WO2021010340A1 - 発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置 - Google Patents

発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置 Download PDF

Info

Publication number
WO2021010340A1
WO2021010340A1 PCT/JP2020/027102 JP2020027102W WO2021010340A1 WO 2021010340 A1 WO2021010340 A1 WO 2021010340A1 JP 2020027102 W JP2020027102 W JP 2020027102W WO 2021010340 A1 WO2021010340 A1 WO 2021010340A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polarized light
light emitting
formula
salt
Prior art date
Application number
PCT/JP2020/027102
Other languages
English (en)
French (fr)
Inventor
陵太郎 森田
典明 望月
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN202080045368.3A priority Critical patent/CN113993854A/zh
Priority to JP2021533049A priority patent/JPWO2021010340A1/ja
Publication of WO2021010340A1 publication Critical patent/WO2021010340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/45Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/51Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • C07D249/20Benzotriazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/22Naphthotriazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/60Naphthoxazoles; Hydrogenated naphthoxazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/84Naphthothiazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to a novel luminescent compound or a salt thereof, and a polarized light emitting device, a polarized light emitting plate, and a display device using the same.
  • a polarizing plate having a light transmitting / shielding function is a basic component of a display device such as a liquid crystal display (Liquid Crystal Display) together with a liquid crystal having a light switching function.
  • a display device such as a liquid crystal display (Liquid Crystal Display) together with a liquid crystal having a light switching function.
  • LCDs equipped with such polarizing plates also range from small devices such as calculators and watches in the early days to laptop computers, word processors, LCD projectors, LCD TVs, car navigation systems, and indoor and outdoor measuring devices. It is spreading.
  • the polarizing plate can be applied to a lens having a polarizing function or the like, and for example, it has been applied to sunglasses having improved visibility, polarized glasses corresponding to a 3D television or the like in recent years.
  • the applications of the polarizing plate are wide-ranging, and the conditions of use are wide, such as low temperature to high temperature, low humidity to high humidity, low light amount to high light amount, etc., so that they have high polarization performance and high durability.
  • a polarizing plate is required.
  • the polarizing film constituting the polarizing plate is produced by dyeing or impregnating iodine or a dichroic dye in a stretch-oriented film of polyvinyl alcohol or a derivative thereof, or dehydroxication of a polyvinyl chloride film or It is produced by producing and orienting polyene by dehydrating a polyvinyl alcohol-based film. Since the polarizing plate composed of such a conventional polarizing film uses a dichroic dye having absorption in the visible region, the transmittance is lowered. For example, the transmittance of a general polarizing plate on the market is 35 to 45%.
  • Patent Document 1 describes a technique for a polarizing plate for ultraviolet rays as a technique for providing a polarizing function while maintaining a certain degree of transmittance in the visible region, in response to the problem of a conventional polarizing plate in which the transmittance in the visible region is lowered. Has been done. However, this technique also uses a yellow pigment that absorbs in the visible region, so that the transmittance is not sufficient and a strong yellow coloring is confirmed. When a polarizing plate having a low transmittance in the visible region is used for a display or the like, the transmittance of the entire display decreases. Therefore, a method of obtaining polarized light without using a conventional polarizing plate has been studied. As such a method, devices that emit polarized light are described in Patent Documents 2 to 4.
  • the polarized light emitting elements described in Patent Documents 2 to 4 are expensive because they use special metals such as lanthanoids and europium, which have high rare values, and are extremely difficult to manufacture and are not suitable for mass production. Is. Further, these polarized light emitting elements are difficult to use in a display because the light emission of polarized light is weak, and the emitted light which is linearly polarized light cannot be obtained. Therefore, we will develop new elements and materials that exhibit polarized light emission, have high transmittance (transparency) in the visible range, and can be applied to liquid crystal displays that require durability in harsh environments. Is desired.
  • the present invention is a novel compound that can be applied to a liquid crystal display or the like that requires high transmittance in the visible region and high durability in a harsh environment, and a polarized light emitting element, a polarized light emitting plate, and the like using the same. It is an object of the present invention to provide a display device using.
  • polarized light emitting elements and polarized light emitting plates containing a compound having a specific structure or a salt thereof have light in the ultraviolet to near-ultraviolet visible region, for example. It has been found that it has a high dichroic ratio for light of 300 to 430 nm, exhibits high transmittance in the visible region, and exhibits excellent durability in a harsh environment. Further, it can be seen that a compound having such a specific structure or a salt thereof exhibits an action of emitting polarized light in the visible region by irradiation with light in the ultraviolet to near-ultraviolet visible region, for example, light of 300 to 430 nm. We have found and completed the present invention.
  • a luminescent compound represented by the following formula (1) or a salt thereof is a luminescent compound represented by the following formula (1) or a salt thereof.
  • k independently represents an integer of 0 or 1
  • at least one of X and Y is a heterocyclic group containing a nitrogen atom or a sulfur atom which may have a substituent, or a formula ( The group represented by 2) is shown, and the other X and Y are independently nitro groups, amino groups which may have a substituent, and alkyls having 1 to 4 carbon atoms which may have a substituent. It consists of an alkoxy group having 1 to 4 carbon atoms which may have a group or a substituent, a heterocyclic group containing a nitrogen atom or a sulfur atom which may have a substituent, or a group represented by the formula (2). It is a group selected from the group.
  • M represents a hydrogen atom, a metal ion, or an ammonium ion, and m independently represents an integer of 0 to 2.
  • * is in formula (1). Indicates the bond positions of X and Y, where Z has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, a stillben group which may have a substituent, and a substituent. Is also a group selected from the group consisting of a good benzoyl group or a heterocyclic group which may have a substituent.
  • T represents an integer of 0 or 1.
  • At least one of X and Y in the above formula (1) and Z when at least one of X and Y in the above formula (1) is represented by the above formula (2) is the following formula (3).
  • Item 2. The luminescent compound according to item [1] or a salt thereof, which is a group selected from the group consisting of (7).
  • A is independently a hydrogen atom, a halogen group, a nitro group, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a sulfo.
  • n 1 and n 2 each independently represent an integer of 0 to 3.
  • the * in the above formulas (3) to (7) is the connection position in X or Y of the above formula (1), or the above.
  • the connection position in Z of the formula (2) is shown.) [3].
  • K in the above formula (1) is 0 or 1
  • at least one of X and Y is any group selected from the group consisting of formulas (2) to (7), and at least one of X and Y.
  • each k is 0, X and Y are both groups selected from the group consisting of formulas (2) to (7), and X and Y are formulas (2).
  • each k is 1, X and Y are both groups selected from the group consisting of formulas (2) to (7), and X and Y are formulas (2).
  • Item 6 The polarized light emitting device according to item [6], which further contains one or more kinds of organic dyes or fluorescent dyes other than the above luminescent compound or a salt thereof. [8].
  • Item 2. The polarized light emitting device according to item [8], wherein the base material is a film containing a polyvinyl alcohol resin or a derivative thereof. [10].
  • the luminescent compound having a specific structure according to the present invention or a salt thereof absorbs light in the ultraviolet to visible region, for example, light in the ultraviolet to near-ultraviolet visible region, specifically, light having a diameter of 300 to 430 nm. It uses energy to exhibit a polarized light emitting effect in the visible region. Further, the polarized light emitting element and the polarized light emitting plate manufactured by using the luminescent compound or a salt thereof show a high degree of polarization at the absorption wavelength.
  • the light in the ultraviolet to near-ultraviolet visible region has a high degree of polarization and is polarized. It is possible to provide a novel polarized light emitting element and a polarized light emitting plate exhibiting a light emitting action. Further, the polarized light emitting element and the polarized light emitting plate according to the present invention show high transmittance in the visible region, and further show excellent durability against heat, humidity and the like. Therefore, the polarized light emitting element and the polarized light emitting plate can be applied to a display device such as a liquid crystal display which is required to have high transparency in the visible region and high durability in a harsh environment.
  • the luminescent compound of the present invention is represented by the above formula (1).
  • This luminescent compound can take the form of a salt.
  • a luminescent compound or a salt thereof may be simply abbreviated as a luminescent compound.
  • k independently represents an integer of 0 or 1
  • at least one of X and Y is a heterocyclic group containing a nitrogen atom or a sulfur atom which may have a substituent, or formula (2).
  • the other X and Y are independently nitro groups, amino groups which may have a substituent, and alkyl groups having 1 to 4 carbon atoms which may have a substituent.
  • it is selected from the group consisting of an alkoxy group having 1 to 4 carbon atoms which may have a substituent, a heterocyclic group containing a nitrogen atom or a sulfur atom which may have a substituent, or the structure of the formula (2). It is a group.
  • M represents a hydrogen atom, a metal ion, or an ammonium ion
  • m independently represents an integer of 0 to 2.
  • * indicates the bonding position of X and Y in the formula (1)
  • Z represents a phenyl group which may have a substituent, a naphthyl group which may have a substituent, and a substituent. It is a group selected from the group consisting of a stillben group which may have a substituent, a benzoyl group which may have a substituent, or a heterocyclic group which may have a substituent.
  • t represents an integer of 0 or 1.
  • the heterocyclic group containing a nitrogen atom or a sulfur atom which may have the above-mentioned substituent represents, for example, a heterocyclic group having at least one of a nitrogen atom and a sulfur atom as a ring constituent component, and the heterocycle.
  • a polycyclic heterocyclic group further containing an aromatic ring such as a benzene ring or a naphthalene ring is also included.
  • heterocyclic group having at least one of the nitrogen atom and the sulfur atom as a ring component examples include a pyrrole group, a benzopyrrole group, a thiophene group, a benzothiophene group, a thiazole group, a benzothiazole group, and a naphthozol group.
  • Examples of the amino group which may have the above-mentioned substituent include an amino group; a mono-substituted amino group such as a methylamino group, an ethylamino group, an n-butylamino group, a phenylamino group and a naphthylamino group; a dimethylamino group. , Diethylamino group, di-n-butylamino group, diphenylamino group, ethylmethylamino group, di-substituted amino group such as ethylphenylamino group and the like.
  • alkyl group having 1 to 4 carbon atoms which may have the above-mentioned substituent include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group and tert-. Examples thereof include a butyl group and a cyclobutyl group.
  • alkoxy group having 1 to 4 carbon atoms which may have the above-mentioned substituent include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-butoxy group and a tert-.
  • substituents include a butoxy group and a cyclobutoxy group.
  • the substituent in the alkoxy group having 1 to 4 carbon atoms which may have the above is not particularly limited, and examples thereof include a hydroxy group, a cyano group, a phosphoric acid group, a sulfo group, a carboxy group and an amino group. ..
  • M represents a hydrogen atom, a metal ion, or an ammonium ion.
  • the metal ion include alkali metal ions such as lithium ion, sodium ion and potassium ion, and alkaline earth metal ions such as calcium ion and magnesium ion.
  • ammonium ions include ammonium ion, methylammonium ion, dimethylammonium ion, triethylammonium ion, tetraethylammonium ion, tetra-n-propylammonium ion, tetra-n-butylammonium ion, monoethanolammonium ion, and diethanolammonium ion.
  • Triethanolammonium ion monoisopropanolammonium ion, diisopropanolammonium ion, triisopropanolammonium ion, triethanolammonium ion and the like.
  • M is a hydrogen atom
  • sulfonic acid -SO 3 H
  • sodium sulfonate -SO 3 Na
  • ammonium ion Represents ammonium sulfonate (-SO 3 NH 4 ), respectively.
  • particularly preferable ones include lithium ion, ammonium ion, and sodium ion.
  • Z is a phenyl group which may have a substituent, a naphthyl group which may have a substituent, and a substituent. It is a group selected from the group consisting of a stillben group which may have a substituent, a benzoyl group which may have a substituent, or a heterocyclic group which may have a substituent.
  • t represents an integer of 0 or 1.
  • the substituent that Z can have here is not particularly limited, but for example, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an amino group, a nitro group, a sulfo group, a hydroxy group, and a cyano group. , Phosphate group, carboxy group and the like.
  • the heterocyclic group which may have the above-mentioned substituent may be, for example, the same as the heterocyclic group containing a nitrogen atom or a sulfur atom which may have a substituent in the above formula (1), and further, oxygen. It may be a furan group, a benzofuran group or the like containing an atom as a ring component.
  • At least one of X and Y in the above formula (1) and Z when at least one of X and Y in the above formula (1) is represented by the above formula (2) is the above formula (3). It is preferable that the group is selected from the group consisting of (7).
  • A is independently a hydrogen atom, a halogen group, a nitro group, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a sulfo group.
  • the * in the above formulas (3) to (7) indicates the bond position in X or Y of the above formula (1) or the bond position in Z of the above formula (2), respectively.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group and the like. Be done.
  • alkyl group having 1 to 4 carbon atoms having a sulfo group examples include a sulfomethyl group, a sulfoethyl group, a sulfo-n-propyl group, a sulfo-n-butyl group, and a sulfo-sec-butyl group.
  • halogen group examples include a fluorine group, a chlorine group, a bromine group, an iodine group and the like.
  • alkoxy group having 1 to 4 carbon atoms examples include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, a cyclobutoxy group and the like. Can be mentioned.
  • alkyl group having a hydroxy group and having 1 to 4 carbon atoms examples include a hydroxymethyl group, a hydroxyethyl group, a hydroxy-n-propyl group, a hydroxy-iso-propyl group, a hydroxy-n-butyl group, and a hydroxy-sec.
  • -Butyl group, hydroxy-tert-butyl group, hydroxycyclobutyl group and the like can be mentioned.
  • alkyl group having 1 to 4 carbon atoms having a carboxy group examples include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, a carboxy-iso-propyl group, a carboxy-n-butyl group, and a carboxy-sec.
  • -Butyl group, carboxy-tert-butyl group, carboxycyclobutyl group and the like can be mentioned.
  • alkoxy group having a sulfo group having 1 to 4 carbon atoms examples include a sulfomethoxy group, a sulfoethoxy group, a sulfo-n-propoxy group, a sulfo-iso-propoxy group, a sulfo-n-butoxy group, and a sulfo-sec.
  • -Butoxy group, sulfo-tert-butoxy group, sulfocyclobutoxy group and the like can be mentioned.
  • alkoxy group having a hydroxy group and having 1 to 4 carbon atoms examples include a hydroxymethoxy group, a hydroxyethoxy group, a hydroxy-n-propoxy group, a hydroxy-iso-propoxy group, a hydroxy-n-butoxy group, and a hydroxy-sec.
  • -Butoxy group, hydroxy-tert-butoxy group, hydroxycyclobutoxy group and the like can be mentioned.
  • alkoxy group having 1 to 4 carbon atoms having a carboxy group examples include a carboxymethoxy group, a carboxyethoxy group, a carboxy-n-propoxy group, a carboxy-iso-propoxy group, a carboxy-n-butoxy group, and a carboxy-sec.
  • -Butoxy group, carboxy-tert-butoxy group, carboxycyclobutoxy group and the like can be mentioned.
  • k in the above formula (1) is 0 or 1
  • at least one of X and Y is any group selected from the group consisting of formulas (2) to (7)
  • X , Y when at least one of them is the formula (2)
  • Z may be any one selected from the group consisting of the formulas (3) to (7).
  • each k is 0, X and Y are both groups selected from the group consisting of formulas (2) to (7), and X and Y are formulas (2). ), It is preferable that Z is any one selected from the group consisting of the formulas (3) to (7).
  • each k is 1, X and Y are both groups selected from the group consisting of formulas (2) to (7), and X and Y are formulas (2). In the case of), it is particularly preferable that Z is any one selected from the group consisting of the formulas (3) to (7).
  • each of X, Y, k, M, and m may be the same as the above formula (1).
  • the sulfo group and the like in the formula are represented in the form of a free acid.
  • the compound represented by the above formula (1) or a salt thereof is useful as a compound capable of emitting polarized light.
  • the luminescent compound represented by the formula (1) or a salt thereof may be, if necessary, one or more (not particularly limited) organic dyes or fluorescent dyes known in the art other than the luminescent compound or the salt thereof.
  • a polarized light emitting element can be produced by a method in which a substrate, for example, a polymer film such as polyvinyl alcohol or a derivative thereof, is contained in combination and oriented by a known method.
  • the obtained polarized light emitting element is provided with a transparent protective film to form a polarized light emitting plate, and a hard coat layer or an AR (antireflection) layer, a support, or the like is further provided on the polarized light emitting plate as needed, and a liquid crystal projector, a calculator, etc.
  • organic dyes or fluorescent dyes known in the art other than luminescent compounds or salts thereof may be simply abbreviated as other organic dyes.
  • the present invention also includes a polarized light emitting device containing a luminescent compound represented by the above formula (1) or a salt thereof.
  • the polarized light emitting element is preferably a polarized light emitting element containing a luminescent compound represented by the above formula (1) or a salt thereof and a substrate on which the luminescent compound or a salt thereof is adsorbed and oriented.
  • the polarized light emitting device may contain one kind alone or a plurality of kinds of a luminescent compound represented by the above formula (1) or a salt thereof.
  • the base material is preferably a film obtained by forming a film of a luminescent compound or a hydrophilic polymer capable of adsorbing a salt thereof.
  • the hydrophilic polymer is not particularly limited, and examples thereof include polyvinyl alcohol-based resins, amylose-based resins, starch-based resins, cellulosic resins, and polyacrylate-based resins. Among such resins, a polyvinyl alcohol-based resin or a derivative thereof is preferable from the viewpoint of adsorptivity, processability, orientation, etc. of the luminescent compound or a salt thereof.
  • the polyvinyl alcohol-based resin or a derivative thereof may be modified with an olefin such as ethylene or propylene, or an unsaturated carboxylic acid such as crotonic acid, acrylic acid, methacrylic acid or maleic acid.
  • the shape of the base material is not particularly limited, and can be produced in any shape such as a film shape, a sheet shape, a flat plate shape, a curved plate shape, and a hemispherical shape.
  • the thickness of the base material (before the swelling treatment) is usually 10 ⁇ m to 100 ⁇ m, preferably 20 ⁇ m to 80 ⁇ m.
  • the content of the luminescent compound represented by the above formula (1) or a salt thereof in the polarized light emitting device is not particularly limited, and can be designed with an arbitrary transmittance. The content may be arbitrarily set according to the transmittance required for the polarized light emitting element.
  • the polarization performance of the polarized light emitting element includes not only the content of the luminescent compound represented by the formula (1) in the polarized light emitting element or a salt thereof, but also the degree of swelling, the draw ratio, and the dyeing of the base material that adsorbs the luminescent compound. It changes depending on various factors such as time, staining temperature, pH at the time of staining, and the influence of salt.
  • the content of the luminescent compound represented by the formula (1) or a salt thereof in the polarized light emitting element includes the degree of swelling of the base material, the temperature at the time of dyeing, the time, the pH, the type of salt, the concentration of salt, and further. Can be determined according to the draw ratio. Such adjustment of the content can be appropriately performed.
  • the polarized light emitting element may further contain one or more other organic dyes as necessary within a range that does not impair the polarization performance or for the purpose of color adjustment.
  • the other organic dye used in combination is not particularly limited, but a dye having high dichroism is preferable, and the polarization performance of light in the ultraviolet to near-ultraviolet visible region of the luminescent compound of the formula (1) is affected. Fewer dyes are preferred.
  • Other organic dyes used in combination include, for example, C.I. I. Direct. Yellow12, C.I. I. Direct. Yellow28, C.I. I. Direct. Yellow44, C.I. I. Direct. Orange 26, C.I. I. Direct. Orange39, C.I. I. Direct. Orange71, C.I. I.
  • the types of other organic dyes to be blended can be selected according to the purpose such as adjusting the color of the polarized light emitting element to be manufactured.
  • the content of the other organic dye is not particularly limited, but (when used), it is generally used in combination with 100 parts by mass of the luminescent compound of the above formula (1) or a salt thereof.
  • the total amount of the organic dyes in the above is preferably in the range of 1 to 1000 parts by mass.
  • the production method is not limited, but for example, a step of preparing a base material, a swelling step of immersing the base material in a swelling solution and stretching the base material by swelling, and at least a swelling base material.
  • the base material on which the luminescent compound represented by the formula (1) or a salt thereof is adsorbed is immersed in a solution containing boric acid, and the luminescent compound represented by the formula (1) or a salt thereof is used as a base.
  • a cross-linking step of cross-linking in a material and a base material cross-linked with a luminescent compound or a salt thereof are uniaxially stretched in a certain direction to uniaxially stretch the luminescent compound represented by the formula (1) or a salt thereof in a certain direction. It includes a stretching step of arranging, a washing step of washing the stretched base material with a washing liquid, and a drying step of drying the washed base material.
  • a base material for adsorbing and orienting the luminescent compound represented by the above formula (1) is prepared.
  • the base material for example, a film made of a commercially available polyvinyl alcohol-based resin or a derivative thereof may be used, or may be produced by forming a film of the polyvinyl alcohol-based resin.
  • the film-forming method of the polyvinyl alcohol-based resin is not particularly limited, and for example, a method of melt-extruding a hydrous polyvinyl alcohol, a casting film-forming method, a wet film-forming method, and a gel film-forming method (the polyvinyl alcohol aqueous solution is once cooled).
  • a known film-forming method can be adopted, such as a method of extracting and removing the solvent after gelation), a cast film-forming method (flowing a polyvinyl alcohol aqueous solution on a substrate and drying), and a method using a combination thereof.
  • the degree of polymerization of polyvinyl alcohol is preferably 1000 to 10000, preferably 1500 to 6000, and more preferably 2000 to 6000.
  • the swelling treatment is preferably carried out by immersing the base material in a swelling solution at 20 to 50 ° C. for 30 seconds to 10 minutes.
  • the swelling liquid is preferably water.
  • the draw ratio of the base material with the swelling liquid is preferably adjusted to 1.00 to 1.50 times, more preferably 1.10 to 1.35 times.
  • the base material obtained by subjecting the swelling treatment as described above is adsorbed and impregnated with at least one luminescent compound of the formula (1) or a salt thereof.
  • the dyeing step is not particularly limited as long as it is a method of adsorbing and impregnating the base material with the luminescent compound or a salt thereof, but for example, the base material is a dyeing solution containing the luminescent compound or a salt thereof (generally). It is preferable to immerse it in an aqueous solution), and it can also be adsorbed by applying a dyeing solution to the substrate.
  • the concentration of the luminescent compound or its salt in the dyeing solution is not particularly limited as long as the luminescent compound or its salt is sufficiently adsorbed in the substrate, but for example, 0.0001 in the dyeing solution. It is preferably about 3% by mass, more preferably 0.001 to 1.0% by mass.
  • the temperature of the dyeing solution in the dyeing step is preferably 5 to 80 ° C, more preferably 20 to 50 ° C, and particularly preferably 40 to 50 ° C.
  • the time for immersing the substrate in the dyeing solution can be appropriately adjusted, and is preferably adjusted between 30 seconds and 20 minutes, more preferably between 1 and 10 minutes.
  • the luminescent compound represented by the above formula (1) or a salt thereof may be used alone or in combination of two or more. Since the luminescent compound represented by the above formula (1) or a salt thereof has a different luminescent color due to a difference in structure, the base material contains two or more kinds of the luminescent compound or a salt thereof. Thereby, the generated emission color can be appropriately adjusted to a desired color. Further, if necessary, the dyeing solution may further contain one kind or two or more kinds of the above-mentioned other organic dyes.
  • the luminescent compound (or a salt thereof) represented by the formula (1) and other organic dyes are generally referred to as "polarizing dye”. There is.
  • the dyeing solution may further contain a dyeing aid, if necessary, in addition to the polarizing dye.
  • the dyeing aid include sodium carbonate, sodium hydrogencarbonate, sodium chloride, sodium sulfate (Glauber's salt), anhydrous sodium sulfate, sodium tripolyphosphate and the like, and sodium sulfate is preferable.
  • the content of the dyeing aid can be arbitrarily adjusted by the time of immersion and the temperature of the dyeing solution based on the dyeability of the polarizing dye used.
  • the content of the dyeing aid is preferably 0.05 to 10% by mass, more preferably 0.05 to 2% by mass in the dyeing solution (when used).
  • a preliminary cleaning step can be optionally performed in order to remove the excess dyeing solution adhering to the surface of the base material in the dyeing step.
  • a preliminary cleaning step By carrying out the pre-cleaning step, it is possible to suppress the transfer of the luminescent compound or a salt thereof remaining on the surface of the base material into the liquid to be treated next.
  • water is generally used as the cleaning liquid.
  • a cleaning method it is preferable to immerse the dyed base material in the cleaning liquid, while cleaning can also be performed by applying the cleaning liquid to the base material.
  • the washing time is not particularly limited, but is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
  • the temperature of the cleaning liquid in the pre-cleaning step needs to be a temperature at which the material constituting the base material does not dissolve, and generally may be 5 to 40 ° C. Even if there is no pre-cleaning step, the pre-cleaning step can be omitted because it does not have a particularly large effect on the performance of the polarized light emitting element.
  • the substrate can contain a cross-linking agent.
  • a cross-linking agent As a method of incorporating a cross-linking agent into the base material, it is preferable to immerse the base material in a treatment solution containing the cross-linking agent, while the treatment solution may be applied or coated on the base material.
  • the cross-linking agent in the treatment solution it is preferable to use a solution containing boric acid.
  • the solvent in the treatment solution is not particularly limited, but water is preferable.
  • the concentration of boric acid in the treatment solution is preferably 0.1 to 15% by mass, more preferably 0.1 to 10% by mass.
  • the temperature of the treatment solution is preferably 30 to 80 ° C, more preferably 40 to 75 ° C.
  • the treatment time of this cross-linking step is preferably 30 seconds to 10 minutes, more preferably 1 to 6 minutes.
  • the obtained polarized light emitting element emits polarized light having high brightness and high degree of polarization. This is an excellent action that cannot be expected from the function of boric acid, which has been used in the prior art for the purpose of improving water resistance or light transmission.
  • a fixing treatment may be further performed with an aqueous solution containing a cationic polymer compound. The fixing process makes it possible to immobilize the polarizing dye.
  • cationic polymer compound for example, dicyanamide and formalin polymerization condensate as dicyan, dicyandiamide / diethylenetriamine polycondensate as polyamine, epichlorohydrin / dimethylamine addition polymer as polycation, dimethyldialylammonium Chloride-ion dioxide copolymers, diallylamine salt polymers, dimethyldiallylammonium chloride polymers, allylamine salt polymers, and dialkylaminoethyl acrylate quaternary salt polymers can be used.
  • the stretching step is carried out.
  • the stretching step is performed by uniaxially stretching the base material in a certain direction.
  • the stretching method may be either a wet stretching method or a dry stretching method.
  • the draw ratio is preferably 3 times or more, more preferably 5 to 9 times.
  • the stretching heating medium is an air medium
  • the humidity is preferably in an atmosphere of 20 to 95% RH.
  • the method for heating the base material include, but are not limited to, an inter-roll zone stretching method, a roll heating stretching method, a hot pressure stretching method, and an infrared heating stretching method.
  • the dry stretching step may be carried out by one-step stretching or by two or more steps of multi-step stretching.
  • the stretching treatment is performed while immersing the base material in a solution containing at least one cross-linking agent (that is, the cross-linking step and the stretching step can be carried out at the same time).
  • the cross-linking agent for example, boric acid in the above-mentioned cross-linking agent step can be used, and preferably, the stretching treatment can be performed in the treatment solution used in the cross-linking step.
  • the stretching temperature is preferably 40 to 70 ° C, more preferably 45 to 60 ° C.
  • the stretching time is usually 30 seconds to 20 minutes, preferably 2 to 7 minutes.
  • the wet stretching step may be carried out by one-step stretching or by two or more steps of multi-step stretching.
  • the stretching treatment may be optionally performed before the dyeing step, and in this case, the orientation of the luminescent compound of the formula (1) or a salt thereof can also be performed at the time of dyeing.
  • the cross-linking agent may precipitate or foreign matter may adhere to the surface of the base material, so that the cleaning step of cleaning the surface of the base material can be performed.
  • the washing time is preferably 1 second to 5 minutes.
  • the cleaning liquid can be applied to the base material or cleaned by coating. Water is preferable as the cleaning liquid.
  • the cleaning treatment may be carried out in one step or in two or more steps.
  • the temperature of the washing solution in the washing step is not particularly limited, but is usually 5 to 50 ° C., preferably 10 to 40 ° C., and may be room temperature.
  • the solvent of the solution or treatment liquid used in each of the above-mentioned steps in addition to the above-mentioned water, for example, dimethyl sulfoxide, N-methylpyrrolidone, methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol. , Alcohols such as triethylene glycol, tetraethylene glycol or trimethylolpropane, amines such as ethylenediamine and diethylenetriamine and the like.
  • the solvent of the solution or the treatment liquid is not limited to these, but is most preferably water. Further, the solvent of these solutions or the treatment liquid may be used alone or as a mixture of two or more kinds.
  • the substrate is dried.
  • the drying treatment can be carried out by natural drying, it can be carried out by compression with a roll, removal of moisture on the surface with an air knife, a water absorbing roll, or the like in order to further improve the drying efficiency. Furthermore, it is also possible to perform blast drying.
  • the temperature of the drying treatment is preferably 20 to 100 ° C, more preferably 60 to 100 ° C.
  • the drying time is preferably 30 seconds to 20 minutes, more preferably 5 to 10 minutes.
  • the polarized light emitting device can be manufactured.
  • the luminescent compound represented by the formula (1) in the present invention or a salt thereof is oriented by a method of mixing with a liquid crystal and orienting on a base material, or a coating method of sharing them on a base material.
  • Various colors, or polarized light emitting elements having neutral gray can be manufactured.
  • a polarized light emitting plate including the above polarized light emitting device is also included in the present invention.
  • the polarized light emitting plate according to the present invention preferably has a transparent protective film on at least one surface of the above polarized light emitting element.
  • the transparent protective film is used to improve the water resistance and handleability of the polarizing light emitting element. Therefore, it is preferable that such a transparent protective film does not affect the polarization action exhibited by the polarized light emitting device according to the present invention.
  • the transparent protective film is preferably a transparent protective film having excellent optical transparency and mechanical strength. Further, the transparent protective film is preferably a film having a layer shape capable of maintaining the shape of the polarizing light emitting element.
  • the transparent protective film is preferably a plastic film having excellent thermal stability, moisture shielding property, etc. in addition to transparency and mechanical strength.
  • the material for forming such a transparent protective film include a cellulose acetate film, an acrylic film, a fluorofilm such as an ethylene tetrafluoride / propylene hexafluoride copolymer, a polyester resin, and a polyolefin. Examples thereof include a film made of a resin or a polyamide-based resin.
  • a triacetyl cellulose (TAC) film or a cycloolefin-based film is preferably used.
  • the thickness of the transparent protective film is preferably in the range of 1 ⁇ m to 200 ⁇ m, more preferably in the range of 10 ⁇ m to 150 ⁇ m, and particularly preferably in the range of 40 ⁇ m to 100 ⁇ m.
  • the method for producing the polarized light emitting plate according to the present invention is not particularly limited, but for example, the polarized light emitting plate is produced by superimposing a transparent protective film on the polarized light emitting element and laminating with a known formulation. be able to.
  • the polarized light emitting plate may further include an adhesive layer for adhering the transparent protective film to the polarized light emitting element between the transparent protective film and the polarized light emitting element.
  • the adhesive constituting the adhesive layer is not particularly limited, and examples thereof include polyvinyl alcohol-based adhesives, urethane emulsion-based adhesives, acrylic-based adhesives, polyester-isocyanate-based adhesives, and the like.
  • a polyvinyl alcohol-based adhesive is preferably used.
  • a polarized light emitting plate can be produced by adhering the transparent protective film and the polarized light emitting element with an adhesive and then drying or heat-treating at an appropriate temperature.
  • the polarized light emitting plate may appropriately have various known functional layers such as an antireflection layer, an antiglare layer, and a further transparent protective film on the exposed surface of the transparent protective film.
  • a method of applying a material having various functions to the exposed surface of the transparent protective film is preferable.
  • the further transparent protective film examples include a hard coat layer such as an acrylic type, a urethane type, and a polysiloxane type.
  • a hard coat layer such as an acrylic type, a urethane type, and a polysiloxane type.
  • an antireflection layer can be provided on the exposed surface of the transparent protective film.
  • the antireflection layer can be formed, for example, by depositing or sputtering a substance such as silicon dioxide or titanium oxide on the transparent protective film, or by applying a thin layer of a fluorine-based substance on the transparent protective film.
  • the polarized light emitting plate may be further provided with a transparent support such as glass, crystal, or sapphire, if necessary.
  • a transparent support such as glass, crystal, or sapphire
  • Such a support is not particularly limited, but preferably has a flat portion because a polarizing light emitting plate is attached to the support.
  • the support is preferably a transparent support from the viewpoint of optical use.
  • the transparent support is divided into an inorganic support and an organic support.
  • examples of the support made of an inorganic material include a support made of a material such as soda glass, borosilicate glass, quartz, sapphire, and spinel.
  • the organic support include a support composed of acrylic, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer and the like.
  • the thickness and size of the transparent support are not particularly limited and can be appropriately determined. Further, in a polarized light emitting plate having such a transparent support, it is preferable to provide an antireflection layer on one or both surfaces of the support surface or the polarized light emitting plate surface in order to further improve the single transmittance. In order to bond the polarized light emitting plate and the support, a transparent adhesive (adhesive) agent may be applied to the support, and then the polarized light emitting plate according to the present invention may be attached to the coated surface.
  • the adhesive or pressure-sensitive adhesive to be used is not particularly limited, and commercially available ones can be used, and an acrylic ester-based adhesive or pressure-sensitive adhesive is preferable.
  • the polarized light emitting plate can also be used as a circularly polarized light emitting plate or an elliptically polarized light emitting plate to which a retardation plate is attached.
  • the support may be a retardation plate.
  • the retardation plate those having a retardation value of 1 / 4 ⁇ with respect to the absorption wavelength or emission wavelength of light and those having a retardation value of 1 / 2 ⁇ are generally exemplified, but are limited thereto. Not done.
  • phase difference value of 1 / 4 ⁇ By having a phase difference value of 1 / 4 ⁇ , it functions as a circularly polarizing plate or a circularly polarized light emitting plate for that wavelength, and by using 1 / 2 ⁇ , it is possible to use such that polarized light can be converted in the direction of 90 °. It becomes.
  • various functional layers, supports and the like can be further provided on the polarizing light emitting plate.
  • Such polarized light emitting plates can be used in various products such as liquid crystal projectors, calculators, watches, notebook computers, word processors, liquid crystal televisions, car navigation systems, indoor and outdoor measuring instruments and displays, lenses, and glasses. ..
  • the polarized light emitting element and the polarized light emitting plate according to the present invention show a high degree of polarization in light in the ultraviolet to near-ultraviolet visible region, for example, 300 to 430 nm, and further exhibit a polarized light emitting action and high transmittance in the visible region. .. Further, since the polarized light emitting element and the polarized light emitting plate according to the present invention show excellent durability against heat, humidity, light and the like, their performance can be maintained even in a harsh environment, and the performance thereof has been conventionally maintained. It has higher durability than the iodine-based polarizing plate of.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention are liquid crystal displays that are required to have high transparency in the visible range and high durability in a harsh environment, for example, a television, a wearable terminal, a tablet terminal, a smartphone, and the like. It can be applied to various display devices such as in-vehicle monitors, digital signage used outdoors or indoors, and smart windows.
  • a display device including the polarized light emitting element or the polarized light emitting plate is also included in the present invention.
  • the display device exhibits a polarized light emitting effect by irradiating light in the ultraviolet region to visible region, for example, light in the ultraviolet region to near ultraviolet visible region, specifically, light having a diameter of 300 to 430 nm, and utilizes this effect. Can be displayed by. Since the display device according to the present invention has a high transmittance in the visible region, there is no decrease in the transmittance in the visible region like a conventional polarizing plate, or even if there is a decrease in the transmittance, the conventional one. The decrease in transmittance is significantly smaller than the transmittance of the polarizing plate.
  • iodine-based polarizing plates which are conventional polarizing plates, and dye-based polarizing plates using other dye compounds require a luminosity factor correction of 35 to 43 in the visible range in order to achieve a degree of polarization of almost 100%. It is about%.
  • the conventional polarizing plate has both the vertical axis and the horizontal axis as the light absorption axis, but one of the vertical axis and the horizontal axis is incident in order to obtain a degree of polarization of almost 100%.
  • Polarization is produced by absorbing light, that is, by absorbing light on one axis and transmitting light on the other axis.
  • the transmittance is inevitably 50% or less.
  • a dichroic dye is oriented in a stretched film to produce a polarizing plate.
  • the dichroic dye is not necessarily 100% oriented and has a slight absorption component with respect to the light transmission axis, the transmittance is about 43% or less due to the surface reflection of the substance. Otherwise, a degree of polarization of almost 100% cannot be achieved, that is, a high degree of polarization cannot be achieved unless the transmittance is lowered.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention have an axis (its polarization function) for absorbing light in the ultraviolet region to near-ultraviolet visible region, for example, 300 to 430 nm, that is, the ultraviolet region to. It absorbs light in the near-ultraviolet visible region, for example, 300 to 430 nm, and exhibits a polarized light emitting effect that emits light polarized in the visible region, but hardly absorbs light in the visible region, so it is in the visible region.
  • the transmittance is very high.
  • the display device using the polarized light emitting element and the polarized light emitting plate according to the present invention for example, a liquid crystal display, higher brightness can be obtained than in a liquid crystal display using a conventional polarizing plate.
  • the display device using the polarized light emitting element and the polarized light emitting plate according to the present invention has high transparency, a substantially transparent display can be obtained even though it is a liquid crystal display.
  • the display device can obtain a transparent liquid crystal display having no light loss, particularly a see-through display.
  • the above-mentioned display device can polarize light in the ultraviolet-near-ultraviolet-visible region, for example, light of 300 to 430 nm, which is invisible or difficult to see by humans, it is possible to polarize light in the ultraviolet-near-ultraviolet region to near-ultraviolet region. It can be applied to liquid crystal displays that can be displayed by light in the visible range. For example, by recognizing an image or the like displayed in the ultraviolet-near-ultraviolet-visible region by a computer or the like, it can be visually recognized only when illuminated with light in the ultraviolet-near-ultraviolet-visible region, for example, light of 300 to 430 nm. A simple and highly secure liquid crystal display can be produced.
  • the display device since the display device exhibits a polarized light emitting action by irradiating light in the ultraviolet region to near-ultraviolet visible region, for example, light of 300 to 430 nm, a liquid crystal display utilizing the polarized light emission can be manufactured. It is also possible to realize a liquid crystal display that uses light in the ultraviolet to near-ultraviolet visible range instead of a normal liquid crystal display that uses visible light. In other words, even in a dark space without light, it is possible to manufacture a light-emitting liquid crystal display on which characters, images, etc. to be displayed are displayed as long as the space can be irradiated with light in the ultraviolet to near-ultraviolet visible region. Become.
  • the visible region has a liquid crystal display portion that can be displayed by light in the visible region and a liquid crystal display portion that can be displayed by the polarized light emission effect of ultraviolet light. It is also possible to produce a display capable of two different displays coexisting. Although there have been two displays capable of different displays, there is no display capable of displaying differently by different light sources in the ultraviolet region and the visible region even though they have the same liquid crystal panel. From this, the display device according to the present invention can manufacture a new display by having the above-mentioned polarized light emitting element and polarized light emitting plate.
  • the present invention also includes a liquid crystal display using the above-mentioned polarized light emitting element, polarized light emitting plate or display device.
  • the liquid crystal cell used for the liquid crystal display is not limited to, for example, a TN liquid crystal cell, an STN liquid crystal cell, a VA liquid crystal cell, an IPS liquid crystal cell and the like.
  • the polarized light emitting element and the polarized light emitting plate can be used in any liquid crystal display mode. Since the liquid crystal display has high durability, it is possible to provide a liquid crystal display for in-vehicle or outdoor display.
  • the present invention also includes a neutral gray polarized light emitting plate for in-vehicle or outdoor display using the above polarized light emitting element, or a display device including the same.
  • the neutral gray polarized light emitting plate for in-vehicle or outdoor display is excellent in polarized light emitting performance, and further has a feature that discoloration and deterioration of polarization performance do not occur even in a high temperature and high humidity state inside or outdoors.
  • the neutral gray refers to a polarized light emitting plate having a significantly low transmittance or a constant transmittance at each wavelength in the transmittance at orthogonal positions in the visible region.
  • the transmittance at the orthogonal position is 0.3% or less, more preferably 0.1% or less, still more preferably 0.03% or less, particularly preferably 0.01% or less, and the transmittance is constant. Indicates that the difference in transmittance is within 1% with respect to the average transmittance of each wavelength.
  • Example 1 (Synthesis Example 1) 84 parts of the compound of the formula (28) was added to 800 parts of water, dissolved in sodium hydroxide, 15.6 parts of phenylchloroformate was added, and the mixture was stirred at 50 to 70 ° C. for 6 hours to form a ureido. It was salted out with sodium chloride, filtered, and dried at 70 ° C. to obtain 56.6 parts of a ureido compound represented by the formula (24), which is an example of the compound according to the present invention.
  • a polyvinyl alcohol film having a thickness of 75 ⁇ m (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in water at 40 ° C. for 3 minutes to swell the film.
  • the film obtained by swelling contains 0.2 parts by mass of the compound according to the present invention of the above formula (24) obtained in Synthesis Example 1, 1.0 part by mass of sardine, and 1000 parts by mass of water.
  • the film was immersed in an aqueous solution at ° C. for 4 minutes to contain the compound of formula (24).
  • a film containing the compound of formula (24) was stretched 5-fold over 5 minutes in a 3% boric acid aqueous solution at 50 ° C.
  • the film obtained by stretching was washed with water at room temperature for 20 seconds while maintaining a tense state, and dried at 70 ° C. for 9 minutes to obtain a polarized light emitting device.
  • a triacetyl cellulose film (ZRD-60 manufactured by Fuji Film Co., Ltd.) containing no ultraviolet absorber was laminated on both sides of the obtained polarized light emitting device according to a known formulation to obtain a polarized light emitting plate. Laminating a triacetyl cellulose film on both sides of the polarized light emitting device did not affect the optical characteristics of the polarized light emitting device.
  • Example 2 (Synthesis Example 2) 136 parts of the compound of the formula (29) was added to 1000 parts of water, dissolved in sodium hydroxide, 15.6 parts of phenylchloroformate was added, and the mixture was stirred at 50 to 70 ° C. for 6 hours to form a ureido. It was salted out with sodium chloride, filtered, and dried at 70 ° C. to obtain 92.3 parts of the ureido compound represented by the formula (12), which is an example of the compound according to the present invention.
  • the polarized light emitting element and the polarized light emitting plate were obtained in the same manner except that the compound represented by the formula (12) was used instead of the formula (24).
  • Example 3 (Synthesis Example 3) 61.6 parts of the compound of the formula (30) was added to 600 parts of water, dissolved in sodium hydroxide, 15.6 parts of phenylchloroformate was added, and the mixture was stirred at 50 to 70 ° C. for 6 hours to form a ureido. It was salted out with sodium chloride, filtered, and dried at 70 ° C. to obtain 48.4 parts of a ureido compound represented by the formula (23), which is an example of the compound according to the present invention.
  • the polarized light emitting element and the polarized light emitting plate were obtained in the same manner except that the compound represented by the formula (23) was used instead of the formula (24).
  • Example 5 (Synthesis Example 5) 40.0 parts of the compound of the formula (34) was added to 500 parts of water, dissolved in sodium hydroxide, 15.6 parts of phenylchloroformate was added little by little over about 1 hour, and then at 50 to 70 ° C. for 6 hours. The mixture was stirred and reacted, and then 37.0 parts of the compound of formula (32) was added and reacted. Then, 14.2 parts of the compound according to the formula (35) was added and dissolved, 14.1 part of terephthalic acid dichloride was added little by little over about 1 hour, all were added, and then the mixture was stirred at 60 ° C. for 1 hour. ..
  • the mixture was allowed to cool to room temperature, filtered, and dried at 70 ° C. to obtain 54.2 parts of the compound represented by the formula (36), which is an example of the compound according to the present invention.
  • the polarized light emitting element and the polarized light emitting plate were obtained in the same manner except that the compound represented by the formula (36) was used instead of the formula (24).
  • Example 6 (Synthesis Example 6) 71.2 parts of the compound of formula (37) was added to 600 parts of water, dissolved while adding sodium hydroxide, 15.6 parts of phenylchloroformate was added little by little over 1 hour, and then 6 at 50 to 70 ° C. Stirred for hours to ureid. It was salted out with sodium chloride, filtered, and dried at 70 ° C. to obtain 50.2 parts of a ureido compound represented by the formula (21), which is an example of the compound according to the present invention.
  • the polarized light emitting element and the polarized light emitting plate were obtained in the same manner except that the compound represented by the formula (21) was used instead of the formula (24).
  • Orthogonal transmittance Tc (%) is a spectral transmittance measured by superimposing two measurement samples so that their absorption axes are orthogonal to each other. Measurements of each transmittance were performed over wavelengths of 220 to 780 nm.
  • the polarized light emitted by the measurement sample was measured using a spectroscopic irradiance meter (“USR-40” manufactured by Usio Electric Co., Ltd.). That is, the light from the light source is arranged so as to pass through the ultraviolet transmission / visible light cut filter, the polarizing plate having polarization in the visible region and the ultraviolet region, and the measurement sample in this order and enter the spectroirradiance meter. Polarized light emission was measured. At that time, the absorption axis that maximizes the absorption of ultraviolet rays of the measurement sample and the absorption axis direction of the polarizing plate having polarization in the visible region and the ultraviolet region (“SKN-18043P” manufactured by Polar Techno Co., Ltd.) are parallel to each other.
  • the spectral emission amount of each wavelength measured by superimposition is defined as Lw (weak emission axis), and the absorption axis that maximizes the absorption of ultraviolet rays of the measurement sample and the polarizing plate having polarization in the visible region and the ultraviolet region (manufactured by Polar Techno Co., Ltd. Lw and Ls were measured with the spectral emission amount of each wavelength measured by superimposing them so as to be orthogonal to the absorption axis direction of SKN-18043P) as Ls (strong emission axis).
  • Table 1 shows the wavelengths indicating the maximum polarization of the measurement samples obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the single transmittance (Ts,%), and the parallel transmittance at the wavelength indicating the maximum polarization. (Tp,%), orthogonal position transmittance (Tc,%), polarization degree ( ⁇ ,%), single transmittance corrected to visual sensitivity (Ys,%), polarization degree corrected to visual sensitivity ( ⁇ y,%) %) Is shown.
  • Table 2 shows Ls and Lw of each wavelength in Examples 1 to 6 and Comparative Examples 1 to 3.
  • Table 3 shows Ls and Lw of each wavelength after the light resistance test in Examples 1 to 4 and Comparative Example 1.
  • the measurement samples of Comparative Examples 2 and 3 had both Lw and Ls of 0, indicating that they did not emit light due to ultraviolet irradiation. Furthermore, since Lw and Ls were detected in Examples 1 to 6 and Comparative Example 1, it was found that polarized light was emitted by irradiating with ultraviolet rays. On the other hand, in Examples 1 to 6, the emission brightness was higher than that in Comparative Example 1, and the wavelength emitted high polarized light over a wide band of 400 to 700 nm. Further, as shown in Table 3, when Ls and Lw after the light resistance test were confirmed, Examples 1 to 4 had higher light resistance than Comparative Example 1. Therefore, it was shown that the measurement samples of Examples 1 to 4 function as a polarized light emitting element that emits polarized light in the visible region by irradiation with ultraviolet rays.
  • the luminescent compound according to the present invention By using the luminescent compound according to the present invention or a salt thereof contained in a base material, a polarized light emitting element and a polarized light emitting plate which not only have a high degree of polarization in the absorption wavelength but also exhibit a polarized light emitting action can be obtained. Can be done. Therefore, the polarized light emitting element and the polarized light emitting plate using the luminescent compound according to the present invention can function as a polarizing plate at an absorption wavelength and can be further applied as a self-luminous polarizing element capable of emitting polarized light. Further, such a polarized light emitting element and a polarized light emitting plate have high transmittance in the visible region while having excellent durability.
  • the display device using the polarized light emitting element and the polarized light emitting plate according to the present invention has high transparency in the visible range and can display an image by polarized light emission for a long period of time. Therefore, it is transparent to a television, a personal computer, a tablet terminal, and further. It can be applied to a wide range of applications such as displays (see-through displays). Further, since the polarized light emitting device or the polarized light emitting plate thereof manufactured by using the luminescent compound according to the present invention can emit light by ultraviolet light, it can be applied to a display or a medium requiring high security. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、下記式(1)で表される発光性化合物又はその塩である。(式(1)中、kは0または1、X、Yの少なくとも一方は、置換基を有し得る窒素原子もしくは硫黄原子を含む複素環基または式(2)の基を示し、もう一方のX、Yは、ニトロ基、置換基を有し得るアミノ基、置換基を有し得る炭素数1~4のアルキル基もしくは置換基を有し得る炭素数1~4のアルコキシ基、置換基を有し得る窒素原子もしくは硫黄原子を含む複素環基、または式(2)の基から選択される。Mは水素原子、金属イオンまたはアンモニウムイオン、mは0~2の整数を示す。式(2)中、※は式(1)におけるX、Yの結合位置を示し、Zは置換基を有し得るフェニル基、置換基を有し得るナフチル基、置換基を有し得るスチルベン基、置換基を有し得るベンゾイル基または置換基を有し得る複素環基から選択される。tは0または1の整数を表す。)

Description

発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置
 本発明は新規な発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置に関する。
 光の透過・遮へい機能を有する偏光板は、光のスイッチング機能を有する液晶とともに液晶ディスプレイ(Liquid Crystal Display:LCD)等の表示装置の基本的な構成要素である。このような偏光板を備えたLCDの適用分野も、初期の頃の電卓および時計等の小型機器から、ノートパソコン、ワープロ、液晶プロジェクター、液晶テレビ、カーナビゲーション、及び屋内外の計測機器等へと広がりつつある。また、偏光板は、偏光機能を有するレンズ等への適用も可能であり、例えば、視認性の向上したサングラスや、近年では3Dテレビなどに対応する偏光メガネなどへの応用がなされている。以上のように、偏光板の用途は広範囲に広がっており、その使用条件も、低温~高温、低湿度~高湿度、低光量~高光量等幅広いことから、高い偏光性能かつ高い耐久性を有する偏光板が求められている。
 一般に、偏光板を構成する偏光膜は、ヨウ素や二色性染料を染色又は含有せしめてポリビニルアルコール又はその誘導体のフィルムを延伸配向して製造されるか、あるいは、ポリ塩化ビニルフィルムの脱塩酸又はポリビニルアルコール系フィルムの脱水によりポリエンを生成して配向せしめることにより製造される。そういった従来の偏光膜から構成される偏光板は、可視域に吸収を有する二色性色素を用いているため、透過率が低下する。例えば、市販されている一般的な偏光板の透過率は35~45%である。可視域における透過率が低下するという従来の偏光板の問題に対して、可視域である程度の透過率を保持しつつ、偏光機能をもたせる技術として、紫外線用偏光板の技術が特許文献1に記載されている。しかし、この技術も、可視域に吸収のある黄色色素を用いているため透過率が十分でなく、かつ、強い黄色い着色が確認される。可視域の透過率が低い偏光板をディスプレイ等に用いると、ディスプレイ全体の透過率が減少するため、従来の偏光板を用いずに偏光を得る方法が研究されている。このような方法として、偏光を発光する素子が、特許文献2~4に記載されている。
 しかし、特許文献2~4に記載される偏光発光する素子は、特殊な金属、例えばランタノイドやユーロピウム等の希少価値が高い金属を用いるためコストが高く、また非常に製造が難しく大量生産には不向きである。さらに、これらの偏光発光する素子は、偏光した光の発光が弱いためディスプレイに使用することが難しく、また、直線偏光である発光した光を得られない。そのため、偏光発光作用を示し、また可視域での透過率(透明性)が高く、過酷な環境下における耐久性が求められる液晶ディスプレイ等にも応用可能な新たな素子とそのための材料を開発することが望まれている。
WO2005/015275 特開2008-224854号公報 特許第5849255号公報 特許第5713360号公報 特開2001-240762号公報 WO2016/186196
 本発明は、可視域での高い透過率及び過酷な環境下での高い耐久性が求められる液晶ディスプレイ等にも応用可能な新規化合物、ならびにそれを用いた偏光発光素子、偏光発光板、及びそれを用いた表示装置を提供することを目的とする。
 本発明者らは、かかる目的を達成すべく鋭意研究を進めた結果、特定の構造を有する化合物又はその塩を含む偏光発光素子及び偏光発光板が、紫外域~近紫外可視域の光、例えば300~430nmの光に高い二色比を有し、可視域に高い透過率を示し、かつ、過酷な環境下において優れた耐久性を示すことを見出した。また、このような特定の構造を有する化合物又はその塩は、紫外域~近紫外可視域の光、例えば300~430nmの光の照射によって、可視域の偏光した光を発光する作用を示すことを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[11]項の諸態様に関する。
[1].
 下記式(1)で表される発光性化合物又はその塩。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、kはそれぞれ独立に0または1の整数を示し、X、Yの少なくとも一方は、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)で表される基を示し、もう一方のX、Yは各々独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有しても良い炭素数1~4のアルキル基もしくは置換基を有しても良い炭素数1~4のアルコキシ基、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)で表される基からなる群から選択される基である。Mは水素原子、金属イオン、またはアンモニウムイオンを表し、mはそれぞれ独立に0~2の整数を示す。式(2)中、※は、式(1)におけるX、Yの結合位置を示し、Zは置換基を有しても良いフェニル基、置換基を有しても良いナフチル基、置換基を有しても良いスチルベン基、置換基を有しても良いベンゾイル基、または置換基を有しても良い複素環基からなる群から選択される基である。tは0または1の整数を表す。)
[2].
 上記式(1)におけるX、Y、及び、上記式(1)におけるX、Yいずれか少なくとも一方が上記式(2)で表される場合のZのいずれか少なくとも1つが、下記式(3)~(7)からなる群から選択される基である[1]項に記載の発光性化合物又はその塩。
Figure JPOXMLDOC01-appb-C000004
(上記式(3)、式(4)中、Aは各々独立に、水素原子、ハロゲン基、ニトロ基、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、スルホ基を有する炭素数1~4のアルキル基、ヒドロキシ基を有する炭素数1~4のアルキル基、カルボキシ基を有する炭素数1~4のアルキル基、スルホ基を有する炭素数1~4のアルコキシ基、ヒドロキシ基を有する炭素数1~4のアルコキシ基、カルボキシ基を有する炭素数1~4のアルコキシ基からなる群から選択される基であり、qは0~4の整数を表し、上記式(3)~(7)におけるMは、上記式(1)で定義されたとおりであり、式(3)~(7)中のMと式(1)中のMとは同じであっても良く、n、nは各々独立に0~3の整数を表す。上記式(3)~(7)中の*は、それぞれ、上記式(1)のXまたはYにおける結合位置、あるいは上記式(2)のZにおける結合位置を示す。)
[3].
 上記式(1)におけるkが0または1であり、X、Yの少なくともいずれか一方が、式(2)~(7)からなる群から選択されるいずれか基であり、X、Yの少なくともいずれか一方が式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである[1]または[2]項に記載の発光性化合物又はその塩。
[4].
 上記式(1)における、各kがいずれも0であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである[1]または[2]項に記載の発光性化合物又はその塩。
[5].
 上記式(1)における、各kがいずれも1であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである[1]または[2]項に記載の発光性化合物又はその塩。
[6].
 偏光発光機能を有する、[1]~[5]のいずれか一項に記載の発光性化合物又はその塩を含む偏光発光素子。
[7].
 上記発光性化合物又はその塩以外の有機染料又は蛍光染料を1種類以上さらに含む[6]項に記載の偏光発光素子。
[8].
 基材をさらに含む[6]または[7]項に記載の偏光発光素子。
[9].
 上記基材がポリビニルアルコール樹脂又はその誘導体を含むフィルムである[8]項に記載の偏光発光素子。
[10].
 [6]~[9]項のいずれか一項に記載の偏光発光素子の少なくとも一方の面に透明保護膜を備える偏光発光板。
[11].
 [6]~[9]項のいずれか一項に記載の偏光発光素子、又は[10]項に記載の偏光発光板を備える表示装置。
 本発明に係る特定の構造を有する発光性化合物又はその塩は、紫外域~可視域の光、例えば紫外域~近紫外可視域の光、具体的には300~430nmの光を吸収し、そのエネルギーを利用して可視域に偏光発光作用を示す。また当該発光性化合物又はその塩を用いて作製された偏光発光素子及び偏光発光板は、吸収波長において高い偏光度を示す。そのため、このような式(1)の化合物又はその塩を用いることにより、希少価値の高いランタノイド金属等を使用しなくとも、紫外域~近紫外可視域の光に高い偏光度を有するとともに、偏光発光作用を示す新規な偏光発光素子及び偏光発光板を提供することができる。また、本発明に係る偏光発光素子及び偏光発光板は、可視域において高い透過率を示し、さらに、熱、湿度等に対して優れた耐久性を示す。そのため、当該偏光発光素子及び偏光発光板は、可視域での高い透過性及び過酷な環境下での高い耐久性が求められる液晶ディスプレイ等の表示装置に応用することができる。
[発光性化合物]
 本発明の発光性化合物は、上記式(1)で表される。この発光性化合物は、塩の形態をとり得る。本明細書中、発光性化合物又はその塩を単に発光性化合物と略して記載することがある。
 式(1)中、kはそれぞれ独立に0または1の整数を示し、X、Yの少なくとも一方は、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)で表される基を示し、もう一方のX、Yは各々独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有しても良い炭素数1~4のアルキル基もしくは置換基を有しても良い炭素数1~4のアルコキシ基、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)の構造からなる群から選択される基である。Mは水素原子、金属イオン、またはアンモニウムイオンを表し、mはそれぞれ独立に0~2の整数を示す。式(2)中、※は、式(1)におけるX、Yの結合位置を示し、Zは置換基を有しても良いフェニル基、置換基を有しても良いナフチル基、置換基を有しても良いスチルベン基、置換基を有しても良いベンゾイル基、または置換基を有しても良い複素環基からなる群から選択される基である。tは0または1の整数を表す。
 上記置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基としては、例えば、窒素原子、硫黄原子のいずれか少なくとも1つを環構成成分として有する複素環基を表わし、該複素環基にさらにベンゼン環やナフタレン環等の芳香環をさらに含む多環式複素環基も含まれる。該窒素原子、硫黄原子のいずれか少なくとも1つを環構成成分として有する複素環基としては、例えば、ピロール基、ベンゾピロール基、チオフェン基、ベンゾチオフェン基、チアゾール基、ベンゾチアゾール基、ナフトチアゾール基、トリアゾール基、ベンゾトリアゾール基、ナフトトリアゾール基、チアジアゾール基、ベンゾチアジアゾール基、ピリジン基等が挙げられる。
 上記置換基を有してもよいアミノ基としては、例えば、アミノ基;メチルアミノ基、エチルアミノ基、n-ブチルアミノ基、フェニルアミノ基、ナフチルアミノ基等のモノ置換アミノ基; ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基、ジフェニルアミノ基、エチルメチルアミノ基、エチルフェニルアミノ基等のジ置換アミノ基等が挙げられる。
 上記置換基を有しても良い炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。
 上記置換基を有しても良い炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基等が挙げられる。
 上記置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、置換基を有してもよいアミノ基、置換基を有しても良い炭素数1~4のアルキル基、置換基を有しても良い炭素数1~4のアルコキシ基における置換基としては、特に限定はないが、例えば、ヒドロキシ基、シアノ基、リン酸基、スルホ基、カルボキシ基、アミノ基等が挙げられる。
 上記式(1)における、Mは、水素原子、金属イオン、またはアンモニウムイオンを表す。金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン、カルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン等が挙げられる。アンモニウムイオンとしては、例えば、アンモニウムイオン、メチルアンモニウムイオン、ジメチルアンモニウムイオン、トリエチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ-n-プロピルアンモニウムイオン、テトラ-n-ブチルアンモニウムイオン、モノエタノールアンモニウムイオン、ジエタノールアンモニウムイオン、トリエタノールアンモニウムイオン、モノイソプロパノールアンモニウムイオン、ジイソプロパノールアンモニウムイオン、トリイソプロパノールアンモニウムイオン、トリエタノールアンモニウムイオン等が挙げられる。より具体的には、例えば、Mが水素原子である場合はスルホン酸(-SOH)を、Mがナトリウムイオンの場合はスルホン酸ナトリウム(-SONa)を、Mがアンモニウムイオンの場合はスルホン酸アンモニウム(-SONH)をそれぞれ表わす。これらの中で特に好ましいものとしては、リチウムイオン、アンモニウムイオン、及びナトリウムイオンが挙げられる。
 上記式(2)中、※は、式(1)におけるX、Yの結合位置を示し、Zは置換基を有しても良いフェニル基、置換基を有しても良いナフチル基、置換基を有しても良いスチルベン基、置換基を有しても良いベンゾイル基、もしくは置換基を有しても良い複素環基からなる群から選択される基である。tは0または1の整数を表す。ここでのZが有し得る置換基は、特に限定されないが、例えば炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、アミノ基、ニトロ基、スルホ基、ヒドロキシ基、シアノ基、リン酸基、カルボキシ基等が挙げられる。
 上記置換基を有しても良い複素環基としては、例えば、上記式(1)における、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基と同じで良く、さらに、酸素原子を環成分として含む、フラン基、ベンゾフラン基等であっても良い。
 上記式(1)におけるX、Y、及び、上記式(1)におけるX、Yいずれか少なくとも一方が上記式(2)で表される場合のZのいずれか少なくとも1つが、上記式(3)~(7)からなる群から選択される基であることが好ましい。
 上記式(3)、式(4)中、Aは各々独立に、水素原子、ハロゲン基、ニトロ基、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、スルホ基を有する炭素数1~4のアルキル基、ヒドロキシ基を有する炭素数1~4のアルキル基、カルボキシ基を有する炭素数1~4のアルキル基、スルホ基を有する炭素数1~4のアルコキシ基、ヒドロキシ基を有する炭素数1~4のアルコキシ基、カルボキシ基を有する炭素数1~4のアルコキシ基からなる群から選択される基であり、qは0~4の整数を表し、上記式(3)~(7)におけるMは、上記式(1)で定義されたとおりであり、式(3)~(7)中のMと式(1)中のMとは同じであっても良く、n、nは各々独立に0~3の整数を表す。上記式(3)~(7)中の*は、それぞれ、上記式(1)のXまたはYにおける結合位置、あるいは上記式(2)のZにおける結合位置を示す。
 上記炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。
 上記スルホ基を有する炭素数1~4のアルキル基としては、例えば、スルホメチル基、スルホエチル基、スルホ-n-プロピル基、スルホ-n-ブチル基、スルホ-sec-ブチル基等が挙げられる。
 上記ハロゲン基としては、例えば、フッ素基、塩素基、臭素基、ヨウ素基等が挙げられる。
 上記炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基等が挙げられる。
 上記ヒドロキシ基を有する炭素数1~4のアルキル基としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシ-n-プロピル基、ヒドロキシ-iso-プロピル基、ヒドロキシ-n-ブチル基、ヒドロキシ-sec-ブチル基、ヒドロキシ-tert-ブチル基、ヒドロキシシクロブチル基等が挙げられる。
 上記カルボキシ基を有する炭素数1~4のアルキル基としては、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシ-n-プロピル基、カルボキシ-iso-プロピル基、カルボキシ-n-ブチル基、カルボキシ-sec-ブチル基、カルボキシ-tert-ブチル基、カルボキシシクロブチル基等が挙げられる。
 上記スルホ基を有する炭素数1~4のアルコキシ基としては、例えば、スルホメトキシ基、スルホエトキシ基、スルホ-n-プロポキシ基、スルホ-iso-プロポキシ基、スルホ-n-ブトキシ基、スルホ-sec-ブトキシ基、スルホ-tert-ブトキシ基、スルホシクロブトキシ基等が挙げられる。
 上記ヒドロキシ基を有する炭素数1~4のアルコキシ基としては、例えば、ヒドロキシメトキシ基、ヒドロキシエトキシ基、ヒドロキシ-n-プロポキシ基、ヒドロキシ-iso-プロポキシ基、ヒドロキシ-n-ブトキシ基、ヒドロキシ-sec-ブトキシ基、ヒドロキシ-tert-ブトキシ基、ヒドロキシシクロブトキシ基等が挙げられる。
 上記カルボキシ基を有する炭素数1~4のアルコキシ基としては、例えば、カルボキシメトキシ基、カルボキシエトキシ基、カルボキシ-n-プロポキシ基、カルボキシ-iso-プロポキシ基、カルボキシ-n-ブトキシ基、カルボキシ-sec-ブトキシ基、カルボキシ-tert-ブトキシ基、カルボキシシクロブトキシ基等が挙げられる。
 一態様において、上記式(1)におけるkが0または1であり、X、Yの少なくともいずれか一方が、式(2)~(7)からなる群から選択されるいずれか基であり、X、Yの少なくともいずれか一方が式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかであってよい。上記式(1)における、各kがいずれも0であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかであることが好ましい。上記式(1)における、各kがいずれも1であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかであることが特に好ましい。
 式(1)で表される化合物の合成方法の好ましい一例を次に説明する。本化合物の合成方法は、以下の例に限定されず、例えば、上記の特許文献5、特許文献6に開示されている方法で式(1)に表される化合物を得ることが出来る。
 例えば、それぞれ1当量の下記式(10)で表される化合物と(11)で表される化合物とを水中で加熱し、苛性ソーダを加えて溶解させる。この溶液に、市販品として入手可能な式(9)に示されるクロロギ酸フェニルを加えてウレイド化反応させる。ウレイド化反応の条件は、特に限定されないが、例えば30℃~100℃、好ましくは40℃~90℃の温度にて、30分~15時間程度、好ましくは1時間~10時間程度であってよい。反応終了後、室温まで放冷、もしくは塩を加えて塩析して濾過することで目的物を得ことができる。
Figure JPOXMLDOC01-appb-C000005
(上記式(9)~式(11)中、各X、Y、k、M、及びmは、それぞれ上記式(1)と同じで良い。)
 次に、上記式(1)で表される発光性化合物の具体例を以下に挙げる。なお、式中のスルホ基等は遊離酸の形態で表す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記式(1)で表される化合物又はその塩は、偏光発光しうる化合物として有用である。式(1)で表される発光性化合物又はその塩を、必要に応じて、上記発光性化合物又はその塩以外の当業界で公知の有機染料又は蛍光染料の1種類以上(特に限定されない)と組み合わせて、基材、例えば、ポリビニルアルコール又はその誘導体等の高分子フィルムに、公知の方法で含有させ配向させる方法により、偏光発光素子を製造することができる。得られた偏光発光素子は、透明保護膜を付けて偏光発光板とし、該偏光発光板に必要に応じてハードコート層又はAR(反射防止)層及び支持体等をさらに設け、液晶プロジェクター、電卓、時計、ノートパソコン、ワープロ、液晶テレビ、カーナビゲーション、セキュリティ用ディスプレイ、偽造防止、及び、屋内外の計測器や表示器等、レンズやメガネに適用される。なお、本明細書では、発光性化合物又はその塩以外の当業界で公知の有機染料又は蛍光染料を、単に、他の有機染料と略して記載する場合がある。
[偏光発光素子]
 上記式(1)で表される発光性化合物又はその塩を含む偏光発光素子も本発明に含まれる。
 該偏光発光素子は、上記式(1)で表される発光性化合物又はその塩と、該発光性化合物又はその塩が吸着及び配向された基材とを含む偏光発光素子であることが好ましい。該偏光発光素子は、上記式(1)で表される発光性化合物又はその塩を、1種単独又は複数種含むことができる。
 上記基材は、発光性化合物、またはその塩を吸着し得る親水性高分子を製膜して得られるフィルム等であることが好ましい。当該親水性高分子は、特に限定されるものではないが、例えば、ポリビニルアルコール系樹脂、アミロース系樹脂、デンプン系樹脂、セルロース系樹脂及びポリアクリル酸塩系樹脂等が挙げられる。このような樹脂の中でも、発光性化合物、またはその塩の吸着性、加工性、配向性等の観点から、ポリビニルアルコール系樹脂又はその誘導体であることが好ましい。ポリビニルアルコール系樹脂又はその誘導体は、エチレン、プロピレン等のオレフィン、又は、クロトン酸、アクリル酸、メタクリル酸、マレイン酸等の不飽和カルボン酸などで変性されていてもよい。基材の形状は、特に限定されるものではなく、例えば、フィルム状、シート状、平板状、曲板状及び半球状等、任意の形状に作製することができる。また、基材の厚み(膨潤処理前)は、通常、10μm~100μmであり、好ましくは20μm~80μmである。
 上記偏光発光素子における上記式(1)で表される発光性化合物又はその塩の含有量は特に限定されるものではなく、任意の透過率で設計できる。偏光発光素子に求められる透過率に応じて、その含有量を任意で設定しても良い。偏光発光素子の偏光性能は、偏光発光素子における式(1)で表される発光性化合物又はその塩の含有量のみならず、該発光性化合物を吸着させる基材の膨潤度、延伸倍率、染色時間、染色温度、染色時のpH、塩の影響等の様々な要因により変化する。このため、偏光発光素子における式(1)で表される発光性化合物又はその塩の含有量は、基材の膨潤度、染色時の温度、時間、pH、塩の種類、塩の濃度、さらには延伸倍率に応じて決定することができる。このような含有量の調整は適宜行うことができる。
 上記偏光発光素子は、偏光性能を阻害しない範囲で、又は、色調整を目的として、必要に応じて他の有機染料を1種以上さらに含んでもよい。併用される他の有機染料は、特に制限はないが、二色性の高い染料が好ましく、かつ、式(1)の発光性化合物の紫外域~近紫外可視域の光の偏光性能に影響が少ない染料が好ましい。併用される他の有機染料としては、例えば、C.I.Direct.Yellow12、C.I.Direct.Yellow28、C.I.Direct.Yellow44、C.I.Direct.Orange26、C.I.Direct.Orange39、C.I.Direct.Orange71、C.I.Direct.Orange107、C.I.Direct.Red2、C.I.Direct.Red31、C.I.Direct.Red79、C.I.Direct.Red81、C.I.Direct.Red247、C.I.Direct.Blue69、C.I.Direct.Blue78、C.I.Direct.Green80、及びC.I.Direct.Green59が挙げられる。これら他の有機染料は、遊離酸、アルカリ金属塩(例えばNa塩、K塩、及びLi塩)、アンモニウム塩、又はアミン類の塩の形態であってよい。
 必要に応じて上記他の有機染料を併用する場合、製造目的とする偏光発光素子の色の調整等目的に応じ、それぞれ配合する他の有機染料の種類を選択可能である。また、他の有機染料の含有量は特に限定されるものではないが、(用いる場合)一般的には、上記式(1)の発光性化合物又はその塩100質量部に対して、併用する他の有機染料の合計が1~1000質量部の範囲であることが好ましい。
<偏光発光素子の製造方法>
 次に、本発明に係る偏光発光素子の製造方法について説明する。製造方法は、限定されるものではないが、例えば、基材を準備する工程と、基材を膨潤液に浸漬させ、該基材を膨潤により延伸させる膨潤工程と、膨潤させた基材を少なくとも1種の上記式(1)で表される発光性化合物を含む染色溶液に含浸させ、基材に発光性化合物又はその塩としての式(1)で表される発光性化合物を吸着させる染色工程と、式(1)で表される発光性化合物又はその塩を吸着させた基材を、ホウ酸を含有する溶液に浸漬し、式(1)で表される発光性化合物又はその塩を基材中で架橋させる架橋工程と、発光性化合物又はその塩を架橋させた基材を一定の方向に一軸延伸して、式(1)で表される発光性化合物又はその塩を一定の方向に配列させる延伸工程と、延伸させた基材を、洗浄液で洗浄する洗浄工程と、洗浄された基材を乾燥させる乾燥工程を含んでいる。
(基材の準備)
 上記式(1)で表される発光性化合物を吸着・配向させるための基材を準備する。該基材は、例えば、市販のポリビニルアルコール系樹脂又はその誘導体からなるフィルムを用いてもよく、ポリビニルアルコール系樹脂を製膜することにより作製してもよい。ポリビニルアルコール系樹脂の製膜方法は特に限定されるものではなく、例えば、含水ポリビニルアルコールを溶融押出する方法、流延製膜法、湿式製膜法、ゲル製膜法(ポリビニルアルコール水溶液を一旦冷却ゲル化した後、溶媒を抽出除去)、キャスト製膜法(ポリビニルアルコール水溶液を基板上に流し、乾燥)、及びこれらの組み合わせによる方法等、公知の製膜方法を採用することができる。ポリビニルアルコールの重合度としては1000~10000のものを用いることがよいが、好ましくは1500~6000、より好ましくは2000~6000のものを用いることが良い。
(膨潤工程)
 次に、上述の基材に、膨潤処理を施す。膨潤処理は20~50℃の膨潤液に、基材を30秒~10分間浸漬させることにより行うことが好ましい。膨潤液は水であることが好ましい。膨潤液による基材の延伸倍率は、1.00~1.50倍に調整することが好ましく、1.10~1.35倍に調整することがより好ましい。
(染色工程)
 続いて、上記のような膨潤処理を施して得られた基材に、少なくとも1種の式(1)の発光性化合物又はその塩を吸着及び含浸させる。染色工程は、発光性化合物又はその塩を基材に吸着及び含浸させる方法であれば特に限定されるものではないが、例えば、基材を、発光性化合物又はその塩を含む染色溶液(一般的には水溶液)に浸漬させることが好ましく、また、基材に染色溶液を塗布することによって吸着させることもできる。染色溶液中の発光性化合物又はその塩の濃度は、基材中に発光性化合物又はその塩が十分に吸着されていれば特に限定されるものではないが、例えば、染色溶液中に0.0001~3質量%であることが好ましく、0.001~1.0質量%であることがより好ましい。
 染色工程における上記染色溶液の温度は、5~80℃が好ましく、20~50℃がより好ましく、40~50℃が特に好ましい。また、染色溶液に基材を浸漬する時間は、適度調節可能であり、30秒~20分の間で調節するのが好ましく、1~10分の間がより好ましい。
 上記染色溶液に含まれる化合物として、上記式(1)で表される発光性化合物又はその塩は、1種単独で使用しても、2種以上を併用してもよい。このような上記式(1)で表される発光性化合物又はその塩は、構造の違いにより、その発光色が異なるため、基材に、上記の発光性化合物又はその塩を2種以上含有させることにより、生じる発光色を所望の色に適宜調整することができる。また、必要に応じて、染色溶液は、上記他の有機染料を1種類、あるいは2種類以上をさらに含んでいてもよい。本明細書における偏光発光素子及び偏光発光板の製造における記載において、式(1)で表される発光性化合物(又はその塩)、他の有機染料を、総じて、「偏光色素」と記載する場合がある。
 上記染色溶液は、上記偏光色素に加え、必要に応じて更に染色助剤を含有してもよい。染色助剤としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、塩化ナトリウム、硫酸ナトリウム(芒硝)、無水硫酸ナトリウム及びトリポリリン酸ナトリウム等が挙げられ、好ましくは硫酸ナトリウムである。染色助剤の含有量は、使用される偏光色素の染色性に基づく上記浸漬の時間及び染色溶液の温度によって任意に調整可能である。染色助剤の含有量は、(用いる場合)染色溶液中に0.05~10質量%であることが好ましく、0.05~2質量%であることがより好ましい。
 染色工程後、該染色工程で基材の表面に付着した余剰の染色溶液を除去するために、任意に予備洗浄工程を実施することができる。予備洗浄工程を実施することによって、次に処理する液中に基材の表面に残存する発光性化合物又はその塩が移行することを抑制することができる。予備洗浄工程では、洗浄液として一般的には水が用いられる。洗浄方法は、洗浄液に染色した基材を浸漬することが好ましく、一方で、洗浄液を該基材に塗布することによって洗浄することもできる。洗浄時間は、特に限定されるものではないが、好ましくは1~300秒であり、より好ましくは1~60秒である。予備洗浄工程における洗浄液の温度は、基材を構成する材料が溶解しない温度であることが必要となり、一般的には5~40℃であってよい。尚、予備洗浄工程の工程がなくとも、偏光発光素子の性能には特段大きな影響を及ぼさないため、予備洗浄工程は省略することも可能である。
(架橋工程)
 染色工程又は予備洗浄工程の後、基材に架橋剤を含有させることができる。基材に架橋剤を含有させる方法は、架橋剤を含む処理溶液に基材を浸漬させることが好ましく、一方で、当該処理溶液を基材に塗布又は塗工してもよい。処理溶液中の架橋剤としては、ホウ酸を含有する溶液を使用することが好ましい。処理溶液中の溶媒は、特に限定されるものではないが、水が好ましい。処理溶液中のホウ酸の濃度は、0.1~15質量%であることが好ましく、0.1~10質量%であることがより好ましい。処理溶液の温度は、30~80℃が好ましく、40~75℃がより好ましい。また、この架橋工程の処理時間は30秒~10分が好ましく、1~6分がより好ましい。本発明に係る偏光発光素子の製造方法が、この架橋工程を有することにより、得られる偏光発光素子は、高輝度、かつ高偏光度の偏光した光を発光する。このことは、従来技術において、耐水性又は光透過性を改善する目的で使用されていたホウ酸の機能からは全く予期し得ない優れた作用である。また、架橋工程においては、必要に応じて、カチオン系高分子化合物を含む水溶液で、フィックス処理をさらに併せて行ってもよい。フィックス処理により、偏光色素の固定化が可能となる。このとき、カチオン系高分子化合物として、例えば、ジシアン系としてジシアンアミドとホルマリン重合縮合物、ポリアミン系としてジシアンジアミド・ジエチレントリアミン重縮合物、ポリカチオン系としてエピクロロヒドリン・ジメチルアミン付加重合物、ジメチルジアリルアンモニウムクロライド・二酸化イオン共重合物、ジアリルアミン塩重合物、ジメチルジアリルアンモニウムクロライド重合物、アリルアミン塩の重合物、ジアルキルアミノエチルアクリレート四級塩重合物が使用され得る。
(延伸工程)
 架橋工程を行った後、またはこれと同時に延伸工程を実施する。延伸工程は、基材を一定の方向に一軸延伸することにより行われる。延伸方法は、湿式延伸法又は乾式延伸法のいずれであってもよい。延伸倍率は、3倍以上であることが好ましく、より好ましくは5~9倍である。
 乾式延伸法において、延伸加熱媒体が空気媒体である場合には、空気媒体の温度が常温~180℃で基材を延伸するのが好ましい。また、湿度は20~95%RHの雰囲気中であることが好ましい。基材の加熱方法としては、例えば、ロール間ゾーン延伸法、ロール加熱延伸法、熱間圧延伸法及び赤外線加熱延伸法等が挙げられるが、これらの延伸方法に限定されるものではない。乾式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。
 湿式延伸法においては、水、水溶性有機溶剤又はその混合溶液中で基材を延伸することが好ましい。より好ましくは、架橋剤を少なくとも1種含有する溶液中に基材を浸漬しながら延伸処理を行う(すなわち、架橋工程と延伸工程とを同時に実施することもできる)。架橋剤は、例えば、上記架橋剤工程におけるホウ酸を用いることができ、好ましくは、架橋工程で使用した処理溶液中で延伸処理を行うことができる。延伸温度は40~70℃であることが好ましく、45~60℃がより好ましい。延伸時間は通常30秒~20分であり、好ましくは2~7分である。湿式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。尚、延伸処理は、任意に、染色工程の前に行ってもよく、この場合には、染色の時点で式(1)の発光性化合物又はその塩の配向も一緒に行うことができる。
(洗浄工程)
 延伸工程を実施した後には、基材の表面に架橋剤の析出又は異物が付着することがあるため、基材の表面を洗浄する洗浄工程を行うことができる。洗浄時間は1秒~5分が好ましい。洗浄方法は、基材を洗浄液に浸漬することが好ましく、一方で、洗浄液を基材に塗布又は塗工によって洗浄することもできる。洗浄液としては、水が好ましい。洗浄処理は一段階で実施しても、2段階以上の多段処理で実施してもよい。洗浄工程の洗浄溶の温度は、特に限定されるものではないが、通常、5~50℃、好ましくは10~40℃であり、常温であってよい。
 上述した各工程で用いる溶液又は処理液の溶媒としては、上記水の他にも、例えば、ジメチルスルホキシド、N-メチルピロリドン、メタノール、エタノール、プロパノール、イソプロピルアルコール、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールまたはトリメチロールプロパン等のアルコール類、エチレンジアミンおよびジエチレントリアミン等のアミン類等が挙げられる。当該溶液又は処理液の溶媒は、これらに限定されるものではないが、最も好ましくは水である。また、これらの溶液又は処理液の溶媒は、1種単独で用いてもよく、2種以上の混合物を用いてもよい。
(乾燥工程)
 洗浄工程の後、基材の乾燥工程を行う。乾燥処理は、自然乾燥により行うことができるものの、より乾燥効率を高めるため、ロールによる圧縮やエアーナイフ又は吸水ロール等による表面の水分除去等により行うことが可能である。さらには、送風乾燥を行うことも可能である。乾燥処理の温度は、20~100℃であることが好ましく、60~100℃であることがより好ましい。乾燥時間は、30秒~20分であることが好ましく、5~10分であることがより好ましい。
 上記記載を例として、本発明に係る偏光発光素子を作製することができる。また、本発明における式(1)で表される発光性化合物又はその塩は、液晶と混合し基材上で配向させる方法、又は基材上でそれらをシェアさせる塗工方法により配向させることによって、各種の色、またはニュートラルグレーを有する偏光発光素子を製造することができる。
[偏光発光板]
 上記偏光発光素子を含む偏光発光板も本発明に含まれる。
 本発明に係る偏光発光板は、上記の偏光発光素子の少なくとも一方の面に透明保護膜を有していることが良い。透明保護膜は、偏光発光素子の耐水性や取扱性等を向上させるために使用される。そのため、このような透明保護膜は、本発明に係る偏光発光素子が示す偏光作用に何ら影響を与えるものではないことが好ましい。
 上記透明保護膜は、光学的透明性および機械的強度に優れる透明保護膜であることが好ましい。また、透明保護膜は、偏光発光素子の形状を維持できる層形状を有するフィルムであることが好ましい。透明保護膜は、透明性および機械的強度の他に、熱安定性、水分遮蔽性等にも優れるプラスチックフィルムであることが好ましい。このような透明保護膜を形成する材料としては、例えば、セルロースアセテート系フィルム、アクリル系フィルム、四フッ化エチレン/六フッ化プロピレン系共重合体のようなフッ素系フィルム、或いは、ポリエステル樹脂、ポリオレフィン樹脂又はポリアミド系樹脂からなるフィルム等が挙げられる。好ましくはトリアセチルセルロース(TAC)フィルムやシクロオレフィン系フィルムが用いられる。透明保護膜の厚みは、1μm~200μmの範囲が好ましく、10μm~150μmの範囲がより好ましく、40μm~100μmが特に好ましい。本発明に係る偏光発光板を製造する方法は、特に限定されるものではないが、例えば、偏光発光素子に透明保護膜を重ねて、公知の処方にてラミネートすることによって偏光発光板を作製することができる。
 上記偏光発光板は、透明保護膜と偏光発光素子との間に、透明保護膜を偏光発光素子に貼り合わせるための接着剤層をさらに備えていてもよい。接着剤層を構成する接着剤は、特に限定されるものではないが、ポリビニルアルコール系接着剤、ウレタンエマルジョン系接着剤、アクリル系接着剤、ポリエステル-イソシアネート系接着剤等が挙げられる。好ましくはポリビニルアルコール系接着剤が用いられる。透明保護膜と偏光発光素子とを接着剤により貼り合せた後、適切な温度で乾燥又は熱処理を行うことによって偏光発光板を作製することができる。
 また、上記偏光発光板は、透明保護膜の露出面に、反射防止層、防眩層、さらなる透明保護膜等の公知の各種機能性層を適宜備えていてもよい。このような各種機能性を有する層を作製する場合、各種機能性を有する材料を透明保護膜の露出面に塗工する方法が好ましい。一方、そのような機能を有する層又はフィルムを接着剤若しくは粘着剤を介して透明保護膜の露出面に貼合せることも可能である。
 上記さらなる透明保護膜としては、例えば、アクリル系、ウレタン系、ポリシロキサン系等のハードコート層等が挙げられる。また、単体透過率をより向上させるために、透明保護膜の露出面上に反射防止層を設けることもできる。反射防止層は、例えば、二酸化珪素、酸化チタン等の物質を、透明保護膜上に蒸着又はスパッタリング処理するか、或いは、フッ素系物質を透明保護膜上薄く塗布することにより形成することができる。
 上記偏光発光板は、必要に応じて、ガラス、水晶、サファイヤ等の透明な支持体等をさらに設けることができる。このような支持体は、偏光発光板を貼り付けるため、特に限定されないが平面部を有していることが好ましい。また支持体は、光学用途の観点から、透明支持体であることが好ましい。透明支持体としては、無機支持体と有機支持体に分けられる。例えば、無機材料よりなる支持体としては、ソーダガラス、ホウ珪酸ガラス、水晶、サファイヤ、スピネルなどの材料よりなる支持体等が挙げられる。有機支持体としては、アクリル、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー等から構成される支持体が挙げられる。透明支持体の厚み、大きさは特に限定されるものでなく、適宜決定することができる。また、このような透明支持体を有する偏光発光板には、単体透過率をより向上させるために、その支持体面又は偏光発光板面の一方もしくは双方の面に反射防止層を設けることが好ましい。偏光発光板と支持体とを接着させるためには、透明な接着(粘着)剤を支持体に塗布し、次いで、この塗布面に本発明に係る偏光発光板を貼付すればよい。使用する接着剤又は粘着剤は、特に限定されるものではなく、市販されているものを用いることができ、アクリル酸エステル系の接着剤又は粘着剤が好ましい。
 また、上記偏光発光板は、位相差板を貼付した円偏光発光板又は楕円偏光発光板として使用することもできる。このとき、偏光発光板に支持体等をさらに設ける場合、支持体が位相差板であってもよい。位相差板としては、光の吸収波長、もしくは発光波長に対して1/4λの位相差値を有するものや1/2λの位相差値を有するものが一般的に例示されるが、これに限定されない。1/4λの位相差値を有することによって、その波長に対して円偏光板もしくは円偏光発光板として機能し、1/2λを用いることによって偏光が90°の方向に変換できるなどの利用が可能となる。このように、偏光発光板には様々な機能性層、支持体等をさらに設けることができる。このような偏光発光板は、例えば、液晶プロジェクター、電卓、時計、ノートパソコン、ワープロ、液晶テレビ、カーナビゲーション及び屋内外の計測器や表示器等、レンズ、或いはメガネ等の様々な製品に使用できる。
 本発明に係る偏光発光素子及び偏光発光板は、紫外域~近紫外可視域の光、例えば300~430nmにおいて高い偏光度を示すと共に、さらには、可視域において偏光発光作用、高い透過率を示す。また、本発明に係る偏光発光素子及び偏光発光板は、熱、湿度、光等に対して優れた耐久性を示すため、過酷な環境下でも、その性能を維持することが可能であり、従来のヨウ素系偏光板よりも高い耐久性を有する。そのため、本発明に係る偏光発光素子及び偏光発光板は、可視域での高い透明性及び過酷な環境下での高い耐久性が求められる液晶ディスプレイ、例えば、テレビ、ウェアラブル端末、タブレット端末、スマートフォン、車載モニター、屋外又は屋内にて用いられるデジタルサイネージ、スマートウィンドウ等の各種表示装置に応用することができる。
[表示装置]
 上記偏光発光素子あるいは偏光発光板を含む表示装置も本発明に含まれる。
 上記表示装置は、紫外域~可視域の光、例えば紫外域~近紫外可視域の光、具体的には300~430nmの光を照射することによって偏光発光作用を示し、この作用を利用することによって表示が可能となる。本発明に係る表示装置は、可視域で高い透過率を有しているため、従来の偏光板のような可視域の透過率の低下がないか、透過率の低下があっても、従来の偏光板の透過率よりも透過率の低下は著しく小さい。例えば、従来の偏光板であるヨウ素系偏光板や、他の染料化合物を使用した染料系偏光板は、偏光度をほぼ100%にするためには、可視域での視感度補正が35~43%程度である。その理由としては、従来の偏光板は、光の吸収軸として縦軸と横軸の両方を有しているが、ほぼ100%の偏光度を得るために縦軸又は横軸の一方の入射した光を吸収する、すなわち、一方の軸では光を吸収し、他方の軸では光を透過することによって偏光が生じる。このような場合、一方の軸での光は吸収されて透過しないことから、必然的に透過率は50%以下になる。また、従来の偏光板は延伸されたフィルム中で二色性色素を配向させて偏光板を作製している。しかし、必ずしも二色性色素が100%配向しているわけではなく、また、光の透過軸に対しても若干吸収成分を有しているため、物質の表面反射によって透過率が約43%以下でないとほぼ100%の偏光度は実現できない、つまりは、透過率を低下させなければ高い偏光度を実現することができなかった。それに対して、本発明に係る偏光発光素子及び偏光発光板は、紫外域~近紫外可視域の光、例えば300~430nmに光の吸収する軸(その偏光機能)がある、すなわち、紫外域~近紫外可視域の光、例えば300~430nmに光の吸収作用があり、可視域に偏光した光を発光する偏光発光作用を示す一方で、可視域ではほとんど光を吸収しないため、可視域での透過率は非常に高くなる。さらに、可視域では、偏光発光作用を示すため、従来の偏光板を用いるよりも光の損失はなく、つまり、従来の偏光板のような透過率の低下は非常に少ない。このことから、本発明に係る偏光発光素子及び偏光発光板を使用した表示装置、例えば、液晶ディスプレイにおいては、従来の偏光板を用いた液晶ディスプレイよりも高い輝度が得られる。さらに、本発明に係る偏光発光素子及び偏光発光板を使用した表示装置は、透明性が高いことから、液晶ディスプレイでありながら、ほぼ透明なディスプレイが得られる。また、文字、画像の表示時には偏光発光光が透過するように設計できることから、透明な液晶ディスプレイでありながらも表示可能なディスプレイが得られる、すなわち、透明なディスプレイに文字等が表示可能なディスプレイが得られる。而して、本発明に係る表示装置は、光損失がない透明な液晶ディスプレイ、特に、シースルーディスプレイを得ることができる。
 また、上記表示装置は、人の目に見えない、もしくは見え難い紫外域~近紫外可視域の光、例えば300~430nmの光に対しても偏光が可能であることから、紫外域~近紫外可視域の光によって表示可能な液晶ディスプレイへの応用が可能である。例えば、紫外域~近紫外可視域に表示された画像等を、コンピュータ等によって認識することによって、紫外域~近紫外可視域の光、例えば300~430nmの光の照射したときのみ視認可能とする簡易でセキュリティ性の高い液晶ディスプレイを作製することができる。
 また、上記表示装置は、紫外域~近紫外可視域の光、例えば300~430nmの光を照射することによって偏光発光作用を示し、その偏光発光を利用した液晶ディスプレイが作製可能であることから、可視光を使用した通常の液晶表示ディスプレイではなく、紫外域~近紫外可視域の光を利用した液晶表示ディスプレイを実現することも可能とする。つまり、光のない暗い空間においても、紫外域~近紫外可視域の光が照射され得る空間であれば、表示される文字、画像等が表示される発光型液晶ディスプレイを作製することが可能となる。
 さらに、可視域と紫外域とでは光の帯域が異なるため、可視域は可視域の光によって表示可能な液晶表示部位と、紫外光による偏光発光作用によって表示された光での液晶表示部位とが併在する異なる2つの表示が可能なディスプレイを作製することも可能である。2つの異なる表示が可能なディスプレイは、これまでにも存在はしているが、同一液晶パネルでありながら、紫外域と可視域とで別々の光源によって異なる表示が可能なディスプレイは存在しない。このことから、本発明に係る表示装置は、上記の偏光発光素子及び偏光発光板を有することによって新規なディスプレイの作製が可能となる。
 上記偏光発光素子、偏光発光板あるいは表示装置を用いた液晶ディスプレイも本発明に含まれる。液晶ディスプレイに使用する液晶セルは、例えば、TN液晶セル、STN液晶セル、VA液晶セル、IPS液晶セルなどに限定されるものでない。上記偏光発光素子、偏光発光板は、あらゆる液晶ディスプレイモードで使用が可能である。該液晶ディスプレイは高い耐久性を有することから、車載用又は屋外表示用液晶ディスプレイを提供することが出来る。
 上記偏光発光素子を用いた、車載用又は屋外表示用ニュートラルグレー偏光発光板あるいはこれを含む表示装置も本発明に含まれる。該車載用又は屋外表示用ニュートラルグレー偏光発光板は、偏光発光性能に優れ、さらに車内や屋外の高温、高湿状態でも変色や偏光性能の低下を起こさないという特徴を有する。尚、ニュートラルグレーとは、該偏光発光板の可視域の直交位における透過率において、各波長の透過率が著しく低いか、もしくは一定の透過率を有するものを指す。具体的は、直交位の透過率が0.3%以下、より好ましくは0.1%以下、さらに好ましくは0.03%以下、特に好ましくは0.01%以下であり、一定の透過率とは各波長の平均透過率に対して、透過率の差が1%以内であることを示す。
 以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本発明をなんら限定するものではない。また、下記に記載されている「%」および「部」は、特に言及されない限り質量基準である。また、各実施例及び比較例で使用した化合物の各構造式において、スルホ基等の酸性官能基は、遊離酸の形態で記載した。
[実施例1]
(合成例1) 式(28)の化合物84部を水800部に加え、水酸化ナトリウムで溶解し、クロロギ酸フェニル15.6部を加えて50~70℃で6時間撹拌しウレイド化した。塩化ナトリウムで塩析し、ろ過して、70℃で乾燥し、本発明に係る化合物の例である式(24)で示されるウレイド化合物56.6部を得た。
Figure JPOXMLDOC01-appb-C000008
(偏光発光素子及び偏光発光板の作製)
 厚み75μmのポリビニルアルコールフィルム(クラレ社製VF-PS#7500)を40℃の水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、合成例1で得られた上記式(24)の本発明に係る化合物0.2質量部と、芒硝1.0質量部と、水1000質量部とを含む45℃の水溶液に、4分間浸漬して式(24)の化合物をフィルムに含有させた。式(24)の化合物を含有したフィルムを50℃の3%ホウ酸水溶液中で5分間をかけて5倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、70℃で9分間乾燥して偏光発光素子を得た。得られた偏光発光素子の両面に、紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製ZRD-60)を公知の処方にてラミネートして偏光発光板を得た。尚、偏光発光素子の両面にトリアセチルセルロースフィルムをラミネートしても、偏光発光素子の光学特性には影響しなかった。
[実施例2]
(合成例2) 式(29)の化合物136部を水1000部に加え、水酸化ナトリウムで溶解し、クロロギ酸フェニル15.6部を加えて50~70℃で6時間撹拌しウレイド化した。塩化ナトリウムで塩析し、ろ過して、70℃で乾燥し、本発明に係る化合物の例である式(12)で示されるウレイド化合物92.3部を得た。実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(12)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得た。
Figure JPOXMLDOC01-appb-C000009
[実施例3]
(合成例3)
 式(30)の化合物61.6部を水600部に加え、水酸化ナトリウムで溶解し、クロロギ酸フェニル15.6部を加えて50~70℃で6時間撹拌しウレイド化した。塩化ナトリウムで塩析し、ろ過して、70℃で乾燥し、本発明に係る化合物の例である式(23)で示されるウレイド化合物48.4部を得た。実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(23)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得た。
Figure JPOXMLDOC01-appb-C000010
[実施例4]
(合成例4)
 式(31)の化合物21.8部、式(32)の化合物37.0部を水500部に加え、水酸化ナトリウムで溶解し、テレフタル酸ジクロリド20.2部を、1時間程度かけて少しずつ加えた。全て添加した後、60℃で1時間撹拌した。反応終了後、室温まで放冷して濾過し、70℃で乾燥することで式(33)に示される化合物10.3部を得た。式(33)の化合物50.3部を水600部に加え、水酸化ナトリウムで溶解し、クロロギ酸フェニル7.8部を加えて50~70℃で6時間撹拌しウレイド化した。塩化ナトリウムで塩析し、ろ過して、70℃で乾燥し、式(16)で示されるウレイド化合物5.8部を得た。実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(16)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得た。
Figure JPOXMLDOC01-appb-C000011
[実施例5]
(合成例5)
 式(34)の化合物40.0部を水500部に加え、水酸化ナトリウムで溶解し、クロロギ酸フェニル15.6部を1時間程度かけて少しずつ加えた後、50~70℃で6時間撹拌し反応させ、その後、式(32)の化合物37.0部を加えて反応させた。その後、式(35)に記載の化合物14.2部を加えて溶解させ、テレフタル酸ジクロリド14.1部を、1時間程度かけて少しずつ加え、全て添加した後、60℃で1時間撹拌した。反応終了後、室温まで放冷して濾過し、70℃で乾燥することで本発明に係る化合物の例である式(36)に示される化合物54.2部を得た。実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(36)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得た。
Figure JPOXMLDOC01-appb-C000012
[実施例6]
(合成例6)
 式(37)の化合物71.2部を水600部に加え、水酸化ナトリウムを加えながら溶解し、クロロギ酸フェニル15.6部を1時間かけて少量ずつ加えた後、50~70℃で6時間撹拌しウレイド化した。塩化ナトリウムで塩析し、ろ過して、70℃で乾燥し、本発明に係る化合物の例である式(21)で示されるウレイド化合物50.2部を得た。実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(21)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得た。
Figure JPOXMLDOC01-appb-C000013
[比較例1]
 実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて特開平4-226162号公報に記載されている式(38)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得て、この偏光発光板を比較例1の試料とした。
Figure JPOXMLDOC01-appb-C000014
[比較例2]
 実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(39)に示される化合物であるC.I.Direct Yellow 4を用いた以外は同様にして偏光発光素子及び偏光発光板を得て、この偏光発光板を比較例2の試料とした。
Figure JPOXMLDOC01-appb-C000015
[比較例3]
 実施例1の偏光発光素子及び偏光発光板において、式(24)に替えて式(40)に示される化合物を用いた以外は同様にして偏光発光素子及び偏光発光板を得て、この偏光発光板を比較例3の試料とした。
Figure JPOXMLDOC01-appb-C000016
[評価]
 実施例1~6及び比較例1~3で得られた偏光発光板を測定試料として使用して、評価を次のようにして行った。
(a)単体透過率Ts、平行位透過率Tp、及び直交位透過率Tc
 各測定試料の単体透過率Ts(%)、平行位透過率Tp(%)、及び直交位透過率Tc(%)を、分光光度計(日立製作所社製「U-4100」)を用いて測定した。ここで、単体透過率Ts(%)は、測定試料を1枚で測定した際の各波長の透過率である。平行位透過率Tp(%)は、2枚の測定試料をその吸収軸方向が平行となるように重ね合わせて測定した各波長の分光透過率である。直交位透過率Tc(%)は、2枚の測定試料をその吸収軸が直交するように重ね合せて測定した分光透過率である。各透過率の測定は、220~780nmの波長にわたって行った。
(b)偏光度ρ
 各測定試料の偏光度ρ(%)を、以下の式(I)に平行透過率Tp及び直交透過率Tcを代入して求めた。
 
  ρ={(Tp-Tc)/(Tp+Tc)}1/2×100  … 式(I)
 
(c)視感度に補正された単体透過率Ys
 各測定試料の単体透過率Ys(%)は、可視域における400~700nmの波長領域で、所定波長間隔dλ(ここでは5nm)おきに求めた上記単体透過率Tsについて、JIS Z 8722:2009に従って視感度に補正した透過率である。具体的には、単体透過率Tsを式(II)に代入して算出した。なお、下記式(II)中、Pλは標準光(C光源)の分光分布を表し、yλは2度視野等色関数を表す。
Figure JPOXMLDOC01-appb-M000017

  ・・・ 式(II)
(d)発光した偏光光の測定
 光源として、紫外線LEDである375nmハンドライトタイプ ブラックライト(日亜化学工業社製「PW-UV943H-04」)を用い、光源に紫外線透過・可視光カットフィルター(五鈴精工硝子社製「IUV-340」)を設置し可視光をカットした。その上で、可視域及び紫外域に偏光を有する偏光板(ポラテクノ社製「SKN-18043P」、厚み180μm、Ys43%)と、各実施例及び比較例で得られた測定試料とを設置し、測定試料が発光している偏光発光を分光放射照度計(ウシオ電機社製「USR-40」)を用いて測定した。すなわち、光源からの光が、紫外線透過・可視光カットフィルター、可視域及び紫外域に偏光を有する偏光板、及び測定試料を、この順に通過し、分光放射照度計に入射するように配置して偏光発光を測定した。その際に、測定試料の紫外線の吸収が最大になる吸収軸と、可視域及び紫外域に偏光を有する偏光板(ポラテクノ社製「SKN-18043P」)の吸収軸方向とが平行になるように重ね合せて測定した各波長の分光発光量をLw(弱発光軸)とし、測定試料の紫外線の吸収が最大になる吸収軸と、可視域及び紫外域に偏光を有する偏光板(ポラテクノ社製「SKN-18043P」)の吸収軸方向とが直交するように重ね合せて測定した各波長の分光発光量をLs(強発光軸)として、Lw及びLsを測定した。測定試料と一般的な偏光板との吸収軸が平行な場合と、直交の場合との可視域で発光された光のエネルギー量を確認することで、可視域である400nm~700nmにおいて偏光発光した光の評価を行った。
(e)耐光性試験
 スガ試験社製SX-75を用いて、照射照度60W、環境温度30℃、相対湿度30%RHにて500時間光照射を行い、耐光性試験を行った。その際の各波長のLs、Lwの変化を確認した。
 表1に実施例1~6、ならびに比較例1~3で得られた測定試料の最大偏光度を示す波長と、最大偏光度を示す波長における単体透過率(Ts,%)、平行位透過率(Tp,%)、直交位透過率(Tc,%)、及び偏光度(ρ,%)と、視感度に補正した単体透過率(Ys,%)、視感度に補正した偏光度(ρy,%)を示す。
Figure JPOXMLDOC01-appb-T000018
 表2に実施例1~6、ならびに比較例1~3における各波長のLs、Lwを示す。
 
Figure JPOXMLDOC01-appb-T000019
 表3に実施例1~4ならびに比較例1における耐光性試験後の各波長のLs、Lwを示す。
Figure JPOXMLDOC01-appb-T000020
 表1に示されるように、実施例1~6、比較例1の測定試料は、紫外域に吸収を持ち、その帯域で偏光板として機能していることが分かった。一方で、可視域の透過率(視感度補正透過率Ys)は90%以上を示しており、紫外域に偏光機能を有しながらも可視透明度が高いことが分かった。これに対して、比較例2及び3は、最大偏光度を示す波長が400nm以上にあり、視感度補正透過率Ysが低下していることから、可視透過率の低下が見られた。一方、表2に示されるように、比較例2及び3の測定試料は、Lw及びLsが共に0であり、紫外線照射により発光していないことが示された。さらに、実施例1~6、及び比較例1においてはLwとLsが検出されたことから、紫外線を照射することによって偏光を発光することが分かった。一方で、実施例1~6において、比較例1よりも発光輝度が高く、その波長は400~700nmの広い帯域に渡って高い偏光を発光していた。また、表3に示されるように、耐光性試験後のLs、Lwを確認したところ、実施例1~4は比較例1よりも高い耐光性を有していた。よって、実施例1~4の測定試料は、紫外線照射により可視域の偏光を発光する偏光発光素子として機能していることが示された。
(f)耐久性試験
 実施例1~6において得られた偏光発光板を、105℃の環境で1000時間と、60℃かつ相対湿度90%の環境で1000時間置き、耐久性試験を実施したところ、偏光度の低下、及び、偏光発光の変化は見られなかった。このことから実施例1~6の偏光発光素子及び偏光発光板は苛酷な環境下においても高い耐久性を有していることが示された。
 本発明に係る発光性化合物又はその塩を、基材に含有させて用いることで、吸収波長に高い偏光度を有するだけでなく、偏光発光作用を示す偏光発光素子、及び偏光発光板を得ることができる。したがって、本発明に係る発光性化合物を用いた偏光発光素子、及び偏光発光板は、吸収波長においては偏光板として機能し、さらに偏光を発光しうる自発光型偏光素子として応用できる。また、このような偏光発光素子、及び偏光発光板は、優れた耐久性を具備しつつ、可視域で高い透過率を有する。したがって、本発明に係る偏光発光素子及び偏光発光板を用いた表示装置は、可視域で透明性が高く、長期にわたって偏光発光による画像表示ができるため、テレビ、パソコン、タブレット端末、さらには、透明ディスプレイ(シースルーディスプレイ)等、幅広い用途へ適用可能である。さらに、本発明に係る発光性化合物を用いて作製された偏光発光素子またはその偏光発光板は、紫外光により発光可能であるため、高いセキュリティが要求されるディスプレイや媒体に応用することも可能である。

Claims (11)

  1.  下記式(1)で表される発光性化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、kはそれぞれ独立に0または1の整数を示し、X、Yの少なくとも一方は、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)で表される基を示し、もう一方のX、Yは各々独立に、ニトロ基、置換基を有しても良いアミノ基、置換基を有しても良い炭素数1~4のアルキル基もしくは置換基を有しても良い炭素数1~4のアルコキシ基、置換基を有しても良い窒素原子もしくは硫黄原子を含む複素環基、または式(2)で表される基からなる群から選択される基である。Mは水素原子、金属イオン、またはアンモニウムイオンを表し、mはそれぞれ独立に0~2の整数を示す。式(2)中、※は、式(1)におけるX、Yの結合位置を示し、Zは置換基を有しても良いフェニル基、置換基を有しても良いナフチル基、置換基を有しても良いスチルベン基、置換基を有しても良いベンゾイル基、または置換基を有しても良い複素環基からなる群から選択される基である。tは0または1の整数を表す。)
  2.  上記式(1)におけるX、Y、及び、上記式(1)におけるX、Yいずれか少なくとも一方が上記式(2)で表される場合のZのいずれか少なくとも1つが、下記式(3)~(7)からなる群から選択される基である請求項1に記載の発光性化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000002

    (上記式(3)、式(4)中、Aは各々独立に、水素原子、ハロゲン基、ニトロ基、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、スルホ基を有する炭素数1~4のアルキル基、ヒドロキシ基を有する炭素数1~4のアルキル基、カルボキシ基を有する炭素数1~4のアルキル基、スルホ基を有する炭素数1~4のアルコキシ基、ヒドロキシ基を有する炭素数1~4のアルコキシ基、カルボキシ基を有する炭素数1~4のアルコキシ基からなる群から選択される基であり、qは0~4の整数を表し、上記式(3)~(7)におけるMは、上記式(1)で定義されたとおりであり、式(3)~(7)中のMと式(1)中のMとは同じであっても良く、n、nは各々独立に0~3の整数を表す。上記式(3)~(7)中の*は、それぞれ、上記式(1)のXまたはYにおける結合位置、あるいは上記式(2)のZにおける結合位置を示す。)
  3.  上記式(1)におけるkが0または1であり、X、Yの少なくともいずれか一方が、式(2)~(7)からなる群から選択されるいずれか基であり、X、Yの少なくともいずれか一方が式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである請求項1または2に記載の発光性化合物又はその塩。
  4.  上記式(1)における、各kがいずれも0であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである請求項1または2に記載の発光性化合物又はその塩。
  5.  上記式(1)における、各kがいずれも1であり、X、Yがいずれも式(2)~(7)からなる群から選択されるいずれか基であり、X、Yが式(2)の場合には、Zが式(3)~(7)からなる群から選択されるいずれかである請求項1または2に記載の発光性化合物又はその塩。
  6.  偏光発光機能を有する、請求項1~5のいずれか一項に記載の発光性化合物又はその塩を含む偏光発光素子。
  7.  上記発光性化合物又はその塩以外の有機染料又は蛍光染料を1種類以上さらに含む請求項6に記載の偏光発光素子。
  8.  基材をさらに含む請求項6または7に記載の偏光発光素子。
  9.  上記基材がポリビニルアルコール樹脂又はその誘導体を含むフィルムである請求項8に記載の偏光発光素子。
  10.  請求項6~9のいずれか一項に記載の偏光発光素子の少なくとも一方の面に透明保護膜を備える偏光発光板。
  11.  請求項6~9のいずれか一項に記載の偏光発光素子、又は請求項10に記載の偏光発光板を備える表示装置。
     
PCT/JP2020/027102 2019-07-12 2020-07-10 発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置 WO2021010340A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080045368.3A CN113993854A (zh) 2019-07-12 2020-07-10 发光性化合物或其盐,以及使用该化合物而得的偏光发光元件、偏光发光板及显示装置
JP2021533049A JPWO2021010340A1 (ja) 2019-07-12 2020-07-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130394 2019-07-12
JP2019-130394 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010340A1 true WO2021010340A1 (ja) 2021-01-21

Family

ID=74210981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027102 WO2021010340A1 (ja) 2019-07-12 2020-07-10 発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置

Country Status (4)

Country Link
JP (1) JPWO2021010340A1 (ja)
CN (1) CN113993854A (ja)
TW (1) TW202111088A (ja)
WO (1) WO2021010340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873432B2 (en) * 2018-11-29 2024-01-16 Honeywell International Inc. Luminescent materials including a luminescent benzothiazole, articles including a security feature, and methods of forming luminescent particles including a luminescent benzothiazole

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601369A (en) * 1946-01-21 1948-05-04 Geigy Ag J R Process for the production of metallizable azo dyestuffs and complex metal compounds thereof
US2537877A (en) * 1950-01-19 1951-01-09 Eastman Kodak Co Bis-(2-azolyl) carbanilides
US2848329A (en) * 1956-05-14 1958-08-19 Eastman Kodak Co Supersensitization with bis-heterocyclic bases
US3049438A (en) * 1957-11-26 1962-08-14 American Cyanamid Co Pyridotriazole brighteners
US3796706A (en) * 1970-08-20 1974-03-12 Ciba Geigy Corp 1,3-diaryl pyrazole optical brighteners
US3985884A (en) * 1975-12-12 1976-10-12 American Cyanamid Company Complement inhibitors
US3998957A (en) * 1975-12-12 1976-12-21 American Cyanamid Company Complement inhibitors
WO1996025399A1 (en) * 1995-02-17 1996-08-22 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Novel aroylaniline derivatives, compositions and uses thereof in the treatment of viral infections
WO2011002918A1 (en) * 2009-06-30 2011-01-06 The University Of Memphis Research Foundation Novel diverse lead compound autotaxin inhibitors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601369A (en) * 1946-01-21 1948-05-04 Geigy Ag J R Process for the production of metallizable azo dyestuffs and complex metal compounds thereof
US2537877A (en) * 1950-01-19 1951-01-09 Eastman Kodak Co Bis-(2-azolyl) carbanilides
US2848329A (en) * 1956-05-14 1958-08-19 Eastman Kodak Co Supersensitization with bis-heterocyclic bases
US3049438A (en) * 1957-11-26 1962-08-14 American Cyanamid Co Pyridotriazole brighteners
US3796706A (en) * 1970-08-20 1974-03-12 Ciba Geigy Corp 1,3-diaryl pyrazole optical brighteners
US3985884A (en) * 1975-12-12 1976-10-12 American Cyanamid Company Complement inhibitors
US3998957A (en) * 1975-12-12 1976-12-21 American Cyanamid Company Complement inhibitors
WO1996025399A1 (en) * 1995-02-17 1996-08-22 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Novel aroylaniline derivatives, compositions and uses thereof in the treatment of viral infections
WO2011002918A1 (en) * 2009-06-30 2011-01-06 The University Of Memphis Research Foundation Novel diverse lead compound autotaxin inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry STN; 9 December 1988 (1988-12-09), XP055788146, Database accession no. RN 117900-57-9 *
SIVAN, SREE KANTH ET AL.: "Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120- CD 4 binding inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 21, no. 15, 2013, pages 4591 - 4599, XP055187563, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2013.05.038 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873432B2 (en) * 2018-11-29 2024-01-16 Honeywell International Inc. Luminescent materials including a luminescent benzothiazole, articles including a security feature, and methods of forming luminescent particles including a luminescent benzothiazole

Also Published As

Publication number Publication date
TW202111088A (zh) 2021-03-16
JPWO2021010340A1 (ja) 2021-01-21
CN113993854A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
JP7287889B2 (ja) 偏光発光素子、偏光発光板、表示装置及び偏光発光素子の製造方法
JP6317335B2 (ja) 高透過率を有する無彩色な染料系偏光素子及び偏光板
JP6317334B2 (ja) 無彩色な染料系偏光素子、及び偏光板
JP7200108B2 (ja) スチルベン系化合物又はその塩、並びに、偏光膜、偏光板及び表示装置
JP6317333B2 (ja) 無彩色な偏光素子、及び偏光板
JPWO2019058758A1 (ja) 光学システム及び表示装置
JPWO2017146212A1 (ja) アゾ化合物又はその塩及びこれを含有する偏光膜
KR20170013889A (ko) 고투과 고편광도인 무채색 편광판
JP2019056904A (ja) 面状偏光発光素子
JP7429105B2 (ja) 偏光発光板、及びそれを備えた光学装置
WO2021010340A1 (ja) 発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置
WO2021166907A1 (ja) 光学システム及びそれを備えた光学装置
JP7479136B2 (ja) 偏光発光素子、偏光発光板、並びにそれを用いた表示装置
JP7336964B2 (ja) 光学制御システム
WO2021010337A1 (ja) 発光性化合物又はその塩、並びにこれを含む偏光発光素子、偏光発光板、及び表示装置
WO2021010331A1 (ja) 発光性化合物又はその塩、並びにこれを含む偏光発光素子、偏光発光板、及び表示装置
WO2021106798A1 (ja) 偏光発光素子、偏光発光板、及び表示装置
WO2021010351A1 (ja) 発光性化合物又はその塩を用いた偏光発光素子、偏光発光板、及び表示装置
JP7452969B2 (ja) 偏光発光板、及びそれを備えた光学装置
JP7406458B2 (ja) 水溶性ペリレン系二色性蛍光染料、又はその塩を用いた偏光機能を有する偏光発光膜、偏光発光板及び表示装置
JP7288298B2 (ja) 表示装置
WO2021010141A1 (ja) 水溶性クマリン系化合物又はその塩を含有する偏光発光膜、偏光発光板及び表示装置
JP2023119333A (ja) 水溶性ナフタルイミド系化合物又はその塩を含有する偏光膜、偏光発光膜、偏光発光板及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839836

Country of ref document: EP

Kind code of ref document: A1