WO2021010345A1 - 眼科撮影装置 - Google Patents

眼科撮影装置 Download PDF

Info

Publication number
WO2021010345A1
WO2021010345A1 PCT/JP2020/027126 JP2020027126W WO2021010345A1 WO 2021010345 A1 WO2021010345 A1 WO 2021010345A1 JP 2020027126 W JP2020027126 W JP 2020027126W WO 2021010345 A1 WO2021010345 A1 WO 2021010345A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
image
eye
light
imaging
Prior art date
Application number
PCT/JP2020/027126
Other languages
English (en)
French (fr)
Inventor
幸弘 樋口
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to EP20840504.3A priority Critical patent/EP4000501A4/en
Priority to JP2021533053A priority patent/JP7447902B2/ja
Publication of WO2021010345A1 publication Critical patent/WO2021010345A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Definitions

  • This disclosure relates to an ophthalmologic imaging device.
  • OCT optical coherence tomography
  • a method for optimizing the focus position in an ophthalmologic imaging apparatus a method using an image of an eye to be inspected acquired by an imaging optical system is known. In this method, a predetermined evaluation value is acquired from an image obtained at any time when the focus position is changed. Then, the focus position is adjusted to the position where the evaluation value peaks.
  • Patent Document 1 discloses a device in which the focus position of a frontal imaging optical system that captures a frontal image of the fundus is adjusted by using the above method. Further, Patent Document 1 discloses an apparatus in which the focus position of the OCT optical system is adjusted in conjunction with the device.
  • the focus position may not be adjusted properly by the above method.
  • the technical subject of the present disclosure is to provide an ophthalmologic imaging apparatus in which the focus position is satisfactorily adjusted based on the image of the eye to be examined.
  • the ophthalmologic imaging apparatus includes an irradiation optical system that irradiates the eye to be inspected with light, and a light receiving optical system that receives the return light from the eye to be inspected by the light receiving element.
  • An imaging optical system that captures an image of the pre-examined eye based on a signal and an imaging optical system that is arranged in the optical path of the imaging optical system and is controlled to adjust the focusing position of the imaging optical system with respect to the eye to be inspected.
  • a control means that controls the device based on the images of the eye to be sequentially acquired, and at the same time or before, controls the second optical device based on the images of the eye to be sequentially acquired. Be prepared.
  • the focus position is satisfactorily adjusted based on the front image.
  • the ophthalmologic imaging apparatus shall be a fundus imaging apparatus unless otherwise specified.
  • the ophthalmologic imaging device captures at least a fundus image of the eye to be inspected (see, eg, FIG. 2).
  • the ophthalmologic imaging apparatus includes at least an imaging optical system, a first optical device (focus adjustment unit), a second optical device, and a control unit. Further, the ophthalmologic imaging apparatus may include a second optical system. The first optical device and the second optical device may be a part of the imaging optical system, respectively.
  • the optical device in the present embodiment is a general term for devices that realize recording and transmission of information by using light in an ophthalmologic imaging device. For example, a lens, a mirror, a fiber, an aperture, a filter, a scanner, and a light source. , And a light receiving element and the like.
  • the imaging optical system of the present embodiment may be a frontal imaging optical system.
  • the frontal imaging optical system captures a frontal image of the eye to be inspected (here, a frontal image of the fundus) as an image of the eye to be inspected.
  • the imaging optical system may be an observation optical system that acquires an observation image of the fundus as a front image.
  • the observation image is used for various adjustments of the device.
  • invisible light such as infrared light may be acquired by illumination light (also referred to as observation light), and the front image may be acquired as a moving image.
  • Such an imaging optical system may be a non-scanning type optical system or a scanning type optical system.
  • the imaging optical system includes an irradiation optical system and a light receiving optical system.
  • the irradiation optical system irradiates the fundus of the eye to be inspected with light.
  • the light receiving optical system has a light receiving element, and receives the return light from the fundus by the light receiving element. A frontal image of the fundus is taken based on the signal from the light receiving element.
  • the first optical device is arranged in the optical path of the imaging optical system and is controlled to adjust the focus position (focusing position) of the imaging optical system with respect to the eye to be inspected.
  • the first optical device is the focus adjusting unit in the present embodiment.
  • the focus adjustment unit may be provided with, for example, a moving lens, a variable focus lens such as a liquid crystal lens, or an optical system capable of changing the optical path length. It may be a lens.
  • the optical system whose optical path length can be changed may be, for example, one or more lenses, mirrors, or a combination thereof.
  • the second optical device is controlled to adjust the amount of light emitted from the imaging optical system to the eye to be inspected, the gain for the signal from the light receiving element, and the shooting condition of at least one of the exposure times.
  • the second optical device may be, for example, a light source of an imaging optical system or a light receiving element (including a gain control circuit).
  • an optical scanner may be used as the second optical device.
  • the second optical device is not necessarily limited to these, and may be another optical device used for adjusting the conditions relating to the intensity of the received light signal.
  • the control unit (control means in the present embodiment) is a processor that controls various operations of the ophthalmologic imaging apparatus.
  • the control unit may be composed of, for example, a CPU, RAM, ROM, and the like.
  • the control unit of the present embodiment acquires a front image at each of a plurality of focus positions while changing the focus position.
  • the control unit acquires an evaluation value related to the focus state from each front image, and identifies the optimum focus position based on the evaluation value.
  • the quality of the image quality of the front image is greatly affected by the imaging state (focus state) of the front image. That is, when the focus is on, the image quality of the front image is high. If the image is out of focus, the image quality of the front image deteriorates. Therefore, for example, the evaluation value of the image quality may be used as an example of the evaluation value regarding the focus state.
  • the position where the image quality is the best (in other words, the position where the evaluation value is maximized) may be specified as the optimum focus position.
  • the eye to be inspected is a diseased eye such as a cataract eye
  • the change in the evaluation value of the image quality with respect to the change in the focus position becomes small, and as a result, the optimum focus position may not be properly specified.
  • the amount of change in the evaluation value with respect to the change in the focus position becomes large, and the position where the image quality is the best can be easily identified.
  • the imaging conditions for the second optical device are adjusted in advance so as to obtain a light receiving signal with higher intensity, the pixel values are likely to be saturated when photographing a normal eye. As a result, the relationship between the evaluation value and the actual focus state is deviated, and it is assumed that the optimum focus position cannot be properly specified based on the evaluation value. In this case, for example, it is effective that the imaging conditions for the second optical device are adjusted in advance so that a light receiving signal having a lower intensity than that for photographing a diseased eye can be obtained.
  • the examiner cannot always grasp the characteristics such as whether or not the eye to be examined is a diseased eye in advance.
  • control unit may simultaneously control the adjustment of the focus position and the adjustment of the shooting conditions related to the second optical device based on the sequentially acquired front image.
  • the optimum focus position is searched for while the imaging conditions relating to the second optical device are adjusted according to the eye to be inspected so that a light receiving signal having an appropriate intensity can be obtained. Therefore, the optimum focus position can be more reliably identified regardless of the eye to be inspected.
  • the initial value of the shooting conditions for the second optical device is set to a value such that the brightness value saturates in a part of the range when the focus position is changed with respect to the normal eye, for example. You may be.
  • the imaging conditions by the second optical device may be changed to a level at which a received signal with a lower intensity can be obtained.
  • the evaluation value can be maximized while suppressing the saturation of the luminance value while the focus position is changed in a predetermined range, so that the optimum focus position can be more reliably specified.
  • the shooting conditions related to the second optical device may be adjusted first based on the sequentially acquired front image, and then the focus position adjustment control may be started. It is desirable that the imaging conditions relating to the second optical device are adjusted at the same time during the focus position adjustment control. However, it is not necessarily limited to this. For example, it is considered that the imaging conditions for the second optical device are appropriately adjusted according to the characteristics of the eye to be inspected, so that the adjustment control of the second optical device becomes unnecessary in the subsequent adjustment control of the focus position. Be done.
  • the ophthalmologic imaging apparatus may have a second optical system.
  • the second optical system irradiates at least the second light into the imaging range of the front image on the fundus.
  • the second optical system may be a photographing optical system or a measuring optical system having a modality different from that of the imaging optical system, or may be an irradiation optical system that irradiates therapeutic light (medical beam).
  • the focus position of the second optical system with respect to the fundus of the eye may be adjusted in conjunction with the focus position of the imaging optical system.
  • the focus adjusting unit in the second optical system (hereinafter, also referred to as “second focus adjusting unit”) may be a separate body from the focus adjusting unit in the imaging optical system. Both focus adjustment units may be mechanically interlocked (linked) or interlocked by simultaneous control so that the focus position in the second optical system and the focus position in the imaging optical system match. It may be. Further, the focus adjusting unit may be shared between the second optical system and the imaging optical system.
  • the second optical system may be an OCT optical system for acquiring an OCT image (tomographic image, for example, see FIG. 3) in the photographing range of the front image.
  • the shooting range of the OCT image may be narrower than the shooting range of the front image, may be equal to the shooting range of the front image, or may be wider than the shooting range of the front image.
  • the OCT optical system acquires an OCT image based on a spectral interference signal between the measurement light and the reference light.
  • the OCT optical system has at least an optical divider and a detector. The measurement light and the reference light are generated by dividing the light from the light source by an optical divider. The return light from the eye to be inspected and the reference light of the measurement light are guided to the detector.
  • the OPL is appropriately adjusted, so that an OCT image of the eye to be inspected can be obtained based on the spectral interference signal.
  • OPL is the optical path length difference between the measurement light and the reference light.
  • the ophthalmologic imaging apparatus may further have an OPL adjusting unit (third optical device) for adjusting the OPL in the OCT optical system. Any of various configurations may be appropriately applied to the OPL adjusting unit.
  • the OPL adjusting unit includes at least a driver (driving unit).
  • the control unit may simultaneously control the adjustment of the OPL together with the adjustment of the focus position and the adjustment of the imaging conditions related to the second optical device.
  • the focus position and the OPL in the OCT optical system can be adjusted to the optimum position in a shorter time.
  • the OPL adjustment performed at the same time as the adjustment of the focus position and the adjustment of the shooting conditions related to the second optical device may be a rough adjustment. After the rough adjustment is completed, the OPL may be finely adjusted based on the OCT image obtained by the OCT optical system.
  • the ophthalmologic imaging apparatus has been described as imaging the fundus of the eye to be inspected, but the present invention is not necessarily limited to this.
  • the ophthalmologic imaging apparatus may obtain a front image of the anterior segment of the eye to be inspected by an imaging optical system. Even in this case, a certain effect can be enjoyed in shortening the adjustment time before shooting.
  • the imaging optical system is a frontal imaging optical system
  • the imaging optical system may be an OCT optical system.
  • the OCT optical system captures a tomographic image of the fundus as an image of the eye to be inspected based on a spectral interference signal between the measurement light and the reference light.
  • the focus position in the OCT optical system based on the image information of the tomographic image acquired at any time, at the same time or before that, the tomography in which the imaging conditions regarding the intensity of the received signal are acquired at any time in the OCT optical system.
  • the focus position can be optimized more reliably.
  • the axial direction of the eye E to be inspected will be the Z direction
  • the horizontal direction will be the X direction
  • the vertical direction will be the Y direction
  • the surface direction of the fundus may be considered as the XY direction.
  • the fundus imaging device (OCT device) 1 of this embodiment is a type of ophthalmologic imaging device according to the embodiment.
  • the OCT device 1 according to this embodiment includes an interference optical system (OCT optical system) 200, an observation optical system 300 (SLO optical system), and a control unit 70.
  • the optical path of the interference optical system 200 and the observation optical system 300 is coupled / branched by the dichroic mirror 40.
  • FIG. 1 shows an SD-OCT optical system as an example. However, it is not necessarily limited to this.
  • the fundus imaging device 1 may be, for example, SS-OCT or OCT based on other imaging principles.
  • the OCT optical system 200 includes at least a light source 27, an optical divider 26, a polarizer 33, and a spectroscopic optical system (spectrometer) 800.
  • the light source 27 emits low coherent light.
  • the light emitted from the light source 27 is divided into measurement light and reference light by the light divider 26.
  • a coupler splitter
  • the measurement light is guided to the fundus of the eye to be inspected via the measurement optical system 200a, and the reference light is guided to the reference optical system 200b.
  • the polarizer 33 adjusts the polarization of the measurement light and the reference light.
  • the polarizer 33 is arranged on the reference optical path.
  • the reference light is folded back by the mirror 31 arranged on the reference light path, and is incident on the spectroscopic optical system 800 in a state of being combined with the return light of the measurement light by the coupler 26.
  • the spectroscopic optical system 800 disperses the return light and the reference light for each frequency (wavelength), and causes the detector 83 (in this embodiment, the line sensor) to receive the dispersed light.
  • An OCT image of the fundus (for example, a tomographic image, see FIG. 3) is acquired based on the spectral interference signal between the return light and the reference light.
  • an optical fiber 38b, a collimator lens 21, a focusing lens 24, a scanning unit (optical scanner) 23, a mirror 25, a relay lens 22, and a dichroic mirror 40 are on the measurement optical path between the optical divider 26 and the eye E to be inspected.
  • the objective lens 10 are arranged.
  • the focus adjusting unit of the OCT optical system 200 includes a focusing lens 24 and a driver 24a.
  • the focusing lens 24 is displaced in the optical axis direction by the driver 24a, so that the focus position in the OCT optical system 200 is changed.
  • the focusing lens 24 may be movable in the range of -12D to + 12D.
  • the initial position of the focusing lens 24 is a position corresponding to the average refractive power of the eye to be inspected (for example, a position corresponding to 0D).
  • the position before moving to the initial position may be used as the initial position.
  • the initial position may be set to be arbitrarily changed. Either the first movement limit position or the second movement limit position may be the initial position.
  • the scanning unit 23 is used to change the acquisition position of the OCT image on the fundus.
  • the scanning unit 23 may be used to scan the measurement light two-dimensionally (in the XY directions) on the fundus (examination object).
  • the scanning unit 23 may include, for example, two optical scanners having different scanning directions. Each optical scanner may be a galvanometer mirror or another optical scanner.
  • the objective lens 10 forms a turning point of the measurement light, and guides the measurement light to the fundus of the eye to be inspected through the turning point.
  • the scanning unit 23 is arranged at a position conjugate with the pupil of the eye to be inspected. As a result, the measurement light is swirled around one point on the pupil according to the driving amount of the scanning unit 23.
  • the OPL adjustment unit adjusts the OPL by changing the optical path length of the reference optical path.
  • the imaging range in the depth direction of the OCT is adjusted according to the individual difference in the axial length.
  • the OPL adjusting unit shown in FIG. 1 includes a mirror 31 and a driver 50, and the OPL is adjusted by the mirror 31 being displaced by the driver 50.
  • the OPL adjustment unit is not necessarily limited to this.
  • the OPL adjustment unit may adjust the OPL by changing the optical path length in the measurement optical path.
  • the OPL adjusting unit may integrally displace the end portion of the optical fiber 38b and the collimator lens 21 along the optical axis.
  • the reference optical path is shown as a reflection type optical system in FIG. 1, the reference optical path is not necessarily limited to this, and may be formed by a transmission type optical system.
  • an SLO optical system is shown as an example of the observation optical system 300.
  • the observation optical system 300 may include at least an irradiation optical system and a light receiving optical system.
  • the irradiation optical system irradiates the fundus with illumination light.
  • the light receiving optical system receives the fundus reflected light by the light receiving element 68. Based on the output signal from the light receiving element 68, a frontal image of the fundus (see FIG. 2) is sequentially acquired as an observation image.
  • the observation optical system 300 further has a focus adjusting unit.
  • the focus adjusting unit includes a focusing lens 63 and a driver 63a for driving the focusing lens 63.
  • the light source 61 for example, a laser diode light source is used.
  • a scanning unit 64, a relay lens 65, and an objective lens 10 are arranged in an optical path that emits light emitted from a light source 61 (illumination light in the embodiment) toward the eye E to be inspected.
  • the scanning unit 64 is arranged at a position substantially conjugate with the pupil of the eye to be inspected.
  • the scanning unit 64 scans the light two-dimensionally on the fundus.
  • the scanning unit 64 may include, for example, a combination of a polygon mirror and a galvano scanner.
  • a beam splitter 62 is arranged between the light source 61 and the focusing lens 63.
  • a confocal lens 66, a confocal aperture 67, and a light receiving element 68 are arranged in the reflection direction of the beam splitter 62.
  • the light from the light source 61 (illumination light in the embodiment) passes through the beam splitter 62 and then reaches the scanning unit 64 via the focusing lens 63.
  • the light that has passed through the scanning unit 64 passes through the dichroic mirror 40 via the relay lens 65 and then is irradiated to the fundus through the objective lens 10.
  • the fundus reflected light is guided back to the beam splitter 62 along the projection path.
  • the fundus reflected light is reflected by the beam splitter 62 and is received by the light receiving element 68 through the condenser lens 66 and the confocal aperture 67.
  • a frontal image of the fundus is formed based on the light receiving signal from the light receiving element 68.
  • the formed front image may be stored in the memory 72.
  • the optical fiber 38c is rotationally moved by being driven by the driver 34, and the movable range thereof is set.
  • the optical fiber 38c can rotate and move from the first movement limit position (for example, 0 °) to the second movement limit position (for example, 180 °).
  • the optical fiber 38c is located at an intermediate position between the first movement limit position and the second movement limit position, and is not moved until after the completion of the second automatic optical path length adjustment. Therefore, in the polarizer 33, the intermediate position is the initial position.
  • the control unit 70 of the OCT device 1 controls various operations in the OCT device 1. Also, in this embodiment, the control unit 70 performs various image processing. That is, the control unit 70 also serves as an image processor.
  • the control unit 70 may be composed of, for example, a CPU, a RAM, a ROM, and the like.
  • control unit 70 is connected to the monitor 75 and controls the display of the monitor 75. Further, the control unit 70 is connected to the memory 72, the operation unit 74, the drivers 24a, 30, 50, 63a, and the like.
  • the device is aligned with respect to the eye to be inspected.
  • the positional relationship between the subject and the measurement optical axis is adjusted based on the anterior segment observation image taken by the anterior segment observation camera (not shown).
  • the center of the pupil of the eye to be inspected and the measurement optical axis are adjusted to coincide with each other.
  • the alignment may be adjusted manually or automatically.
  • a frontal image (SLO image) of the fundus of the eye can be acquired by the observation optical system 300.
  • the acquisition of the observation image via the observation optical system 300 and the display of the observation image on the monitor 75 are started.
  • the control unit 70 acquires an OCT image at any time via the OCT optical system 200.
  • optimization control of shooting conditions is performed.
  • the fundus region desired by the examiner can be observed with high sensitivity and high resolution by the OCT optical system 200.
  • optical path length adjustment, focus adjustment, and polarization state adjustment (polarizer adjustment) are executed.
  • the optimization control is started by the operation of the optimization start switch (Optimize switch) 74a arranged in the operation unit 74 as a trigger.
  • the optimization start switch Optimize switch
  • control unit 70 initializes the OPL and the focus position. For example, the position of the focusing lens 24 and the position of the mirror 31 are each moved to a predetermined initial position (movement start position). In this embodiment, each initial position may be either the upper limit or the lower limit of the movable range.
  • the adjustment of the focus position and the adjustment of the first optical path length are controlled in parallel.
  • the focus position in the observation optical system 300 is adjusted based on the observation image by the SLO image.
  • the gain of the observation image (SLO image) is automatically adjusted at the same time.
  • the differential histogram is a histogram based on the differential value of the pixel value obtained by differentiating the image data of the SLO image. For example, after the image data of the SLO image is converted into a contour image by applying a filter for edge extraction (for example, Laplacian conversion, SOBEL, etc.), the histogram of the contour image is acquired as a differential histogram.
  • a filter for edge extraction for example, Laplacian conversion, SOBEL, etc.
  • FIG. 6 is a diagram showing an example of a differential histogram.
  • the horizontal axis is the absolute value d of the differential value (hereinafter, simply referred to as the differential value).
  • FIG. 6 shows a case where the differential value d is represented by a value of 255 gradations from 1 to 254.
  • the vertical axis is a value obtained by normalizing the number of pixels corresponding to each differential value. In the differential value having the largest number of corresponding pixels in the image, the number of pixels corresponding to each differential value is normalized with the number of pixels as 100%.
  • the differential histogram shows that the more appropriate the focus, the sharper the edge at the blood vessel site of the fundus. Therefore, the more appropriate the focus, the greater the number of pixels that take a large differential value.
  • the differential histogram shows a tendency for the edge to become dull as the focus position deviates from the optimum position. Therefore, as the focus position deviates from the optimum position, the number of pixels that take a large differential value decreases.
  • the evaluation value C of the imaging state (focus state) of the SLO image is calculated using the differential value having a certain number of pixels or more in the differential histogram.
  • 20% is set as an example of the threshold value S1.
  • the evaluation value C is expressed as follows in this embodiment.
  • Dmax is the maximum value of the differential value having pixels above the threshold value
  • Dmin is the maximum value of the differential value having pixels above the threshold value.
  • control unit 70 acquires the evaluation value C regarding the focus state from the observation image acquired at each focus position, and identifies the optimum focus position based on the evaluation value C.
  • the position at -12D is set as the initial position, and the position is moved in the plus direction in 2D steps, and the evaluation value C is acquired in each step up to + 12D.
  • setting the amount of change per step to 2D is an example, and the amount of change per step may be a value larger than 2D or a value smaller than 2D within a range in which the optimum focus position can be specified. Good.
  • the graph shown in FIG. 7 shows the relationship between the evaluation value C and the position Z of the focusing lens 63 when the evaluation value C is acquired without saturation at each focus position.
  • the position where the evaluation value C is maximized may be obtained as the target position of the focus position.
  • a scatter plot in which the evaluation value C acquired in each step is plotted is subjected to curve approximation (interpolation processing) with a function having a maximum value in the moving range of the focusing lens 63. (Example) may be performed to obtain the peak position Zp of the evaluation value C on this curve as the target position.
  • the control unit 70 moves the focusing lens 63 to the target position obtained as a result of the above processing. In this way, the focusing lens 63 is adjusted in the first focus adjustment.
  • the gain value is important for acquiring the evaluation value C in the focus state as described above.
  • the change in the image quality evaluation value C with respect to the change in the focus position becomes small when the eye to be inspected has turbidity or the like.
  • the optimum focus position may not be properly specified based on the evaluation value C.
  • the gain value is large, it becomes easy to detect the optimum focus position when the eye to be inspected has turbidity or the like, but when the eye to be inspected has no turbidity or the like, the saturation of the brightness value tends to occur. As a result, the relationship between the evaluation value C and the actual focus state may deviate. In this embodiment, in this case, saturation of the evaluation value C occurs.
  • the initial value Gp of the gain is set (or adjusted) to a certain high value (however, the initial value Gp is smaller than the threshold value T1 described later). Further, the control unit 70 compares the evaluation value C with the threshold value T1 at the focus position of each step, and reduces the gain when the evaluation value C exceeds the threshold value T1. The amount of decrease in gain at this time may be a constant value. If the evaluation value C still exceeds the threshold value T1 even after the gain is reduced, the gain may be repeatedly reduced. The number of times the gain has been reduced since the focus adjustment was started (here, the total number of times, hereinafter referred to as a count value) may be counted.
  • the focus position is moved to the next position, and the evaluation value C is obtained again.
  • the evaluation value C and the above count value may be stored in the memory 72 in association with each focus position.
  • the evaluation value C at the focus position transitions as shown in the graph of FIG.
  • the gain is adjusted (reduced) once at the position of -4D.
  • the target position of the focus position may be obtained based on the above count value and the evaluation value.
  • the target position is set from the focus positions having the largest count values.
  • the position where the evaluation value becomes the maximum (maximum) in the range may be set as the target position of the focus position.
  • the estimated value of the maximum value obtained by performing the complement processing in the above range may be acquired as the target position of the focus position.
  • the target position of the focus position can be obtained once by performing the gain adjustment during the focus adjustment of the observation optical system 300 based on the observation image.
  • the target position of the focus position is obtained by using the count value of the number of times the gain is reduced, but the description is not necessarily limited to this.
  • the gain value is stored together with the evaluation value C, and the evaluation value C is converted according to the gain value into a generalized value so that the evaluation values can be compared between different gains. You may.
  • the position where the generalized evaluation value is maximized can be obtained as the target position of the focus position.
  • the evaluation value may be linearly transformed (at least one of offset and scaling) depending on the gain value.
  • the initial value Gp of the gain is set to a sufficiently high value as described above, the image quality with respect to the change in the focus position is obtained even when the eye to be inspected has turbidity or the like. It is possible to sufficiently secure a change in the evaluation value C of. Therefore, even when the eye to be inspected has opacity or the like, it becomes easy to properly acquire the target position of the focus position. Further, when the evaluation value C exceeds the threshold value T2, the gain is adjusted in a direction of lowering, and the evaluation value C is evaluated in consideration of the adjustment. Therefore, even when there is no turbidity in the eye to be inspected, it is easy to properly acquire the target position of the focus position even though the initial value Gp of the gain is set to a certain high value.
  • the initial value Gp of the gain is set to a certain high value and the gain is reduced when the evaluation value C exceeds the threshold value T1, but the present invention is not necessarily limited to this.
  • the initial value of the gain may be set to a somewhat low value (a value lower than the above-mentioned initial value Gp), and the gain may be increased when the evaluation value C is lower than the second threshold value T2.
  • a control for reducing the gain when the evaluation value C exceeds the threshold value T1 may be used in combination.
  • control unit 70 moves the focusing lens 24 of the OCT optical system 200 to the same focus position as the focusing lens 63 (second focus adjustment). At this time, the control unit 70 moves the focusing lens 24 of the OCT optical system 200 based on the focus position of the observation optical system 300 obtained as a result of the first focus adjustment (autofocus on the OCT image).
  • the focus position of the observation optical system 300 is -3D
  • the focus position of the OCT optical system 200 is also controlled to be -3D.
  • Each focus position in the observation optical system 300 and each focus position in the OCT optical system 200 may be associated with each other by, for example, diopter conversion.
  • the focus position information of the OCT optical system 200 may be acquired based on the OCT image, and the focusing lens 24 may be readjusted.
  • the position of the focusing lens 24 may be adjusted so that the focus position matches a predetermined layer. As a result, the focus position in the OCT optical system 200 can be adjusted more accurately.
  • the control unit 70 moves the mirror 31 and adjusts the position of the mirror 31 to a position where a tomographic image of the fundus is acquired based on the output signal output from the light receiving element 83 at each position of the mirror 31. ..
  • control unit 70 moves the mirror 31 in one direction from the initial position by a predetermined step (for example, about several mm in terms of air).
  • a predetermined step for example, about several mm in terms of air.
  • the signal strength of the OCT image is represented as the value of the next evaluation value B.
  • the present invention is not limited to this, and various values that correlate with the signal strength of the OCT image may be used as the evaluation value.
  • the evaluation value B may be calculated from the entire image, or may be calculated based on the luminance information in a plurality of scanning lines in the depth direction.
  • control unit 70 may store the position of the mirror 31 and the evaluation value B in the memory 75 in association with each other.
  • the evaluation value B at each position of the mirror 31 transitions as shown in the graph of FIG. 9, for example.
  • the horizontal axis represents the position of the reference mirror, and the vertical axis represents the evaluation value B.
  • the position where the evaluation value B peaks is the adjustment target in the first optical path length adjustment. Therefore, the control unit 70 obtains the position of the reference mirror at which the evaluation value B peaks, and adjusts the reference mirror to the obtained position.
  • the control unit 70 may estimate the position of the reference mirror corresponding to the peak from the calculation result of the evaluation value B for each position of the mirror 31, and move the reference mirror with the estimated position as the adjustment target.
  • the position of the mirror 31 when the real image of the fundus of the eye appears in the OCT image is the position where the peak of the evaluation value B is detected.
  • the position of the mirror 31 when the virtual image appears in the OCT image may be the position where the peak of the evaluation value B is detected.
  • the evaluation value B changes and the peak detection position changes before and after the first automatic optical path length adjustment.
  • the peak position does not necessarily have to be detected appropriately. That is, since the optical path length may be adjusted roughly, the peak detection accuracy does not necessarily have to be high.
  • control unit 70 moves the mirror 31 again in the optical axis direction to readjust (finely adjust) the OPL.
  • the control unit 70 determines whether the image of the fundus of the eye included in the OCT image acquired after the focus adjustment is a real image or a virtual image. For example, the control unit 70 compares the half width with respect to the peak in the brightness distribution in the depth direction in the OCT image with a predetermined threshold value. If the half-value width is smaller than the threshold value, it may be determined as a real image, and if the half-value width is greater than or equal to the threshold value, it may be determined as a virtual image. For the determination of real / imaginary, any method may be used as long as the difference in image quality between the real image and the virtual image is used. To. Moreover, the shape of the OCT image may be used.
  • the control unit 70 determines that the image of the fundus in the OCT image is a virtual image
  • the control unit 70 moves the mirror 31 in the direction in which the real image is acquired.
  • the position where the real image is acquired has a correspondence relationship with the position where the virtual image is acquired, it may be adjusted as follows. That is, the position where the real image is acquired is in the direction in which the reference optical path is shorter than the position where the virtual image is acquired.
  • the movement amount of the mirror 31 that makes the deviation amount to the image detection position zero is calculated from the predetermined optical path length matching position S, and twice the movement amount is calculated from the position where the virtual image is acquired.
  • the mirror 31 may be moved as the amount of movement (to the position where the real image is acquired).
  • the method of adjusting the OPL to the position where the real image is acquired is not necessarily limited to this.
  • the control unit 70 adjusts the position of the real image. For example, the control unit 70 considers the position where the peak of the luminance distribution in the depth direction is detected as the image position, calculates the displacement amount between the preset optical path length matching position S and the image position, and the displacement amount is The mirror 31 may be moved so as to disappear (see JP-A-2010-12111).
  • control unit 70 determines whether the tomographic image of the fundus in the OCT image is real or imaginary, and further determines whether or not the real image and the virtual image coexist in the OCT image. It is preferable to execute in parallel. At this time, for example, it may be determined whether or not the real image and the virtual image coexist based on the amount of deviation from the optical path length matching position S to the image detection position P1.
  • the control unit 70 sets the image as a real image. It may be determined that the state coexists with the virtual image. In this case, the control unit 70 may move the mirror 31 in a predetermined direction (direction in which the reference light becomes shorter) so that only the real image is acquired.
  • the moving direction and the amount of movement of the mirror 31 from the coexisting state of the real image and the virtual image to the state in which only the real image is acquired may be predetermined experimentally or by simulation.
  • the control unit 70 drives the polarizer 33 to adjust the polarization state between the measurement light and the reference light.
  • the polarizer 33 is driven and controlled based on the output signal output from the light receiving element 83 so that the polarization states match between the measurement light and the reference light.
  • the polarizer 33 is driven and controlled based on the OCT image.
  • the control unit 70 obtains the signal strength of the OCT image acquired each time the position (orientation) of the polarizer 33 is changed.
  • the above-mentioned evaluation value B may indicate the signal strength.
  • Polarizer adjustment is completed by finding the position of the polarizer 33 at which the evaluation value B (peak value) peaks and adjusting to that position.
  • the fundus region desired by the examiner can be observed with high sensitivity and high resolution.
  • the images sequentially acquired by the imaging optical system have been described as being one channel (one type) of only the observation image, but this is not necessarily the case.
  • Japanese Patent Application Laid-Open No. 2016-59399 by the present applicant discloses an SLO optical system capable of simultaneously acquiring a three-channel (three-color) fundus image.
  • the above ⁇ first focus adjustment> may be performed based on the fundus image of any one channel.
  • the imaging conditions regarding the second optical device during the focus adjustment may be adjusted so that the brightness values of the fundus images of the plurality of channels are not saturated.
  • the focus position in the observation optical system 300 (and the OCT optical system 200) is adjusted, and the imaging conditions (light amount, gain, and exposure time) regarding the intensity of the received signal in the observation optical system 300 are adjusted.
  • the control is performed based on the information of the entire image in the observed image.
  • the present invention is not necessarily limited to this, and at least one of the controls may be performed based on the information of a part of the region in the observation image.
  • the evaluation values B and C in the above embodiment may be acquired as statistics of a part of the image. In this case, the adjustment can be performed more quickly.
  • the iris may eclipse the illumination light to the fundus. This may affect the validity of the above-mentioned evaluation value. Therefore, for example, in the present embodiment, the validity of the evaluation value acquired at each focus position may be determined based on the anterior segment image acquired by the anterior segment observation optical system (not shown).
  • the control unit 70 determines whether or not the optimization adjustment is successful based on the luminance information of the OCT image, and stops the optimization adjustment based on the determination result. You may let it.
  • the control unit 70 determines that the adjustment has failed, the control unit 70 causes the optimization control to be repeated again.
  • the optimization control may be stopped every time the optimization control fails, or the optimization control may be stopped when the optimization control fails several times. Further, when the optimization fails, the display on which the optimization has failed may be displayed on the monitor 75 so that the examiner can select whether or not to perform the re-optimization.
  • the processing proceeded in the order of the first automatic optical path length adjustment, the focus adjustment, the second automatic optical path length adjustment, and the polarizer adjustment.
  • the processing order is not necessarily limited to this, and the processing order can be rearranged as appropriate.
  • the polarizer adjustment may be performed between the completion of the first automatic optical path length adjustment and the focus adjustment and the start of the second automatic optical path length adjustment.
  • the focus adjustment may be performed before and after the second optical path length adjustment.
  • the control unit 70 makes a rough adjustment to the extent that the optical path length can be finely adjusted by the second optical path length adjustment, and after the fine adjustment of the optical path length by the second optical path length adjustment is completed, the first 2 The focus may be adjusted by adjusting the focus.
  • the focus adjustment is completed and the second automatic optical path length adjustment is started, but the present invention is not limited to this.
  • the focus adjustment and the first automatic optical path length adjustment may be completed, and the second automatic optical path length adjustment may be performed.
  • various imaging conditions have been adjusted based on the OCT image, but the present invention is not necessarily limited to this.
  • various imaging conditions may be adjusted based on the data before imaging or the output signal from the detector before Fourier transform.
  • the OCT image, the data before imaging (the signal after the Fourier transform), and the output signal from the detector are collectively referred to as OCT data. That is, various imaging conditions can be adjusted based on the OCT data.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

眼科撮影装置1は、SLO光学系300、フォーカシングレンズ63、および、受光素子68、制御部70を、少なくとも備える。SLO光学系300は、被検眼Eへ光を照射する照射光学系と、被検眼からの戻り光を受光素子68によって受光する受光光学系と、を含み、受光素子68からの信号に基づいて被検眼の眼底における正面画像を撮影する。また、フォーカシングレンズ63は、SLO光学系300の光路中に配置されており、被検眼Eに対するSLO光学系300の合焦位置を調整するために制御される。また、受光素子68からの信号に対するゲインが制御され得る。制御部70は、逐次取得される眼底の正面画像に基づいてフォーカシングレンズを制御し、同時に、又は、それ以前に、逐次取得される正面画像に基づいてゲインを調整する。

Description

眼科撮影装置
 本開示は、眼科撮影装置に関する。
 近年、眼科分野では、光断層干渉計(Optical Coherence Tomography: OCT)が広く利用されている。OCTは、被検眼の断層像を撮影する。
 また、眼科撮影装置におけるフォーカス位置の最適化手法として、撮像光学系によって取得される被検眼の画像を用いる手法が知られている。この手法では、フォーカス位置を変化させたときに随時得られる画像から所定の評価値が取得される。そして、評価値がピークとなる位置へとフォーカス位置が調整される。
 特許文献1では、眼底の正面画像を撮影する正面撮像光学系のフォーカス位置が、上記の手法を利用して調整される装置が開示されている。また、特許文献1では、それと連動して、OCT光学系のフォーカス位置が調整される装置が開示されている。
特開2013-188316号公報
 しかし、例えば、被検眼が疾病眼である等の理由で、良好な被検眼の画像が得られなければ、上記の手法では、フォーカス位置が適正に調整されない場合が考えられる。
 本開示は、上記問題点に鑑み、フォーカス位置が被検眼の画像に基づいて良好に調整される眼科撮影装置を提供すること、を技術課題とする。
 本開示の第1態様に係る眼科撮影装置は、被検眼へ光を照射する照射光学系と、被検眼からの戻り光を受光素子によって受光する受光光学系と、を含み、前記受光素子からの信号に基づいて前被検眼の画像を撮影する撮像光学系と、前記撮像光学系の光路中に配置されており、前記被検眼に対する前記撮像光学系の合焦位置を調整するために制御される第1光学デバイスと、前記照明光の光量、前記受光素子からの信号に対するゲイン、および、露光時間のうち少なくとも1つの撮影条件を調整するために制御される第2光学デバイスと、前記第1光学デバイスを逐次取得される前記被検眼の画像に基づいて制御し、同時に、又は、それ以前に、前記第2光学デバイスを逐次取得される前記被検眼の画像に基づいて制御する制御手段と、を備える。
 本開示によれば、フォーカス位置が正面画像に基づいて良好に調整される。
本実施例の眼底撮影装置の光学系及び制御系を示す図である。 観察光学系によって取得される観察画像の一例を示す図である。 OCT光学系によって取得される断層画像の一例を示す図である。 実施例における装置の動作の流れを示すフローチャートである。 最適化制御の流れをより詳細に説明するためのフローチャートである。 SLO画像の微分ヒストグラムの一例を示す図である。 結像状態に関する評価値Cと、フォーカス位置との関係を示したグラフの一例である。 図6とは異なる条件の被検眼を撮影した場合における、結像状態に関する評価値Cと、フォーカス位置との関係を示したグラフの一例である。 光路長差と、評価値Bと、の関係を示したグラフである。
 以下、本開示に係る眼科撮影装置の実施形態を説明する。以下の実施形態において、眼科撮影装置は、特に断りが無い限り、眼底撮影装置であるものとする。
 「概要」
 眼科撮影装置(例えば、図1参照)は、少なくとも被検眼の眼底画像(例えば、図2参照)を撮影する。本実施形態において、眼科撮影装置は、撮像光学系と、第1光学デバイス(フォーカス調整部)と、第2光学デバイスと、制御部と、を少なくとも備える。更に、眼科撮影装置は、第2光学系を備えていてもよい。第1光学デバイスと第2光学デバイスとは、それぞれ、撮像光学系の一部であってもよい。なお、本実施形態における光学デバイスは、眼科撮影装置において光を利用して情報の記録や伝達などを実現する装置の総称であり、例として、レンズ、ミラー、ファイバー、絞り、フィルター、スキャナー、光源、および、受光素子等が挙げられる。
 <撮像光学系>
 以下に一例として説明するように、本実施形態の撮像光学系は、正面撮像光学系であってもよい。正面撮像光学系は、被検眼の画像として被検眼の正面画像(ここでは、眼底の正面画像)を撮像する。撮像光学系は、正面画像として眼底の観察画像を取得する観察光学系であってもよい。観察画像は、装置の各種調整のために利用される。観察画像は、赤外光等の不可視光を照明光(観察光ともいう)によって取得されてもよく、また、正面画像は動画像として取得されてもよい。このような撮像光学系は、非走査型の光学系であってもよいし、走査型の光学系であってもよい。
 撮像光学系は、照射光学系と、受光光学系と、を備える。照射光学系は、被検眼の眼底へ光を照射する。また、受光光学系は、受光素子を有し、眼底からの戻り光を受光素子によって受光する。受光素子からの信号に基づいて眼底の正面画像が撮影される。
 <第1光学デバイス>
 第1光学デバイスは、撮像光学系の光路中に配置されており、被検眼に対する撮像光学系のフォーカス位置(合焦位置)を調整するために制御される。第1光学デバイスは、本実施形態におけるフォーカス調整部である。フォーカス調整部は、例えば、移動されるレンズを備えたものであってもよいし、液晶レンズ等の可変焦点レンズを備えたものであってもよいし、光路長を変更可能な光学系を備えたものであってもよい。光路長を変更可能な光学系は、例えば、1つ又は複数の、レンズ、ミラー、または、これらの組み合わせであってもよい。
 <第2光学デバイス>
 第2光学デバイスは、撮像光学系から被検眼へ照射される光の光量、受光素子からの信号に対するゲイン、および、露光時間のうち少なくとも1つの撮影条件を調整するために制御される。第2光学デバイスは、例えば、撮像光学系の光源であってもよいし、受光素子(ゲインコントロール回路を含む)であってもよい。また、撮像光学系が走査型の光学系である場合は、第2光学デバイスとして、光スキャナが利用されてもよい。第2光学デバイスは、必ずしもこれらに限定されるものではなく、受光信号の強度に関する条件を調整するために利用する、他の光学デバイスであってもよい。
 <制御部>
 制御部(本実施形態における制御手段)は、眼科撮影装置の各種動作を司るプロセッサである。制御部は、例えば、CPU、RAM、および、ROM等によって構成されてもよい。
 <フォーカス位置の調整制御>
 本実施形態の制御部は、フォーカス位置を変化させながら複数のフォーカス位置のそれぞれで正面画像を取得する。また、制御部は、それぞれの正面画像からフォーカス状態に関する評価値を取得し、評価値に基づいて最適なフォーカス位置を特定する。ここで、正面画像の画質の良否は、正面画像の結像状態(フォーカス状態)による影響が大きい。すなわち、フォーカスが合っている場合には、正面画像の画質が高くなる。また、フォーカスが合っていない場合には、正面画像の画質が低下する。そこで、例えば、フォーカス状態に関する評価値の一例として、画質の評価値が利用されてもよい。画質が最良となる位置(換言すれば、評価値が極大となる位置)が、最適なフォーカス位置として特定されてもよい。
 但し、被検眼が白内障眼等の疾病眼であると、フォーカス位置の変化に対する画質の評価値の変化が小さくなり、結果として、最適なフォーカス位置が適正に特定できない場合があり得る。これに対し、例えば、より強度の大きい受光信号が得られるように、第2光学デバイスに関する撮影条件が、予め調整されていることが有効である。これにより、フォーカス位置の変化に対する評価値の変化量が大きくなって、画質が最良となる位置が良好に特定されやすくなる。
 しかしながら、第2光学デバイスに関する撮影条件がより強度の大きい受光信号が得られるように予め調整されていると、正常眼を撮影するときには、画素値がサチレーションしやすくなる。これにより、評価値と実際のフォーカス状態との関係が乖離してしまい、最適なフォーカス位置を評価値に基づいて適正に特定できない場合が想定される。この場合は、例えば、疾病眼を撮影する場合と比べてより強度の小さい受光信号が得られるように、第2光学デバイスに関する撮影条件が、予め調整されていることが有効となる。
 しかしながら、被検眼が疾病眼であるか否かのような特性は、必ずしも検者が事前に把握することはできない。
 そこで、例えば、制御部は、フォーカス位置の調整と、第2光学デバイスに関する撮影条件の調整と、のそれぞれを、逐次取得される正面画像に基づいて同時に制御してもよい。これにより、適切な強度の受光信号が得られるように、第2光学デバイスに関する撮影条件が被検眼に応じて調整されつつ、最適なフォーカス位置が探索される。よって、被検眼に関わらず、最適なフォーカス位置が、より確実に特定されやすくなる。
 この場合、第2光学デバイスに関する撮影条件の初期値は、例えば、正常眼に対してフォーカス位置を変化させていった場合に、一部の範囲で、輝度値がサチレーションする程度の値が設定されていてもよい。フォーカス位置が変更されて、評価値が事前に定められた閾値以上となった段階で、第2光学デバイスによる撮影条件を、より小さな強度の受光信号が得られるレベルへ、変更してもよい。これにより、フォーカス位置を所定の範囲で一通り変化させる間に、輝度値のサチレーションを抑制しつつも評価値を極大化できるので、最適なフォーカス位置がより確実に特定され得る。
 また、例えば、第2光学デバイスに関する撮影条件を、逐次取得される正面画像に基づいて最初に調整してから、フォーカス位置の調整制御を開始させてもよい。フォーカス位置の調整制御の間に、第2光学デバイスに関する撮影条件が同時に調整されることが望ましい。但し、必ずしもこれに限られるものでは無い。例えば、第2光学デバイスに関する撮影条件が、被検眼の特性に応じて適正に調整されていることで、その後のフォーカス位置の調整制御において、第2光学デバイスの調整制御が不要となることも考えられる。
 <第2光学系のフォーカス制御>
 眼科撮影装置は、第2光学系を有していてもよい。第2光学系は、少なくとも、眼底における正面画像の撮影範囲内へ、第2の光を照射する。第2光学系は、撮像光学系とはモダリティが異なる撮影光学系または測定光学系であってもよいし、治療光(治療用のビーム)を照射する照射光学系であってもよい。
 本実施形態において、眼底に対する第2光学系のフォーカス位置は、撮像光学系のフォーカス位置と連動して調整されてもよい。この場合において、第2光学系におけるフォーカス調整部(以下、「第2フォーカス調整部」ともいう)は、撮像光学系におけるフォーカス調整部とは別体であってもよい。第2光学系におけるフォーカス位置と、撮像光学系におけるフォーカス位置とが一致するように、両者のフォーカス調整部は、メカニカルに連動(リンク)するものであってもよいし、同時制御によって連動するものであってもよい。また、第2光学系と、撮像光学系と、の間で、フォーカス調整部が共用されてもよい。
 <OCT光学系を、第2光学系へ適用する場合について>
 第2光学系は、正面画像の撮影範囲におけるOCT画像(断層画像,例えば、図3参照)を取得するためのOCT光学系であってもよい。このとき、OCT画像の撮影範囲は、正面画像の撮影範囲よりも狭くてもよいし、正面画像の撮影範囲と等しくてもよいし、正面画像の撮影範囲よりも広くてもよい。OCT光学系は、測定光と、参照光とのスペクトル干渉信号に基づいて、OCT画像を取得する。OCT光学系は、少なくとも、光分割器と、検出器と、を有する。測定光と、参照光とは、光源からの光が、光分割器によって分割されることによって生成される。検出器には、測定光の被検眼からの戻り光と、参照光とが、導かれる。
 ところで、OCT光学系は、OPLが適宜調整されていることで、スペクトル干渉信号に基づいて、被検眼のOCT画像が得られる。ここでいう、OPLは、測定光と参照光との光路長差である。この場合、眼科撮影装置は、OCT光学系におけるOPLを調整するためのOPL調整部(第3光学デバイス)を、更に有していてもよい。OPL調整部は、種々の構成のいずれかが適宜適用されてもよい。OPL調整部は、少なくともドライバ(駆動部)を含んでいる。
 第2光学系がOCT光学系である場合において、制御部は、OPLの調整を、フォーカス位置の調整と第2光学デバイスに関する撮影条件の調整と共に、同時に制御してもよい。これにより、OCT光学系におけるフォーカス位置と、OPLとを、最適な位置へ、より短時間で調整できる。
 なお、フォーカス位置の調整と第2光学デバイスに関する撮影条件の調整と共に、同時に実施されるOPLの調整は、ラフな調整であってもよい。ラフな調整の完了後、OCT光学系で得られるOCT画像に基づいて、OPLが詳細に調整されてもよい。
 <前眼部への適用について>
 以上の実施形態において、眼科撮影装置は、被検眼の眼底を撮影するものとして説明したが、必ずしもこれに限られるものではない。例えば、眼科撮影装置は、撮像光学系によって、被検眼の前眼部における正面画像を得るものであってもよい。この場合もであっても、撮影前の調整時間を短縮するうえで、一定の効果を享受できる。
 <OCT光学系を、撮像光学系へ適用する場合について>
 また、以上の説明では、撮像光学系が正面撮像光学系である場合を示したが、撮像光学系は、OCT光学系であってもよい。OCT光学系は、被検眼の画像として眼底の断層画像を、測定光と、参照光とのスペクトル干渉信号に基づいて、撮影する。随時取得される断層画像の画像情報に基づいてOCT光学系におけるフォーカス位置を制御する場合に、それと同時に、或いは、それ以前に、OCT光学系において受光信号の強度に関する撮影条件が随時取得される断層画像の画像情報に基づいて調整されることによって、より確実にフォーカス位置を最適化できる。
 「実施例」
 次に、図面を参照して、本開示の一実施例を示す。なお、実施例の説明においては、被検眼Eの軸方向をZ方向、水平方向をX方向、鉛直方向をY方向として説明する。眼底の表面方向をXY方向として考えても良い。
 本実施例の眼底撮影装置(OCTデバイス)1は、実施形態に係る眼科撮影装置の一種である。図1に示すように、本実施例にかかるOCTデバイス1は、干渉光学系(OCT光学系)200、観察光学系300(SLO光学系)、および、制御部70、を備える。干渉光学系200と、観察光学系300とは、ダイクロイックミラー40によって光路が結合/分岐される。
 <OCT光学系>
 図1には、一例として、SD-OCTの光学系が示されている。但し、必ずしもこれに限定されるものでは無い。眼底撮影装置1は、例えば、SS-OCTであってもよいし、その他の撮影原理によるOCTであってもよい。
 OCT光学系200は、光源27、光分割器26、ポラライザ33、および、分光光学系(スペクトロメータ)800を少なくとも有する。光源27は、低コヒーレント光を発する。光源27から出射された光は、光分割器26によって、測定光と参照光とに分割される。本実施例において、光分割器26は、カップラ(スプリッタ)が利用される。測定光は、測定光学系200aを介して被検眼の眼底へ導かれ、参照光は、参照光学系200bへ導かれる。また、ポラライザ33は、測定光と参照光との偏光を調整する。図1において、ポラライザ33は、参照光路上に配置されている。参照光は、参照光路上に配置されたミラー31によって折り返され、カップラ26によって、測定光の戻り光と合波された状態で、分光光学系800へ入射する。分光光学系800は、戻り光と参照光とを周波数(波長)毎に分光し、分光された光を検出器83(本実施形態においては、ラインセンサ)に受光させる。戻り光と、参照光とのスペクトル干渉信号に基づいて、眼底のOCT画像(例えば、断層画像,図3参照)が取得される。
 その他、光分割器26と被検眼Eとの間の測定光路上には、光ファイバ38b、コリメータレンズ21、フォーカシングレンズ24、走査部(光スキャナ)23、ミラー25、リレーレンズ22、ダイクロイックミラー40、および、対物レンズ10、が配置されている。
 本実施例において、OCT光学系200のフォーカス調整部は、フォーカシングレンズ24と、ドライバ24aとを含む。フォーカシングレンズ24が、ドライバ24aによって光軸方向へ変位されることによって、OCT光学系200におけるフォーカス位置が変更される。一例として、フォーカシングレンズ24は、-12D~+12Dの範囲で移動可能であってもよい。
 フォーカシングレンズ24の初期位置は、被検眼の平均的な眼屈折力に対応する位置(例えば、0Dに対応する位置)としている。もちろん、初期位置に移動させる以前の位置を初期位置としてもよい。また、初期位置を任意に変更できる設定としてもよい。第1移動限界位置、第2移動限界位置のいずれかが初期位置であってもよい。
 走査部23は、眼底におけるOCT画像の取得位置を、変更するために利用される。走査部23は、測定光を、眼底(被検物)上で二次元的(XY方向)に走査させるために利用されてもよい。走査部23は、例えば、走査方向が互いに異なる2つの光スキャナを含んでいてもよい。各々の光スキャナは、ガルバノミラーであってもよいし、その他の光スキャナであってもよい。
 対物レンズ10は、測定光の旋回点を形成し、旋回点を介して測定光を被検眼の眼底へ導く。対物レンズ10に関して、走査部23は、被検眼の瞳と共役な位置に配置される。これにより、測定光は、走査部23の駆動量に応じて、瞳上の一点を中心に旋回される。
 本実施例において、OPL調整部は、参照光路の光路長を変更することによって、OPLを調整する。これにより、眼軸長の個体差に応じて、OCTの深さ方向に関する撮影範囲が調整される。一例として、図1に示すOPL調整部には、ミラー31とドライバ50と、が含まれており、ミラー31がドライバ50によって変位されることによって、OPLが調整される。但し、OPL調整部は、必ずしもこれに限られるものではない。例えば、OPL調整部は、測定光路における光路長を変更することで、OPLを調整してもよい。この場合、例えば、OPL調整部は、光ファイバ38bの端部とコリメータレンズ21とを、光軸に沿って一体的に変位させるものであってもよい。なお、図1において、参照光路は、反射型の光学系として示されているが、必ずしもこれに限られるものではなく、透過型の光学系によって形成されてもよい。
 <観察光学系>
 図1では、観察光学系300の一例として、SLO光学系が示されている。観察光学系300は、照射光学系と、受光光学系と、を少なくとも有していてもよい。照射光学系は、眼底に照明光を照射する。受光光学系は、眼底反射光を受光素子68によって受光する。受光素子68からの出力信号に基づいて眼底の正面画像(図2参照)を、観察画像として、逐次、取得する。
 観察光学系300は、更に、フォーカス調整部を有する。フォーカス調整部は、フォーカシングレンズ63と、フォーカシングレンズ63を駆動させるドライバ63aと、を含む。
 光源61には、例えば、レーザダイオード光源が用いられる。光源61から発せられる光(実施例における照明光)を被検眼Eに向けて出射する光路には、フォーカシングレンズ63の他に、走査部64、リレーレンズ65、および、対物レンズ10が配置されている。また、走査部64は、被検眼瞳孔と略共役な位置に配置される。走査部64は、眼底上で二次元的に光を走査する。走査部64は、例えば、ポリゴンミラーと、ガルバノスキャナとの組み合わせを含んでいてもよい。
 また、光源61とフォーカシングレンズ63との間には、ビームスプリッタ62が配置されている。そして、ビームスプリッタ62の反射方向には、集光レンズ66と、共焦点開口67と、受光素子68と、が配置されている。
 光源61からの光(実施例における照明光)は、ビームスプリッタ62を透過した後、フォーカシングレンズ63を介して、走査部64に達する。走査部64を経た光は、リレーレンズ65を介して、ダイクロイックミラー40を透過した後、対物レンズ10を介して、眼底に照射される。
 眼底反射光は、投光経路を遡って、ビームスプリッタ62まで導かれる。眼底反射光は、ビームスプリッタ62で反射されることによって、集光レンズ66、共焦点開口67、を介して、受光素子68によって受光される。受光素子68からの受光信号に基づいて、眼底の正面画像が形成される。形成された正面画像は、メモリ72に記憶されてもよい。
   
 
 ダイクロイックミラー40は、OCT光学系200に用いられる測定光源27から発せられる測定光(例えば、λ=840nm付近)を反射し、観察光学系300に用いられる光源61から発せられるレーザ光(OCT光源27とは異なる波長の光、例えば、λ=780nm付近)を透過する特性を有する。この場合、ダイクロイックミラー40は、OCT光学系200の測定光軸L1と観察光学系300の測定光軸L2とを同軸にする。
 光ファイバ38cは、ドライバ34の駆動によって回転移動され、その移動可能範囲が設定されている。光ファイバ38cは、第1移動限界位置(例えば、0°)から第2移動限界位置(例えば、180°)までの回転移動可能である。
 光ファイバ38cは、第1移動限界位置から第2移動限界位置までの間の途中位置に位置されており、第2自動光路長調整完了後までは移動されない。そのため、ポラライザ33においては、途中位置が初期位置となる。
 <制御系>
 次に、OCTデバイス1の制御系について説明する。
 OCTデバイス1の制御部70は、OCTデバイス1における各種動作を司る。また、
 本実施例では、制御部70によって、各種の画像処理が行われる。つまり、制御部70によって、画像処理器が兼用される。制御部70は、例えば、CPU、RAM、および、ROM等によって構成されてもよい。
 また、本実施例において、制御部70は、モニタ75に接続されており、モニタ75の表示制御を行う。更に、制御部70は、メモリ72、操作部74、および、ドライバ24a、30、50、63a等と接続されている。
 <制御動作>
 図4のフローチャートに沿って、本実施例における装置の動作を説明する。図4のフローチャートは、アライメントから撮影までの流れを示している。
 <アライメント調整>
 最初に、被検眼に対して装置のアライメントが行われる。事前に被検者に固視標を注視させたうえで、図示無き前眼部観察用カメラで撮影される前眼部観察像に基づいて、被検眼と測定光軸との位置関係が調整される。例えば、被検眼の瞳孔中心と測定光軸とが一致するように調整される。アライメントは、手動で調整されてもよいし、自動で調整されてもよい。アライメント調整が完了した位置では、観察光学系300による眼底の正面画像(SLO画像)が取得可能である。
 アライメント完了後は、観察光学系300を介した観察画像の取得と、モニタ75における観察画像の表示と、が開始される。併せて、制御部70は、OCT光学系200を介して、OCT画像を、随時取得する。
 <最適化制御>
 次いで、撮影条件の最適化制御が行われる。最適化制御を行うことで、検者が所望する眼底部位が、OCT光学系200によって高感度・高解像度で観察できるようにする。なお、本実施例では、OCT光学系200における最適化の制御の一例として、光路長調整、フォーカス調整、および、偏光状態の調整(ポラライザ調整)が実行される。
 本実施例では、操作部74に配置された最適化開始スイッチ(Optimizeスイッチ)74aの操作をトリガとして、最適化制御が開始される。以下、図5のフローチャートを参照して、最適化制御における動作の流れの一例を説明する。
 <初期化>
 まず、制御部70は、OPLおよびフォーカス位置を初期化する。例えば、フォーカシングレンズ24の位置とミラー31の位置とのそれぞれを、予め定められた初期位置(移動開始位置)へ移動させる。本実施例において、各々の初期位置は、可動範囲の上限および下限のうちいずれかであってもよい。
 初期化後、本実施例では、フォーカス位置の調整と、第1光路長調整(OPLの調整の一種)と、が、並行して制御される。
 <第1フォーカス調整>
 第1フォーカス調整では、観察光学系300におけるフォーカス位置が、SLO画像による観察画像に基づいて調整される。本実施例では、同時に、観察画像(SLO画像)のゲインの自動調整が実行される。なお、第1フォーカス調整の結果として、SLO画像の画質が観察画像として許容できる範囲となれば十分であって、フォーカス位置が厳密な最適位置へ調整される必要は無い。
 一例として、本実施例では、評価値CとしてSLO画像の微分ヒストグラムに関する情報が利用される。微分ヒストグラムは、SLO画像の画像データを微分処理した画素値の微分値によるヒストグラムである。例えば、SLO画像の画像データにエッジ抽出用(例えば、ラプラシアン変換、SOBEL等)のフィルタを掛けて輪郭画像に変換した後、輪郭画像のヒストグラムが、微分ヒストグラムとして取得される。
 図6は、微分ヒストグラムの一例を示す図である。図6において、横軸は微分値の絶対値d(以下、単に、微分値と称する)である。図6は、微分値dが1~254による255階調の値で表される場合を示している。縦軸は、各微分値に対応する画素数を正規化した値である。画像内で対応する画素数が最も多くなる微分値において、その画素数を100%として、各微分値と対応する画素数が正規化されている。なお、図6に示すヒストグラムでは、端点(d=0、d=255)の2点のデータを除外している。
 微分ヒストグラムは、フォーカスが適正である場合ほど、眼底の血管部位におけるエッジが先鋭化される傾向を示す。このため、フォーカスが適正である場合ほど、値の大きな微分値をとる画素数が増加する。一方、 微分ヒストグラムは、フォーカス位置が最適位置からズレるに従ってエッジが鈍くなる傾向を示す。よって、フォーカス位置が最適位置からズレるほど、値の大きな微分値をとる画素数が低下する。
 本実施例では、微分ヒストグラムのうち、一定の数以上の画素数がある微分値を用いて、SLO画像の結像状態(フォーカス状態)の評価値Cが算出される。図6に示した例では、閾値S1の一例として、20%が設定される。
 評価値Cは、本実施例では、次のように表される。
  C1=Dmax-Dmin
 ここで、Dmaxは、閾値以上の画素を持つ微分値の最大値であり、Dminは、閾値以上の画素を持つ微分値の最大値である。本実施例のように、閾値S1を20%程度に設定することで、SLO画像全体に占める範囲の少ない眼底血管部位におけるエッジの先鋭度の変化を、精度良く検出できる。勿論、20%程度の値は、閾値S1の一例に過ぎない。閾値S1は、ノイズによる影響を回避しつつ、結像状態の変化に対して評価値Cが適正に変化する範囲で、適宜定められ得る。また、上記において、微分値の最大値Dmaxそのものが、結像状態に関する評価値として用いられてもよい。
 <フォーカシングレンズの移動態様>
 本実施例において、制御部70は、各フォーカス位置で取得される観察画像からフォーカス状態に関する評価値Cを取得し、評価値Cに基づいて最適なフォーカス位置を特定する。
 一例として、フォーカス位置を初期位置から一方向へ移動させる。例えば、-12Dとなる位置を初期位置として、プラス方向に2Dステップで移動させ、+12Dまでの各ステップで、評価値Cを取得する。もちろん、1ステップあたりの変化量を2Dとすることは一例であり、1ステップあたりの変化量は、最適なフォーカス位置が特定できる範囲で、2Dよりも大きな値としてもよいし、小さな値としてもよい。
 ここで、図7に示したグラフは、各フォーカス位置において飽和することなく評価値Cが取得された場合における、評価値Cと、フォーカシングレンズ63の位置Zとの関係を示している。評価値Cが極大となる位置が、フォーカス位置の目標位置として求められてもよい。また、図7に示したように、例えば、各ステップで取得された評価値Cをプロットした散布図に対し、フォーカシングレンズ63の移動範囲に極大値を持つような関数で曲線近似(補間処理の一例)を行って、この曲線における評価値Cのピーク位置Zpを、目標位置として求めてもよい。
 制御部70は、上記の処理の結果求められた目標位置へ、フォーカシングレンズ63を移動させる。このようにして、第1フォーカス調整において、フォーカシングレンズ63が調整される。
 <ゲイン調整と、ゲイン調整を踏まえたフォーカスの目標位置の決定方法>
 上記のようにフォーカス状態の評価値Cが取得されるうえで、例えば、ゲインの値が重要となる。
 ゲインの値が小さいと、被検眼に混濁等がある場合等において、フォーカス位置の変化に対する画質の評価値Cの変化が小さくなる。その結果、評価値Cに基づいて、最適なフォーカス位置が適正に特定できない場合があり得る。
 また、ゲインの値が大きいと、被検眼に混濁等がある場合等においては最適なフォーカス位置の検出を行いやすくなるものの、被検眼に混濁等が無い場合には、輝度値のサチレーションが生じやすくなって、評価値Cと実際のフォーカス状態との関係が乖離する場合が生じ得る。本実施例では、この場合、評価値Cのサチレーションが生じる。
 上記の点に鑑み、本実施例では、ゲインの初期値Gpが、ある程度高い値に設定(または調整)される(但し、初期値Gpは、後述の閾値T1よりも小さな値)。また、制御部70は、各ステップのフォーカス位置において、評価値Cと閾値T1とを比較し、評価値Cが閾値T1を上回る場合に、ゲインを減少させる。このときのゲインの減少量は、一定値であってもよい。ゲインを減少させてもなお評価値Cが閾値T1を上回る場合は、繰り返し、ゲインを減少させてもよい。フォーカス調整が開始されてからのゲインが減少された回数(ここでは、累計での回数。以下、カウント値と称する)は、カウントされてもよい。評価値Cが閾値T1以下となったら、フォーカス位置を次の位置へと移動させ、改めて評価値Cを求める。各フォーカス位置と対応付けて、評価値Cおよび上記のカウント値と、を、メモリ72へ記憶させてもよい。このような処理の結果、例えば、被検眼に混濁等がある場合では、フォーカス位置における評価値Cは、図7のグラフで示したように遷移すると考えられる。一方、被検眼に混濁等が無い場合では、フォーカス位置における評価値Cは、図8のグラフで示したように遷移すると考えられる。ここで、図8のグラフでは、-4Dの位置において、ゲインが一度調整(低減)されている。
 例えば、フォーカス位置の目標位置は、上記カウント値と、評価値と、に基づいて求められてもよい。それぞれのフォーカス位置の間でカウント値が互いに異なる場合、カウント値が最も大きなフォーカス位置の中から目標位置が設定される。カウント値が最も大きなフォーカス位置が複数ある場合、その範囲で、評価値が極大(最大)となる位置が、フォーカス位置の目標位置として設定されてもよい。上記の範囲で補完処理を行うことによって求められる極大値の推定値を、フォーカス位置の目標位置として、取得してもよい。このように、本実施例では、観察画像に基づく観察光学系300のフォーカス調整中に、ゲイン調整が行われることによって、フォーカス位置の目標位置を、一回的に得ることができる。
 また、ここでは、説明の便宜上、ゲインが減少された回数のカウント値を用いて、フォーカス位置の目標位置を求めるものとして説明したが、必ずしもこれに限られるものではない。各フォーカス位置では、評価値Cと共にゲインの値を記憶しておき、互いに異なるゲインの間で評価値を比較できるように一般化した値へと、評価値Cを、ゲイン値に応じて変換してもよい。一般化された評価値が極大となる位置を、フォーカス位置の目標位置として求めることができる。一般化する際、ゲイン値に応じて評価値が線形変換(オフセットおよび変倍の少なくともいずれかが)されてもよい。
 上記の制御によれば、ゲインの初期値Gpが、上記のように十分に高い値に設定されていることで、被検眼に混濁等がある場合等であっても、フォーカス位置の変化に対する画質の評価値Cの変化を十分に確保できる。よって、被検眼に混濁等がある場合等であっても、フォーカス位置の目標位置が適正に取得されやすくなる。また、評価値Cが閾値T2を上回る場合にゲインを下げる方向で調整され、且つ、該調整を考慮して、評価値Cが評価される。このため、被検眼に混濁等が無い場合であっても、ゲインの初期値Gpがある程度高い値に設定されているにも関わらず、フォーカス位置の目標位置が適正に取得されやすくなる。
 ここでは、ゲインの初期値Gpをある程度高い値に設定すると共に、評価値Cが閾値T1を上回る場合に、ゲインを減少させるものとして説明したが、必ずしもこれに限定されるものではない。例えば、ゲインの初期値をある程度低い値(上記の初期値Gpに比べて低い値)に設定すると共に、評価値Cが第2の閾値T2を下回る場合に、ゲインを増加させてもよい。この場合においても、フォーカス位置を変えることで評価値Cがサチレーションすることを抑制するために、評価値Cが閾値T1を上回る場合に、ゲインを減少させる制御を併用してもよい。
 <第2フォーカス調整>
 また、制御部70は、フォーカシングレンズ63と同様のフォーカス位置へ、OCT光学系200のフォーカシングレンズ24を移動させる(第2フォーカス調整)。このとき、制御部70は、第1フォーカス調整の結果として得られた観察光学系300のフォーカス位置に基づいて、OCT光学系200のフォーカシングレンズ24を移動させる(OCT画像に対するオートフォーカス)。
 例えば、観察光学系300のフォーカス位置が-3Dであれば、OCT光学系200のフォーカス位置も同様に-3Dとなるように制御する。観察光学系300における各々のフォーカス位置と、OCT光学系200における各々のフォーカス位置と、は、例えば、ディオプター換算によって互いに対応付けられていてもよい。
 このようにしてOCT光学系200のフォーカシングレンズ24の位置が調整されると、検出器83で検出される、眼底からの戻り光の光量が増加する。
 また、更に、OCT画像に基づいてOCT光学系200のフォーカス位置情報を取得し、フォーカシングレンズ24の再調整が行われてもよい。例えば、所定の層に対してフォーカス位置が合致するように、フォーカシングレンズ24の位置が調整されてもよい。これにより、より精度よく、OCT光学系200におけるフォーカス位置を調整することができる。
 <第1光路長調整>
 第1光路長調整について説明する。制御部70は、ミラー31を移動させると共に、ミラー31の各位置において受光素子83から出力される出力信号に基づいて、眼底の断層像が取得される位置へと、ミラー31の位置を調整する。
 このとき、制御部70は、初期位置からミラー31を一方向に所定ステップ(例えば、空気中換算で数mm程度)ずつ移動させる。所定ステップの移動毎にOCT画像を取得すると共に、該OCT画像の信号強度が求められる。
 本実施例において、OCT画像の信号強度は、次の評価値Bの値として表される。但し、必ずしもこれに限られるものではなく、OCT画像の信号強度と相関のある各種値を、評価値として利用してもよい。
  B=(「画像の平均最大輝度値」-「画像の背景領域の平均輝度値」)/「背景領域の輝度値の標準偏差」
 評価値Bは、画像全体から算出されてもよいし、深さ方向に関する複数本の走査線における輝度情報に基づいて算出されてもよい。
 上記の制御の結果として、制御部70は、ミラー31の位置と評価値Bとを対応付けてメモリ75に記憶してもよい。
 ミラー31の位置ごとにおける評価値Bは、例えば、図9のグラフのように遷移する。図9において、横軸は、参照ミラーの位置であり、縦軸は、評価値Bを示している。
 評価値Bがピークとなる位置が、第1光路長調整における調整目標となる。そこで、制御部70は、評価値Bがピークとなる参照ミラーの位置を求め、求めた位置へと参照ミラーを調整する。
 ここで、本実施例では、評価値Bがピークとなる位置が得られることが必要であるので、例えば、ミラー31を可動範囲の全域で移動させる必要は無く、例えば、評価値Bの上昇がなくなり、下降をはじめた位置で、ミラー31の駆動を停止してもよい。また、制御部70は、ミラー31の位置ごとにおける評価値Bの算出結果からピークに対応する参照ミラーの位置を推測し、推測位置を調整目標として、参照ミラーを移動させてもよい。
 なお、一般的には、眼底の実像がOCT画像中に現れるときのミラー31の位置が、評価値Bのピークが検出される位置となる。ただし、フォーカスがあっていない場合においては、虚像がOCT画像中に現れるときのミラー31の位置が、評価値Bのピークが検出される位置となる場合もありえる。
 以上のようにして光路長がラフに調整されると、モニタ72上のいずれかの位置に眼底の断層像の少なくとも一部が表示された状態となる。
 なお、本実施例において、第1自動光路長調整とフォーカス調整を並行して行っているため、第1自動光路長調整中にフォーカス調整が完了した場合、第1自動光路長に用いるOCT画像の画質が向上する。このため、第1自動光路長調整の前後で、評価値Bが変化し、ピークの検出位置が変化する場合が考えられる。この場合においても、第1自動光路長調整では、眼底の断層像の少なくとも一部がモニタ72上に表示された状態となればよいため、必ずしもピーク位置が適切に検出される必要はない。すなわち、ラフに光路長調整が行わればよいため、ピーク検出精度は、必ずしも高くなくてよい。
 <第2光路長調整>
 本実施例では、フォーカス調整および第1光路長調整の完了後、制御部70は、再度、ミラー31を光軸方向に移動させ、OPLを再調整(微調整)する。
 ここで、制御部70は、フォーカス調整後に取得されたOCT画像に含まれる眼底の像が、実像および虚像のいずれであるかを判定する。例えば、制御部70は、OCT画像における深さ方向での輝度分布におけるピークに対する半値幅を、所定の閾値と比較する。半値幅が閾値よりも小さい場合は実像と判定し、半値幅が閾値以上である場合は虚像と判定してもよい。実虚の判定については、実像と虚像との間の画質の差異が利用される手法であればよく、半値幅の他、例えば、OCT画像のコントラスト、OCT画像のエッジの立ち上がり度等が利用される。また、OCT画像の形状が利用されてもよい。
 制御部70は、OCT画像中の眼底の像が虚像であると判定された場合、実像が取得される方向に向けてミラー31を移動させる。ここで、実像が取得される位置は、虚像が取得される位置と対応関係にあるため、次のように調整されてもよい。すなわち、実像が取得される位置は、虚像が取得される位置に対し、参照光路が短くなる方向にある。また、予め定められた光路長一致位置Sから、像検出位置までの偏位量をゼロにするミラー31の移動量を算出し、該移動量の2倍分を、虚像が取得された位置から(実像が取得される位置まで)の移動量として、ミラー31を移動させてもよい。
 なお、OCT画像中の眼底の像が虚像である場合に、実像が取得される位置までOPLを調整する手法は必ずしもこれに限られるものではない。
 OCT画像中の眼底の像が実像であると判定された場合、制御部70は、実像の位置を調整する。例えば、制御部70は、深さ方向における輝度分布のピークが検出された位置を像位置とみなし、予め設定された光路長一致位置Sと像位置との変位量を算出し、その変位量がなくなるようにミラー31を移動させてもよい(特開2010-12111号公報参照)。
 制御部70は、上記のように、OCT画像の中の眼底の断層像に対する実虚の判定を行うと共に、さらに、OCT画像の中に、実像と虚像とが並存するか否かの判定を、並行して実行することが好ましい。このとき、例えば、光路長一致位置Sから像検出位置P1までの偏位量に基づいて、実像と虚像とが並存するか否かが判定されてもよい。
 例えば、制御部70は、前述のように算出される眼底の像の像位置P1がOCT画像の上端付近(例えば、OCT画像の上端から1/4に相当する領域)にある場合に、実像と虚像との並存状態であると判定してもよい。この場合、制御部70は、実像のみが取得されるように、所定の方向(参照光が短くなる方向)へミラー31を移動させてもよい。実像と虚像との並存状態から実像のみが取得された状態となるまでのミラー31の移動方向及び移動量は、実験的に、又は、シミュレーションによって、予め定められていてもよい。
 <ポラライザ調整>
 本実施例において、制御部70は、ポラライザ33を駆動させて、測定光と参照光との間における偏光状態を調整する。測定光と参照光の間で偏光状態が合致する場合に、より強い干渉信号が得られるようになる。そこで、測定光と参照光の間で偏光状態が合致するように、ポラライザ33が、受光素子83から出力される出力信号に基づいて、駆動制御される。
 より詳細には、本実施例では、OCT画像に基づいて、ポラライザ33が駆動制御される。制御部70は、ポラライザ33の位置(向き)を変更しながら、変更の都度取得されるOCT画像の信号強度を求める。例えば、上述の評価値Bによって、信号強度が示されてもよい。評価値B(ピーク値)がピークとなるポラライザ33の位置を求め、その位置へ調整されることによって、ポラライザ調整が完了される。
 以上のようにして、最適化の制御が完了されることにより、検者が所望する眼底部位が高感度・高解像度で観察できるようになる。
 <OCT画像の撮影>
 図2に戻って説明を続ける。図2に示すように、本実施例では、最適化の完了後、検者によって図示無き撮影スイッチが押されると、OCT光学系200を介してOCT画像が撮影される。撮影されたOCT画像は、例えば、メモリ75に記憶される。
 <変容例>
 以上、実施形態に基づいて本開示を説明したが、本開示は必ずしもこれに限定されるものではない。
 例えば、上記実施例では、撮像光学系(上記実施例では、SLO光学系300)によって逐次取得される画像は、観察画像のみの1チャンネル(1種類)であるものとして説明したが、必ずしもこれに限定されない。例えば、同時に複数チャンネルの画像を取得可能な撮像光学系もあり得る。一例として、本出願人による特開2016-59399には、同時に3チャンネル(3色)の眼底画像を取得可能なSLO光学系が開示されている。このような光学系を介して、複数チャンネルの眼底画像が逐次取得される場合、いずれか1チャンネルの眼底画像に基づいて、上記の <第1フォーカス調整>が行われてもよい。又は、複数のチャンネルの眼底画像のそれぞれの輝度値が飽和しないように、フォーカス調整中の、第2光学デバイスに関する撮像条件が調整 されてもよい。
 例えば、上記実施形態において、観察光学系300(およびOCT光学系200)におけるフォーカス位置の調整、および、観察光学系300における受光信号の強度に関する撮影条件(光量、ゲイン、および、露光時間)の調整のいずれにおいても、観察画像における画像全体の情報に基づいて、制御が行われるものとして説明した。しかし、必ずしもこれに限られるものでは無く、観察画像における一部の領域の情報に基づいて、少なくともいずれかの制御が行われてもよい。例えば、上記実施例における各評価値B,Cは、画像の一部の領域の統計量として取得されてもよい。この場合、より速やかに調整が行われやすくなる。
 また、例えば、アライメントズレ等が生じると、虹彩で眼底への照明光がケラレてしまう場合があり得る。これによって、前述の評価値の妥当性に影響が生じる場合が考えられる。そこで、例えば、本実施形態では、図示なき前眼部観察光学系で取得される前眼部画像に基づいて、各々のフォーカス位置で取得される評価値の妥当性が判定されてもよい。
 また、上記実施例における最適化制御では、一部(第1光路長調整の適否の判定)を除いて、前の調整が完了後に次の調整に移行される。しかし、必ずしもこれに限られるものではなく、制御部70により、OCT画像の輝度情報に基づいて、最適化の調整が成功したか否かを判定し、判定結果に基づいて最適化の調整を停止させるようにしてもよい。制御部70は、調整が失敗したと判定した場合、再び最適化の制御をやり直しさせる。このとき、最適化制御が失敗するたびに最適化の制御を停止させてもよいし、数回最適化制御が失敗した場合に、最適化の制御を停止させてもよい。また、最適化が失敗した際には、最適化が失敗した表示をモニタ75上に表示する等して、検者に再最適化を行うか否かを選択させる構成としてもよい。
 また、上記実施例における最適化制御では、第1自動光路長調整、フォーカス調整、第2自動光路長調整、ポラライザ調整の順で、処理が進められた。しかし、必ずしもこれに限られるものではなく、処理の順序は適宜組み替え可能である。例えば、第1自動光路長調整及びフォーカス調整が完了してから、第2自動光路長調整が開始される間に、ポラライザ調整が行われてもよい。
 なお、本実施例において、第2光路長調整の前後でフォーカス調整が行われてもよい。この場合、制御部70は、第1フォーカス調整では、第2光路長調整による光路長の微調整が可能な程度に粗く調整を行い、第2光路長調整による光路長の微調整完了後、第2フォーカス調整にて、フォーカスを一致させるようにしてもよい。
 なお、本実施例においては、フォーカス調整が完了するとともに、第2自動光路長調整が開始される構成としたがこれに限定されない。例えば、フォーカス調整及び第1自動光路長調整が完了するとともに、第2自動光路長調整が行われる構成としてもよい。
 なお、以上の説明においては、OCT画像に基づいて各種の撮像条件が調整されたが、必ずしもこれに限定されない。例えば、各種の撮像条件は、画像化前のデータ、或いは、フーリエ変換前の検出器からの出力信号に基づいて、調整されてもよい。ここで、OCT画像、画像化前のデータ(フーリエ変換後の信号)、および、検出器からの出力信号を、まとめて、OCTデータと称する。すなわち、各種の撮像条件は、OCTデータに基づいて調整することができる。
 23 走査部
 24 フォーカシングレンズ
 24a ドライバ
 31 参照ミラー
 63 フォーカシングレンズ
 63a ドライバ
 68 受光素子
 70 制御部
 72 メモリ
 75 モニタ
 83 検出器
 200 OCT光学系
 300 観察光学系

Claims (7)

  1.  被検眼へ光を照射する照射光学系と、被検眼からの戻り光を受光素子によって受光する受光光学系と、を含み、前記受光素子からの信号に基づいて前被検眼の画像を撮影する撮像光学系と、
     前記撮像光学系の光路中に配置されており、前記被検眼に対する前記撮像光学系の合焦位置を調整するために制御される第1光学デバイスと、
     前記光の光量、前記受光素子からの信号に対するゲイン、および、露光時間のうち少なくとも1つの撮影条件を調整するために制御される第2光学デバイスと、
     前記第1光学デバイスを逐次取得される前記被検眼の画像に基づいて制御し、同時に、又は、それ以前に、前記第2光学デバイスを逐次取得される前記被検眼の画像に基づいて制御する制御手段と、を備える、眼科撮影装置。
  2.  前記撮像光学系は、前記被検眼の画像として眼底の正面画像を撮影する正面撮像光学系である、請求項1記載の眼科撮影装置。
  3.  前記正面画像の撮影範囲内へ、第2の光を照射する第2光学系を有し、
     前記被検眼に対する前記第2光学系の合焦位置は、前記撮像光学系の合焦位置と連動して調整される、請求項2記載の眼科撮影装置。
  4.  前記第2光学系は、前記正面画像の撮影範囲におけるOCT画像を取得するためのOCT光学系である、請求項3記載の眼科撮影装置。
  5.  前記OCT光学系におけるOPLを調整するための第3調整手段を、更に備え、
     前記制御手段は、前記OPLの調整を、前記合焦位置の調整と前記撮影条件の調整と共に同時に制御する、請求項4記載の眼科撮影装置。
  6.  前記第2光学系は、前記正面画像の撮影範囲に対し、治療用のビームを照射する照射光学系である、請求項2記載の眼科撮影装置。
  7.  前記撮像光学系は、前記被検眼の画像として眼底の断層画像を撮影するOCT光学系である、請求項1記載の眼科撮影装置。
PCT/JP2020/027126 2019-07-16 2020-07-10 眼科撮影装置 WO2021010345A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20840504.3A EP4000501A4 (en) 2019-07-16 2020-07-10 OPHTHALMIC IMAGING DEVICE
JP2021533053A JP7447902B2 (ja) 2019-07-16 2020-07-10 眼科撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-131446 2019-07-16
JP2019131446 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021010345A1 true WO2021010345A1 (ja) 2021-01-21

Family

ID=74210946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027126 WO2021010345A1 (ja) 2019-07-16 2020-07-10 眼科撮影装置

Country Status (3)

Country Link
EP (1) EP4000501A4 (ja)
JP (1) JP7447902B2 (ja)
WO (1) WO2021010345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785959A (zh) * 2022-06-16 2022-07-22 江苏美克医学技术有限公司 荧光显微镜的自动聚焦方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310556A (ja) * 2002-04-19 2003-11-05 Topcon Corp 眼科撮影装置
JP2010012111A (ja) 2008-07-04 2010-01-21 Nidek Co Ltd 光断層像撮影装置
JP2013188316A (ja) 2012-03-13 2013-09-26 Nidek Co Ltd 眼底撮影装置
JP2016059399A (ja) 2014-09-12 2016-04-25 株式会社ニデック 走査型レーザー検眼鏡
JP2016193096A (ja) * 2015-03-31 2016-11-17 株式会社ニデック 眼科用レーザ治療装置、および眼科手術制御プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388765B2 (ja) * 2009-09-01 2014-01-15 キヤノン株式会社 眼底カメラ
JP6021384B2 (ja) * 2012-03-30 2016-11-09 キヤノン株式会社 光干渉断層撮影装置及び制御方法
JP2014079392A (ja) * 2012-10-17 2014-05-08 Canon Inc 眼科撮影装置
JP6160807B2 (ja) * 2013-01-23 2017-07-12 株式会社ニデック 眼科撮影装置及び眼科撮影プログラム
KR101992016B1 (ko) * 2017-09-01 2019-06-21 한국광기술원 광원 및 초점 자동 제어 기능을 가지는 안저 형광 영상 획득 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310556A (ja) * 2002-04-19 2003-11-05 Topcon Corp 眼科撮影装置
JP2010012111A (ja) 2008-07-04 2010-01-21 Nidek Co Ltd 光断層像撮影装置
JP2013188316A (ja) 2012-03-13 2013-09-26 Nidek Co Ltd 眼底撮影装置
JP2016059399A (ja) 2014-09-12 2016-04-25 株式会社ニデック 走査型レーザー検眼鏡
JP2016193096A (ja) * 2015-03-31 2016-11-17 株式会社ニデック 眼科用レーザ治療装置、および眼科手術制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4000501A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785959A (zh) * 2022-06-16 2022-07-22 江苏美克医学技术有限公司 荧光显微镜的自动聚焦方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
JPWO2021010345A1 (ja) 2021-01-21
EP4000501A1 (en) 2022-05-25
JP7447902B2 (ja) 2024-03-12
EP4000501A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US10433723B2 (en) Control apparatus, imaging control method, and storage medium
US9072459B2 (en) Fundus photographing apparatus
EP2130486B1 (en) Ophthalmic Photographing Apparatus
JP5209377B2 (ja) 眼底撮影装置
US7880895B2 (en) Optical tomographic image photographing apparatus
US7954946B2 (en) Optical tomographic image photographing apparatus
US9119562B2 (en) Imaging control apparatus, ophthalmic imaging apparatus, imaging control method, and program
JP5179265B2 (ja) 眼科撮影装置
JP5701660B2 (ja) 眼底撮影装置
JP6748673B2 (ja) 眼科撮影装置およびその制御方法
US10932664B2 (en) Ophthalmic device
US8876292B2 (en) Fundus imaging apparatus
WO2021010345A1 (ja) 眼科撮影装置
JP6946643B2 (ja) 光干渉断層撮像装置
JP2016049368A (ja) 眼科撮影装置
JP2016049367A (ja) 眼科撮影装置
US20220322932A1 (en) Oct device
JP7119287B2 (ja) 断層画像撮影装置、および断層画像撮影プログラム
JP6836212B2 (ja) 眼科撮影装置
JP2021000259A (ja) 眼科装置
JP2019154934A (ja) 光画像撮影装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840504

Country of ref document: EP

Effective date: 20220216