WO2023104193A1 - 一种双向电源、双向电源的控制方法 - Google Patents

一种双向电源、双向电源的控制方法 Download PDF

Info

Publication number
WO2023104193A1
WO2023104193A1 PCT/CN2022/138011 CN2022138011W WO2023104193A1 WO 2023104193 A1 WO2023104193 A1 WO 2023104193A1 CN 2022138011 W CN2022138011 W CN 2022138011W WO 2023104193 A1 WO2023104193 A1 WO 2023104193A1
Authority
WO
WIPO (PCT)
Prior art keywords
bidirectional
transmission interface
electrical transmission
circuit
electrical
Prior art date
Application number
PCT/CN2022/138011
Other languages
English (en)
French (fr)
Inventor
胡书昌
陈鹏
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2023104193A1 publication Critical patent/WO2023104193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power electronics, in particular to a bidirectional power supply and a control method for the bidirectional power supply.
  • the actuator may reversely move under the action of gravity and other external forces, driving the motor to rotate, so that the motor will be in the state of power generation.
  • a SCARA (Selective Compliance Assembly Robot Arm) robot may frequently lift and lower heavy objects during its work.
  • the SCARA robot lifts the heavy object through the robot arm
  • the robot arm can be driven by the motor to lift the heavy object.
  • the SCARA robot places heavy objects downward through the robotic arm, the robotic arm may move downward under the action of gravity, and drive the motor to rotate, so that the motor is in the state of power generation, and then outputs electric energy outward.
  • a large discharge resistor is configured in the device to consume the electric energy generated by the motor when it is in the power generation state. Since the discharge resistor converts electrical energy into heat energy, it is also necessary to configure a cooling fan for the discharge resistor to dissipate heat from the discharge resistor. Or the device can also be configured with a storage battery for storing the electric energy generated by the motor in the power generation working state. However, whether it is to configure a discharge resistor, a cooling fan, or a battery for the equipment, it will undoubtedly increase the production cost and volume of the equipment.
  • the present application provides a bidirectional power supply and a control method of the bidirectional power supply, which can reduce the production cost of the equipment, reduce the volume of the equipment, and the like.
  • the corresponding technical solutions are as follows:
  • a bidirectional power supply includes a bidirectional AC-DC conversion circuit, a bidirectional voltage transformation circuit and a control circuit, wherein:
  • the bidirectional AC-DC conversion circuit is respectively connected to the AC source and the bidirectional transformer circuit;
  • the bidirectional transformer circuit is connected to the voltage bus of the target device
  • the control circuit is connected to the bidirectional transformer circuit, and is used to obtain electrical parameters at the connection between the bidirectional transformer circuit and the voltage bus, and control the electric transmission direction of the bidirectional transformer circuit based on the electrical parameters .
  • the electrical parameter is a voltage value
  • the control circuit is used for:
  • the bidirectional transformer circuit When the electrical transmission direction of the bidirectional transformer circuit is from the first electrical transmission interface to the second electrical transmission interface, if the voltage value of the second electrical transmission interface is greater than or equal to the first voltage threshold, the bidirectional transformer The electrical transmission direction of the piezoelectric circuit is switched from the second electrical transmission interface to the first electrical transmission interface, wherein the first electrical transmission interface is connected to the bidirectional AC-DC conversion circuit in the bidirectional transformer circuit an interface, the second electrical transmission interface is an interface of the bidirectional transformer circuit connected to the voltage bus of the target device;
  • the electrical transmission direction of the bidirectional transformer circuit is from the second electrical transmission interface to the first electrical transmission interface, if the voltage value of the second electrical transmission interface is less than or equal to the second voltage threshold, the The electrical transmission direction of the bidirectional transformer circuit is switched from the first electrical transmission interface to the second electrical transmission interface, wherein the first voltage threshold is greater than the second voltage threshold.
  • the second voltage threshold is an operating voltage of the target device.
  • the electrical parameter is the direction of current
  • the control circuit is used for:
  • the electrical transmission direction of the bidirectional transformer circuit is from the first electrical transmission interface to the second electrical transmission interface, if the current direction of the second electrical transmission interface is opposite to the preset current direction, the electrical transmission direction Switching from the second electrical transmission interface to the first electrical transmission interface, wherein the first electrical transmission interface is an interface connected to the bidirectional AC-DC conversion circuit in the bidirectional transformer circuit, and the second electrical transmission interface
  • the second power transmission interface is an interface of the bidirectional transformer circuit connected to the voltage bus of the target device
  • control circuit includes a detector and a processor
  • the detector is used to detect the electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus;
  • the processor is configured to acquire the electrical parameters detected by the detector, and control the electrical transmission direction of the bidirectional transformer circuit based on the electrical parameters.
  • the target device is configured with a mechanical arm driven by a motor.
  • the bidirectional AC/DC conversion circuit is a bidirectional power factor correction PFC circuit.
  • the bidirectional transformer circuit is a bidirectional dual active bridge DAB circuit.
  • a method for controlling a bidirectional power supply includes a bidirectional AC/DC conversion circuit, a bidirectional transformer circuit and a control circuit;
  • the bidirectional AC-DC conversion circuit is respectively connected to the AC source and the bidirectional transformer circuit, the bidirectional transformer circuit is connected to the voltage bus of the target device, and the control circuit is connected to the bidirectional transformer circuit;
  • the method includes: the control circuit acquires electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus, and controls the direction of electrical transmission of the bidirectional transformer circuit based on the electrical parameters.
  • the electrical parameter is a voltage value
  • the controlling the electric transmission direction of the bidirectional transformer circuit based on the electric parameters includes:
  • the control circuit determines that the voltage value of the second electrical transmission interface is greater than or equal to the first voltage threshold, then switching the electrical transmission direction of the bidirectional transformer circuit from the second electrical transmission interface to the first electrical transmission interface, wherein the first electrical transmission interface is connected to the bidirectional electrical transmission interface in the bidirectional transformer circuit An interface connected to an AC-DC conversion circuit, the second electrical transmission interface is an interface connected to the voltage bus of the target device of the bidirectional voltage transformation circuit;
  • the control circuit determines that the voltage value of the second electrical transmission interface is less than or equal to the second voltage threshold, switch the electrical transmission direction of the bidirectional transformer circuit from the first electrical transmission interface to the second electrical transmission interface, wherein the first voltage threshold is greater than the second voltage threshold.
  • the second voltage threshold is an operating voltage of the target device.
  • the electrical parameter is the direction of current
  • the controlling the electric transmission direction of the bidirectional transformer circuit based on the electric parameters includes:
  • the control circuit determines that the current direction of the second electrical transmission interface is opposite to the preset current direction, then the The electrical transmission direction is switched from the second electrical transmission interface to the first electrical transmission interface, wherein the first electrical transmission interface is connected to the bidirectional AC-DC conversion circuit in the bidirectional transformer circuit an interface, the second electrical transmission interface is an interface of the bidirectional transformer circuit connected to the voltage bus of the target device;
  • the control circuit determines that the current direction of the second electrical transmission interface is the same as the preset If the current directions are the same, switch the electrical transmission direction from the first electrical transmission interface to the second electrical transmission interface.
  • control circuit includes a detector and a processor
  • the acquisition of the electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus includes:
  • the detector detects the electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus
  • the controlling the electric transmission direction of the bidirectional transformer circuit based on the electric parameters includes:
  • the processor acquires the electrical parameters detected by the detector, and controls the electrical transmission direction of the bidirectional transformer circuit based on the electrical parameters.
  • the bidirectional power supply provided in the embodiment of the present application includes a bidirectional AC-DC conversion circuit, a bidirectional transformer circuit, and a control circuit.
  • the control circuit can control the bidirectional transformer circuit according to the electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus of the target device.
  • Direction of electrical transmission Since the electrical parameters at this connection are directly related to the working state of the motor of the target device, by controlling the electric transmission direction of the bidirectional transformer circuit by detecting the electrical parameters, it is possible to generate electricity from the motor when the motor of the target device is in the working state of power generation.
  • the DC power is transmitted to the bidirectional AC-DC conversion circuit through the bidirectional transformer circuit, and then the incoming DC power is converted into AC power and transmitted to the AC source by the bidirectional AC-DC conversion circuit. In this way, by adopting the present application, there is no need to configure discharge resistors, cooling fans, etc. for the target device, which can reduce the production cost of the target device, reduce the volume of the target device, and the like.
  • FIG. 1 is a schematic diagram of a bidirectional power supply provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a bidirectional power supply provided by an embodiment of the present application.
  • Fig. 3 is a schematic circuit diagram of a bidirectional power supply provided by an embodiment of the present application.
  • the actuator may reversely move under the action of gravity and other external forces, driving the motor to rotate, so that the motor will be in the state of power generation.
  • the motor has two working states, that is, the working state of electricity consumption and the working state of generating electricity.
  • technicians can configure a larger discharge resistor in the device to consume the electric energy generated by the motor when it is in the power generation state.
  • the discharge resistor converts electrical energy into heat energy, it is also necessary to configure a cooling fan for the discharge resistor to dissipate heat from the discharge resistor.
  • the present application provides a bidirectional power supply, which can be connected to an AC source (such as a power grid) and can supply power to a target device.
  • the motor in the target device has a working state of power consumption and a working state of generating electricity.
  • the bidirectional power supply can convert the alternating current in the grid into direct current to supply power to the motor.
  • the bidirectional power supply can convert the DC power generated by the motor into AC power and transmit it to the AC source connected to the bidirectional power supply.
  • Adoption of this application can reduce the cost of production and use of target equipment, improve the utilization rate of energy, and the like.
  • the bidirectional power supply provided by this application is introduced as follows:
  • Fig. 1 is a bidirectional power supply provided by the embodiment of the present application.
  • This bidirectional power supply includes:
  • the electrical parameter is a voltage value or a current direction.
  • the bidirectional power supply can be composed of a bidirectional AC/DC conversion circuit 1 , a bidirectional transformer circuit 2 and a control circuit 3 .
  • the bidirectional AC-DC conversion circuit 1 may include a DC interface 11 and an AC interface 12, and the bidirectional AC-DC conversion circuit 1 may convert the AC power connected to the AC interface 12 into DC power and output it through the DC interface 11 under the control of the control circuit 3, or , converting the DC power connected to the DC interface 11 into AC power and outputting it through the AC interface 12 .
  • the AC source connected to the AC interface 12 may be a power grid.
  • the bidirectional voltage transformation circuit 2 may include a first power transmission interface 21 and a second power transmission interface 22, and the bidirectional voltage transformation circuit 2 may, under the control of the control circuit 3, perform voltage transformation processing on the current introduced by the first power transmission interface 21 and transmit to the second electrical transmission interface 22 , or, transform the current input from the second electrical transmission interface 22 and transmit it to the first electrical transmission interface 21 .
  • the first electrical transmission interface 21 of the bidirectional transformer circuit 2 can be connected to the DC interface 11 in the bidirectional AC/DC conversion circuit 1, and the second electrical transmission interface 22 of the bidirectional transformer circuit 2 can be connected to the voltage bus of the target device.
  • the bidirectional voltage transformation circuit 2 can be controlled to step down the DC power introduced by the DC interface 11 (down to the normal working voltage of the target device), and pass through the second power transmission interface 22 is transmitted to the voltage bus of the target device to drive the motor of the target device to rotate.
  • the bidirectional transformer circuit 2 can be controlled to boost the DC power introduced from the voltage bus of the target device, and transmit it to the bidirectional AC-DC conversion through the first power transmission interface 21
  • the DC interface of the circuit 1 converts the incoming DC power into AC power through the bidirectional AC-DC conversion circuit 1 , and transmits it to the power grid through the AC interface 12 .
  • the control circuit 3 can be connected with the control interface 13 of the bidirectional AC-DC conversion circuit 1 (not shown in FIG. 1 ), and connected with the control interface 23 of the bidirectional transformer circuit 2, for realizing the bidirectional AC-DC conversion circuit 1, the bidirectional Transformer circuit 2 control.
  • the control circuit 3 can control the electric transmission direction of the bidirectional power supply by detecting the working state of the motor of the target device.
  • the bidirectional power supply needs to supply power to the target device, and the voltage value at the connection point between the bidirectional transformer circuit 2 and the voltage bus bar of the target device (i.e. the second power transmission interface 22) is the normal value of the target device Operating Voltage.
  • the current generated by the motor flows reversely through the voltage bus of the target device to the second power transmission interface 22 of the bidirectional transformer circuit 2 .
  • the control circuit 3 can determine the working state of the target device by acquiring the electrical parameters (voltage value or current direction) at the second electrical transmission interface 22 . Furthermore, the bidirectional AC/DC conversion circuit 1 and the bidirectional transformer circuit 2 can be controlled according to the working state of the target device.
  • the working state of the electric motor may include the rotating state of the electric motor after being energized, and may also include the standby state of the electric motor.
  • the execution part of the target device drives the motor to rotate, the motor can generate electricity outwardly, and the motor is in the power generation working state.
  • the target device is configured with a mechanical arm, which can be driven by a motor.
  • the target device can be a SCARA robot, and the corresponding execution component can be a mechanical arm of the SCARA robot. It is determined that the motor of the mechanical arm of the SCARA robot can be a servo motor.
  • motors in one robotic arm of the target device there may be multiple motors in one robotic arm of the target device. Multiple motors can form a motor system.
  • the motor system there may be a motor in the working state of electricity consumption and a motor in the working state of generating electricity. Therefore, a power distribution device can be provided in the motor system, and the power distribution device can provide the electric energy generated by the motor in the power generation state to the motor in the power consumption state.
  • the motor system consumes electricity as a whole, that is, when the electric energy generated by the motors in the power generation working state in the motor system is less than the electric energy consumed by the motors in the power consumption working state, the motor system can be considered to be in the power consumption working state.
  • the motor system When the motor system as a whole generates power outwards, that is, when the electric energy generated by the motors in the power generation state is greater than the power consumed by the motors in the power consumption state, the motor system can be considered to be in the power generation state.
  • the above-mentioned motors of the target device are in the working state of power consumption or in the working state of generating electricity, or the motor system of the target device is in the working state of power consumption or in the working state of generating electricity.
  • the bidirectional power supply provided in this application can supply power to the target device when the motor of the target device is in the working state of power consumption, and can switch the direction of power transmission in the bidirectional power supply when the motor of the target device is in the working state of power generation, and turn the motor
  • the generated electricity is sent to the grid.
  • it is no longer necessary to configure a discharge resistor for the target device, let alone a cooling fan for the discharge resistor, which can reduce the production and use costs of the target device to a certain extent, reduce the volume of the target device, and improve energy utilization. .
  • control circuit 3 determines the working state of the motor and controls the power transmission direction of the bidirectional transformer circuit 2 according to the voltage value at the connection point between the bidirectional transformer circuit 2 and the voltage bus of the target device, further Handled as follows:
  • the bidirectional transformer circuit 2 When the electrical transmission direction of the bidirectional transformer circuit 2 is from the first electrical transmission interface 21 to the second electrical transmission interface 22, if the voltage value of the second electrical transmission interface 22 is greater than or equal to the first voltage threshold, the bidirectional transformer circuit will The electrical transmission direction of 2 is switched from the second electrical transmission interface 22 to the first electrical transmission interface 21.
  • the bidirectional transformer circuit When the electrical transmission direction of the bidirectional transformer circuit 2 is from the second electrical transmission interface 22 to the first electrical transmission interface 21, if the voltage value of the second electrical transmission interface 22 is less than or equal to the second voltage threshold, the bidirectional transformer circuit will 2, the electrical transmission direction is switched from the first electrical transmission interface 21 to the second electrical transmission interface 22, wherein the first voltage threshold is greater than the second voltage threshold.
  • the second voltage threshold may be an operating voltage of the target device.
  • the power transmission direction of the bidirectional transformer circuit 2 is that the first power transmission interface 21 transmits to the second power transmission interface 22, and the voltage value of the second power transmission interface 22 It should be the normal working voltage of the target device. If the motor of the target device switches from the power consumption working state to the generating working state, since the electric transmission direction of the bidirectional transformer circuit 2 cannot be changed instantaneously, when the motor is just converted to the generating working state, the power of the bidirectional transformer circuit 2 The transmission direction is still from the first electrical transmission interface 21 to the second electrical transmission interface 22, and the voltage value of the second electrical transmission interface 22 is still the working voltage of the target device.
  • the electric energy generated by the motor will be transmitted to the second power transmission interface 22 through the voltage bus, resulting in the voltage of the second power transmission interface 22 (that is, the voltage at the connection between the second power transmission interface 22 and the voltage bus. voltage) rises.
  • the control circuit 3 can periodically detect the voltage value of the second electrical transmission interface 22, if it is detected that the voltage value of the second electrical transmission interface 22 is greater than or equal to the first voltage threshold (the first voltage threshold is greater than the operating voltage of the target motor), it means that the motor of the target device is already in the power generation working state, so the electric transmission direction of the bidirectional transformer circuit 2 can be switched to the second electric transmission interface 22 to the first electric transmission Interface 21, and then transmit the electricity generated by the motor of the target device back to the grid. At the same time, the control circuit 3 can change the motor from the working state of electricity consumption to the working state of generating electricity.
  • the power transmission direction of the bidirectional transformer circuit 2 is transmitted from the second power transmission interface 22 to the first power transmission interface 21, and the second power transmission interface 22 is caused by the external power transmission of the target device.
  • the voltage of the second electrical transmission interface 22 should be higher than the normal working voltage of the target device at this moment. If the motor of the target device stops generating power, the voltage of the second power transmission interface 22 will gradually decrease.
  • the control circuit 3 can periodically detect the voltage value of the second electric transmission interface 22, if it is detected that the voltage value of the second electric transmission interface 22 is less than or equal to the second voltage threshold ( The second voltage threshold is less than the first voltage threshold), indicating that the motor of the target device has stopped generating electricity, so the electric transmission direction of the bidirectional transformer circuit 2 can be switched from the first electric transmission interface 21 to the second electric transmission interface 22, and then The motor of the target device can be powered through the second electrical transmission interface 22 .
  • the control circuit 3 can change the motor from being in the working state of using electricity to being in the working state of using electricity.
  • the first voltage threshold and the second voltage threshold can be set by technicians according to the working voltage of the target device.
  • the second voltage threshold is greater than the first voltage threshold, and the first voltage threshold may be a normal working voltage of the target device.
  • the operating voltage of the target device and the first voltage threshold are 48V
  • the second voltage threshold is 52V.
  • the voltage of the second electrical transmission interface 22 may fluctuate around 48V. In this way, even if the voltage of the second power transmission interface 22 fluctuates to 50V, the power transmission direction of the bidirectional transformer circuit 2 will not be switched, which can ensure the normal operation of the motor.
  • control circuit 3 determines the working state of the motor and controls the power transmission direction of the bidirectional transformer circuit 2 according to the current direction at the connection between the bidirectional transformer circuit 2 and the voltage bus of the target device, further Handled as follows:
  • the electrical transmission direction of the bidirectional transformer circuit 2 is from the first electrical transmission interface 21 to the second electrical transmission interface 22, if the current direction of the second electrical transmission interface 22 is opposite to the preset current direction, the electrical transmission direction is switched to The second electrical transmission interface 22 to the first electrical transmission interface 21; when the electrical transmission direction of the bidirectional transformer circuit 2 is the second electrical transmission interface 22 to the first electrical transmission interface 21, if the current direction of the second electrical transmission interface 22 If it is the same as the preset current direction, the electrical transmission direction can be switched from the first electrical transmission interface 21 to the second electrical transmission interface 22 .
  • the preset current direction may be the current direction at the second power transmission interface 22 when the target device is in the working state of power consumption.
  • the power transmission direction of the bidirectional transformer circuit 2 is from the first power transmission interface 21 to the second power transmission interface 2, and the bidirectional power supply passes through the second power transmission interface 22 to the second power transmission interface 2.
  • the target device provides electrical energy, and the direction of the current at the second electrical transmission interface 22 should be the same as the preset current direction.
  • the direct current generated by the motor of the target device can be transmitted to the second power transmission interface 22 through the voltage bus of the target device, and through the second power transmission interface 22, it can be bidirectional
  • the energy storage device (such as a capacitor) in the transformer circuit 2 is charged, thus causing the current direction at the second power transmission interface 22 to be opposite to the current direction when the motor of the target device is in the power-using state.
  • the control circuit 3 can periodically detect the current direction of the second power transmission interface 22, if it is detected that the current direction at the second power transmission interface 22 is opposite to the preset current direction , it means that the motor of the target device is already in the working state of power generation, so the power transmission direction of the bidirectional transformer circuit 2 can be switched from the second power transmission interface 22 to the first power transmission interface 21, and then the power generated by the motor of the target device back to the grid.
  • the control circuit 3 can change the motor from the working state of electricity consumption to the working state of generating electricity. It should be noted that when the motor is powered on, the working state may include the motor's energized and rotating state, and may also include the motor's standby state.
  • the electric transmission direction of the bidirectional transformer circuit 2 is from the second electric transmission interface 22 to the first electric transmission interface 21, because the current output by the target device will cause the second electric transmission interface 22 to The direction of the current flow is opposite to the preset current direction. If the motor of the target device switches from the power generation working state to the power consumption working state, although the electric transmission direction of the bidirectional transformer circuit 2 will not change instantaneously, the energy storage device (such as a capacitor) included in the bidirectional transformer circuit 2 will The stored electrical energy will be transmitted to the target device, so the current direction at the second electrical transmission interface 22 will be the same as the preset current direction at this time.
  • the energy storage device such as a capacitor
  • the control circuit 3 can periodically detect the current direction of the second power transmission interface 22, if the control circuit 3 detects that the current direction at the second power transmission interface 22 is different from the preset current When the directions are the same, it means that the motor of the target device has stopped generating power, and the power transmission direction of the bidirectional transformer circuit 2 can be switched from the first power transmission interface 21 to the second power transmission interface 22, and then the power can be passed through the second power transmission interface 22 Power the target device. At the same time, the control circuit 3 can change the motor from the power generation working state to the power consumption working state.
  • the control circuit 3 includes a detector 31 and a processor 32 .
  • the detector 31 is used to detect the electrical parameters at the connection between the bidirectional transformer circuit 2 and the voltage bus of the target device
  • the processor 32 is used to obtain the electrical parameters detected by the detector 31, and control the bidirectional transformer circuit 2 based on the electrical parameters.
  • Direction of electrical transmission is used to obtain the electrical parameters detected by the detector 31, and control the bidirectional transformer circuit 2 based on the electrical parameters.
  • control circuit 3 may include a detector 31 and a processor 32 .
  • the detector 31 can be used to detect the voltage value or current value in the circuit, and the direction of the current can be represented by the positive or negative value of the current value.
  • the detector 31 may be a voltage detector or a current detector, or may be a detector including a voltage detection part and a current detection part, or the like.
  • the detector 31 can establish a connection with the bidirectional transformer circuit 2 according to its detection function, so as to detect the voltage value or current direction at the connection between the bidirectional transformer circuit 2 and the voltage bus of the target device.
  • a connection can be established between the detector 31 and the processor 32 , and the detector 31 can send the detected voltage value, current value or current direction to the processor 32 .
  • the processor 32 can be any processing chip, and can determine the working state of the target device according to the voltage value or current direction sent by the detector 31, and control the electric transmission direction of the bidirectional transformer circuit 2 according to the working state of the target device . That is, when it is determined that the motor of the target device is in the state of power consumption, the power transmission direction of the bidirectional transformer circuit 2 can be set from the first power transmission interface 21 to the second power transmission interface 22, thereby supplying power to the target device. When it is determined that the motor of the target device is in the power generation working state, the electric transmission direction of the bidirectional transformer circuit 2 can be set as the second electric transmission interface 22 to the first electric transmission interface 21, and then the current generated by the motor is reversed into the grid middle.
  • the bidirectional AC-DC conversion circuit 1 is a bidirectional PFC (Power Factor Correction, power factor correction) circuit
  • the bidirectional voltage transformation circuit 2 is a bidirectional DAB (Dual Active Bridge, dual active bridge) circuit.
  • the bidirectional AC-DC conversion circuit 1 is a bidirectional PFC circuit, which can be composed of an H-bridge, an inductor L1 and a capacitor C1, and the H-bridge includes four switching devices Q1 of independent control machines -Q4, the AC interface 12 of the bidirectional PFC circuit can be connected to the power grid, and the DC interface 11 of the bidirectional PFC circuit is connected to the first electrical transmission interface 21 of the bidirectional DAB circuit.
  • the switching device can be a metal-oxide-semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) tube, and the switching devices Q1-Q4 can be considered as the control terminal 13 of the bidirectional PFC circuit, and the control circuit 3 can control the switch
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the bidirectional transformer circuit 2 is a bidirectional DAB circuit.
  • the bidirectional DAB circuit can be composed of two H bridges, capacitor C2, capacitor C3, transformer T1 and inductor L2.
  • the two H bridges are electrically isolated through the transformer T1.
  • the two H-bridges respectively include 8 switching devices S1-S8, and the inductor L2 can be on the middle bridge arm of any one of the H-bridges.
  • the eight switching devices S1-S8 can be regarded as the control terminal 23 of the bidirectional DAB circuit, and the control circuit 3 can control the electrical transmission direction of the bidirectional DAB circuit by controlling the closing of the switching devices S1-S8.
  • the switching device in the first H-bridge close to the first electrical transmission interface 21 can be controlled first, Transmitting the direct current input from the first electrical transmission interface 21 to the transformer T1, and then controlling and turning on the switching device in the second H-bridge close to the second electrical transmission interface 22, so as to realize the direct current in the first H-bridge passing through the transformer transmitted to the second H-bridge.
  • the switching device in the second H-bridge can be controlled first, and the second electrical transmission interface 22
  • the incoming direct current is transmitted to the transformer T1
  • the switching device in the first H-bridge is controlled to be turned on, so as to realize the direct current in the second H-bridge is transmitted to the first H-bridge through the transformer.
  • the control method of the control circuit 3 on the different switching devices in the first H-bridge and the second H-bridge belongs to the prior art, and will not be described in detail here.
  • the first electrical transmission interface 21 of the bidirectional DAB circuit is connected to the DC interface of the bidirectional PFC circuit, and the second electrical transmission interface 22 of the bidirectional DAB circuit is connected to the voltage bus of the target device.
  • the electric transmission direction of the bidirectional DAB circuit is from the first electric transmission interface 21 to the second electric transmission interface 22, and the two ends of the capacitor C3 are also the second electric transmission interface 22, which is the target device A normal working voltage, for example, the working voltage may be 48V. If the target device is switched to the power generation working state, the motor of the target device transmits current to the second power transmission interface 22 through the voltage bus, causing the voltage at both ends of the second power transmission interface 22 to rise, and causing the second power transmission interface 22 to generate current. The direction is opposite to the preset current direction.
  • control circuit 3 can be used to switch the control mode of the switching devices S1 - S8 , so that the electrical transmission direction of the bidirectional DAB circuit can be switched from the second electrical transmission interface 22 to the first electrical transmission interface 21 .
  • the direct current generated by the motor of the target device can be transmitted to the bidirectional DAB circuit, and the incoming direct current is boosted through the bidirectional DAB circuit, and then transmitted to the bidirectional PFC circuit, and then the incoming direct current is converted into alternating current by the bidirectional PFC circuit , and transmitted to the grid.
  • the electric transmission direction of the bidirectional DAB circuit is from the second electric transmission interface 22 to the first electric transmission interface 21, and the voltage at both ends of the capacitor C3 is greater than the normal working voltage of the target device, that is, the first electric transmission interface 21.
  • the second power transmission interface 22 is higher than the normal working voltage of the target device, for example, 52V. If the target device switches to the working state of using electricity, the voltage across the capacitor C3 will recover to the working voltage of the target device, and the current direction of the second power transmission interface 22 will be the same as the preset current direction.
  • control circuit 3 can be used to switch the control mode of the switching devices S1-S8, so that the electrical transmission direction of the bidirectional DAB circuit can be switched from the first electrical transmission interface 21 to the second electrical transmission interface 22.
  • the bidirectional PFC circuit can convert the AC power in the grid into DC and transmit it to the bidirectional DAB circuit. working voltage, and then drive the motor of the target device to rotate.
  • the bidirectional power supply provided by this application can transfer the electric energy generated by the motor to the AC source when the motor of the target device is in the power generation state, and can supply power to the motor when the motor of the target device is in the power consumption state. And it can automatically identify the working state of the motor in the target device, and automatically switch the electric transmission direction of the bidirectional power supply according to the working state, and can cope with the situation of frequent switching of the working state of the motor. In this way, there is no need to configure discharge resistors, cooling fans, etc. for the target device, which can reduce the production cost of the target device, reduce the volume of the target device, and further improve energy utilization.
  • the present application also provides a control method for a bidirectional power supply, wherein the bidirectional power supply includes a bidirectional AC-DC conversion circuit 1, a bidirectional voltage transformation circuit 2 and a control circuit 3; 2, the bidirectional transformer circuit 2 is connected to the voltage bus of the target device, and the control circuit 3 is connected to the bidirectional transformer circuit 2; the control method of the bidirectional power supply includes: the control circuit 3 obtains the voltage at the connection point between the bidirectional transformer circuit 2 and the voltage bus The electric parameter controls the electric transmission direction of the bidirectional transformer circuit 2 based on the electric parameter.
  • the electrical parameter may be a voltage value
  • the process of controlling the electrical transmission direction of the bidirectional transformer circuit 2 based on the electrical parameter is as follows:
  • the control circuit 3 determines that the voltage value of the second electrical transmission interface 22 is greater than or equal to the first voltage threshold, then the The electrical transmission direction of the bidirectional transformer circuit 2 is switched from the second electrical transmission interface 22 to the first electrical transmission interface 21, wherein the first electrical transmission interface 21 is an interface connected to the bidirectional AC/DC conversion circuit 1 of the bidirectional transformer circuit 2 , the second electrical transmission interface 22 is an interface connected to the voltage bus of the target device of the bidirectional transformer circuit 2;
  • the control circuit 3 determines that the voltage value of the second electrical transmission interface 22 is less than or equal to the second voltage threshold, then the The electric transmission direction of the bidirectional transformer circuit 2 is switched from the first electric transmission interface 21 to the second electric transmission interface 22, wherein the first voltage threshold is greater than the second voltage threshold.
  • the second voltage threshold is a normal working voltage of the target device.
  • the electrical parameter may be the direction of the current
  • the process of controlling the electrical transmission direction of the bidirectional transformer circuit 2 based on the electrical parameter is as follows:
  • the electrical transmission direction of the bidirectional transformer circuit 2 is from the first electrical transmission interface 21 to the second electrical transmission interface 22 if the control circuit 3 determines that the current direction of the second electrical transmission interface 22 is opposite to the preset current direction, then the electrical The transmission direction is switched from the second electrical transmission interface 22 to the first electrical transmission interface 21, wherein the first electrical transmission interface 21 is an interface connected to the bidirectional AC-DC conversion circuit 1 of the bidirectional transformer circuit 2, and the second electrical transmission interface 22 is an interface for connecting the bidirectional transformer circuit 2 to the voltage bus of the target device;
  • the electrical transmission direction of the bidirectional transformer circuit 2 is from the second electrical transmission interface 22 to the first electrical transmission interface 21 . If the control circuit 3 determines that the current direction of the second electrical transmission interface 22 is the same as the preset current direction, the electrical The transmission direction is switched from the first electrical transmission interface 21 to the second electrical transmission interface 22 .
  • control circuit 3 includes a detector 31 and a processor 32; obtaining electrical parameters at the connection between the bidirectional transformer circuit 2 and the voltage bus bar includes:
  • the detector 31 detects the electrical parameters at the connection between the bidirectional transformer circuit 2 and the voltage bus;
  • the direction of electrical transmission of the bidirectional transformer circuit 2 is controlled, including:
  • the processor 32 acquires the electrical parameters detected by the detector 31, and controls the electrical transmission direction of the bidirectional transformer circuit 2 based on the electrical parameters.
  • the bidirectional power supply provided in the embodiment of the present application includes a bidirectional AC-DC conversion circuit, a bidirectional transformer circuit, and a control circuit.
  • the control circuit can control the bidirectional transformer circuit according to the electrical parameters of the connection between the bidirectional transformer circuit and the voltage bus of the target device.
  • Direction of electrical transmission Since the electrical parameters at this connection are directly related to the working state of the motor of the target device, by controlling the electric transmission direction of the bidirectional transformer circuit by detecting the electrical parameters, it is possible to generate electricity from the motor when the motor of the target device is in the working state of power generation.
  • the DC power is transmitted to the bidirectional AC-DC conversion circuit through the bidirectional transformer circuit, and then the incoming DC power is converted into AC power and transmitted to the AC source by the bidirectional AC-DC conversion circuit. In this way, by adopting the present application, there is no need to configure discharge resistors, cooling fans, etc. for the target device, which can reduce the production cost of the target device, reduce the volume of the target device, and the like.
  • a bidirectional power supply control method in this embodiment belongs to the same idea as the above-mentioned corresponding embodiments of the bidirectional power supply, and its specific implementation process is detailed in the corresponding embodiment of the bidirectional power supply, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了一种双向电源、双向电源的控制方法,属于电力电子技术领域。其中,双向电源包括双向交直流转换电路、双向变压电路和控制电路,其中:双向交直流转换电路分别与交流源、双向变压电路连接;双向变压电路与目标设备的电压母线连接;控制电路与双向变压电路连接,用于获取双向变压电路与电压母线连接处的电参数,基于电参数,控制双向变压电路的电传输方向。本申请提供的双向电源可以将目标设备在发电工作状态时产生的电能传入交流源,不需要再为目标设备配置放电电阻、散热风扇等,能够降低目标设备的生产成本、减小目标设备的体积等。

Description

一种双向电源、双向电源的控制方法
本申请要求于2021年12月09日提交的申请号为202111499028.0、发明名称为“一种双向电源、双向电源的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,特别涉及一种双向电源、双向电源的控制方法。
背景技术
在工业生产中,一些设备可通过电机带动执行部件工作,进而实现自动化生产。但在一些特定情况下,执行部件可能会在重力等外力作用下反向运动,带动电机转动,使电机会处于发电工作状态。
例如,SCARA(Selective Compliance Assembly Robot Arm,选择顺应性装配机器手臂)机器人在工作过程中,可能会频繁的对重物进行抬起和下放。当SCARA机器人通过机器手臂抬起重物时,可通过电机驱动机器手臂以抬起重物。当SCARA机器人通过机器手臂向下放置重物时,机器手臂可能会在重力作用下向下运动,并带动电机转动,使电机处于发电工作状态,进而向外输出电能。
在相关技术中,在设备中会配置有一个较大的放电电阻,用于消耗电机在发电工作状态时产生的电能。由于放电电阻将电能转化为了热能,所以还需要为放电电阻配置散热风扇,以对放电电阻进行散热。或者还可以为设备配置蓄电池,用于存储电机在发电工作状态时产生的电能。但无论是为设备配置放电电阻和散热风扇、还是配置蓄电池,无疑都使设备的生产成本增高、体积增大等。
发明内容
本申请提供了一种双向电源、双向电源的控制方法,能够降低设备的生产成本、减小降低设备的体积等。相应的技术方案如下:
一方面,提供了一种双向电源,所述双向电源包括双向交直流转换电路、双向变压电路和控制电路,其中:
所述双向交直流转换电路分别与交流源、所述双向变压电路连接;
所述双向变压电路与目标设备的电压母线连接;
所述控制电路与所述双向变压电路连接,用于获取所述双向变压电路与所述电压母线连接处的电参数,基于所述电参数,控制所述双向变压电路的电传输方向。
可选的,所述电参数为电压值;
所述控制电路,用于:
当所述双向变压电路的电传输方向为第一电传输接口向第二电传输接口时,如果所述第二电传输接口的电压值大于或等于第一电压阈值,则将所述双向变压电路的电传输方向切换为所述第二电传输接口向所述第一电传输接口,其中,所述第一电传输接口是所述双向变压电路中与所述双向交直流转换电路连接的接口,所述第二电传输接口是所述双向变压电路的与所述目标设备的电压母线连接的接口;
当所述双向变压电路的电传输方向为所述第二电传输接口向所述第一电传输接口时,如果所述第二电传输接口的电压值小于或等于第二电压阈值,则将所述双向变压电路的电传输方向切换为所述第一电传输接口向所述第二电传输接口,其中,所述第一电压阈值大于所述第二电压阈值。
可选的,所述第二电压阈值为所述目标设备的工作电压。
可选的,所述电参数为电流方向;
所述控制电路,用于:
当所述双向变压电路的电传输方向为第一电传输接口向第二电传输接口时,如果所述第二电传输接口的电流方向与预设电流方向相反,则将所述电传输方向切换为所述第二电传输接口向所述第一电传输接口,其中,所述第一电传输接口是所述双向变压电路中与所述双向交直流转换电路连接的接口,所述第二电传输接口是所述双向变压电路的与所述目标设备的电压母线连接的接口;
当所述双向变压电路的电传输方向为所述第二电传输接口向所述第一电传输接口时,如果所述第二电传输接口的电流方向与所述预设电流方向相同,则将所述电传输方向切换为所述第一电传输接口向所述第二电传输接口。
可选的,所述控制电路包括检测器和处理器;
所述检测器,用于检测所述双向变压电路与所述电压母线连接处的电参数;
所述处理器,用于获取检测器检测的电参数,基于所述电参数,控制所述双向变压电路的电传输方向。
可选的,所述目标设备配置有由电机驱动的机械臂。
可选的,所述双向交直流转换电路为双向功率因数校正PFC电路。
可选的,所述双向变压电路为双向双有源电桥DAB电路。
另一方面,提供了一种双向电源的控制方法,所述双向电源包括双向交直流转换电路、双向变压电路和控制电路;
所述双向交直流转换电路分别与交流源、所述双向变压电路连接,所述双向变压电路与目标设备的电压母线连接,所述控制电路与所述双向变压电路连接;
所述方法包括:所述控制电路获取所述双向变压电路与所述电压母线连接处的电参数,基于所述电参数,控制所述双向变压电路的电传输方向。
可选的,所述电参数为电压值;
所述基于所述电参数,控制所述双向变压电路的电传输方向,包括:
当所述双向变压电路的电传输方向为第一电传输接口向第二电传输接口时,如果所述控制电路确定所述第二电传输接口的电压值大于或等于第一电压阈值,则将所述双向变压电路的电传输方向切换为所述第二电传输接口向所述第一电传输接口,其中,所述第一电传输接口是所述双向变压电路中与所述双向交直流转换电路连接的接口,所述第二电传输接口是所述双向变压电路的与所述目标设备的电压母线连接的接口;
当所述双向变压电路的电传输方向为所述第二电传输接口向所述第一电传输接口时,如果所述控制电路确定所述第二电传输接口的电压值小于或等于第二电压阈值,则将所述双向变压电路的电传输方向切换为所述第一电传输接口向所述第二电传输接口,其中,所述第一电压阈值大于所述第二电压阈值。
可选的,所述第二电压阈值为所述目标设备的工作电压。
可选的,所述电参数为电流方向;
所述基于所述电参数,控制所述双向变压电路的电传输方向,包括:
当所述双向变压电路的电传输方向为第一电传输接口向第二电传输接口时,如果所述控制电路确定所述第二电传输接口的电流方向与预设电流方向相反,则将所述电传输方向切换为所述第二电传输接口向所述第一电传输接口,其中,所述第一电传输接口是所述双向变压电路中与所述双向交直流转换电路连接的接口,所述第二电传输接口是所述双向变压电路的与所述目标设备的电压母线连接的接口;
当所述双向变压电路的电传输方向为所述第二电传输接口向所述第一电传输接口时,如果所述控制电路确定所述第二电传输接口的电流方向与所述预设电流方向相同,则将所述电传输方向切换为所述第一电传输接口向所述第二电传输接口。
可选的,所述控制电路包括检测器和处理器;
所述获取所述双向变压电路与所述电压母线连接处的电参数,包括:
所述检测器检测所述双向变压电路与所述电压母线连接处的电参数;
所述基于所述电参数,控制所述双向变压电路的电传输方向,包括:
所述处理器获取检测器检测的电参数,基于所述电参数,控制所述双向变压电路的电传输方向。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的双向电源中包括双向交直流转换电路、双向变压电路和控制电路,控制电路可以根据双向变压电路与目标设备的电压母线连接处的电参数,控制双向变压电路的电传输方向。由于该连接处的电参数是与目标设备的电机的工作状态直接相关的,这样通过检测电参数控制双向变压电路的电传输方向,可以在目标设备的电机处于发电工作状态时,将电机产生的直流电通过双向变压电路传输至双向交直流转换电路,再由双向交直流转换电路将传入的直流电转换为交流电传输至交流源。这样采用本申请就再不需要为目标设备配置放电电阻、散热风扇等,能够降低目标设备的生产成本、减小目标设备的体积等。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种双向电源的示意图;
图2是本申请实施例提供的一种双向电源的示意图;
图3是本申请实施例提供的一种双向电源的电路示意图。
图示说明
1、双向交直流转换电路;2、双向变压电路;3、控制电路;
11、直流接口;12、交流接口;
21、第一电传输接口;22、第二电传输接口;23、控制接口。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在工业生产中,一些设备可通过电机带动执行部件工作,进而实现自动化生产。但在一些特定情况下,执行部件可能会在重力等外力作用下反向运动,带动电机转动,使电机会处于发电工作状态。如此导致电机具备两种工作状态,即用电工作状态和发电工作状态。在相关技术中,当技术人员可以在设备中配置有一个较大的放电电阻,用于消耗电机在发电工作状态时产生的电能。但由于放电电阻将电能转化为了热能,所以还需要为放电电阻配置散热风扇,以对放电电阻进行散热。这样,不仅为设备增加了放电电阻,还增加了散热风扇,导致设备的生产、使用成本变高,设备的体积增大等,并且对于电机产生的电能无法充分的利用。在另一种可能的情况中,技术人员可以为设备配置蓄电池,用于存储电机在发电工作状态时产生的电能,但同样会导致设备的生产、使用成本变高,设备的体积增大等。
本申请提供了一种双向电源,该双向电源可接入交流源(如电网),可以为目标设备供电。目标设备中的电机具有用电工作状态和发电工作状态。当目标设备的电机处于用电工作状态时,双向电源可以将电网中的交流电转换为直流电,为电机供电。当目标设备的电机处于发电工作状态时,双向电源可以电机产生的直流电转换为交流电传入双向电源连接的交流源中。采用本申请可以降 低生产、使用目标设备的成本,提高能源的利用率等。
下面对本申请提供的双向电源进行介绍:
图1为本申请实施例提供的一种双向电源。该双向电源包括:
双向交直流转换电路1、双向变压电路2和控制电路3,其中:双向交直流转换电路1分别与交流源、双向变压电路2连接;双向变压电路2与目标设备的电压母线连接;控制电路3与双向变压电路2连接,用于获取双向变压电路2与电压母线连接处的电参数,基于电参数,控制双向变压电路2的电传输方向。其中,电参数为电压值或电流方向。
如图1所示,双向电源可以由双向交直流转换电路1、双向变压电路2和控制电路3组成。
双向交直流转换电路1可以包括直流接口11与交流接口12,双向交直流转换电路1可以在控制电路3的控制下,将交流接口12接入的交流电转换为直流电并通过直流接口11输出,或者,将直流接口11接入的直流电转换为交流电并通过交流接口12输出。其中,交流接口12连接的交流源可以是电网。
双向变压电路2可以包括第一电传输接口21和第二电传输接口22,双向变压电路2可以在控制电路3的控制下,将第一电传输接口21传入的电流进行变压处理并传输至第二电传输接口22,或者,将第二电传输接口22传入的电流进行变压处理并传输至第一电传输接口21。其中,双向变压电路2的第一电传输接口21可以与双向交直流转换电路1中的直流接口11连接,双向变压电路2的第二电传输接口22可以与目标设备的电压母线连接。如此在目标设备的电机处于用电工作状态时,可以控制双向变压电路2将直流接口11传入的直流电进行降压处理(降至目标设备正常的工作电压),并通过第二电传输接口22传输至目标设备的电压母线,以驱动目标设备的电机转动。反之,在目标设备的电机处于发电工作状态时,可以控制双向变压电路2将从目标设备的电压母线传入的直流电进行升压处理,并通过第一电传输接口21传输至双向交直流转换电路1的直流接口,再通过双向交直流转换电路1将传入的直流电转换为交流电,通过交流接口12传入电网中。
控制电路3可以与双向交直流转换电路1的控制接口13连接(图1中未示出),并与双向变压电路2的控制接口23连接,用于实现对双向交直流转换电路1、双向变压电路2的控制。
控制电路3可通过对目标设备的电机的工作状态进行检测,以控制双向电源的电传输方向。当目标设备的电机处于用电工作状态时,双向电源需要为目标设备供电,双向变压电路2与目标设备的电压母线连接处(即第二电传输接口22)的电压值为目标设备正常的工作电压。当目标设备处于发电工作状态时,电机产生的电流通过目标设备的电压母线反向流至双向变压电路2的第二电传输接口22。如此,导致第二电传输接口22处的电流方向与目标设备处于用电工作状态时的电流方向相反,并且会将第二电传输接口22处的电压值抬高。因此,控制电路3可以通过获取第二电传输接口22处的电参数(电压值或电流方向),确定目标设备的工作状态。进而可以根据目标设备的工作状态,对双向交直流转换电路1以及双向变压电路2进行控制。
其中,需要说明的是,电机的用电工作状态可以包括电机通电后的转动状态,也可以包括电机的待机状态。当目标设备的执行部件带动电机转动时,电机可以向外发电,该电机处于发电工作状态。该目标设备配置有机械臂,该机械臂可以由电机驱动,例如该目标设备可以是SCARA机器人,对应的执行部件可以是SCARA机器人的机械臂,确定SCARA机器人的机械臂的电机可以是伺服电机。
需要说明的是,在目标设备的一个机械臂中可能具备多个电机。多个电机可以构成一个电机系统。在电机系统中可能同时存在处于用电工作状态的电机以及处于发电工作状态的电机。因此在电机系统中可以具备电能分配装置,该电能分配装置可以将发电工作状态的电机产生的电能提供给处于用电工作状态的电机。当该电机系统整体用电时,也就是该电机系统中发电工作状态的电机所产生的电能小于用电工作状态的电机需要消耗电能时,可认为该电机系统处于用电工作状态。当该电机系统整体向外发电时,也就是该电机系统中发电工作状态的电机所产生的电能大于用电工作状态的电机需要消耗电能时,可认为该电机系统处于发电工作状态。当目标设备中具备多个电机时,对于上述提到的目标设备的电机处于用电工作状态或处于发电工作状态,也可以是目标设备的电机系统处于用电工作状态或处于发电工作状态。
可见,本申请中提供的双向电源能够在目标设备的电机处于用电工作状态时,为目标设备供电,能够在目标设备的电机处于发电工作状态时,切换双向电源中的电传输方向,将电机发出的电传入电网中。如此就不再需要为目标设 备配置放电电阻,更不需要为放电电阻配置散热风扇,能够在一定程度上降低目标设备的生产、使用成本,减小目标设备的体积,并可以提高能源的利用率。
在一种可能的实现方式中,当控制电路3根据双向变压电路2与目标设备的电压母线连接处的电压值确定电机的工作状态并控制双向变压电路2的电传输方向时,进一步的处理如下:
当双向变压电路2的电传输方向为第一电传输接口21向第二电传输接口22时,如果第二电传输接口22的电压值大于或等于第一电压阈值,则将双向变压电路2的电传输方向切换为第二电传输接口22向第一电传输接口21。当双向变压电路2的电传输方向为第二电传输接口22向第一电传输接口21时,如果第二电传输接口22的电压值小于或等于第二电压阈值,则将双向变压电路2的电传输方向切换为第一电传输接口21向第二电传输接口22,其中,第一电压阈值大于第二电压阈值。其中,第二电压阈值可以为目标设备的工作电压。
在实施中,当目标设备的电机处于用电工作状态时,双向变压电路2的电传输方向为第一电传输接口21传向第二电传输接口22,第二电传输接口22的电压值应该为目标设备正常的工作电压。如果目标设备的电机从用电工作状态转换为发电工作状态,由于双向变压电路2的电传输方向不能瞬间随之改变,因此在电机刚转换为发电工作状态时,双向变压电路2的电传输方向仍然为第一电传输接口21传向第二电传输接口22,第二电传输接口22的电压值仍然为目标设备的工作电压。但同时电机处于发电工作状态时,电机产生的电能会通过电压母线传输至第二电传输接口22,导致第二电传输接口22的电压(也就是第二电传输接口22与电压母线连接处的电压)升高。因此在目标设备的电机处于用电工作状态时,控制电路3可以周期性的检测第二电传输接口22的电压值,如果检测到第二电传输接口22的电压值大于或者等于第一电压阈值(第一电压阈值大于目标电机的工作电压),则说明目标设备的电机已处于发电工作状态,因此可以将双向变压电路2的电传输方向切换为第二电传输接口22向第一电传输接口21,进而将目标设备的电机产生的电传回电网。同时控制电路3可以将电机处于用电工作状态更改为处于发电工作状态。
当目标设备的电机处于发电工作状态时,双向变压电路2的电传输方向为第二电传输接口22传向第一电传输接口21,由于目标设备向外传输电能导致第 二电传输接口22的电压升高,此时第二电传输接口22的电压应该大于目标设备正常的工作电压。如果目标设备的电机停止向外发电,则第二电传输接口22的电压会逐渐降低。因此在目标设备的电机处于发电工作状态时,控制电路3可以周期性的检测第二电传输接口22的电压值,如果检测到第二电传输接口22的电压值小于或等于第二电压阈值(第二电压阈值小于第一电压阈值),则说明目标设备的电机已停止发电,因此可以将双向变压电路2的电传输方向切换至第一电传输接口21向第二电传输接口22,之后可以通过第二电传输接口22为目标设备的电机供电。同时控制电路3可以将电机处于用电工作状态更改为处于用电工作状态。
其中,第一电压阈值和第二电压阈值可以由技术人员根据目标设备的工作电压设置。第二电压阈值大于第一电压阈值,第一电压阈值可以为目标设备正常的工作电压。这里,通过设置两个电压阈值,可以避免由于第二电传输接口22电压抖动引起双向变压电路2的电传输方向切换。例如,目标设备的工作电压和第一电压阈值为48V,第二电压阈值为52V。当目标设备的电机处于用电工作状态时,第二电传输接口22的电压可能会在48V左右抖动。这样即使第二电传输接口22的电压抖动到50V时,也不会切换双向变压电路2的电传输方向,能够保证电机的正常运转。
在一种可能的实现方式中,当控制电路3根据双向变压电路2与目标设备的电压母线连接处的电流方向确定电机的工作状态并控制双向变压电路2的电传输方向时,进一步的处理如下:
当双向变压电路2的电传输方向为第一电传输接口21向第二电传输接口22时,如果第二电传输接口22的电流方向与预设电流方向相反,则将电传输方向切换为第二电传输接口22向第一电传输接口21;当双向变压电路2的电传输方向为第二电传输接口22向第一电传输接口21时,如果第二电传输接口22的电流方向与预设电流方向相同,则可以将电传输方向切换为第一电传输接口21向第二电传输接口22。
其中,预设电流方向可以为目标设备处于用电工作状态时,第二电传输接口22处的电流方向。
在实施中,当目标设备的电机处于用电工作状态时,双向变压电路2的电传输方向为第一电传输接口21向第二电传输接口2,双向电源通过第二电传输 接口22向目标设备提供电能,第二电传输接口22处的电流方向应该与预设电流方向相同。如果目标设备的电机从用电工作状态转换为发电工作状态,则目标设备的电机产生的直流电可以通过目标设备的电压母线传输至第二电传输接口22,并通过第二电传输接口22为双向变压电路2中的储能器件(如电容)充电,因此导致此时第二电传输接口22处的电流方向与目标设备的电机处于用电工作状态时的电流方向相反。因此在目标设备的电机处于用电工作状态时,控制电路3可以周期性的检测第二电传输接口22的电流方向,如果检测到第二电传输接口22处的电流方向与预设电流方向相反,则说明目标设备的电机已处于发电工作状态,因此可以将双向变压电路2的电传输方向切换为第二电传输接口22向第一电传输接口21,进而将目标设备的电机产生的电传回电网。同时控制电路3可以将电机处于用电工作状态更改为处于发电工作状态。需要说明的是,当电机的用电工作状态可以包括电机通电转动状态,也可以包括电机的待机状态。
当目标设备处于发电工作状态时,双向变压电路2的电传输方向为第二电传输接口22向第一电传输接口21,由于目标设备向外输出的电流会导致第二电传输接口22处的电流方向与预设电流方向相反。如果目标设备的电机从发电工作状态转换为用电工作状态,虽然双向变压电路2的电传输方向不会瞬间随之改变,但是双向变压电路2中包括的储能器件(如电容)中存储的电能会传输至目标设备,所以此时第二电传输接口22处的电流方向又会与预设电流方向相同。因此在目标设备的电机处于发电工作状态时,控制电路3可以周期性的检测第二电传输接口22的电流方向,如果控制电路3检测到第二电传输接口22处的电流方向与预设电流方向相同时,则说明目标设备的电机已停止发电,可以将双向变压电路2的电传输方向切换为第一电传输接口21向第二电传输接口22,之后可以通过第二电传输接口22为目标设备供电。同时控制电路3可以将电机处于发电工作状态更改为处于用电工作状态。
在一种可能的实现方式中,控制电路3包括检测器31和处理器32。其中,检测器31用于检测双向变压电路2与目标设备的电压母线连接处的电参数,处理器32用于获取检测器31检测的电参数,基于电参数,控制双向变压电路2的电传输方向。
如图2所示,控制电路3可以包括检测器31和处理器32。
检测器31可以用于检测电路中的电压值或电流值等,关于电流方向可以通过电流值的正负表示。例如,该检测器31可以是电压检测器或电流检测器,或者还可以是包括电压检测部件和电流检测部件的检测器等。检测器31可以根据其实现的检测功能与双向变压电路2建立连接,以实现对双向变压电路2与目标设备的电压母线连接处的电压值或电流方向的检测。检测器31与处理器32之间可以建立连接,检测器31可以将检测到的电压值、电流值或电流方向发送至处理器32。
处理器32可以是任一处理芯片,可以根据检测器31发送的电压值或电流方向等,确定目标设备的工作状态,根据目标设备的工作状态,对双向变压电路2的电传输方向进行控制。也就是,当确定目标设备的电机处于用电工作状态时,可以将双向变压电路2的电传输方向设置为第一电传输接口21向第二电传输接口22,进而为目标设备供电。当确定目标设备的电机处于发电工作状态时,可以将双向变压电路2的电传输方向设置为第二电传输接口22向第一电传输接口21,进而将电机产生的电流反向传入电网中。
在一种可能的实现方式中,双向交直流转换电路1为双向PFC(Power Factor Correction,功率因数校正)电路,双向变压电路2为双向DAB(Dual Active Bridge,双有源电桥)电路。
如图3所示,双向交直流转换电路1为双向PFC电路,该双向PFC电路可以由一个H桥、一个电感L1和一个电容C1构成,在H桥中包括四个独立控制机的开关器件Q1-Q4,双向PFC电路的交流接口12可以接入电网,双向PFC电路的直流接口11与双向DAB电路的第一电传输接口21连接。其中,开关器件可以是金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)管,开关器件Q1-Q4可认为是双向PFC电路的控制端13,控制电路3可通过控制开关器件Q1-Q4的闭合,将交流接口12流入的交流电转换为直流电,并通过直流接口11输出,或者,可以将直流接口11流入的直流电转换为交流点,并通过交流接口12输出。
双向变压电路2为双向DAB电路,该双向DAB电路可以由两个H桥、电容C2、电容C3、变压器T1以及电感L2构成,两个H桥通过变压器T1进行电气隔离。两个H桥分别包括8个开关器件S1-S8,电感L2可以在任一个H桥的 中桥臂上。8个开关器件S1-S8可认为是双向DAB电路的控制端23,控制电路3可通过控制开关器件S1-S8的闭合,进而控制双向DAB电路的电传输方向。例如,当需要控制双向DAB电路的电传输方向为第一电传输接口21向第二电传输接口22时,可以先控制导通靠近第一电传输接口21的第一H桥中的开关器件,将第一电传输接口21传入的直流电传输至变压器T1,之后再控制导通靠近第二电传输接口22的第二H桥中的开关器件,进而实现将第一H桥中的直流电经过变压器传输至第二H桥。同理,当需要控制双向DAB电路的电传输方向为第二电传输接口22向第一电传输接口21时,可以先控制导通第二H桥中的开关器件,将第二电传输接口22传入的直流电传输至变压器T1,之后再控制导通第一H桥中的开关器件,进而实现将第二H桥中的直流电经过变压器传输至第一H桥。其中,控制电路3对第一H桥和第二H桥中不同开关器件的控制方式属于现有技术,此处不再进行详细介绍。
双向DAB电路的第一电传输接口21与双向PFC电路的直流接口连接,双向DAB电路的第二电传输接口22与目标设备的电压母线连接。
当目标设备的电机处于用电工作状态时,双向DAB电路的电传输方向为第一电传输接口21向第二电传输接口22,电容C3两端也就是第二电传输接口22,为目标设备正常的工作电压,例如工作电压可以为48V。如果目标设备切换到了发电工作状态,则目标设备的电机通过电压母线将电流传入第二电传输接口22,导致第二电传输接口22两端的电压升高,且导致第二电传输接口22电流方向与预设电流方向相反。则可以通过控制电路3,切换对开关器件S1-S8的控制方式,使双向DAB电路的电传输方向切换至第二电传输接口22向第一电传输接口21。如此可以将目标设备的电机产生的直流电传输至双向DAB电路,通过双向DAB电路对传入的直流电进行升压处理,并传输至双向PFC电路,再由双向PFC电路对传入的直流电转换为交流电,并传输至电网中。
当目标设备的电机处于发电工作状态时,双向DAB电路的电传输方向为第二电传输接口22传向第一电传输接口21,电容C3两端的电压大于目标设备正常的工作电压,也就是第二电传输接口22大于目标设备正常的工作电压,例如为52V。如果目标设备切换到了用电工作状态,则电容C3两端的电压会恢复至目标设备的工作电压,且导致第二电传输接口22电流方向与预设电流方向相同。则可以通过控制电路3,切换对开关器件S1-S8的控制方式,使双向DAB电路 的电传输方向切换至第一电传输接口21向第二电传输接口22。如此当目标设备的电机需要供电驱动时,双向PFC电路可以将电网中的交流电转换为直流电并传至双向DAB电路,双向DAB电路可以将从双向PFC电路中传入的直流电降压至目标设备正常的工作电压,进而驱动目标设备的电机转动。
可见,本申请提供的双向电源在目标设备的电机处于发电工作状态时,可以将电机产生的电能出传入交流源中,在目标设备的电机处于用电工作状态时,可以为电机供电。并且能够实现自动识别目标设备中电机的工作状态,并根据工作状态自动切换双向电源的电传输方向,能够应对电机频繁切换工作状态的情况。如此就不需要为目标设备配置放电电阻、散热风扇等,能够降低目标设备的生产成本、减小目标设备的体积,还能够进一步提高能源的利用。
本申请还提供了一种双向电源的控制方法,其中,双向电源包括双向交直流转换电路1、双向变压电路2和控制电路3;双向交直流转换电路1分别与交流源、双向变压电路2连接,双向变压电路2与目标设备的电压母线连接,控制电路3与双向变压电路2连接;该双向电源的控制方法包括:控制电路3获取双向变压电路2与电压母线连接处的电参数,基于电参数,控制双向变压电路2的电传输方向。
在一种可能的实现方式中,电参数可以为电压值,对于基于电参数控制双向变压电路2的电传输方向的处理,如下:
当双向变压电路2的电传输方向为第一电传输接口21向第二电传输接口22时,如果控制电路3确定第二电传输接口22的电压值大于或等于第一电压阈值,则将双向变压电路2的电传输方向切换为第二电传输接口22向第一电传输接口21,其中,第一电传输接口21是双向变压电路2的与双向交直流转换电路1连接的接口,第二电传输接口22是双向变压电路2的与目标设备的电压母线连接的接口;
当双向变压电路2的电传输方向为第二电传输接口22向第一电传输接口21时,如果控制电路3确定第二电传输接口22的电压值小于或等于第二电压阈值,则将双向变压电路2的电传输方向切换为第一电传输接口21向第二电传输接口22,其中,第一电压阈值大于第二电压阈值。
在一种可能的实现方式中,第二电压阈值为目标设备正常的工作电压。
在一种可能的实现方式中,电参数可以为电流方向,对于基于电参数控制双向变压电路2的电传输方向的处理,如下:
当双向变压电路2的电传输方向为第一电传输接口21向第二电传输接口22时,如果控制电路3确定第二电传输接口22的电流方向与预设电流方向相反,则将电传输方向切换为第二电传输接口22向第一电传输接口21,其中,第一电传输接口21是双向变压电路2的与双向交直流转换电路1连接的接口,第二电传输接口22是双向变压电路2的与目标设备的电压母线连接的接口;
当双向变压电路2的电传输方向为第二电传输接口22向第一电传输接口21时,如果控制电路3确定第二电传输接口22的电流方向与预设电流方向相同,则将电传输方向切换为第一电传输接口21向第二电传输接口22。
在一种可能的实现方式中,控制电路3包括检测器31和处理器32;获取双向变压电路2与电压母线连接处的电参数,包括:
检测器31检测双向变压电路2与电压母线连接处的电参数;
基于电参数,控制双向变压电路2的电传输方向,包括:
处理器32获取检测器31检测的电参数,基于电参数,控制双向变压电路2的电传输方向。
本申请实施例提供的双向电源中包括双向交直流转换电路、双向变压电路和控制电路,控制电路可以根据双向变压电路与目标设备的电压母线连接处的电参数,控制双向变压电路的电传输方向。由于该连接处的电参数是与目标设备的电机的工作状态直接相关的,这样通过检测电参数控制双向变压电路的电传输方向,可以在目标设备的电机处于发电工作状态时,将电机产生的直流电通过双向变压电路传输至双向交直流转换电路,再由双向交直流转换电路将传入的直流电转换为交流电传输至交流源。这样采用本申请就再不需要为目标设备配置放电电阻、散热风扇等,能够降低目标设备的生产成本、减小目标设备的体积等。
其中,本实施例中一种双向电源的控制方法与上述双向电源对应的实施例属于同一构思,其具体实现过程详见双向电源对应的实施例,这里不再赘述。
本申请中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,应理解,“第一”、“第二”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。本申请中术语“多个”的含义是指两 个或两个以上。
以上所述仅为本申请的具体实施方式,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种双向电源,其特征在于,所述双向电源包括双向交直流转换电路(1)、双向变压电路(2)和控制电路(3),其中:
    所述双向交直流转换电路(1)分别与交流源、所述双向变压电路(2)连接;
    所述双向变压电路(2)与目标设备的电压母线连接;
    所述控制电路(3)与所述双向变压电路(2)连接,用于获取所述双向变压电路(2)与所述电压母线连接处的电参数,基于所述电参数,控制所述双向变压电路(2)的电传输方向。
  2. 根据权利要求1所述的双向电源,其特征在于,所述电参数为电压值;
    所述控制电路(3),用于:
    当所述双向变压电路(2)的电传输方向为第一电传输接口(21)向第二电传输接口(22)时,如果所述第二电传输接口(22)的电压值大于或等于第一电压阈值,则将所述双向变压电路(2)的电传输方向切换为所述第二电传输接口(22)向所述第一电传输接口(21),其中,所述第一电传输接口(21)是所述双向变压电路(2)中与所述双向交直流转换电路(1)连接的接口,所述第二电传输接口(22)是所述双向变压电路(2)的与所述目标设备的电压母线连接的接口;
    当所述双向变压电路(2)的电传输方向为所述第二电传输接口(22)向所述第一电传输接口(21)时,如果所述第二电传输接口(22)的电压值小于或等于第二电压阈值,则将所述双向变压电路(2)的电传输方向切换为所述第一电传输接口(21)向所述第二电传输接口(22),其中,所述第一电压阈值大于所述第二电压阈值。
  3. 根据权利要求2所述的双向电源,其特征在于,所述第二电压阈值为所述目标设备的工作电压。
  4. 根据权利要求1所述的双向电源,其特征在于,所述电参数为电流方向;
    所述控制电路(3),用于:
    当所述双向变压电路(2)的电传输方向为第一电传输接口(21)向第二电传输接口(22)时,如果所述第二电传输接口(22)的电流方向与预设电流方向相反,则将所述电传输方向切换为所述第二电传输接口(22)向所述第一电传输接口(21),其中,所述第一电传输接口(21)是所述双向变压电路(2)中与所述双向交直流转换电路(1)连接的接口,所述第二电传输接口(22)是所述双向变压电路(2)的与所述目标设备的电压母线连接的接口;
    当所述双向变压电路(2)的电传输方向为所述第二电传输接口(22)向所述第一电传输接口(21)时,如果所述第二电传输接口(22)的电流方向与所述预设电流方向相同,则将所述电传输方向切换为所述第一电传输接口(21)向所述第二电传输接口(22)。
  5. 根据权利要求1所述的双向电源,其特征在于,所述控制电路(3)包括检测器(31)和处理器(32);
    所述检测器(31),用于检测所述双向变压电路(2)与所述电压母线连接处的电参数;
    所述处理器(32),用于获取检测器(31)检测的电参数,基于所述电参数,控制所述双向变压电路(2)的电传输方向。
  6. 根据权利要求1-5任一项所述的双向电源,其特征在于,所述目标设备配置有由电机驱动的机械臂。
  7. 根据权利要求1-5任一项所述的双向电源,其特征在于,所述双向交直流转换电路(1)为双向功率因数校正PFC电路。
  8. 根据权利要求1-5任一项所述的双向电源,其特征在于,所述双向变压电路(2)为双向双有源电桥DAB电路。
  9. 一种双向电源的控制方法,其特征在于,所述双向电源包括双向交直流转换电路(1)、双向变压电路(2)和控制电路(3);
    所述双向交直流转换电路(1)分别与交流源、所述双向变压电路(2)连接,所述双向变压电路(2)与目标设备的电压母线连接,所述控制电路(3)与所述双向变压电路(2)连接;
    所述方法包括:所述控制电路(3)获取所述双向变压电路(2)与所述电压母线连接处的电参数,基于所述电参数,控制所述双向变压电路(2)的电传输方向。
  10. 根据权利要求9所述的方法,其特征在于,所述电参数为电压值;
    所述基于所述电参数,控制所述双向变压电路(2)的电传输方向,包括:
    当所述双向变压电路(2)的电传输方向为第一电传输接口(21)向第二电传输接口(22)时,如果所述控制电路(3)确定所述第二电传输接口(22)的电压值大于或等于第一电压阈值,则将所述双向变压电路(2)的电传输方向切换为所述第二电传输接口(22)向所述第一电传输接口(21),其中,所述第一电传输接口(21)是所述双向变压电路(2)中与所述双向交直流转换电路(1)连接的接口,所述第二电传输接口(22)是所述双向变压电路(2)的与所述目标设备的电压母线连接的接口;
    当所述双向变压电路(2)的电传输方向为所述第二电传输接口(22)向所述第一电传输接口(21)时,如果所述控制电路(3)确定所述第二电传输接口(22)的电压值小于或等于第二电压阈值,则将所述双向变压电路(2)的电传输方向切换为所述第一电传输接口(21)向所述第二电传输接口(22),其中,所述第一电压阈值大于所述第二电压阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述第二电压阈值为所述目标设备的工作电压。
  12. 根据权利要求9所述的方法,其特征在于,所述电参数为电流方向;
    所述基于所述电参数,控制所述双向变压电路(2)的电传输方向,包括:
    当所述双向变压电路(2)的电传输方向为第一电传输接口(21)向第二电传输接口(22)时,如果所述控制电路(3)确定所述第二电传输接口(22)的电流方向与预设电流方向相反,则将所述电传输方向切换为所述第二电传输接 口(22)向所述第一电传输接口(21),其中,所述第一电传输接口(21)是所述双向变压电路(2)中与所述双向交直流转换电路(1)连接的接口,所述第二电传输接口(22)是所述双向变压电路(2)的与所述目标设备的电压母线连接的接口;
    当所述双向变压电路(2)的电传输方向为所述第二电传输接口(22)向所述第一电传输接口(21)时,如果所述控制电路(3)确定所述第二电传输接口(22)的电流方向与所述预设电流方向相同,则将所述电传输方向切换为所述第一电传输接口(21)向所述第二电传输接口(22)。
  13. 根据权利要求9所述的方法,其特征在于,所述控制电路(3)包括检测器(31)和处理器(32);
    所述获取所述双向变压电路(2)与所述电压母线连接处的电参数,包括:
    所述检测器(31)检测所述双向变压电路(2)与所述电压母线连接处的电参数;
    所述基于所述电参数,控制所述双向变压电路(2)的电传输方向,包括:
    所述处理器(32)获取检测器(31)检测的电参数,基于所述电参数,控制所述双向变压电路(2)的电传输方向。
PCT/CN2022/138011 2021-12-09 2022-12-09 一种双向电源、双向电源的控制方法 WO2023104193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111499028.0A CN114301323A (zh) 2021-12-09 2021-12-09 一种双向电源、双向电源的控制方法
CN202111499028.0 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023104193A1 true WO2023104193A1 (zh) 2023-06-15

Family

ID=80967384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138011 WO2023104193A1 (zh) 2021-12-09 2022-12-09 一种双向电源、双向电源的控制方法

Country Status (2)

Country Link
CN (1) CN114301323A (zh)
WO (1) WO2023104193A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301323A (zh) * 2021-12-09 2022-04-08 广东美的白色家电技术创新中心有限公司 一种双向电源、双向电源的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193614A (zh) * 2018-08-29 2019-01-11 微控物理储能研究开发(深圳)有限公司 飞轮储能再生制动能量回馈系统及其控制方法
CN208452809U (zh) * 2018-06-20 2019-02-01 华盛新能源科技(深圳)有限公司 电动汽车电源装置
CN111478413A (zh) * 2019-01-04 2020-07-31 乐金电子研发中心(上海)有限公司 一种充电电路、充电设备及系统
CN111555638A (zh) * 2020-04-07 2020-08-18 华为技术有限公司 一种电源变换器、充电机、充电系统及方法
US20200398676A1 (en) * 2017-11-23 2020-12-24 Zhuzhou CRRC Times Electric Co., Ltd Electric-brake energy feedback system
CN112874337A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 车载充电系统和电动汽车
CN114301323A (zh) * 2021-12-09 2022-04-08 广东美的白色家电技术创新中心有限公司 一种双向电源、双向电源的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200398676A1 (en) * 2017-11-23 2020-12-24 Zhuzhou CRRC Times Electric Co., Ltd Electric-brake energy feedback system
CN208452809U (zh) * 2018-06-20 2019-02-01 华盛新能源科技(深圳)有限公司 电动汽车电源装置
CN109193614A (zh) * 2018-08-29 2019-01-11 微控物理储能研究开发(深圳)有限公司 飞轮储能再生制动能量回馈系统及其控制方法
CN111478413A (zh) * 2019-01-04 2020-07-31 乐金电子研发中心(上海)有限公司 一种充电电路、充电设备及系统
CN112874337A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 车载充电系统和电动汽车
CN111555638A (zh) * 2020-04-07 2020-08-18 华为技术有限公司 一种电源变换器、充电机、充电系统及方法
CN114301323A (zh) * 2021-12-09 2022-04-08 广东美的白色家电技术创新中心有限公司 一种双向电源、双向电源的控制方法

Also Published As

Publication number Publication date
CN114301323A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
JP2020527321A5 (zh)
US10224862B2 (en) Motor driving apparatus having discharging function
JP4489238B2 (ja) 電動機制御装置
WO2016019137A2 (en) Power sharing solid-state relay
JP6474455B2 (ja) Dcリンクコンデンサの初期充電時間を最適化するコンバータ装置
CN108322128A (zh) 一种电机驱动保护装置、过压保护方法、装置及空调器
WO2023104193A1 (zh) 一种双向电源、双向电源的控制方法
EP3185393A1 (en) Ups with integrated bypass switch
JP2012196143A (ja) モータ制御装置
EP2958226A2 (en) Cascaded h-bridge inverter capable of operating in bypass mode
CN105322810A (zh) 电源转换装置及其电流反馈信号异常时的保护方法
US9859824B2 (en) Drive circuit for a brushless motor having an AC/AC boost converter
JP2008072857A5 (zh)
JP5049251B2 (ja) モータ制御装置
JP6150017B2 (ja) 駆動装置、マトリクスコンバータ及びエレベータシステム
JP2018057178A (ja) 電気機器
CN103198977B (zh) 接触器线圈供电电路
CN213402445U (zh) 检测保护电路、装置及电器设备
JP2010142066A (ja) ロボット
JP4927655B2 (ja) 昇降圧コンバータ
CN113701306A (zh) 空调器中压缩机的保护控制方法和装置、电机控制器
JP2017200308A (ja) 誘導性負荷用電源装置
CN219611627U (zh) 一种伺服驱动装置、伺服电机和伺服控制系统
JPWO2019155522A1 (ja) 電力変換装置
CN220964345U (zh) 电源分配装置和程控通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903610

Country of ref document: EP

Kind code of ref document: A1