WO2021010408A1 - 無線通信システム、中継装置及び受信装置 - Google Patents

無線通信システム、中継装置及び受信装置 Download PDF

Info

Publication number
WO2021010408A1
WO2021010408A1 PCT/JP2020/027435 JP2020027435W WO2021010408A1 WO 2021010408 A1 WO2021010408 A1 WO 2021010408A1 JP 2020027435 W JP2020027435 W JP 2020027435W WO 2021010408 A1 WO2021010408 A1 WO 2021010408A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
symbol
quantization
signal stream
Prior art date
Application number
PCT/JP2020/027435
Other languages
English (en)
French (fr)
Inventor
直剛 柴田
寺田 純
信介 衣斐
政一 三瓶
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/626,110 priority Critical patent/US11695455B2/en
Publication of WO2021010408A1 publication Critical patent/WO2021010408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03184Details concerning the metric
    • H04L25/03197Details concerning the metric methods of calculation involving metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03203Trellis search techniques
    • H04L25/03229Trellis search techniques with state-reduction using grouping of states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • the present invention relates to a wireless communication system, a relay device and a receiving device.
  • a relay communication system that improves communication quality by using a plurality of relay devices existing between a transmitting device and a receiving device is being studied.
  • the demodulation result when demodulating a received radio signal, the demodulation result is not output as a bit value of 0 or 1, but is called Likelihood, which indicates the certainty that the transmitted signal bit is 0 or 1.
  • a method called soft-decision demodulation that outputs the ratio of real values may be used.
  • the output of soft determination demodulation is called a log-likelihood ratio or LLR (Log-Likelihood Ratio) (see, for example, Non-Patent Document 1).
  • the relay communication systems there is a regenerative quantization relay communication system that quantizes the LLR detected by the relay device in the communication between the transmission device and the relay device and transfers the LLR to the reception device (see, for example, Non-Patent Document 2).
  • BBU BasebandUnit
  • RRH Remote RadioHead
  • SPP Split-PHY Processing
  • An object of the present invention is to provide a wireless communication system, a relay device, and a receiving device capable of reducing determination errors while suppressing the amount of calculation.
  • the wireless communication system is a wireless communication system in which a signal stream transmitted by a transmitting device by MIMO transmission is relayed to a receiving device by a relay device, wherein the relay device transmits the signal stream by MIMO transmission.
  • a grid base reduction processing unit that transforms the base so as to enhance the orthogonality of the grid of the signal stream, and a MIMO equalization unit that detects the received symbol by equalization from the signal stream whose base is converted by the grid base reduction processing unit.
  • the reception symbol detected by the MIMO equalization unit is mapped to a region delimited by the quantization threshold on the complex plane and quantized, and at least the signal quantized by the symbol quantization unit is received.
  • It has a transmitting unit that transmits to a device, the receiving unit receives a signal transmitted by the transmitting unit, and a signal obtained by converting a base from a signal received by the receiving unit by the lattice base reduction processing unit. It is characterized by having a signal detection unit for detecting a stream.
  • the relay device is a relay device that relays a signal stream transmitted by a transmitting device by MIMO transmission to a receiving device so as to enhance the lattice orthogonality of the signal stream transmitted by the transmitting device by MIMO transmission.
  • a lattice base reduction processing unit that converts the base to, a MIMO equalization unit that detects a received symbol by equalization from the signal stream that the lattice base reduction processing unit has converted the base, and a receive symbol detected by the MIMO equalization unit. It has a symbol quantization unit that maps and quantizes a region delimited by a quantization threshold on a complex plane, and at least a transmission unit that transmits a signal quantized by the symbol quantization unit to the receiving device. It is characterized by.
  • the receiving device is a receiving device that receives a signal stream transmitted by the transmitting device by MIMO transmission by relaying the relay device, and is a receiving unit that receives the signal relayed by the relay device and the receiving unit. Based on the signal received by the signal stream whose basis has been transformed to increase the orthogonality of the grid of the signal stream, which is mapped to the region delimited by the quantization threshold on the complex plane and quantized. It is characterized by having a signal detection unit that detects a signal stream whose base has been converted.
  • FIG. 1 It is a figure which shows the configuration example of a relay device. It is a figure which shows the configuration example of the receiving device.
  • A is a figure which shows the signal point arrangement of the 16QAM transmission signal.
  • B is a figure which shows the signal point arrangement of the converted transmission signal. It is a figure which shows the quantization grid.
  • A is a figure which shows the configuration example of the receiving device.
  • It is a figure which shows the configuration example of a wireless communication system.
  • A) is a figure which shows the constellation of the received signal.
  • B is a figure which shows the determination area of ZF.
  • C is a figure which shows the determination area of MLD.
  • FIG. 6 is a diagram showing a configuration example of the wireless communication system 1.
  • the wireless communication system 1 has a transmitting device 2, two relay devices 3, and a receiving device 4.
  • the number of relay devices 3 may be any one or more (N units).
  • the relay device 3 and the receiving device 4 may be connected either by wire or wirelessly.
  • the nth one is described as the relay device # n.
  • FIG. 7 is a diagram showing a specific configuration example of the wireless communication system 1 shown in FIG.
  • the wireless communication system 1 is, for example, a regenerative quantization relay communication system having a transmission device 2, two relay devices 3, and a reception device 4.
  • Each of the relay devices 3 has an antenna 31, a wireless reception unit 32, a symbol quantization unit 33, and a wired transmission unit 34, and relays the signal stream transmitted by the transmission device 2 to the reception device 4.
  • the antenna 31 receives the signal stream transmitted by the transmitting device 2 and outputs it to the wireless receiving unit 32.
  • the radio receiving unit 32 outputs the signal stream received via the antenna 31 to the symbol quantization unit 33. Noise is added to the signal received by the wireless receiver 32.
  • the symbol quantization unit 33 maps the reception symbol of the signal stream received by the radio reception unit 32 to the region delimited by the quantization threshold on the complex plane, converts the mapped region into a quantization symbol, and converts the mapped region.
  • the quantization symbol is output to the wired transmission unit 34.
  • the quantization symbol is information that identifies a region by a quantized value.
  • the wired transmission unit 34 is a transmission unit that transmits a signal in which the quantization symbol is set to the receiving device 4 via a mobile optical network configured by, for example, a wired optical fiber.
  • the receiving device 4 has, for example, two wired receiving units 41 and a signal detecting unit 42, which are the same as the number of relay devices 3.
  • Each of the wired receiving units 41 receives a signal transmitted by wire from the relay device 3 and outputs the signal to the signal detecting unit 42.
  • the signal detection unit 42 detects the signal using the quantization symbol set for each signal received from the relay device 3 by the wired reception unit 41, and determines the reception bit.
  • MIMO Multiple Input Multiple Output
  • FIG. 8 is a diagram showing a specific configuration example of a wireless communication system (wireless communication system 1a) to which MIMO transmission technology is applied to a wireless section.
  • the wireless communication system 1a includes, for example, a transmission device 2a, two relay devices 3a, and a reception device 4.
  • the configurations substantially the same as the configurations of the wireless communication system 1 shown in FIG. 7 are designated by the same reference numerals.
  • the transmitting device 2a transmits a radio signal (stream) to each of the relay devices 3a by MIMO transmission using a plurality of antennas.
  • Each of the relay devices 3a has a plurality of antennas 31, a plurality of wireless reception units 32, a MIMO equalization unit 37, a symbol quantization unit 33, and a wired transmission unit 34, and transmits a signal stream transmitted by the transmission device 2a by MIMO transmission. It relays to the receiving device 4.
  • the plurality of relay devices 3a may be configured to perform wireless MIMO transmission to the receiving device 4.
  • the plurality of antennas 31 receive the signal stream transmitted by the transmitting device 2a and output the signal stream to the plurality of wireless receiving units 32, respectively.
  • the plurality of wireless reception units 32 output signal streams received via the plurality of antennas 31 to the MIMO equalization unit 37, respectively. Noise is added to the signal stream received by each of the wireless receivers 32.
  • the MIMO equalization unit 37 detects the received symbol by equalization from the signal streams received by the plurality of wireless reception units 32, and outputs the received symbol to the symbol quantization unit 33.
  • Equation (1) indicates a transmission signal and is assumed to be an integer.
  • Equation (2) shows the channel matrix
  • FIG. 9A is a diagram showing a constellation of received signals.
  • FIG. 9B is a diagram showing a determination region of ZF.
  • FIG. 9 (c) is a diagram showing a determination region for maximum likelihood detection (MLD).
  • FIG. 1 is a diagram showing a configuration example of the relay device 3b.
  • the relay device 3b is a relay device that constitutes a wireless communication system that realizes MIMO transmission in place of the relay device 3a of the wireless communication system 1a shown in FIG.
  • the relay device 3b includes a plurality of antennas 31, a plurality of wireless reception units 32, a plurality of lattice base reduction processing units 38, a MIMO equalization unit 37, a symbol quantization unit 33, and a wired transmission unit 34, and the transmission device 2a
  • the signal stream transmitted by MIMO transmission is relayed to the receiving device 4.
  • the plurality of relay devices 3b may be configured to perform wireless MIMO transmission to the receiving device 4.
  • the plurality of antennas 31 receive the signal stream transmitted by the transmitting device 2a and output the signal stream to the plurality of wireless receiving units 32, respectively.
  • the plurality of radio receiving units 32 output signal streams received via the plurality of antennas 31 to the grid basis reduction processing unit 38, respectively. Noise is added to the signal stream received by each of the wireless receivers 32.
  • the plurality of grid base reduction processing units 38 convert the bases so as to enhance the orthogonality of the grids of the signal streams output by the plurality of radio reception units 32, and output the bases to the MIMO equalization unit 37.
  • the MIMO equalization unit 37 detects the received symbol by equalization from the signal stream converted by each of the plurality of lattice basis reduction processing units 38, and outputs the received symbol to the symbol quantization unit 33.
  • FIG. 2 is a diagram showing a configuration example of the receiving device 4b.
  • the receiving device 4b is a receiving device that constitutes a wireless communication system by being replaced by the receiving device 4 when the relay device 3b is replaced by the relay device 3a of the wireless communication system 1a shown in FIG. ..
  • the receiving device 4b has, for example, two wired receiving units 41 and a signal detecting unit 42b, which are the same as the number of relay devices 3b.
  • Each of the wired receiving units 41 receives the signal transmitted by wire from the relay device 3b and outputs the signal to the signal detecting unit 42b.
  • the signal detection unit 42b uses the quantization symbol set for each signal received from the relay device 3b by the wired reception unit 41, and the lattice basis reduction processing unit 38 of the relay device 3b detects the signal stream whose basis has been converted. Determine the receive bit.
  • lowercase letters represent vectors
  • uppercase letters represent matrices.
  • the number of antennas transmitted by the transmitting device 2a is M
  • the number of antennas 31 received by the relay device 3b is N. Further, in the following description, it is assumed that the transmission / reception sample at time k is handled, and k is not described.
  • the transmission device 2a transmits the spatiotemporal region transmission symbol vector of size M ⁇ 1 shown in the following equation (5) to the relay device #i via the MIMO communication path by the average energy shown in the following equation (4). To do.
  • the relay device #i observes the vector represented by the following equation (7) as the spatiotemporal region reception symbol vector shown in the following equation (6).
  • the vector shown in the following equation (8) is a spatiotemporal region complex Gaussian noise according to the following equation (9) added by the relay device #i.
  • the matrix shown in the following equation (10) has a size of N ⁇ M at time k, and is a spatiotemporal area communication path matrix between the transmission device 2a and the relay device #i under the Rayleigh fading environment.
  • the n-by-m-column element is a complex fading coefficient of the communication path from the m-th transmitting antenna to the n-th antenna 31 of the relay device #i according to an independent and identically distributed (IID).
  • IID independent and identically distributed
  • the relay device #i first applies the complex number signal model shown in the above equation (7) to the following equations (11) and (12). ) Is converted to the real number signal model.
  • the unimodular matrix is a matrix in which all the elements are integers and the value of the determinant is 1 or -1. Substituting the above equation (13) into the above equation (11) on the premise that such a unimodular matrix is obtained, the following equations (14) and (15) are obtained.
  • the spatiotemporal region communication path matrix shown in the above equation (13) becomes a quasi-orthogonal matrix with high base orthogonality by applying lattice basis reduction
  • a signal detection algorithm that can effectively utilize this high orthogonality can be used. If it can be applied, improvement in signal detection performance can be expected.
  • As a method for obtaining the unimodular matrix T there is an LLL (Lenstra Lenstra Lovasz) algorithm.
  • the converted transmission signals shown in the above equations (15) and (16) are converted by the above equation (14) to MIMO converted by the above equation (13). It is regarded as a signal (received symbol) received through the communication path matrix.
  • the spatial filtering shown in the following equation (17) is applied to the received signal.
  • the covariance matrix is given by the following equations (18) and (19), respectively.
  • Figure 3 is the 2 ⁇ 2 MIMO, a diagram illustrating a signal point arrangement when unimodular matrix T i is the following equation (22).
  • FIG. 3A is a diagram showing a signal point arrangement of the 16QAM transmission signal.
  • FIG. 3B is a diagram showing a signal point arrangement of the converted transmission signal shown in the following equation (23).
  • the signal point arrangement of the converted transmission signal shown in FIG. 3B depends on the unimodular matrix Ti , that is, the MIMO channel matrix, it is necessary to notify the receiving device 4b.
  • the method of determining the quantization grid and the cell number for the converted transmission signal shown in FIG. 3B it is necessary to set the same determination method in advance for the relay device 3b and the receiving device 4b.
  • the symbol quantization unit 33 performs symbol quantization using the quantization grid shown in FIG.
  • the index m of the transmitting antenna of the transmitting device 2a is not described for the converted transmission signal shown in the above equation (23).
  • the index j of the following equation (24) is added in the order from the bottom to the top of the grid and from the left to the right.
  • j i is the total number of candidate points that can be taken by the converted transmission signal shown in the above equation (23).
  • the symbol quantization unit 33 sets the k i number of cells around one of the signal point candidates, the cell number of the shown in the following equation (25) the converted transmitted signal belongs, the following equation (26 ) Is determined as the quantization symbol.
  • the wired transmission unit 34 transfers the compressed value represented by the above equation (28) to the receiving device 4b via a wired optical fiber or the like.
  • the signal detecting unit 42b calculates the probability mass function (PMF) based on the quantization symbol set in the signal received by the wired receiving unit 41, and performs signal detection.
  • PMF probability mass function
  • the signal detection unit 42b calculates the following equation (31).
  • the signal detection unit 42b calculates the PMF shown in the following equation (32) based on the PMF according to the above equations (29) and (30).
  • the signal detection unit 42b observes the vector shown in the following equation (33) and then calculates the estimated value of the transmission symbol vector shown in the following equations (34) and (35).
  • the above-mentioned calculation formula is a formula when there are two relay devices 3b, but the same calculation can be performed even if there are three or more relay devices 3b. Further, in the above-mentioned detection process, the amount of calculation increases as the number of modulation multi-values L and the number of transmitting antennas M increase, but the amount of calculation can be reduced by applying an algorithm such as the SD (Sphere Detection) method. It is possible.
  • SD Sphere Detection
  • the relay device 3b creates a probability mass function (PMF) for signal detection, it is necessary to arrange the signal points of the converted transmission signal in addition to the dispersion required in the prior art.
  • PMF probability mass function
  • the converted transmission signal is a complex number, and the number of signal points increases as the number of modulation multi-values increases, so that the required band is large.
  • the converted transmission signal can be reproduced from the communication path matrix or the unimodular matrix.
  • the channel matrix is also a complex number, and the required bandwidth increases when it is quantized and transmitted.
  • the unimodular matrix Ti has a small required band for transmission because the value of the determinant is represented by 1 or -1. Therefore, the relay device 3b transmits the unimodular matrix Ti to the receiving device 4b in order for the receiving device 4b to detect the signal. Since the unimodular matrix Ti is calculated each time the channel is estimated, this information transmission also needs only the transfer of the period in which the channel is estimated.
  • FIG. 5 is a diagram showing a configuration example of the receiving device 4c.
  • the receiving device 4c is replaced with the receiving device 4b (FIG. 2) for wireless communication. It is a receiving device that constitutes the system.
  • the receiving device 4b described above calculates the PMF for all the possible quantization symbol values before compression by the above equation (29), and calculates the PMF shown in the above equation (32) using the PMF. It was. If this PMF is calculated for each symbol each time, the amount of calculation may increase. On the other hand, the converted transmission signal is changed only in the change cycle of the communication path matrix.
  • the receiving device 4c calculates and stores PMFs for all the quantization symbols in advance using the above equation (32), and when performing the calculation shown in the above equation (34), the relay device 3b By reading out the calculation result of PMF corresponding to the transmitted quantization symbol, the calculation delay is reduced while preventing the increase in the calculation amount.
  • the receiving device 4c has two wired receiving units 41, a signal detecting unit 42c, and a storage unit 43, which are the same as the number of relay devices 3b.
  • Each of the wired receiving units 41 receives the signal transmitted by wire from the relay device 3b and outputs the signal to the signal detecting unit 42c.
  • the storage unit 43 stores as a table a probability mass function calculated in advance for each of the quantization symbols obtained by the symbol quantization unit 33 of the relay device 3b in which the received symbol is quantized.
  • the signal detection unit 42c Each time the quantization symbol is input from the signal detection unit 42c, the signal detection unit 42c reads the probability mass function stored in the storage unit 43 to detect the signal stream, and determines the estimated value (reception bit) of the transmission symbol vector. Make a judgment.
  • the relay device 3b transfers the unimodular matrix Ti to the receiving device 4b or the receiving device 4c
  • the receiving device 4b or the receiving device 4c needs to perform the calculation shown in the above equation (15), and the calculation amount. May increase.
  • the converted signal point arrangement is transferred from each of the relay devices 3b to the receiving device 4b or the receiving device 4c, the required band between the relay device 3b and the receiving device 4b or the receiving device 4c increases, but the receiving device The amount of calculation in 4b or the receiving device 4c is reduced.
  • the receiving device 4b or the receiving device 4c may be configured to control whether the information transferred from the relay device 3b is a converted signal point arrangement or a unimodular matrix.
  • the wired transmission unit 34 of the relay device 3b transmits a reception symbol detected by the MIMO equalization unit 37 or a predetermined unimodular matrix based on a request from the reception device 4b or the reception device 4c.
  • the relay device 3b enhances the orthogonality of the bases of the channel matrix by reducing the grid bases, reduces the amount of calculation, and reduces the determination error.
  • the relay device and the receiving device may include a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and may realize some of the above-mentioned functions by executing a program.
  • ASIC Application Specific Integrated Circuit
  • PLD Processable Logic Device
  • FPGA Field Programmable Gate Array
  • the relay device and the receiving device may include a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and may realize some of the above-mentioned functions by executing a program.
  • the program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the program may also be transmitted via a telecommunication line.
  • Wireless communication system 2,2a ... Transmitter, 3,3a, 3b, 3c ... Relay device, 4,4b, 4c ... Receiver, 31 ... Antenna, 32 ... -Wireless receiver, 33 ... Symbol quantization unit, 34 ... Wired transmitter, 37 ... MIMO equalization unit, 38 ... Lattice base reduction processing unit, 41 ... Wired receiver, 42 , 42b, 42c ... Signal detection unit, 43 ... Storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

送信装置がMIMO伝送により送信する信号ストリームを受信装置へ中継する中継装置において、送信装置がMIMO伝送により送信した信号ストリームの格子の直交性を高めるように基底を変換する格子基底縮小処理部と、格子基底縮小処理部が基底を変換した信号ストリームから等化により受信シンボルを検出するMIMO等化部と、MIMO等化部が検出した受信シンボルを複素平面上の量子化閾値により区切られた領域にマッピングして量子化するシンボル量子化部と、少なくともシンボル量子化部が量子化した信号を受信装置へ送信する送信部とを有する。

Description

無線通信システム、中継装置及び受信装置
 本発明は、無線通信システム、中継装置及び受信装置に関する。
 無線通信システムにおいては、送信装置と受信装置の間に存在する複数の中継装置を利用して通信品質を改善する中継通信システムが検討されている。
 例えば、受信した無線信号を復調するときに、復調結果を0又は1のビット値として出力するのではなく、送信された信号ビットが0又は1である確からしさを示す尤度(Likelihood)と呼ばれる実数値の比を出力する軟判定復調と呼ばれる方式を用いることがある。軟判定復調の出力は、対数尤度比又はLLR(Log-Likelihood Ratio)と呼ばれる(例えば、非特許文献1参照)。
 一般に、LLRの値は、より正の大きな値であるほど信号ビットが1である可能性が高く、より負の大きな値であるほど信号ビットが0である可能性が高いことを示す。中継通信システムの中でも、送信装置-中継装置間の通信において中継装置で検出されるLLRを量子化して受信装置へ転送する再生量子化中継通信システムがある(例えば、非特許文献2参照)。
 一方、無線通信システム、特に移動体通信システムにおいて、端末と無線通信を行う基地局装置の設置の柔軟性を高めるため、基地局の機能をBBU(Baseband Unit)とRRH(Remote Radio Head)と呼ばれる2つの装置に分割し、物理的に離れた構成とすることが検討されている。BBUとRRHの機能分割方式の1つとして、BBUにMAC(Media Access Control)層以上の機能、及び、物理層機能の一部である符号化/復号機能を搭載し、RRHに符号化/復号機能以外の物理層機能を搭載するSPP(Split-PHY Processing)と呼ばれる機能分割方式が検討されている(例えば、非特許文献3参照)。
 中継装置-受信装置間の通信においては、1ビットの情報ビットについてLLR量子化ビット数分のデータ量を伝送する必要があるため、送信装置-受信装置間のデータレートのLLR量子化ビット数倍の伝送容量が必要となり、伝送容量が大きい。そこで、量子化ビットではなく、受信した信号の受信シンボルを、複素平面上の量子化閾値で区切られた領域にマッピングし、マッピングされた領域を量子化された値により特定する量子化記号に変換して伝送する手法が提案されている。この場合、通信品質を高めつつ、より小さい伝送容量によって通信することが可能となる(例えば、非特許文献4参照)。
大槻知明、"情報通信の基礎と動向[III]:誤り訂正符号"、電子情報通信学会誌、2007年7月、Vol.90,No.7、p.549-555 衣斐信介、外1名、"再生量子化中継伝送における量子化しきい値の最適化に関する一検討"、一般社団法人電子情報通信学会、信学技報、2014年3月、vol.113,no.456、RCS2013-336、p.181-186 宮本健司、外3名、"将来無線アクセスに向けた基地局機能分割方式の提案"、一般社団法人電子情報通信学会、信学技報、2015年7月、vol.115,no.123、CS2015-15、p.33-38 X. Ling et al., "Optimization of Quantization Levels for Quantize-and-Forward Relaying with QAM Signaling", Proceedings, APSIPA Annual Summit and Conference 2018, November 2018, p.159-164
 しかしながら、ZF(Zero forcing)などの線形処理を用いる場合、雑音成分の影響によって十分な信号検出をできないことがあった。また、MLD(Maximum Likelihood Detection)では、演算量が指数的に増加してしまう。このように、従来は、送信アンテナ数や変調信号の多値数が多くなると、伝送容量の大幅な増加や、判定誤りの低減のための演算量が膨大になってしまうという問題があった。
 本発明は、演算量を抑えつつ、判定誤りを低減することができる無線通信システム、中継装置及び受信装置を提供することを目的とする。
 本発明の一態様にかかる無線通信システムは、送信装置がMIMO伝送により送信する信号ストリームを中継装置によって受信装置へ中継する無線通信システムにおいて、前記中継装置が、前記送信装置がMIMO伝送により送信する信号ストリームの格子の直交性を高めるように基底を変換する格子基底縮小処理部と、前記格子基底縮小処理部が基底を変換した信号ストリームから等化により受信シンボルを検出するMIMO等化部と、前記MIMO等化部が検出した受信シンボルを複素平面上の量子化閾値により区切られた領域にマッピングして量子化するシンボル量子化部と、少なくとも前記シンボル量子化部が量子化した信号を前記受信装置へ送信する送信部とを有し、前記受信装置が、前記送信部が送信した信号を受信する受信部と、前記受信部が受信した信号から前記格子基底縮小処理部が基底を変換した信号ストリームを検出する信号検出部とを有することを特徴とする。
 本発明の一態様にかかる中継装置は、送信装置がMIMO伝送により送信する信号ストリームを受信装置へ中継する中継装置において、前記送信装置がMIMO伝送により送信した信号ストリームの格子の直交性を高めるように基底を変換する格子基底縮小処理部と、前記格子基底縮小処理部が基底を変換した信号ストリームから等化により受信シンボルを検出するMIMO等化部と、前記MIMO等化部が検出した受信シンボルを複素平面上の量子化閾値により区切られた領域にマッピングして量子化するシンボル量子化部と、少なくとも前記シンボル量子化部が量子化した信号を前記受信装置へ送信する送信部とを有することを特徴とする。
 本発明の一態様にかかる受信装置は、送信装置がMIMO伝送により送信する信号ストリームを中継装置の中継によって受信する受信装置において、前記中継装置が中継した信号を受信する受信部と、前記受信部が受信した信号から、信号ストリームの格子の直交性を高めるように基底を変換された信号ストリームのシンボルが複素平面上の量子化閾値により区切られた領域にマッピングされて量子化された信号に基づいて、基底を変換された信号ストリームを検出する信号検出部とを有することを特徴とする。
 本発明によれば、演算量を抑えつつ、判定誤りを低減することができる。
中継装置の構成例を示す図である。 受信装置の構成例を示す図である。 (a)は、16QAM送信信号の信号点配置を示す図である。(b)は、変換された送信信号の信号点配置を示す図である。 量子化グリッドを示す図である。 受信装置の構成例を示す図である。 無線通信システムの構成例を示す図である。 無線通信システムの具体的な構成例を示す図である。 MIMO伝送技術を適用した無線通信システムの構成例を示す図である。 (a)は、受信信号のコンスタレーションを示す図である。(b)は、ZFの判定領域を示す図である。(c)は、MLDの判定領域を示す図である。
 まず、本発明がなされるに至った背景について説明する。図6は、無線通信システム1の構成例を示す図である。例えば、無線通信システム1は、送信装置2、2台の中継装置3、及び受信装置4を有する。中継装置3は、1以上の任意の台数(N台)でもよい。
 送信装置2と中継装置3との間は、無線接続となっている。中継装置3と受信装置4との間は、有線接続又は無線接続のいずれであってもよい。ここで、N台の中継装置3において、n台目のものを中継装置#nと記載する。図6においては、N=2(n=1,2)となっている。
 図7は、図6に示した無線通信システム1の具体的な構成例を示す図である。図7に示すように、無線通信システム1は、例えば、送信装置2、2台の中継装置3、及び受信装置4を有する再生量子化中継通信システムである。
 中継装置3それぞれは、アンテナ31、無線受信部32、シンボル量子化部33及び有線送信部34を有し、送信装置2が送信した信号ストリームを受信装置4に対して中継する。
 アンテナ31は、送信装置2が送信した信号ストリームを受信し、無線受信部32に対して出力する。無線受信部32は、アンテナ31を介して受信した信号ストリームをシンボル量子化部33に対して出力する。無線受信部32が受信した信号には、雑音が加わっている。
 シンボル量子化部33は、無線受信部32が受信した信号ストリームの受信シンボルを、複素平面上の量子化閾値で区切られた領域にマッピングし、マッピングされた領域を量子化記号に変換し、変換した量子化記号を有線送信部34に対して出力する。量子化記号は、量子化された値により領域を特定する情報である。有線送信部34は、量子化記号が設定された信号を、例えば有線の光ファイバなどによって構成されたモバイル光ネットワークを介して受信装置4へ送信する送信部である。
 受信装置4は、例えば中継装置3の台数と同じ2つの有線受信部41、及び信号検出部42を有する。有線受信部41それぞれは、中継装置3から有線により伝送された信号を受信し、信号検出部42に対して出力する。信号検出部42は、有線受信部41が中継装置3からそれぞれ受信した信号に設定された量子化記号を用いて信号検出し、受信ビットの判定を行う。
 さらに、無線通信システム1は、高速・大容量化の需要に対応するために、高い周波数利用効率を達成することができるMIMO(Multiple Input Multiple Output)伝送技術が適用されてもよい。
 図8は、無線区間にMIMO伝送技術を適用した無線通信システム(無線通信システム1a)の具体的な構成例を示す図である。図8に示すように、無線通信システム1aは、例えば、送信装置2a、2台の中継装置3a、及び受信装置4を有する。以下、図7に示した無線通信システム1の構成と実質的に同一の構成には同一の符号が付してある。
 送信装置2aは、複数のアンテナを用いたMIMO伝送によって無線信号(ストリーム)を中継装置3aそれぞれに送信する。
 中継装置3aそれぞれは、複数のアンテナ31、複数の無線受信部32、MIMO等化部37、シンボル量子化部33及び有線送信部34を有し、送信装置2aがMIMO伝送によって送信した信号ストリームを受信装置4に対して中継する。複数の中継装置3aは、受信装置4に対して無線のMIMO伝送を行うように構成されてもよい。
 中継装置3aにおいて、複数のアンテナ31は、送信装置2aが送信した信号ストリームを受信し、複数の無線受信部32に対してそれぞれ出力する。複数の無線受信部32は、複数のアンテナ31を介して受信した信号ストリームをそれぞれMIMO等化部37に対して出力する。無線受信部32それぞれが受信した信号ストリームには、雑音が加わっている。
 MIMO等化部37は、複数の無線受信部32がそれぞれ受信した信号ストリームから等化により受信シンボルを検出し、シンボル量子化部33に対して出力する。
 ここで、送信装置2a及び中継装置3aがそれぞれ2本のアンテナを使用する2×2MIMOを例として、無線通信システム1aにおける軟判定のための動作について説明する。ただし、説明を簡易にするため、実数信号によって考えることとする。
 下式(1)は、送信信号を示し、整数であるとする。
Figure JPOXMLDOC01-appb-M000001
 下式(2)は、通信路行列を示す。
Figure JPOXMLDOC01-appb-M000002
 下式(3)は、受信信号を示す。
Figure JPOXMLDOC01-appb-M000003
 このときのコンスタレーション(信号点配置)を図9に示す。図9(a)は、受信信号のコンスタレーションを示す図である。図9(b)は、ZFの判定領域を示す図である。図9(c)は、最尤検出(MLD)の判定領域を示す図である。
 図9(b)に示したように、ZFによって受信ビットの判定を行う場合、基底[0 2]と[1 3]の直交性が低く、判定領域が細長い平行四辺形となることから、わずかな雑音でも判定が誤ってしまう。つまり、ZFなどの線形処理を用いる場合、十分な検出性能を保証することができない。
 図9(c)に示したように、MLDによって受信ビットの判定を行う場合、基底の直交性が高く、判定領域が正方形に近い形となるため、図9(b)に示した場合に比べて判定誤りが減少する。しかし、MLDによる判定は、変調多値数・送信アンテナ数が増大した場合、演算量も著しく増加してしまうため、現実的ではない。
 次に、中継装置3aの他の構成例(中継装置3b)について説明する。図1は、中継装置3bの構成例を示す図である。中継装置3bは、図8に示した無線通信システム1aの中継装置3aに対して代替えされてMIMO伝送を実現する無線通信システムを構成する中継装置である。
 中継装置3bは、複数のアンテナ31、複数の無線受信部32、複数の格子基底縮小処理部38、MIMO等化部37、シンボル量子化部33及び有線送信部34を有し、送信装置2aがMIMO伝送によって送信した信号ストリームを受信装置4に対して中継する。複数の中継装置3bは、受信装置4に対して無線のMIMO伝送を行うように構成されてもよい。
 中継装置3bにおいて、複数のアンテナ31は、送信装置2aが送信した信号ストリームを受信し、複数の無線受信部32に対してそれぞれ出力する。複数の無線受信部32は、複数のアンテナ31を介して受信した信号ストリームをそれぞれ格子基底縮小処理部38に対して出力する。無線受信部32それぞれが受信した信号ストリームには、雑音が加わっている。
 複数の格子基底縮小処理部38は、複数の無線受信部32が出力した信号ストリームの格子の直交性を高めるように基底をそれぞれ変換し、MIMO等化部37に対して出力する。
 MIMO等化部37は、複数の格子基底縮小処理部38がそれぞれ変換した信号ストリームから等化により受信シンボルを検出し、シンボル量子化部33に対して出力する。
 次に、受信装置4の他の構成例(受信装置4b)について説明する。図2は、受信装置4bの構成例を示す図である。受信装置4bは、図8に示した無線通信システム1aの中継装置3aに対して中継装置3bが代替えされた場合に、受信装置4に対して代替えされて無線通信システムを構成する受信装置である。
 受信装置4bは、例えば中継装置3bの台数と同じ2つの有線受信部41、及び信号検出部42bを有する。有線受信部41それぞれは、中継装置3bから有線により伝送された信号を受信し、信号検出部42bに対して出力する。信号検出部42bは、有線受信部41が中継装置3bからそれぞれ受信した信号に設定された量子化記号を用い、中継装置3bの格子基底縮小処理部38が基底を変換した信号ストリームを検出し、受信ビットの判定を行う。
 次に、中継装置3a(図8)及び受信装置4が、中継装置3b(図1)及び受信装置4b(図2)に代替えされた無線通信システム1aの動作について説明する。最初に、送信装置2a及び中継装置3bの動作について詳述する。
 以下、太小文字はベクトルを表し、太大文字は行列を表す。また、送信装置2aが送信するアンテナの数をM本とし、中継装置3b(中継装置#i)が受信するアンテナ31の数をN本とする。また、以下の説明では、時刻kの送受信サンプルを扱うものと仮定し、kの表記はしないこととする。
 送信装置2aは、下式(4)に示した平均エネルギーにより、下式(5)に示したサイズM×1の時空間領域送信シンボルベクトルを、MIMO通信路を介して中継装置#iに送信する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 中継装置#iは、下式(6)に示した時空間領域受信シンボルベクトルとして、下式(7)によって表されるベクトルを観測する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ただし、下式(8)に示したベクトルは、中継装置#iによって付加される下式(9)に従う時空間領域複素ガウス雑音である。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 また、下式(10)に示す行列は、時刻kにおけるサイズがN×Mであり、レイリーフェージング環境下の送信装置2aと中継装置#iとの間の時空間領域通信路行列である。
Figure JPOXMLDOC01-appb-M000010
 ここで、n行m列要素は独立同分布(IID:Independent and Identically Distributed)に従うm番目の送信アンテナから中継装置#iのn番目のアンテナ31に対する通信路の複素フェージング係数である。
 一般的に、格子基底縮小を適用するためには実数信号モデルのほうが扱いやすいため、中継装置#iは、まず上式(7)に示した複素数信号モデルを、下式(11),(12)に示した実数信号モデルに変換する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 また、MIMO通信路行列への格子基底縮小の適用は、下式(13)のように表される。
Figure JPOXMLDOC01-appb-M000013
 なお、ユニモジュラ行列とは、要素が全て整数であり、且つ、行列式の値が1又は-1である行列をいう。このようなユニモジュラ行列が得られたという前提で、上式(13)を上式(11)に代入すると、下式(14),(15)が得られる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ただし、上式(15)によって表されたベクトルは、下式(16)に示される変換された送信シンボルベクトルである。
Figure JPOXMLDOC01-appb-M000016
 上式(13)に示した時空間領域通信路行列は、格子基底縮小の適用によって基底の直交性が高い準直交行列となるため、この直交性の高さを有効に活用できる信号検出アルゴリズムを適用することができれば、信号検出性能の向上が期待できる。ユニモジュラ行列Tを求める手法としては、LLL(Lenstra Lenstra Lovasz)アルゴリズムがある。
 格子基底縮小処理部38が格子基底縮小を行う場合、上式(14)により、上式(15),(16)に示した変換された送信信号は、上式(13)により変換されたMIMO通信路行列を通って受信された信号(受信シンボル)とみなされる。この受信された信号は、一般的な検出手法では、下式(17)に示された空間フィルタリングが適用される。
Figure JPOXMLDOC01-appb-M000017
 なお、共分散行列は、それぞれ下式(18),(19)によって与えられる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 ここでは、信号を受信する複数のアンテナ31間の干渉を無視し、上式(19)を対角行列とみなしている。格子基底縮小を導入したZFは、LR(Lattice Reduction)-ZFと呼ばれ、重み行列は下式(20)で与えられる。
Figure JPOXMLDOC01-appb-M000020
 格子基底縮小処理部38は、空間フィルタリングの適用後、上式(17)に示したベクトルを最寄りの整数に判定し、ユニモジュラ行列Tを乗じることにより、下式(21)に示した送信シンボルの推定値を得る。
Figure JPOXMLDOC01-appb-M000021
 図3は、2×2MIMOにおいて、ユニモジュラ行列Tが下式(22)である場合の信号点配置を示す図である。図3(a)は、16QAM送信信号の信号点配置を示す図である。図3(b)は、下式(23)に示された変換された送信信号の信号点配置を示す図である。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 図3(b)に示した変換された送信信号の信号点配置は、ユニモジュラ行列T、すなわちMIMO通信路行列に依存するため、受信装置4bに対して通知しておく必要がある。
 また、図3(b)に示された変換された送信信号に対する量子化グリッドとセル番号の決め方は、同じ決め方を、中継装置3b及び受信装置4bに対して予め設定しておく必要がある。ここでは、図4に示した量子化グリッドを用いて、シンボル量子化部33がシンボル量子化を行う場合を考える。なお、以下では、上式(23)に示された変換された送信信号に対して、送信装置2aの送信アンテナのインデックスmを記載していない。
 図4に示した量子化グリッドを用いた量子化では、まず矢印が示すようにグリッドの下から上、左から右の順番に下式(24)のインデックスjを付加する。ただし、jは、上式(23)に示された変換された送信信号が取り得る候補点の総数である。
Figure JPOXMLDOC01-appb-M000024
 そして、シンボル量子化部33は、一つの信号点候補の周りにk個のセルを設定し、変換された送信信号が属する下式(25)に示したセルの番号を、下式(26)に示した量子化記号として判定する。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 送信アンテナ数の増加に伴って、Jは、元のシンボル候補点数Lよりも大きいため、量子化レベルを下式(27)に示したように設定する場合、得られた量子化記号を量子化レベルに圧縮する必要がある。等間隔の圧縮方法が適用される場合、圧縮後の値は下式(28)で表される。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 有線送信部34は、上式(28)で表された圧縮後の値を有線の光ファイバなどを介して受信装置4bに対して転送する。
 次に、受信装置4bの動作について詳述する。受信装置4bは、有線受信部41が受信した信号に設定された量子化記号に基づいて、信号検出部42bが確率質量関数(PMF)を計算し、信号検出を行う。
 以下のように量子化記号qが属するセルの領域を定義すると、確率質量関数は、下式(29),(30)によって表される。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 LR-ZFが用いられる場合、信号検出部42bは、下式(31)の算出を行う。
Figure JPOXMLDOC01-appb-M000031
 次に、信号検出部42bは、上式(29),(30)によるPMFに基づいて、下式(32)に示すPMFを算出する。
Figure JPOXMLDOC01-appb-M000032
 そして、信号検出部42bは、下式(33)に示したベクトルを観測したうえで、下式(34),(35)に示した送信シンボルベクトルの推定値を算出する。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 上述した算出式は、中継装置3bが2台である場合の式であるが、中継装置3bが3台以上であっても同様に計算可能である。また、上述した検出処理は、変調多値数Lと送信アンテナ数Mの増大に伴って演算量が増加するが、SD(Sphere Detection)法などのアルゴリズムを適用して演算量を低減することが可能である。
 また、中継装置3bが信号検出のために確率質量関数(PMF)を作成する場合、従来技術でも必要であった分散に加えて、変換された送信信号の信号点配置が必要となる。ただし、変換された送信信号は複素数であり、また変調多値数の増加に伴い信号点数も増加するため、所要帯域が大きい。
 一方、変換された送信信号は、通信路行列又はユニモジュラ行列から再現することが可能である。通信路行列も複素数であり、量子化して伝送すると所要帯域が増大する。
 しかし、ユニモジュラ行列Tiは、行列式の値が1又は-1で表されるため、伝送のための所要帯域が小さい。そこで、中継装置3bは、受信装置4bが信号検出をするために、ユニモジュラ行列Tを受信装置4bへ伝送することとする。ユニモジュラ行列Tは、チャネル推定のたびに計算されるため、この情報伝達もチャネル推定が行われる周期の転送のみでよい。
 次に、受信装置4bの変形例(受信装置4c)について説明する。図5は、受信装置4cの構成例を示す図である。受信装置4cは、図8に示した無線通信システム1aの中継装置3aに対して中継装置3b(図1)が代替えされた場合に、受信装置4b(図2)に対して代替えされて無線通信システムを構成する受信装置である。
 上述した受信装置4bは、上式(29)によって圧縮前の取り得る量子化記号の値すべてに対してPMFを算出し、そのPMFを用いて上式(32)に示したPMFを算出していた。このPMFの算出を各シンボルに対して毎回行うと、演算量が多くなることがある。一方、変換された送信信号は、通信路行列の変更周期でのみ変更される。
 そこで、受信装置4cは、上式(32)を用いてすべての量子化記号に対するPMFを予め算出して記憶しておき、上式(34)に示した算出を行うときに、中継装置3bから送信された量子化記号に対応するPMFの計算結果を読み出すことにより、演算量の増加を防ぎつつ、演算遅延を減少させる。
 例えば、受信装置4cは、中継装置3bの台数と同じ2つの有線受信部41、信号検出部42c及び記憶部43を有する。有線受信部41それぞれは、中継装置3bから有線により伝送された信号を受信し、信号検出部42cに対して出力する。
 記憶部43は、中継装置3bのシンボル量子化部33が受信シンボルを量子化した量子化記号それぞれに対して予め算出された確率質量関数をテーブルとして記憶する。
 信号検出部42cは、信号検出部42cから量子化記号が入力されるたびに、記憶部43が記憶した確率質量関数を読み出して信号ストリームを検出し、送信シンボルベクトルの推定値(受信ビット)の判定を行う。
 なお、中継装置3bがユニモジュラ行列Tを受信装置4b又は受信装置4cへ転送する場合、受信装置4b又は受信装置4cは、上式(15)に示した演算を行う必要があり、演算量が多くなることがある。
 しかし、中継装置3bそれぞれから受信装置4b又は受信装置4cへ変換された信号点配置が転送されれば、中継装置3bと受信装置4b又は受信装置4cとの間の所要帯域は増えるものの、受信装置4b又は受信装置4cにおける演算量は減少する。
 そこで、受信装置4b又は受信装置4cは、中継装置3bから転送される情報を、変換された信号点配置又はユニモジュラ行列のいずれとするかを制御するように構成されてもよい。例えば、中継装置3bの有線送信部34は、受信装置4b又は受信装置4cからの要求に基づいて、MIMO等化部37が検出した受信シンボル、又は所定のユニモジュラ行列を送信する。
 このように、中継装置3bは、格子基底縮小によって通信路行列の基底の直交性を高め、演算量を抑えつつ、判定誤りを低減する。
 なお、上述した中継装置及び受信装置の各機能の一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。また、中継装置及び受信装置は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行することによって、上述した機能の一部を実現してもよい。
 プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、プログラムは、電気通信回線を介して送信されてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成は、これらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更等も含まれる。
 1・・・無線通信システム、2,2a・・・送信装置、3,3a,3b,3c・・・中継装置、4,4b,4c・・・受信装置、31・・・アンテナ、32・・・無線受信部、33・・・シンボル量子化部、34・・・有線送信部、37・・・MIMO等化部、38・・・格子基底縮小処理部、41・・・有線受信部、42,42b,42c・・・信号検出部、43・・・記憶部

Claims (7)

  1.  送信装置がMIMO伝送により送信する信号ストリームを中継装置によって受信装置へ中継する無線通信システムにおいて、
     前記中継装置は、
     前記送信装置がMIMO伝送により送信する信号ストリームの格子の直交性を高めるように基底を変換する格子基底縮小処理部と、
     前記格子基底縮小処理部が基底を変換した信号ストリームから等化により受信シンボルを検出するMIMO等化部と、
     前記MIMO等化部が検出した受信シンボルを複素平面上の量子化閾値により区切られた領域にマッピングして量子化するシンボル量子化部と、
     少なくとも前記シンボル量子化部が量子化した信号を前記受信装置へ送信する送信部と
     を有し、
     前記受信装置は、
     前記送信部が送信した信号を受信する受信部と、
     前記受信部が受信した信号から前記格子基底縮小処理部が基底を変換した信号ストリームを検出する信号検出部と
     を有することを特徴とする無線通信システム。
  2.  前記受信装置は、
     前記シンボル量子化部が受信シンボルを量子化した量子化記号それぞれに対して予め算出された確率質量関数を記憶する記憶部
     をさらに有し、
     前記信号検出部は、
     前記記憶部が記憶した確率質量関数を用いて信号ストリームを検出すること
     を特徴とする請求項1に記載の無線通信システム。
  3.  前記送信部は、
     前記受信装置からの要求に基づいて、前記MIMO等化部が検出した受信シンボル、又は所定のユニモジュラ行列を送信すること
     を特徴とする請求項1又は2に記載の無線通信システム。
  4.  送信装置がMIMO伝送により送信する信号ストリームを受信装置へ中継する中継装置において、
     前記送信装置がMIMO伝送により送信した信号ストリームの格子の直交性を高めるように基底を変換する格子基底縮小処理部と、
     前記格子基底縮小処理部が基底を変換した信号ストリームから等化により受信シンボルを検出するMIMO等化部と、
     前記MIMO等化部が検出した受信シンボルを複素平面上の量子化閾値により区切られた領域にマッピングして量子化するシンボル量子化部と、
     少なくとも前記シンボル量子化部が量子化した信号を前記受信装置へ送信する送信部と
     を有することを特徴とする中継装置。
  5.  前記送信部は、
     前記受信装置からの要求に基づいて、前記MIMO等化部が検出した受信シンボル、又は所定のユニモジュラ行列を送信すること
     を特徴とする請求項4に記載の中継装置。
  6.  送信装置がMIMO伝送により送信する信号ストリームを中継装置の中継によって受信する受信装置において、
     前記中継装置が中継した信号を受信する受信部と、
     前記受信部が受信した信号から、信号ストリームの格子の直交性を高めるように基底を変換された信号ストリームのシンボルが複素平面上の量子化閾値により区切られた領域にマッピングされて量子化された信号に基づいて、基底を変換された信号ストリームを検出する信号検出部と
     を有することを特徴とする受信装置。
  7.  基底を変換された信号ストリームのシンボルが量子化された量子化記号それぞれに対して予め算出された確率質量関数を記憶する記憶部
     をさらに有し、
     前記信号検出部は、
     前記記憶部が記憶した確率質量関数を用いて信号ストリームを検出すること
     を特徴とする請求項6に記載の受信装置。
     
PCT/JP2020/027435 2019-07-18 2020-07-15 無線通信システム、中継装置及び受信装置 WO2021010408A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/626,110 US11695455B2 (en) 2019-07-18 2020-07-15 Wireless communication system, relay device, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019132666A JP7136028B2 (ja) 2019-07-18 2019-07-18 無線通信システム、中継装置及び受信装置
JP2019-132666 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010408A1 true WO2021010408A1 (ja) 2021-01-21

Family

ID=74210863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027435 WO2021010408A1 (ja) 2019-07-18 2020-07-15 無線通信システム、中継装置及び受信装置

Country Status (3)

Country Link
US (1) US11695455B2 (ja)
JP (1) JP7136028B2 (ja)
WO (1) WO2021010408A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538014A (ja) * 2006-05-17 2009-10-29 コムシス 2×2時空間符号、特にゴールデンコードタイプの符号を復号化する方法
JP2010193310A (ja) * 2009-02-19 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 空間多重受信装置、及び空間多重受信方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660363B2 (en) * 2005-08-22 2010-02-09 Nec Laboratories America, Inc. Minimum error rate lattice space time codes for wireless communication
US20070206697A1 (en) * 2006-03-06 2007-09-06 Siemens Aktiengesellschaft Signal receiving method and signal receiving equipment for multiple input multiple output wireless communication system
JP5214124B2 (ja) * 2006-08-17 2013-06-19 三星電子株式会社 通信システム、通信装置、尤度計算方法、及びプログラム
WO2011058291A1 (en) * 2009-11-16 2011-05-19 Fijitsu Limited Mimo wireless communication systems
US20110158189A1 (en) * 2009-12-29 2011-06-30 Industrial Technology Research Institute Methods and Apparatus for Multi-Transmitter Collaborative Communications Systems
EP2458747A1 (en) * 2010-11-30 2012-05-30 ST-Ericsson SA Detection process for a receiver of a wireless MIMO communication system
EP2525537B1 (en) * 2011-05-19 2014-11-19 ST-Ericsson SA MIMO receiver using lattice reduction and K-Best detection
JP5854694B2 (ja) * 2011-08-10 2016-02-09 国立大学法人東京工業大学 受信装置、受信方法、及び受信プログラム
KR20140109726A (ko) * 2013-03-06 2014-09-16 삼성전자주식회사 적은 연산량을 갖는 래티스 리덕션 방법 및 장치
US10387534B2 (en) * 2016-11-28 2019-08-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Fast matrix multiplication and linear algebra by alternative basis
US11309992B2 (en) * 2018-07-17 2022-04-19 Qualcomm Incorporated Using lattice reduction for reduced decoder complexity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538014A (ja) * 2006-05-17 2009-10-29 コムシス 2×2時空間符号、特にゴールデンコードタイプの符号を復号化する方法
JP2010193310A (ja) * 2009-02-19 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 空間多重受信装置、及び空間多重受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LING, XINYUE ET AL.: "A Study on Optimizations of Quantization Threshold for Adaptive-Quantize-Forward Relaying with QAM Modulation", IEICE TECHNICAL REPORT, vol. 117, no. 396, 15 January 2018 (2018-01-15), pages 195 - 200, ISSN: 0913-5685 *

Also Published As

Publication number Publication date
JP2021019239A (ja) 2021-02-15
JP7136028B2 (ja) 2022-09-13
US11695455B2 (en) 2023-07-04
US20220294498A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US7706477B2 (en) Advanced multi-sensor processing
CN104321990A (zh) 接收站装置、发送站装置、通信系统、接收方法、发送方法及程序
CN105409260B (zh) 用于用户设备协作的系统和方法
RU2319307C2 (ru) Частично когерентные сигнальные совокупности для систем с множеством антенн
KR100922957B1 (ko) 다중입출력 통신시스템의 신호검출 장치 및 방법
WO2013168790A1 (ja) 送信装置、受信装置、送信方法、プログラムおよび集積回路
US9948483B2 (en) Base station apparatus, wireless communication system, and communication method for uplink coordinated multi-point transmission and reception with intra-phy split base station architecture
US20180227020A1 (en) Apparatus and method for receiving signal in wireless communication system
KR101043698B1 (ko) 공간다중화 시스템에서 신호검출 장치 및 방법
EP4128598A1 (en) Estimation method of discrete digital signals in noisy overloaded wireless communication systems with csi errors
WO2007102493A1 (ja) 送信アンテナ割り当て方法および受信信号分離方法
WO2021010408A1 (ja) 無線通信システム、中継装置及び受信装置
US9503305B1 (en) Method for low complexity decision metric compression of higher-order square-QAM constellation
WO2013051867A2 (en) Apparatus and method for channel quality feedback with a k-best detector in a wireless network
CN107659375B (zh) 反馈方法及装置
JP6970409B2 (ja) 中継装置および中継方法
JP2017092611A (ja) 無線通信システム、通信方法、無線受信装置、及び、プログラム
Peng et al. An adaptive optimal mapping selection algorithm for PNC using variable QAM modulation
KR101076228B1 (ko) 이동통신시스템에서 리스트 스피어 디코딩을 위한 장치 및 방법
Bartelt et al. Improved uplink I/Q-signal forwarding for cloud-based radio access networks with millimeter wave fronthaul
CN114189317B (zh) 一种通信导航遥感深度融合的实现方法
CN110035024B (zh) 一种基于确定性序贯蒙特卡罗算法的软解调方法及装置
KR20120015272A (ko) Mimo 성능을 보장하는 수신 장치 및 방법
KR20090059394A (ko) 연판정값 산출 방법 및 송신 신호 검출 방법
KR20200094610A (ko) Nr 기반 5g 통신 시스템에서의 isc 데이터 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841026

Country of ref document: EP

Kind code of ref document: A1