includes the first clamping jaw 101 And the process of the second jaw 102 from closing to opening and/or from opening to closing.
  • the driving component 100 can drive the first clamping jaw 101 and the second clamping jaw 102 to raise or lower.
  • FIG. 1b, FIG. 1c, and FIG. 1d can be taken as examples for illustration, where FIG. 1b is A schematic diagram of a three-dimensional structure of a driving component provided by an embodiment of the present invention.
  • FIG. 1c is another schematic diagram of a three-dimensional structure of a driving component provided by an embodiment of the present invention.
  • FIG. 1d is a plane view of a driving component provided by an embodiment of the present invention. Schematic.
  • the driving component 100 includes two connecting pieces 10 and a power mechanism 20.
  • the two connecting pieces 10 are respectively located on both sides of the power mechanism 20, and the connecting piece 10 includes a rack portion 11, The rack portion 11 is connected to the power mechanism 20.
  • the power mechanism 20 includes a motor 21 and a transmission assembly 22.
  • the motor 21 includes a motor shaft 211.
  • the transmission assembly 22 includes a worm 221 arranged on the motor shaft 211 and a gear assembly 222 connected to the worm 221 and the rack portion 11 respectively.
  • the number is two, and the two gear assemblies 222 are respectively located on both sides of the worm 221, and each gear assembly 222 is connected to the worm 221 and the connecting member 10 respectively.
  • each gear assembly 222 includes a first gear 22211 and a second gear 22212 that are coaxially arranged and fixedly connected, and the two are coaxially arranged and fixedly connected.
  • the first gear 22211 is connected with the worm 221
  • the second gear 22212 is connected with the rack portion 11.
  • the driving part 100 adopts a combination of worm gear transmission and rack-and-pinion transmission for transmission, so that the driving part 100 has transmission self-locking, which can effectively protect the motor 21 when working to lift heavy objects, and reduce the burden on the motor 21
  • the performance requirement of the locked rotor protection reduces energy consumption, and can also reduce the volume of the power mechanism 20 and expand the application range of the drive component 100.
  • symmetrical transmission chains are provided on both sides of the worm 221, so that the power output can be symmetrically transmitted to both sides, and the transmission chain and the connecting member 20 are uniformly stressed, thereby ensuring the stability and reliability of the driving component 100 up and down.
  • the driving component 100 can drive the first clamping jaw 101 and the second clamping jaw 102 to perform an open object dropping operation or a closed clamping operation.
  • the driving part 100 may be any driving part in the prior art, for example, the driving part may be an air cylinder.
  • the piston rod of the air cylinder is along a direction parallel to the straight line where the first clamping jaw 101 and the second clamping jaw 102 are arranged, and is fixed to the first clamping jaw 101.
  • the piston installed in the cylinder barrel will reciprocate in the cylinder along the axis of the cylinder under the drive of the gas, so that the piston rod connected to the piston also moves along the axis of the cylinder.
  • the reciprocating movement drives the first clamping jaw 101 fixed therewith to move along the above-mentioned linear direction, so that the first clamping jaw 101 and the second clamping jaw 102 cooperate to clamp or put down an object.
  • the driving component may be a linear motor.
  • the motor shaft of the linear motor is parallel to the linear direction in which the first clamping jaw 101 and the second clamping jaw 102 are arranged, and is fixed to the first clamping jaw 101.
  • the linear motor When the linear motor is started, its stator will generate an excitation magnetic field to drive the mover to rotate. Because the mover and the motor shaft are screwed together, the motor shaft is driven to move linearly, thereby driving the first jaw 101 along The linear movement makes the first clamping jaw 101 and the second clamping jaw 102 cooperate to clamp or put down an object.
  • the driving component may also include: a lead screw and a motor 115a.
  • FIG. 1e is taken as an example for illustration.
  • FIG. 1e is a schematic plan view of another driving component according to an embodiment of the present invention.
  • the first clamping jaw 101 includes a first clamping arm 111a and a second clamping arm 111b
  • the second clamping jaw 102 includes a third clamping arm 113a and a fourth clamping arm 113b.
  • 115b is drivingly connected with the motor shaft of the motor 115a, and the nut 115c provided on the screw is fixed to the first clamping jaw 101.
  • the screw 115b of the lead screw can be sleeved and fixed on the motor shaft of the motor 115a to realize the transmission connection of the screw 115b and the motor shaft of the motor 115a.
  • the motor shaft of the motor 115a drives the screw 115b connected to it to rotate, and then drives the nut 115c installed on the screw 115b to move linearly along the axis of the screw 115b, and then drives the first fixed with the nut 115c.
  • the jaw 101 moves in a linear direction. By controlling the forward and reverse rotation of the motor, it is very convenient to drive the first clamping jaw 101 to reciprocate along the axis of the screw 115b through the nut 115c to clamp or put down the object.
  • the motor in the gripping device of the mobile robot may include a brushed DC motor.
  • the brushed DC motor can make the current periodically fluctuate during the rotation, and each mechanical cycle can be rotated. Including three current fluctuations.
  • FIG. 2 is a schematic diagram of the current of a brushed DC motor provided by an embodiment of the present invention.
  • the current generated by the rotation of the brushed DC motor exhibits periodic fluctuations, such as a cycle from current 201 to current 202, a cycle from current 202 to current 203, and a cycle from current 203 to current 204 , Among them, the current in each cycle has three current fluctuations.
  • the brushed DC motor can drive the gripping device to move during the rotation.
  • the gripping device movement includes a gripping action or a lifting movement of the gripping device.
  • the rectifying pulse can be determined according to the current generated by the brushed DC motor. Therefore, the position estimation device can be based on the rectifying pulse generated by the brushed DC motor of the clamping device and the actual distance of the clamping device. To estimate the location of the gripping device. Through this embodiment, the position of the clamping device can be determined without a position sensor, which reduces the cost and complexity and improves the efficiency of position estimation.
  • the position estimating device estimates the position of the gripper jaws based on the rectified pulse generated by the brushed DC motor of the gripping device .
  • the dead zone voltage can be set according to the preset compensation value to rectify the current.
  • the dead zone voltage means that even if a forward voltage is applied, it must reach a certain level before conduction starts. This threshold is called the dead zone voltage.
  • Figure 3 is a schematic diagram of a current and rectified pulse provided by an embodiment of the present invention.
  • a brush motor drives a clamping device to perform a clamping action to generate a current waveform 31.
  • the current The waveform 31 corresponds to the rectified pulse 32.
  • the preset compensation value 33 is ⁇ 0.1v, it can be determined that the current waveform 31 is greater than 0 when the current waveform 31 is greater than +0.1 or less than -0.1.
  • the position estimation device may count the number of rectifying pulses generated by the clamping action of the clamping device. In some embodiments, the position estimation device can count the number of rectifying pulses generated during the entire process of the gripping device from closing to fully opening. In some embodiments, the position estimation device can count the number of rectification pulses generated during the entire process of the gripping device from fully opened to closed.
  • the position estimation device after the position estimation device counts the number of rectification pulses generated by the gripping action of the gripping device, it can mark the actual distance of the gripping action performed by the gripping device and the rectification pulses generated, and mark it according to After marking the actual distance and the rectification pulse, the corresponding relationship between each rectification pulse and the actual distance is determined, so as to estimate the position of the gripping device according to the corresponding relationship between each rectification pulse and the actual distance.
  • the position estimation device can mark the actual distance of the gripping device from closed to fully opened and the rectification pulse generated; in some embodiments, the position estimation device can mark the gripping device. The actual distance of the device from fully opened to closed and the rectified pulse generated are marked.
  • the position estimating device can determine whether the gripping device is in full tension. In the open or closed state, if it is determined that the gripping device is in a fully opened or closed state, the estimated position of the gripping device can be calibrated.
  • the position of the gripping device is estimated by the rectifying pulse of the current generated by the rotation of the motor and the actual distance of the gripping device of the mobile robot performing the gripping action, which can realize the estimation of the position of the gripping device without a position sensor.
  • the position of the gripping device is estimated by the rectifying pulse of the current generated by the rotation of the motor and the actual distance of the gripping device of the mobile robot performing the gripping action, which can realize the estimation of the position of the gripping device without a position sensor.
  • FIG. 4 is a schematic structural diagram of a position estimation system according to an embodiment of the present invention.
  • the position estimation system includes: a position estimation device 41 and a mobile robot 42, wherein the mobile robot 42 includes a clamping device 421.
  • the position estimation device 41 and the mobile robot 42 are independent of each other.
  • the position estimation device 41 is set in a cloud server and establishes a communication connection with the mobile robot 42 through a wireless communication connection.
  • the position estimation device 41 can obtain the actual distance moved by the gripping device 421, and obtain the rectified pulse generated by the movement of the gripping device 421, so as to obtain the actual distance moved by the gripping device 421 and
  • the rectified pulse determines the corresponding relationship between each rectified pulse and the actual distance, and further estimates the position of the gripping device 421 according to the corresponding relationship between each rectified pulse and the actual distance.
  • FIG. 5 is a schematic flowchart of a position estimation method provided by an embodiment of the present invention.
  • the method may be executed by a position estimation device, wherein the specific explanation of the position estimation device is as described above.
  • the method of the embodiment of the present invention includes the following steps.
  • the position estimation device can obtain the actual distance of the movement of the gripping device on the mobile robot.
  • the movement of the gripping device may be performed by driving the gripping device by a DC brush motor.
  • the position estimation device may set the dead zone voltage according to a preset compensation value before acquiring the actual distance of the clamping device to perform the clamping action to rectify the current.
  • the position estimation device when the position estimation device obtains the actual distance of movement of the gripping device, it may obtain the actual distance of the gripping device performed by the gripping device.
  • the actual distance for the gripping device to perform the gripping action may include the distance from closed to open of the gripping device in the gripping device; in some embodiments, the gripping device performs The actual distance of the gripping action may include the distance from open to closed of the gripping device in the gripping device; in some embodiments, the actual distance for the gripping device to perform the gripping action may include the gripping device The distance of the middle jaw from closing to opening and from opening to closing.
  • the gripping action of the gripping device includes the gripping device being closed to fully opened; and/or, the gripping device is being fully opened to closed.
  • the position estimation device when the position estimation device obtains the actual distance of movement of the gripping device, it may obtain the actual distance of the lifting movement of the gripping device.
  • the lifting movement of the gripping device includes the lifting of the gripping device in a vertical direction; and/or, the lifting movement of the gripping device includes the lifting of the gripping device in a vertical direction. Go up and down.
  • the lifting movement of the gripping device includes lifting the gripping device in a vertical direction from bottom to top; the position estimation device determines each of the gripping devices according to the actual distance of movement of the gripping device and the rectification pulse.
  • the position estimation device determines each of the gripping devices according to the actual distance of movement of the gripping device and the rectification pulse.
  • the lifting motion of the gripping device includes the gripping device falling from top to bottom in a vertical direction; the position estimation device determines each of the gripping devices according to the actual distance of movement of the gripping device and the rectification pulse.
  • the rectification pulse corresponds to the actual distance
  • the number of rectification pulses generated by the gripping device falling from top to bottom in the vertical direction can be obtained, and the actual distance of the gripping device falling from top to bottom in the vertical direction can be obtained. Mark with the number of rectification pulses, so as to determine the corresponding relationship between each rectification pulse and the actual distance according to the actual distance and rectification pulse after marking.
  • the lifting movement of the gripping device includes the lifting and lowering of the gripping device in a vertical direction; the position estimation device is based on the actual distance and movement of the gripping device.
  • Rectification pulse when determining the corresponding relationship between each rectification pulse and the actual distance, the number of rectification pulses generated during the vertical direction of lifting and falling from the top to the bottom of the gripping device can be obtained, and the total The actual distance and the number of rectification pulses in the process of lifting and falling from the top to the bottom of the gripping device in the vertical direction are marked, so that the actual distance and the rectification pulse after the marking are used to determine the difference between each rectification pulse and the actual Correspondence of distance.
  • S502 Obtain a rectification pulse generated by the movement of the gripping device.
  • the position estimation device can obtain the rectified pulse generated by the movement of the gripping device.
  • the rectifying pulse is generated by the rotation of the brushed DC motor.
  • the position estimation device may obtain the rectified pulse generated by the clamping action of the clamping device; in some embodiments, the position estimation device may obtain the rectified pulse generated by the lifting motion of the clamping device .
  • S503 Determine the correspondence between each rectified pulse and the actual distance according to the actual distance of movement of the gripping device and the rectified pulse.
  • the position estimation device may determine the correspondence between each rectified pulse and the actual distance based on the actual distance moved by the gripping device and the rectified pulse.
  • the position estimation device may determine the correspondence between each rectification pulse and the actual distance based on the actual distance and the rectification pulse of the gripping action performed by the gripping device.
  • the gripping action of the gripping device includes the gripping device being closed to fully opened; the position estimation device is performing the gripping action according to the actual distance and rectification of the gripping device.
  • each rectification pulse and the actual distance When determining the correspondence between each rectification pulse and the actual distance, the number of rectification pulses generated by the gripping device from closed to fully opened can be obtained, and the actual value of the gripping device from closed to fully opened The distance and the number of rectification pulses are marked, so that the corresponding relationship between each rectification pulse and the actual distance is determined according to the actual distance and the rectification pulse after the marking.
  • the number of rectifying pulses generated by the jaws from closed to fully opened is 10
  • the number of rectifying pulses from closed to fully opened Mark the actual distance of 20cm and the number of rectification pulses of 10
  • the corresponding relationship between each rectification pulse and the actual distance of 20m can be determined according to the actual distance of 20cm after marking and the rectification pulse 10.
  • the actual distance corresponding to each rectification pulse is 2cm .
  • the gripping action of the gripping device includes the gripping device from fully opened to closed; the position estimation device is based on the actual distance and rectification pulse of the gripping action of the gripping device,
  • the position estimation device is based on the actual distance and rectification pulse of the gripping action of the gripping device.
  • the number of rectification pulses generated by the gripping device from fully opened to closed can be obtained, and the actual distance and the actual distance of the gripping device from fully opened to closed can be obtained.
  • the number of rectified pulses is marked, so that the corresponding relationship between each rectified pulse and the actual distance is determined according to the actual distance and the rectified pulse after the mark.
  • the number of rectifying pulses generated by the jaws from fully opened to closed is 20.
  • the actual distance between each rectification pulse and the actual distance 20m can be determined according to the actual distance 20cm after marking and the rectification pulse 20 as the actual distance corresponding to each rectification pulse It is 1cm.
  • the gripping action of the gripping device includes the gripping device from closed to fully opened and from fully opened to closed; the position estimation device is performing the gripping according to the gripping device. Taking the actual distance of the action and the rectifying pulse, when determining the corresponding relationship between each rectifying pulse and the actual distance, the rectifying pulse generated during the process of closing to fully opening and from fully opening to closing of the gripping device can be obtained. The actual distance and the number of rectification pulses in the process of the clamping device from closed to fully opened and from fully opened to closed and the number of rectification pulses are marked, so as to determine each Correspondence between rectified pulse and actual distance.
  • the rectifying pulses generated by the jaws from closed to fully opened and from fully opened to closed are obtained.
  • the number of times is 40. Mark the actual distance 40cm from fully opened to closed and the number of rectification pulses of 40. Then you can determine the actual distance between each rectification pulse and the actual The corresponding relationship for a distance of 40m is that the actual distance corresponding to each rectification pulse is 1cm.
  • the position estimation device may determine the correspondence between each rectification pulse and the actual distance based on the actual distance of the lifting movement of the gripping device and the rectification pulse.
  • S504 Estimate the position of the gripping device according to the correspondence between each rectification pulse and the actual distance.
  • the position estimation device can estimate the position of the gripping device according to the corresponding relationship between each rectified pulse and the actual distance.
  • the position estimation device obtains the number of rectification pulses in the process from fully closed to open of the gripper is 5. It can be estimated that the position of the clamping jaw is 5 cm away from the closed position of the clamping jaw, that is, the current first clamping jaw of the clamping jaw is 2.5 cm away from the closed position of the clamping jaw, and the current second The distance between the two clamping jaws is 2.5 cm from the closed position of the clamping jaws.
  • the position estimation device since there are errors in the process of rectifying and counting pulses, if the estimation is always performed based on the calibrated data, the error will become larger and larger, and it may even become unusable in the end. Therefore, the position estimation device needs to perform position calibration on the gripping device.
  • the position estimation device may determine whether the clamping device is fully opened or closed after estimating the position of the clamping device according to the corresponding relationship between each rectification pulse and the actual distance. When it is determined that the clamping device is in a fully opened or closed state, the position of the clamping device is calibrated.
  • the position estimation device when the position estimation device determines that the gripping device is in a fully opened or closed state, when calibrating the position of the gripping device, it can perform a correction based on a preset error compensation value.
  • the position of the gripping device when it is fully opened or closed is compensated, and the compensated position is determined to be the actual position when the gripping device is fully opened or closed.
  • the position estimation device estimates that the distance from closed to fully opened jaws is 9cm, and the preset error compensation value is 1cm, it can be determined that the compensated distance from closed to fully opened jaws is 10cm. Then the next time from fully opened to closed, it will start from 10cm instead of 9cm.
  • the position estimation device can obtain the actual distance of the movement of the gripping device, and obtain the rectification pulse generated by the movement of the gripping device, and determine each The corresponding relationship between the rectified pulse and the actual distance, so as to estimate the position of the gripping device according to the corresponding relationship between each rectified pulse and the actual distance.
  • the position of the gripping device can be estimated to determine the size of the opening of the gripper without a position sensor, so as to better grip or put down the object.
  • FIG. 6 is a schematic structural diagram of a position estimation device according to an embodiment of the present invention.
  • the device includes a memory 601, a processor 602, and a data interface 603;
  • the memory 601 may include a volatile memory (volatile memory); the memory 601 may also include a non-volatile memory (non-volatile memory); the memory 601 may also include a combination of the foregoing types of memories.
  • the processor 602 may be a central processing unit (CPU).
  • the processor 602 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the foregoing PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the processor 602 is configured to call the program, and when the program is executed, it is configured to perform the following operations:
  • the position of the gripping device is estimated.
  • processor 602 obtains the actual distance of the movement of the gripping device, it is further configured to:
  • processor 602 obtains the actual distance moved by the gripping device, it is specifically configured to:
  • clamping action of the clamping device includes the clamping device being closed to fully opened; and/or,
  • the clamping action of the clamping device includes the clamping device being fully opened to closed.
  • the gripping action of the gripping device includes the gripping device from being closed to fully opened; the processor 602 determines that each rectification pulse is related to the actual distance of the movement of the gripping device and the rectification pulse. When the actual distance corresponds, it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the gripping action of the gripping device includes the gripping device from fully opened to closed; the processor 602 determines the difference between each rectification pulse and the rectification pulse according to the actual distance moved by the gripping device and the rectification pulse.
  • the actual distance it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the gripping action of the gripping device includes the gripping device from closed to fully opened and from fully opened to closed; the processor 602 according to the actual distance of the gripping device and the rectification pulse When determining the corresponding relationship between each rectified pulse and the actual distance, it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the processor 602 is further configured to:
  • the position of the clamping device is calibrated.
  • the processor 602 determines that the gripping device is in a fully opened or closed state, when calibrating the position of the gripping device, it is specifically configured to:
  • the compensated position is the actual position when the gripping device is fully opened or closed.
  • processor 602 obtains the actual distance moved by the gripping device, it is specifically configured to:
  • the lifting movement of the gripping device includes lifting the gripping device in a vertical direction from bottom to top; and/or,
  • the lifting movement of the gripping device includes the lowering of the gripping device in a vertical direction.
  • the lifting movement of the gripping device includes lifting the gripping device in a vertical direction from bottom to top; the processor 602 determines that each rectification pulse is related to the actual distance of the movement of the gripping device and the rectification pulse When the actual distance corresponds, it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the lifting movement of the gripping device includes the gripping device falling from top to bottom in a vertical direction; the processor 602 determines that each rectification pulse is related to the actual distance of the movement of the gripping device and the rectification pulse When the actual distance corresponds, it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the lifting movement of the gripping device includes the lifting and lowering of the gripping device in a vertical direction; the processor 602 according to the actual distance and rectification pulse of the movement of the gripping device, When determining the corresponding relationship between each rectified pulse and the actual distance, it is specifically used for:
  • the corresponding relationship between each rectification pulse and the actual distance is determined.
  • the movement of the gripping device is executed by a DC brushed motor driving the gripping device.
  • the rectifying pulse is generated by the rotation of the brushed DC motor.
  • the position estimation device can obtain the actual distance of the movement of the gripping device, and obtain the rectification pulse generated by the movement of the gripping device, and determine each The corresponding relationship between the rectified pulse and the actual distance, so as to estimate the position of the gripping device according to the corresponding relationship between each rectified pulse and the actual distance.
  • the position of the gripping device can be estimated to determine the size of the opening of the gripper without a position sensor, so as to better grip or put down the object.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method described in the embodiment of the present invention is implemented, and can also be implemented The device in the corresponding embodiment of the present invention will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the device described in any of the foregoing embodiments, such as a hard disk or memory of the device.
  • the computer-readable storage medium may also be an external storage device of the device, such as a plug-in hard disk equipped on the device, a Smart Media Card (SMC), or a Secure Digital (SD) card , Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the terminal.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种位置估算方法、位置估算设备(41)、移动机器人(42)及存储介质,位置估算方法包括:获取夹取设备(421)运动的实际距离;获取夹取设备(421)运动产生的整流脉冲;根据夹取设备(421)运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;根据每个整流脉冲与实际距离的对应关系,估算夹取设备(421)的位置。

Description

一种位置估算方法、设备、移动机器人及存储介质 技术领域
本发明涉及控制技术领域,尤其涉及一种位置估算方法、设备、移动机器人及存储介质。
背景技术
目前,移动机器人主要是通过在移动机器人上设置位置传感器来确定所述移动机器人的位置信息,然而,这种方式在没有位置传感器或者位置传感器出现问题(如坏掉)的时候,不能确定出移动机器人的位置信息。因此,如何更有效地确定移动机器人在没有位置传感器的情况下的位置具有十分重要的意义。
发明内容
本发明实施例提供了一种位置估算方法、设备、移动机器人及存储介质,可以实现在无位置传感器的条件下进行位置估算以确定夹爪张开的大小和爪夹的升降高度,从而在夹持物品过程中能够更加精准地定位,提升了用户体验。
第一方面,本发明实施例提供了一种位置估算方法,应用于移动机器人,所述移动机器人包括夹取设备,所述方法包括:
获取所述夹取设备运动的实际距离;
获取所述夹取设备运动产生的整流脉冲;
根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;
根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
第二方面,本发明实施例提供了一种位置估算设备,应用于移动机器人,所述移动机器人包括夹取设备,包括:存储器和处理器;
所述存储器,用于存储程序;
所述处理器,用于调用所述程序,当所述程序被执行时,用于执行以下操作:
获取所述夹取设备运动的实际距离;
获取所述夹取设备运动产生的整流脉冲;
根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;
根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
第三方面,本发明实施例提供了一种移动机器人,包括:
机身;
配置在机身上的动力系统,用于为无人机提供移动动力;
所述动力系统包括:动力部件;一个或多个电机,用于驱动动力部件转动以提供移动机器人移动的动力;
处理器,用于获取夹取设备运动的实际距离;获取所述夹取设备运动产生的整流脉冲;根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
第四方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面所述的方法。
本发明实施例,通过获取夹取设备运动的实际距离,获取所述夹取设备运动产生的整流脉冲,并根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,从而根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置,可以实现在没有位置传感器的情况下估算夹取设备的位置以确定夹爪张开的大小,从而更好地夹取或放下物体,并降低了成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本发明实施例提供的一种夹爪的结构示意图;
图1b是本发明实施例提供的一种驱动部件的立体结构示意图;
图1c是本发明实施例提供的一种驱动部件的另一立体结构示意图;
图1d是本发明实施例提供的一种驱动部件的平面结构示意图;
图1e是本发明实施例提供的另一种驱动部件的平面结构示意图;
图2是本发明实施例提供的一种有刷直流电机的电流示意图;
图3是本发明实施例提供的一种电流和整流脉冲的示意图;
图4是本发明实施例提供的一种位置估算系统的结构示意图;
图5是本发明实施例提供的一种位置估算方法的流程示意图;
图6是本发明实施例提供的一种位置估算设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例中提供的位置估算方法可以应用于移动机器人中设置的位置估算系统,并由该位置估算系统中的位置估算设备执行,所述位置估算系统包括位置估算设备和移动机器人。在某些实施例中,所述位置估算设备可以安装在夹取设备上;在某些实施例中,所述位置估算设备可以在空间上独立于夹取设备。在某些实施例中,位置估算设备和移动机器人之间建立通信连接。下面在介绍本发明实施例之前,对所述移动机器人的结构进行示意性说明。
所述移动机器人上包括夹取设备,所述夹取设备可以包括夹爪,所述夹爪包括驱动部件、第一夹爪、第二夹爪;在某些实施例中,所述驱动部件包括但不限于一个或多个电机、齿轮、丝杠等部件;在某些实施例中,所述电机用于为夹取设备提供实施夹取动作的动力和/或升降运动的动力,所述电机的转动带动夹取设备上夹爪实施夹取动作和/或升降运动;在某些实施例中,所述夹取动作包括所述夹爪从闭合到张开和/或从张开到闭合的运动;所述升降运动 包括所述夹取设备在垂直于水平面的方向从下往上抬升或从上往下下降。在某些实施例中,所述电机包括但不限于直流有刷电机。
本发明实施例中,位置估算设备可以检测移动机器人上夹取设备的运动状态,并获取到由夹取设备的运动状态生成的整流脉冲,从而根据夹取设备的运动状态和整流脉冲估算出夹爪的位置。
在一个实施例中,所述移动机器人的夹取设备中的驱动部件可以带动夹爪实施夹取动作、抬升或下降;在一些实施例中,所述夹爪的结构示意图如图1a所示,图1a是本发明实施例提供的一种夹爪的结构示意图。如图1a所示,所述夹爪包括驱动部件100、第一夹爪101、第二夹爪102。在某些实施例中,所述驱动部件100可以带动第一夹爪101和第二夹爪102实施夹取动作;在某些实施例中,所述夹取动作包括所述第一夹爪101和第二夹爪102从闭合到张开和/或从张开到闭合的过程。
在一些实施例中,所述驱动部件100可以带动第一夹爪101和第二夹爪102进行抬升或下降,具体可以图1b、图1c、图1d为例进行举例说明,其中,图1b是本发明实施例提供的一种驱动部件的立体结构示意图,图1c是本发明实施例提供的一种驱动部件的另一立体结构示意图,图1d是本发明实施例提供的一种驱动部件的平面结构示意图。结合1b、图1c、图1d所示,所述驱动部件100包括两个连接件10和动力机构20,两个连接件10分别位于动力机构20的两侧,连接件10包括齿条部11,齿条部11与动力机构20连接。动力机构20包括电机21和传动组件22,电机21包括电机轴211,传动组件22包括设在电机轴211的蜗杆221以及分别与蜗杆221和齿条部11连接的齿轮组件222,齿轮组件222的数量为两个,两个齿轮组件222分别位于蜗杆221的两侧,每个齿轮组件222分别与蜗杆221和连接件10连接。其中,以蜗杆221一侧的齿轮组件222举例,每个齿轮组件222均包括同轴设置且固定连接的第一齿轮22211和第二齿轮22212,两者同轴设置且固定连接。第一齿轮22211与蜗杆221连接,第二齿轮22212与齿条部11连接。
所述驱动部件100采用蜗杆齿轮传动与齿轮齿条传动结合的方式进行传动,从而使得驱动部件100具备传动自锁性,在工作抬升重物时能够有效的保护电机21,降低了对电机21的堵转保护的性能需求,降低了能耗,而且也能缩小动力机构20的体积,扩大驱动部件100的应用范围。同时,在蜗杆221 的两侧设置对称的传动链,可以使动力输出时对称传向两侧,传动链和连接件20受力均匀,从而保证驱动部件100上下升降的稳定性和可靠性。
在一个实施例中,所述驱动部件100可以带动第一夹爪101和第二夹爪102进行张开的放下物体操作或闭合的夹取操作。在某些实施例中,驱动部件100可以是现有技术中的任意驱动部件,例如,驱动部件可以是气缸。其中,气缸的活塞杆沿着平行于设置第一夹爪101和第二夹爪102的直线方向、并与第一夹爪101固定。当气缸启动后,安装在气缸的缸筒内的活塞会在气体的驱动下在缸筒内沿着缸筒的轴线做往复运动,使得与该活塞连接的活塞杆也沿着缸筒的轴线做往复运动,从而带动与其固定的第一夹爪101沿着上述直线方向运动,进而使第一夹爪101和第二夹爪102配合以夹取或者放下物体。
在另一些实施方式中,驱动部件可以是直线电机。其中,直线电机的电机轴平行于设置第一夹爪101和第二夹爪102的直线方向、并与第一夹爪101固定。当直线电机启动时,其定子会产生励磁磁场,从而驱动动子旋转,由于动子与电机轴之间为螺纹配合结构,进而驱动电机轴做直线运动,以此带动第一夹爪101沿着直线方向运动,使得第一夹爪101与第二夹爪102配合以夹取或者放下物体。
在一个实施例中,驱动部件也可以包括:丝杠以及电机115a。具体以图1e为例进行举例说明,图1e是本发明实施例提供的另一种驱动部件的平面结构示意图。如图1e所示,第一夹爪101包括第一夹紧臂111a和第二夹紧臂111b,第二夹爪102包括第三夹紧臂113a和第四夹紧臂113b,丝杠的螺杆115b与电机115a的电机轴传动连接,丝杠上设置的螺母115c与第一夹爪101固定。在具体装配时,可以将丝杠的螺杆115b套设并固定在电机115a的电机轴上,以实现螺杆115b与电机115a的电机轴的传动连接。当电机115a启动后,电机115a的电机轴带动与其传动连接的螺杆115b转动,继而驱动安装在螺杆115b上的螺母115c沿着螺杆115b的轴线方向作直线运动,进而驱动与螺母115c固定的第一夹爪101沿直线方向运动。通过控制电机正反转,可以非常方便的通过螺母115c驱动第一夹爪101沿着螺杆115b的轴线作往复运动,以夹取或者放下物体。
在一个实施例中,所述移动机器人的夹取设备中的电机可以包括有刷直流电机,所述有刷直流电机在转动过程中可以使电流有周期性的波动,并且每转 动一个机械周期可以包括三次电流波动。在某些实施例中,所述有刷直流电机产生的电流特性如图2所示,图2是本发明实施例提供的一种有刷直流电机的电流示意图。如图2所示,所述有刷直流电机转动产生的电流呈现周期性的波动,如从电流201至电流202为一个周期,电流202至电流203为一个周期,电流203至电流204为一个周期,其中,在每个周期内的电流均有三次电流波动。
在一个实施例中,有刷直流电机在转动过程中可以驱动夹取设备运动,在某些实施例中,所述夹取设备运动包括夹取设备的夹取动作或升降运动。在默许实施例中,根据所述有刷直流电机产生的电流可以确定整流脉冲,因此,位置估算设备可以根据所述夹取设备的有刷直流电机产生的整流脉冲和夹取设备运动的实际距离来估算夹取设备的位置。通过这种实施方式可以不需要位置传感器也能确定出夹取设备的位置,降低了成本和复杂度,提高了位置估算的效率。
在一个实施例中,由于整流脉冲在0电平附近的波形会有一定的误差,因此,位置估算设备在根据所述夹取设备的有刷直流电机产生的整流脉冲来估算夹爪的位置之前,可以根据预设补偿值设置死区电压,以对电流进行整流。在某些实施例中,所述死区电压指的是即使加正向电压,也必须达到一定大小才开始导通,这个阈值叫死区电压。
以图3为例,图3是本发明实施例提供的一种电流和整流脉冲的示意图,如图3所示,假设有刷电机驱动夹取设备实施夹取动作产生电流波形31,所述电流波形31对应整流脉冲32,如果预设补偿值33为±0.1v,则可以确定当电流波形31大于+0.1或小于-0.1时,才认为电流波形31大于0。
在一个实施例中,在根据预设补偿值设置死区电压之后,位置估算设备可以对夹取设备的夹取动作产生的整流脉冲的次数进行计数。在某些实施例中,所述位置估算设备可以对夹取设备从闭合到完全张开整个过程中产生的整流脉冲的次数进行计数。在某些实施例中,所述位置估算设备可以对夹取设备从完全张开到闭合整个过程中产生的整流脉冲的次数进行计数。
在一个实施例中,位置估算设备在对夹取设备的夹取动作产生的整流脉冲的次数进行计数之后,可以对夹取设备实施夹取动作的实际距离和产生的整流脉冲进行标记,并根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实 际距离的对应关系,从而根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
在某些实施例中,所述位置估算设备可以对夹取设备从闭合到完全张开的实际距离和产生的整流脉冲进行标记;在某些实施例中,所述位置估算设备可以对夹取设备从完全张开到闭合的实际距离和产生的整流脉冲进行标记。
在一个实施例中,由于整流以及对整流脉冲进行计数的过程中存在一定的误差,因此,位置估算设备在估算出所述夹取设备的位置后,可以确定所述夹取设备是否处于完全张开或闭合的状态,如果确定出所述夹取设备处于完全张开或闭合的状态,则可以对估算得到的夹取设备的位置进行校准。
本发明实施例,通过电机转动产生的电流的整流脉冲和移动机器人的夹取设备实施夹取动作的实际距离估算夹取设备的位置,可以实现在没有位置传感器的情况下估算出夹取设备位置以确定夹爪张开的大小,从而更好地夹取或放下物体。
下面结合图4对本发明实施例提供的位置估算系统进行示意性说明。
请参见图4,图4是本发明实施例提供的一种位置估算系统的结构示意图。所述位置估算系统包括:位置估算设备41和移动机器人42,其中,所述移动机器人42包括夹取设备421。在其他实施例中,位置估算设备41和移动机器人42彼此独立,例如位置估算设备41设置在云端服务器中,通过无线通信连接方式与移动机器人42建立通信连接。
本发明实施例中,位置估算设备41可以获取所述夹取设备421运动的实际距离,并获取所述夹取设备421运动产生的整流脉冲,从而根据所述夹取设备421运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,进一步根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备421的位置。
下面结合附图对本发明实施例提供的位置估算方法进行示意性说明。
具体请参见图5,图5是本发明实施例提供的一种位置估算方法的流程示意图,所述方法可以由位置估算设备执行,其中,位置估算设备的具体解释如前所述。具体地,本发明实施例的所述方法包括如下步骤。
S501:获取夹取设备运动的实际距离。
本发明实施例中,位置估算设备可以获取移动机器人上夹取设备运动的实际距离。在某些实施例中,所述夹取设备的运动可以是由直流有刷电机驱动所述夹取设备执行的。
在一个实施例中,所述位置估算设备在获取夹取设备实施夹取动作的实际距离之前,可以根据预设补偿值设置死区电压,以对电流进行整流。具体实施例举例如前所述,此处不再赘述。
在一些实施例中,所述位置估算设备在获取所述夹取设备运动的实际距离时,可以获取所述夹取设备实施夹取动作的实际距离。在某些实施例中,所述夹取设备实施夹取动作的实际距离可以包括所述夹取设备中夹爪从闭合到张开的距离;在某些实施例中,所述夹取设备实施夹取动作的实际距离可以包括所述夹取设备中夹爪从张开到闭合的距离;在某些实施例中,所述夹取设备实施夹取动作的实际距离可以包括所述夹取设备中夹爪从闭合到张开以及从张开到闭合的距离。
在一个实施例中,所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开;和/或,所述夹取设备在从完全张开到闭合。
在一些实施例中,所述位置估算设备在获取所述夹取设备运动的实际距离时,可以获取所述夹取设备升降运动的实际距离。在某些实施例中,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;和/或,所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降。
在一些实施例中,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;所述位置估算设备根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备在垂直方向从下往上抬升产生的整流脉冲的次数,并对所述夹取设备在垂直方向从下往上抬升的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
在一些实施例中,所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降;所述位置估算设备根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备在垂直方向从上往下下降产生的整流脉冲的次数,并对所述夹取设备在垂直方向从 上往下下降的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
在一些实施例中,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升以及从上往下下降;所述位置估算设备根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中产生的整流脉冲的次数,并对所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
S502:获取所述夹取设备运动产生的整流脉冲。
本发明实施例中,位置估算设备可以获取所述夹取设备运动产生的整流脉冲。在某些实施例中,所述整流脉冲是所述有刷直流电机转动产生的。
在一个实施例中,位置估算设备可以获取所述夹取设备的夹取动作产生的整流脉冲;在某些实施例中,所述位置估算设备可以获取所述夹取设备升降运动产生的整流脉冲。
S503:根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
本发明实施例中,位置估算设备可以根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
在一个实施例中,所述位置估算设备可以根据所述夹取设备实施夹取动作的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。在一些实施例中,所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开;所述位置估算设备在根据所述夹取设备实施夹取动作的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备从闭合到完全张开产生的整流脉冲的次数,并对所述夹取设备从闭合到完全张开的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
例如,假设所述夹取设备的夹爪在从闭合到完全张开时,获取到所述夹爪从闭合到完全张开产生的整流脉冲的次数为10,对所述夹爪从闭合到完全张开的实际距离20cm和整流脉冲的次数10进行标记,则可以根据标记后的实 际距离20cm和整流脉冲10,确定每个整流脉冲与实际距离20m的对应关系为每个整流脉冲对应的实际距离为2cm。
在一个实施例中,所述夹取设备夹取动作包括所述夹取设备在从完全张开到闭合;所述位置估算设备在根据所述夹取设备夹取动作的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备从完全张开到闭合产生的整流脉冲的次数,并对所述夹取设备从完全张开到闭合的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
例如,假设所述夹取设备的夹爪在从完全张开到闭合时,获取到所述夹爪从完全张开到闭合产生的整流脉冲的次数为20,对所述夹爪从完全张开到闭合的实际距离20cm和整流脉冲的次数20进行标记,则可以根据标记后的实际距离20cm和整流脉冲20,确定每个整流脉冲与实际距离20m的对应关系为每个整流脉冲对应的实际距离为1cm。
在一个实施例中,所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开以及从完全张开到闭合;所述位置估算设备在根据所述夹取设备实施夹取动作的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,可以获取所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中产生的整流脉冲的次数,并对所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中的实际距离和整流脉冲的次数进行标记,从而根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
例如,假设所述夹取设备的夹爪在从闭合到完全张开以及从完全张开到闭合时,获取到所述夹爪从闭合到完全张开以及从完全张开到闭合产生的整流脉冲的次数为40,对所述夹爪从完全张开到闭合的实际距离40cm和整流脉冲的次数40进行标记,则可以根据标记后的实际距离40cm和整流脉冲40,确定每个整流脉冲与实际距离40m的对应关系为每个整流脉冲对应的实际距离为1cm。
在一个实施例中,所述位置估算设备可以根据所述夹取设备升降运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
S504:根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
本发明实施例中,位置估算设备可以根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
例如,假设每个整流脉冲与实际距离的对应关系为每个整流脉冲对应的实际距离为1cm,如果所述位置估算设备获取到夹爪从完全闭合到张开的过程中的整流脉冲的数量为5,则可以估算所述夹爪的位置为距离所述夹爪闭合位置处5cm的位置,即所述夹爪当前的第一夹爪距离所述夹爪闭合位置处2.5cm,以及当前的第二夹爪距离所述夹爪闭合位置处2.5cm。
在一个实施例中,由于整流及计数脉冲的过程是有误差的,如果一直根据标定出来的数据进行估算,误差会越来越大,甚至导致最后无法使用。因此,所述位置估算设备需要对所述夹取设备进行位置校准。
在一些实施例中,所述位置估算设备在根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置之后,可以确定所述夹取设备是否处于完全张开或闭合的状态,当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准。
在一个实施例中,所述位置估算设备当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准时,可以根据预设的误差补偿值,对所述夹取设备完全张开或闭合时的位置进行补偿,并确定所述补偿后的位置为所述夹取设备完全张开或闭合时的实际位置。
例如,假设位置估算设备估算出夹爪从闭合到完全张开的距离为9cm,预设误差补偿值为1cm,则可以确定补偿后的所述夹爪从闭合到完全张开的距离为10cm,然后下次从完全张开到闭合是就从10cm开始估算,而不是从9cm开始估算。
本发明实施例中,位置估算设备可以获取夹取设备运动的实际距离,并获取所述夹取设备运动产生的整流脉冲,以及根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,从而根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。通过这种实施方式,可以在没有位置传感器的情况下估算出夹取设备位置以确定夹爪张开的大小,从而更好地夹取或放下物体。
请参见图6,图6是本发明实施例提供的一种位置估算设备的结构示意图, 所述设备包括存储器601、处理器602和数据接口603;
所述存储器601可以包括易失性存储器(volatile memory);存储器601也可以包括非易失性存储器(non-volatile memory);存储器601还可以包括上述种类的存储器的组合。所述处理器602可以是中央处理器(central processing unit,CPU)。所述处理器602还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
所述处理器602,用于调用所述程序,当所述程序被执行时,用于执行以下操作:
获取所述夹取设备运动的实际距离;
获取所述夹取设备运动产生的整流脉冲;
根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;
根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
进一步地,所述处理器602获取所述获取所述夹取设备运动的实际距离之前,还用于:
根据预设补偿值设置死区电压,以对电流进行整流。
进一步地,所述处理器602获取所述夹取设备运动的实际距离时,具体用于:
获取所述夹取设备实施夹取动作的实际距离。
进一步地,所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开;和/或,
所述夹取设备的夹取动作包括所述夹取设备在从完全张开到闭合。
进一步地,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备从闭合到完全张开产生的整流脉冲的次数;
对所述夹取设备从闭合到完全张开的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述夹取设备的夹取动作包括所述夹取设备从完全张开到闭合;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备从完全张开到闭合产生的整流脉冲的次数;
对所述夹取设备从完全张开到闭合的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开以及从完全张开到闭合;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中产生的整流脉冲的次数;
对所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述处理器602根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置之后,还用于:
确定所述夹取设备是否处于完全张开或闭合的状态;
当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准。
进一步地,所述处理器602当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准时,具体用于:
根据预设的误差补偿值,对所述夹取设备完全张开或闭合时的位置进行补偿;
确定所述补偿后的位置为所述夹取设备完全张开或闭合时的实际位置。
进一步地,所述处理器602获取所述夹取设备运动的实际距离时,具体用于:
获取所述夹取设备升降运动的实际距离。
进一步地,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;和/或,
所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降。
进一步地,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备在垂直方向从下往上抬升产生的整流脉冲的次数;
对所述夹取设备在垂直方向从下往上抬升的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备在垂直方向从上往下下降产生的整流脉冲的次数;
对所述夹取设备在垂直方向从上往下下降的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升以及从上往下下降;所述处理器602根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
获取所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中产生的整流脉冲的次数;
对所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中的实际距离和整流脉冲的次数进行标记;
根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
进一步地,所述夹取设备的运动由直流有刷电机驱动所述夹取设备执行的。
进一步地,所述整流脉冲是所述有刷直流电机转动产生的。
本发明实施例中,位置估算设备可以获取夹取设备运动的实际距离,并获取所述夹取设备运动产生的整流脉冲,以及根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,从而根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。通过这种实施方式,可以在没有位置传感器的情况下估算出夹取设备位置以确定夹爪张开的大小,从而更好地夹取或放下物体。
本发明的实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例中描述的方法,也可实现本发明所对应实施例的设备,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (49)

  1. 一种位置估算方法,其特征在于,应用于移动机器人,所述移动机器人包括夹取设备,所述方法包括:
    获取所述夹取设备运动的实际距离;
    获取所述夹取设备运动产生的整流脉冲;
    根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;
    根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述夹取设备运动的实际距离之前,还包括:
    根据预设补偿值设置死区电压,以对电流进行整流。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述夹取设备运动的实际距离,包括:
    获取所述夹取设备实施夹取动作的实际距离。
  4. 根据权利要求3所述的方法,其特征在于,
    所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开;和/或,
    所述夹取设备的夹取动作包括所述夹取设备在从完全张开到闭合。
  5. 根据权利要求4所述的方法,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备从闭合到完全张开产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应 关系。
  6. 根据权利要求4所述的方法,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从完全张开到闭合;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备从完全张开到闭合产生的整流脉冲的次数;
    对所述夹取设备从完全张开到闭合的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  7. 根据权利要求4所述的方法,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开以及从完全张开到闭合;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置之后,还包括:
    确定所述夹取设备是否处于完全张开或闭合的状态;
    当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准。
  9. 根据权利要求8所述的方法,其特征在于,所述当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准,包括:
    根据预设的误差补偿值,对所述夹取设备完全张开或闭合时的位置进行补偿;
    确定所述补偿后的位置为所述夹取设备完全张开或闭合时的实际位置。
  10. 根据权利要求1所述的方法,其特征在于,所述获取所述夹取设备运动的实际距离,包括:
    获取所述夹取设备升降运动的实际距离。
  11. 根据权利要求10所述的方法,其特征在于,
    所述夹取设备的升降运动包括所述夹取设备在垂直方向从下往上抬升;和/或,
    所述夹取设备的升降运动包括所述夹取设备在垂直方向从上往下下降。
  12. 根据权利要求11所述的方法,其特征在于,所述夹取设备的升降运动包括所述夹取设备在垂直方向从下往上抬升;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备在垂直方向从下往上抬升产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  13. 根据权利要求11所述的方法,其特征在于,所述夹取设备的升降运动包括所述夹取设备在垂直方向从上往下下降;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备在垂直方向从上往下下降产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从上往下下降的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  14. 根据权利要求11所述的方法,其特征在于,所述夹取设备的升降运动包括所述夹取设备在垂直方向从下往上抬升以及从上往下下降;所述根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系,包括:
    获取所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  15. 根据权利要求1所述的方法,其特征在于,所述夹取设备的运动由直流有刷电机驱动所述夹取设备执行的。
  16. 根据权利要求15所述的方法,其特征在于,所述整流脉冲是所述有刷直流电机转动产生的。
  17. 一种位置估算设备,其特征在于,应用于移动机器人,所述移动机器人包括夹取设备,包括:存储器和处理器;
    所述存储器,用于存储程序;
    所述处理器,用于调用所述程序,当所述程序被执行时,用于执行以下操作:
    获取所述夹取设备运动的实际距离;
    获取所述夹取设备运动产生的整流脉冲;
    根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;
    根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
  18. 根据权利要求17所述的设备,其特征在于,所述处理器获取所述夹取设备运动的实际距离之前,还用于:
    根据预设补偿值设置死区电压,以对电流进行整流。
  19. 根据权利要求17所述的设备,其特征在于,所述处理器获取所述夹取设备运动的实际距离时,具体用于:
    获取所述夹取设备实施夹取动作的实际距离。
  20. 根据权利要求19所述的设备,其特征在于,
    所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开;和/或,
    所述夹取设备的夹取动作包括所述夹取设备从完全张开到闭合。
  21. 根据权利要求20所述的设备,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从闭合到完全张开产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  22. 根据权利要求20所述的设备,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从完全张开到闭合;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从完全张开到闭合产生的整流脉冲的次数;
    对所述夹取设备从完全张开到闭合的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  23. 根据权利要求20所述的设备,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开以及从完全张开到闭合;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  24. 根据权利要求21-23任一项所述的设备,其特征在于,所述处理器根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置之后,还用于:
    确定所述夹取设备是否处于完全张开或闭合的状态;
    当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准。
  25. 根据权利要求24所述的设备,其特征在于,所述处理器当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准时,具体用于:
    根据预设的误差补偿值,对所述夹取设备完全张开或闭合时的位置进行补偿;
    确定所述补偿后的位置为所述夹取设备完全张开或闭合时的实际位置。
  26. 根据权利要求17所述的设备,其特征在于,所述处理器获取所述夹取设备运动的实际距离时,具体用于:
    获取所述夹取设备升降运动的实际距离。
  27. 根据权利要求26所述的设备,其特征在于,
    所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;和/或,
    所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降。
  28. 根据权利要求27所述的设备,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备在垂直方向从下往上抬升产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  29. 根据权利要求27所述的设备,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备在垂直方向从上往下下降产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从上往下下降的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  30. 根据权利要求27所述的设备,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升以及从上往下下降;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  31. 根据权利要求17所述的设备,其特征在于,所述夹取设备的运动由直流有刷电机驱动所述夹取设备执行的。
  32. 根据权利要求31所述的设备,其特征在于,所述整流脉冲是所述有刷直流电机转动产生的。
  33. 一种移动机器人,其特征在于,包括:
    机身;
    配置在机身上的动力系统,用于为无人机提供移动动力;
    所述动力系统包括:动力部件;一个或多个电机,用于驱动动力部件转动以提供移动机器人移动的动力;
    处理器,用于获取夹取设备运动的实际距离;获取所述夹取设备运动产生的整流脉冲;根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系;根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置。
  34. 根据权利要求33所述的移动机器人,其特征在于,所述处理器获取所述夹取设备运动的实际距离之前,还用于:
    根据预设补偿值设置死区电压,以对电流进行整流。
  35. 根据权利要求33所述的移动机器人,其特征在于,所述处理器获取所述夹取设备运动的实际距离时,具体用于:
    获取所述夹取设备实施夹取动作的实际距离。
  36. 根据权利要求35所述的移动机器人,其特征在于,
    所述夹取设备的夹取动作包括所述夹取设备在从闭合到完全张开;和/或,
    所述夹取设备的夹取动作包括所述夹取设备在从完全张开到闭合。
  37. 根据权利要求36所述的移动机器人,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从闭合到完全张开产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  38. 根据权利要求36所述的移动机器人,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从完全张开到闭合;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从完全张开到闭合产生的整流脉冲的次数;
    对所述夹取设备从完全张开到闭合的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  39. 根据权利要求36所述的移动机器人,其特征在于,所述夹取设备的夹取动作包括所述夹取设备从闭合到完全张开以及从完全张开到闭合;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中产生的整流脉冲的次数;
    对所述夹取设备从闭合到完全张开以及从完全张开到闭合的过程中的实 际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  40. 根据权利要求37-39任一项所述的移动机器人,其特征在于,所述处理器根据所述每个整流脉冲与实际距离的对应关系,估算所述夹取设备的位置之后,还用于:
    确定所述夹取设备是否处于完全张开或闭合的状态;
    当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准。
  41. 根据权利要求40所述的移动机器人,其特征在于,所述处理器当确定出所述夹取设备处于完全张开或闭合的状态时,对所述夹取设备进行位置校准时,具体用于:
    根据预设的误差补偿值,对所述夹取设备完全张开或闭合时的位置进行补偿;
    确定所述补偿后的位置为所述夹取设备完全张开或闭合时的实际位置。
  42. 根据权利要求33所述的移动机器人,其特征在于,所述处理器获取所述夹取设备运动的实际距离时,具体用于:
    获取所述夹取设备升降运动的实际距离。
  43. 根据权利要求42所述的移动机器人,其特征在于,
    所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;和/或,
    所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降。
  44. 根据权利要求43所述的移动机器人,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系 时,具体用于:
    获取所述夹取设备在垂直方向从下往上抬升产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  45. 根据权利要求43所述的移动机器人,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从上往下下降;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备在垂直方向从上往下下降产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从上往下下降的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  46. 根据权利要求43所述的移动机器人,其特征在于,所述夹取设备升降运动包括所述夹取设备在垂直方向从下往上抬升以及从上往下下降;所述处理器根据所述夹取设备运动的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系时,具体用于:
    获取所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中产生的整流脉冲的次数;
    对所述夹取设备在垂直方向从下往上抬升以及从上往下下降的过程中的实际距离和整流脉冲的次数进行标记;
    根据标记后的实际距离和整流脉冲,确定每个整流脉冲与实际距离的对应关系。
  47. 根据权利要求33所述的移动机器人,其特征在于,所述夹取设备的运动由直流有刷电机驱动所述夹取设备执行的。
  48. 根据权利要求47所述的移动机器人,其特征在于,所述整流脉冲是所述有刷直流电机转动产生的。
  49. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至16任一项所述方法。
PCT/CN2019/096736 2019-07-19 2019-07-19 一种位置估算方法、设备、移动机器人及存储介质 WO2021012077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980008147.6A CN111742486A (zh) 2019-07-19 2019-07-19 一种位置估算方法、设备、移动机器人及存储介质
PCT/CN2019/096736 WO2021012077A1 (zh) 2019-07-19 2019-07-19 一种位置估算方法、设备、移动机器人及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096736 WO2021012077A1 (zh) 2019-07-19 2019-07-19 一种位置估算方法、设备、移动机器人及存储介质

Publications (1)

Publication Number Publication Date
WO2021012077A1 true WO2021012077A1 (zh) 2021-01-28

Family

ID=72646032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096736 WO2021012077A1 (zh) 2019-07-19 2019-07-19 一种位置估算方法、设备、移动机器人及存储介质

Country Status (2)

Country Link
CN (1) CN111742486A (zh)
WO (1) WO2021012077A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766775A (en) * 1986-05-02 1988-08-30 Hodge Steven W Modular robot manipulator
CN201325059Y (zh) * 2008-12-12 2009-10-14 深圳市华成工业控制有限公司 一种机械手控制系统
CN207710634U (zh) * 2018-01-15 2018-08-10 云南电网有限责任公司玉溪供电局 移动式电动夹紧装置
CN109474215A (zh) * 2018-11-28 2019-03-15 深圳市燕麦科技股份有限公司 一种电机寸动控制方法及多模式的电机控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019518A (ja) * 2011-07-13 2013-01-31 Nsk Ltd アクチュエータ、バンドブレーキ装置及びモータ制御方法
CN102616272B (zh) * 2012-05-21 2015-05-06 株洲易力达机电有限公司 一种无位置传感器的转向盘的位置控制方法
CN202640348U (zh) * 2012-07-02 2013-01-02 四川职业技术学院 无线fpv服务机器人
CN104553911B (zh) * 2014-12-24 2019-04-23 延锋伟世通电子科技(上海)有限公司 汽车可记忆电动座椅的直流电机纹波检测方法
CN107150631A (zh) * 2017-06-02 2017-09-12 奇瑞汽车股份有限公司 控制后视镜的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766775A (en) * 1986-05-02 1988-08-30 Hodge Steven W Modular robot manipulator
CN201325059Y (zh) * 2008-12-12 2009-10-14 深圳市华成工业控制有限公司 一种机械手控制系统
CN207710634U (zh) * 2018-01-15 2018-08-10 云南电网有限责任公司玉溪供电局 移动式电动夹紧装置
CN109474215A (zh) * 2018-11-28 2019-03-15 深圳市燕麦科技股份有限公司 一种电机寸动控制方法及多模式的电机控制方法

Also Published As

Publication number Publication date
CN111742486A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
US10059007B1 (en) Finger-aligned extendable gripping mechanisms for item manipulation
CN105690416B (zh) 一种机器人夹持装置及控制方法
CN204101987U (zh) 一种具有磁编码器反馈的精密云台控制系统
US20210010326A1 (en) Motorized Roller Shade having a Smart Hembar
WO2022178989A1 (zh) 点胶系统及点胶控制方法
TWI559670B (zh) 定位控制裝置
CN105446271A (zh) 一种多电机驱动装置的控制系统
JP2014046449A (ja) ロボットハンド制御方法、ロボットハンド制御装置及びロボット装置
WO2021012077A1 (zh) 一种位置估算方法、设备、移动机器人及存储介质
US20180345502A1 (en) Robot hand, control method of robot hand, and robot apparatus
CN203636837U (zh) 一种智能机械手
CN204278009U (zh) 机械手
JP2017164877A (ja) ロボット制御装置、ロボット、及びロボットシステム
CN215973718U (zh) 位姿调整装置及物料运输系统
ES2963952T3 (es) Método y aparato de mecanizado robótico
Cheah et al. Approximate Jacobian control with task-space damping for robot manipulators
Ramadour et al. Grasping objects with a cable-driven parallel robot designed for transfer operation by visual servoing
CN107374749A (zh) 扫描床位置控制系统
TWI731699B (zh) 進給系統的摩擦力預測與補償方法以及電腦可讀取儲存媒體
CN105892331A (zh) 一种用于电机驱动机械手的抓握力估计与控制方法
CN114954121A (zh) 一种换电站及一种电池更换方法、装置及电子设备
US10478967B2 (en) Servo control system and robot
CN1293700C (zh) 含直流电机装置的直接测量控制方法
CN108880369A (zh) 基于分数阶滑模控制的电机抗干扰控制方法、系统及装置
CN107598958B (zh) 可以更换操作头的机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938312

Country of ref document: EP

Kind code of ref document: A1