WO2021010247A1 - Bearing device and spindle device - Google Patents

Bearing device and spindle device Download PDF

Info

Publication number
WO2021010247A1
WO2021010247A1 PCT/JP2020/026670 JP2020026670W WO2021010247A1 WO 2021010247 A1 WO2021010247 A1 WO 2021010247A1 JP 2020026670 W JP2020026670 W JP 2020026670W WO 2021010247 A1 WO2021010247 A1 WO 2021010247A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
outer ring
peripheral surface
bearing device
unit
Prior art date
Application number
PCT/JP2020/026670
Other languages
French (fr)
Japanese (ja)
Inventor
小池 孝誌
靖之 福島
勇介 澁谷
大地 近藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112020003361.9T priority Critical patent/DE112020003361T5/en
Priority to CN202080050160.0A priority patent/CN114207305A/en
Publication of WO2021010247A1 publication Critical patent/WO2021010247A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings

Definitions

  • the present invention relates to a bearing device and a spindle device.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-120666 describes a bearing device.
  • the bearing device described in Patent Document 1 includes a first rolling bearing, a second rolling bearing, an inner ring spacer, an outer ring spacer, and a strain sensor.
  • Preload is applied to the first rolling bearing and the second rolling bearing.
  • the inner ring spacer is arranged between the inner ring of the first rolling bearing and the inner ring of the second rolling bearing.
  • the outer ring spacer is arranged between the outer ring of the first rolling bearing and the outer ring of the second rolling bearing.
  • the strain sensor is attached to the outer ring spacer.
  • the preload applied to the first rolling bearing and the second rolling bearing is adjusted while measuring the strain of the outer ring spacer with a strain sensor.
  • the preload can be managed, and an appropriate preload can be applied to the first rolling bearing and the second rolling bearing.
  • the present invention has been made in view of the above-mentioned problems of the prior art. More specifically, the present invention provides a bearing device and a spindle device capable of reducing the influence of noise when measuring strain.
  • the bearing device has a first rolling bearing having a first inner ring, a first outer ring, and a first rolling element arranged between the first inner ring and the first outer ring, and a preload is applied to the first rolling bearing.
  • a non-rotating member arranged on the preload path, and at least one strain sensor attached to the non-rotating member.
  • the first inner ring is rotatable with respect to the first outer ring and the non-rotating member.
  • the strain sensor has a detection unit that outputs a signal corresponding to the strain of the non-rotating member, and a processing unit that inputs the signal.
  • the processing unit includes an amplification unit that amplifies the signal.
  • the processing unit may further include an output unit that calculates strain based on the signal amplified by the amplification unit.
  • the strain sensor may further have a substrate attached to a non-rotating member.
  • the detection unit and the processing unit may be mounted on the substrate.
  • the strain sensor may have a semiconductor integrated circuit in which a detection unit and a processing unit are monolithically formed.
  • the above bearing device may further include a storage unit and a calculation unit.
  • Information indicating the relationship between strain and preload may be stored in the storage unit.
  • the calculation unit may be configured to calculate the preload based on the strain and information.
  • the above bearing device may further include a storage unit and a calculation unit.
  • the number of strain sensors may be plural.
  • the calculation unit may be configured to calculate a representative value based on the strain from each strain sensor.
  • Information indicating the relationship between the representative value and the preload may be stored in the storage unit.
  • the calculation unit may be configured to calculate the preload based on the representative value and the information.
  • the above bearing device may further include a diagnostic unit.
  • the diagnostic unit may be configured to compare the preload calculated by the calculation unit with a predetermined threshold value.
  • the above bearing device has a second inner ring, a second outer ring, and a second rolling element arranged between the second inner ring and the second outer ring, and further adds a second rolling bearing to which a preload is applied.
  • the second inner ring may be rotatable with respect to the second outer ring and the non-rotating member.
  • the non-rotating member may be an outer ring spacer arranged between the first outer ring and the second outer ring.
  • the outer ring spacer may have an outer peripheral surface including a flat portion.
  • the strain sensor may be mounted on a flat surface.
  • the outer ring spacer may have an inner peripheral surface and an outer peripheral surface.
  • the inner peripheral surface may be formed with a recess that is recessed toward the outer peripheral surface side.
  • the bottom surface of the recess may be a flat surface.
  • the strain sensor may be mounted on a flat surface.
  • the spindle device includes the above-mentioned bearing device, a shaft rotatably supported by the first rolling bearing, and a motor for rotating the shaft.
  • the influence of noise can be reduced when measuring strain.
  • spindle device 100 the spindle device according to the first embodiment (hereinafter referred to as “spindle device 100”) will be described.
  • FIG. 1 is a cross-sectional view of the spindle device 100.
  • FIG. 2 is an enlarged view of FIG. 1 II.
  • the spindle device 100 is a built-in motor type spindle device used in, for example, a machine tool. As shown in FIGS. 1 and 2, the spindle device 100 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60.
  • the shaft 10 has a first end 10a and a second end 10b.
  • the first end 10a and the second end 10b are ends of the shaft 10 in the direction along the rotation center axis A. In the following, the direction along the rotation center axis A is referred to as "axial direction".
  • the second end 10b is the opposite end of the first end 10a.
  • a cutting tool such as an end mill is attached to the first end 10a.
  • the shaft 10 has an outer peripheral surface 10c.
  • the shaft 10 has a stepped portion 10d on the outer peripheral surface 10c.
  • the outer diameter of the shaft 10 in the step portion 10d is larger than the outer diameter of the shaft 10 in the portion adjacent to the second end 10b side of the step portion 10d.
  • the step portion 10d is located on the first end 10a side.
  • the outer cylinder 20 has a tubular shape.
  • the outer cylinder 20 extends along the axial direction.
  • the shaft 10 is housed inside the outer cylinder 20.
  • the outer cylinder 20 has a first end 20a and a second end 20b in the axial direction.
  • the first end 20a is an end on the first end 10a side.
  • the second end 20b is the opposite end of the first end 20a.
  • the outer cylinder 20 has an inner peripheral surface 20c.
  • the bearing device 30 includes a housing 31, a rolling bearing 32, a rolling bearing 33, an inner ring spacer 34, an outer ring spacer 35, a lid member 36, a nut 37, a spacer 38, and a strain sensor 40. Have.
  • the housing 31 has a tubular shape.
  • the housing 31 has a first end 31a and a second end 31b in the axial direction.
  • the first end 31a is the end on the side of the first end 10a
  • the second end 31b is the end on the opposite side of the first end 31a.
  • the housing 31 has an inner peripheral surface 31c and an outer peripheral surface 31d.
  • the housing 31 is arranged so that the outer peripheral surface 31d is in contact with the inner peripheral surface 20c.
  • a groove 31da is formed on the outer peripheral surface 31d.
  • a flow path through which the refrigerant flows is defined by the groove 31da and the inner peripheral surface 20c.
  • the rolling bearing 32 is, for example, an angular contact ball bearing.
  • the rolling bearing 32 rotatably supports the shaft 10 around the rotation center axis A.
  • the rolling bearing 32 has an inner ring 32a, an outer ring 32b, a rolling element 32c, and a cage 32d.
  • the inner ring 32a has an inner peripheral surface 32aa and an outer peripheral surface 32ab.
  • the inner ring 32a is attached to the shaft 10. More specifically, the inner ring 32a is attached to the shaft 10 so that the inner peripheral surface 32aa is in contact with the outer peripheral surface 10c.
  • the inner ring 32a is arranged adjacent to the second end 10b side of the step portion 10d. The inner ring 32a rotates relative to the outer ring 32b and the outer ring spacer 35 as the shaft 10 rotates.
  • the outer ring 32b has an inner peripheral surface 32ba and an outer peripheral surface 32bb.
  • the outer ring 32b is attached to the housing 31. More specifically, the outer ring 32b is attached to the housing 31 so that the outer peripheral surface 32bb is in contact with the inner peripheral surface 31c.
  • the outer ring 32b is arranged so that the inner peripheral surface 32ba faces the outer peripheral surface 31ab.
  • the rolling element 32c is arranged between the inner ring 32a and the outer ring 32b. More specifically, the rolling element 32c is arranged so as to be in contact with the outer peripheral surface 32ab and the inner peripheral surface 32ba.
  • the number of rolling elements 32c is plural.
  • the cage 32d is arranged between the inner ring 32a and the outer ring 32b.
  • the cage 32d is held so that the distance between the rolling elements 32c in the circumferential direction is within a certain range.
  • the circumferential direction is a direction along the circumference centered on the rotation center axis A.
  • the rolling bearing 33 is, for example, an angular contact ball bearing.
  • the rolling bearing 33 rotatably supports the shaft 10 around the rotation center axis A.
  • the rolling bearing 33 has an inner ring 33a, an outer ring 33b, a rolling element 33c, and a cage 33d.
  • the inner ring 33a has an inner peripheral surface 33aa and an outer peripheral surface 33ab.
  • the inner ring 33a is attached to the shaft 10. More specifically, the inner ring 33a is attached to the shaft 10 so that the inner peripheral surface 33aa is in contact with the outer peripheral surface 10c.
  • the inner ring 33a rotates relative to the outer ring 33b and the outer ring spacer 35 as the shaft 10 rotates.
  • the outer ring 33b has an inner peripheral surface 33ba and an outer peripheral surface 33bb.
  • the outer ring 33b is attached to the housing 31. More specifically, the outer ring 33b is attached to the housing 31 so that the outer peripheral surface 33bb is in contact with the inner peripheral surface 31c.
  • the outer ring 33b is arranged so that the inner peripheral surface 33ba faces the outer peripheral surface 31ab.
  • the rolling element 33c is arranged between the inner ring 33a and the outer ring 33b. More specifically, the rolling element 33c is arranged so as to be in contact with the outer peripheral surface 33ab and the inner peripheral surface 33ba.
  • the number of rolling elements 33c is plural.
  • the cage 33d is arranged between the inner ring 33a and the outer ring 33b.
  • the cage 33d is held so that the distance between the rolling elements 33c in the circumferential direction is within a certain range.
  • the rolling bearing 32 and the rolling bearing 33 are installed in a back combination (DB combination).
  • the rolling bearing 32 and the rolling bearing 33 may be installed in a front combination (DF combination).
  • the inner ring spacer 34 has a tubular shape.
  • the inner ring spacer 34 extends along the axial direction.
  • the inner ring spacer 34 has an inner peripheral surface 34a and an outer peripheral surface 34b.
  • the inner ring spacer 34 is attached to the shaft 10. More specifically, the inner ring spacer 34 is attached to the shaft 10 so that the inner peripheral surface 34a is in contact with the outer peripheral surface 10c.
  • the inner ring spacer 34 is arranged between the inner ring 32a and the inner ring 33a in the axial direction.
  • the outer ring spacer 35 has a tubular shape.
  • the outer ring spacer 35 extends along the axial direction.
  • the outer ring spacer 35 has an inner peripheral surface 35a and an outer peripheral surface 35b.
  • the outer ring spacer 35 is arranged so that the inner peripheral surface 35a faces the outer peripheral surface 34b and the outer peripheral surface 35b faces the inner peripheral surface 31c.
  • the outer ring spacer 35 is arranged between the outer ring 32b and the outer ring 33b in the axial direction.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the outer cylinder 20 and the housing 31 are not shown.
  • the outer peripheral surface 35b has a flat portion 35ba.
  • the number of flat portions 35ba is preferably a plurality. In the example of FIG. 3, the number of flat portions 35ba is 4. However, the number of flat portions 35ba is not limited to this. The number of flat portions 35ba may be 2, for example.
  • the flat portions 35ba are preferably formed at equal intervals along the circumferential direction.
  • the lid member 36 has a first portion 36a and a second portion 36b.
  • the lid member 36 is attached to the housing 31 in the first portion 36a.
  • the second portion 36b extends from the first portion 36a along the axial direction so as to be in contact with the outer ring 32b.
  • the nut 37 is screwed onto the outer peripheral surface 10c.
  • the nut 37 is located closer to the second end 10b than the rolling bearing 33.
  • the spacer 38 has a tubular shape.
  • the spacer 38 has an inner peripheral surface 38a and an outer peripheral surface 38b.
  • the spacer 38 is attached to the shaft 10. More specifically, the spacer 38 is attached to the shaft 10 so that the inner peripheral surface 38a is in contact with the outer peripheral surface 10c.
  • the outer peripheral surface 38b faces the inner peripheral surface 31c.
  • the spacer 38 is arranged between the inner ring 33a and the nut 37 in the axial direction.
  • a preload is applied to the inner ring 33a.
  • a preload is applied to the outer ring 33b via the inner ring 33a and the rolling element 33c.
  • a preload is applied to the inner ring 32a via the inner ring 33a and the inner ring spacer 34.
  • a preload is applied to the outer ring 32b via the inner ring 33a, the rolling element 33c, the outer ring 33b, and the outer ring spacer 35. That is, the outer ring spacer 35 is a non-rotating member arranged on the preload path.
  • the strain sensor 40 is attached to the outer ring spacer 35. More specifically, the strain sensor 40 is attached to the flat portion 35ba.
  • the number of strain sensors 40 is preferably a plurality. The number of strain sensors 40 is preferably equal to the number of flat portions 35ba.
  • FIG. 4 is a schematic structural diagram of the strain sensor 40 in the spindle device 100. As shown in FIG. 4, the strain sensor 40 includes a substrate 41, a detection unit 42, and a processing unit 43.
  • the substrate 41 is fixed to the flat portion 35ba by adhesion or the like.
  • the substrate 41 is preferably made of a material having a coefficient of thermal expansion similar to that of the outer ring spacer 35.
  • the detection unit 42 and the processing unit 43 are attached to the substrate 41.
  • the detection unit 42 and the processing unit 43 are electrically connected by, for example, a lead wire (not shown).
  • the detection unit 42 is, for example, a strain gauge.
  • the detection unit 42 is preferably formed of a material having a small resistance temperature coefficient (the rate at which the electric resistance value fluctuates with respect to a temperature change) in order to prevent the output from the detection unit from drifting due to a change in ambient temperature.
  • FIG. 5 is a block diagram of the strain sensor 40 in the spindle device 100. As shown in FIG. 5, the detection unit 42 outputs an electric signal SG1 corresponding to the strain of the outer ring spacer 35. More specifically, the detection unit 42 outputs an electric signal SG1 according to the strain of the outer ring spacer 35 in the axial direction.
  • the electric signal SG1 output from the detection unit 42 is input to the processing unit 43.
  • the processing unit 43 has an amplification unit 43a and an output unit 43b.
  • the amplification unit 43a amplifies the electric signal SG1 and outputs the amplification signal SG2.
  • the amplifier unit 43a is, for example, an amplifier circuit.
  • the output unit 43b is configured to calculate the strain of the outer ring spacer 35 based on the amplification signal SG2. More specifically, the output unit 43b has a CPU (Central Processing Unit) and an ADC (Analog to Digital Converter) circuit.
  • CPU Central Processing Unit
  • ADC Analog to Digital Converter
  • the output unit 43b calculates the distortion of the outer ring spacer 35 by digitizing the amplification signal SG2 in the ADC circuit to generate the digital signal SG3 and performing signal processing on the digital signal SG3 in the CPU. By generating the digital signal SG3 from the amplified signal SG2, the influence of noise can be further reduced.
  • the output unit 43b outputs a strain signal SG4 indicating the strain of the outer ring spacer 35.
  • the strain sensor 40 may further have a temperature sensor (not shown) in order to compensate for the influence of ambient temperature changes.
  • the output unit 43b may correct the calculated strain value based on the ambient temperature detected by the temperature sensor.
  • the bearing device 30 may further include a storage unit 44 and a calculation unit 45.
  • the storage unit 44 stores information indicating the relationship between the strain in the outer ring spacer 35 and the preload applied to the bearing device 30. This information is a relational expression or table between the strain in the outer ring spacer 35 measured or analyzed in advance and the preload applied to the bearing device 30.
  • the calculation unit 45 calculates the preload applied to the bearing device 30 based on the information stored in the strain signal SG4 and the storage unit 44.
  • the four strain signals SG4 output from the four strain sensors 40 included in the bearing device 30 are the strain signal SG4a, the strain signal SG4b, the strain signal SG4c, and the strain signal SG4d, respectively.
  • the calculation unit 45 may be configured to calculate a representative value of strain in the outer ring spacer 35 based on the strain signals SG4a to SG4d.
  • the representative values of the strain in the outer ring spacer 35 are, for example, the average value of the strain values indicated by the strain signal SG4a to the strain signal SG4d, the maximum value of the strain value indicated by the strain signal SG4a to the strain signal SG4d, and the strain signal SG4a to the strain. It is the minimum value of the strain value indicated by the signal SG4d, the difference between the maximum and minimum values of the strain value indicated by the strain signal SG4a to the strain signal SG4d, or the total value of the strain values indicated by the strain signal SG4a to the strain signal SG4d.
  • the storage unit 44 may store information indicating the relationship between the above representative value and the preload applied to the bearing device 30.
  • the calculation unit 45 may calculate the preload applied to the bearing device 30 based on the above representative value and the information stored in the storage unit 44. In order to suppress fluctuations in the calculated preload value, the calculation unit 45 may calculate the preload applied to the bearing device 30 after performing low-pass filter processing on the strain signals SG4a to SG4d. Often, a low-pass filter process may be performed on the calculated preload.
  • the bearing device 30 may further include a diagnostic unit 46.
  • the diagnosis unit 46 is configured to compare the preload calculated by the calculation unit 45 with a predetermined threshold value. When the preload calculated by the calculation unit 45 exceeds a predetermined threshold value, the diagnosis unit 46 may output a signal indicating that an abnormality has occurred in the rolling bearing 32 or the rolling bearing 33.
  • the storage unit 44 is composed of, for example, a memory circuit mounted on the microcontroller, and the arithmetic unit 45 and the diagnostic unit 46 are composed of, for example, a CPU mounted on the microcontroller.
  • the strain signal SG4a and the strain signal SG4c are the strain signals SG4 from the strain sensor 40 located at positions symmetrical with respect to the rotation center axis A, and the strain signal SG4b and the strain signal SG4d are located at positions symmetrical with respect to the rotation center axis A.
  • the calculation unit 45 calculates the bending moment load in the vertical direction applied to the outer ring spacer 35 based on the strain signal SG4a and the strain signal SG4c, and the lateral direction applied to the outer ring spacer 35 based on the strain signal SG4b and the strain signal SG4d. It may be configured to calculate the bending moment load of. This makes it possible to grasp the load applied to the cutting tool attached to the first end 10a.
  • a sensor other than the strain sensor 40 may be attached to the outer ring spacer 35.
  • a heat flux sensor (not shown) may be attached to the outer ring spacer 35 so as to face the inner ring 32a (inner ring 33a).
  • the motor 50 includes a tubular member 51, a rotor 52, and a stator 53.
  • the tubular member 51 has a tubular shape.
  • the tubular member 51 extends along the axial direction.
  • the tubular member 51 has an inner peripheral surface 51a and an outer peripheral surface 51b.
  • the tubular member 51 is attached to the shaft 10. More specifically, the tubular member 51 is attached to the shaft 10 so that the inner peripheral surface 51a is in contact with the outer peripheral surface 10c.
  • the tubular member 51 is located closer to the second end 10b than the nut 37.
  • the rotor 52 is attached to the outer peripheral surface 51b.
  • the stator 53 is attached to the inner peripheral surface 20c so as to face the rotor 52.
  • the bearing device 60 includes an end member 61, a rolling bearing 62, an inner ring holding member 63, a positioning member 64, a positioning member 65, and a nut 66.
  • the end member 61 is attached to the second end 20b.
  • a through hole 61a is formed in the end member 61.
  • the through hole 61a penetrates the end member 61 along the axial direction.
  • a shaft 10 is inserted through the through hole 61a.
  • the rolling bearing 62 is, for example, a cylindrical roller bearing.
  • the rolling bearing 62 rotatably supports the shaft 10 around the rotation center axis A.
  • the rolling bearing 62 is arranged so that the inner ring is in contact with the end of the tubular member 51 on the second end 10b side.
  • the inner ring of the rolling bearing 62 is attached to the shaft 10, and the outer ring of the rolling bearing 62 is attached to the inner wall surface of the through hole 61a.
  • the inner ring holding member 63 is attached to the shaft 10 at a position closer to the second end 10b than the rolling bearing 62.
  • the inner ring holding member 63 is in contact with the inner ring of the rolling bearing 62 from the second end 10b side.
  • the positioning member 64 is attached to the end member 61.
  • the positioning member 64 is in contact with the outer ring of the rolling bearing 62 from the second end 10b side.
  • the positioning member 65 is attached to the end member 61 so as to sandwich the outer ring of the rolling bearing 62 with the positioning member 64 in the axial direction.
  • the outer ring of the rolling bearing 62 is sandwiched between the positioning member 64 and the positioning member 65.
  • the inner ring of the rolling bearing 62 slides in the axial direction along the through hole 61a integrally with the shaft 10 according to the expansion and contraction of the shaft 10.
  • the nut 66 is screwed onto the outer peripheral surface 10c so as to sandwich the inner ring holding member 63 with the inner ring of the rolling bearing 62. That is, the nut 66 prevents the inner ring holding member 63 from falling off.
  • a strain sensor 40 having a detection unit 42 and a processing unit 43 is attached to a non-rotating member (outer ring spacer 35) on the preload path. That is, in the bearing device 30, since the detection unit 42 and the processing unit 43 are both attached to the same member, it is difficult for noise to get on the lead wire connecting the detection unit 42 and the processing unit 43.
  • the processing unit 43 has an amplification unit 43a, and the electrical signal SG1 output from the detection unit 42 is amplified by the amplification unit 43a to become the amplification signal SG2. When the electric signal SG1 is amplified to become the amplified signal SG2, it becomes less susceptible to noise. From this point of view, the bearing device 30 is less susceptible to noise when measuring the strain of the non-rotating member on the preload path.
  • the strain sensor 40 can be constructed in the substrate 41. Therefore, in the bearing device 30, the strain sensor 40 can be easily handled (operability is improved).
  • the installation location of the strain sensor 40 can be secured only by forming the flat portion 35ba on the outer peripheral surface 35b, the structure of the outer ring spacer 35 is not significantly changed, and the outer ring spacer 35 is used.
  • the installation location of the strain sensor 40 can be secured without significantly reducing the rigidity of the strain sensor 40.
  • FIG. 6 is a schematic graph showing the relationship between the preload applied to the bearing device 30 and the strain signals SG4a to the strain signals SG4d.
  • the strain generated in the outer ring spacer 35 due to the preload is not uniform along the circumferential direction.
  • the values of the strain signal SG4a to the strain signal SG4d vary. Occurs.
  • the calculation unit 45 calculates the representative value of the strain in the outer ring spacer 35 based on the strain signals SG4a to SG4d, and based on the representative value and the information stored in the storage unit 44. By calculating the preload applied to the outer ring spacer 35, the preload applied to the outer ring spacer 35 can be calculated more accurately.
  • the rolling bearing 32 and the rolling bearing 33 when the shaft 10 is rotated at high speed, the rolling bearing 32 and the rolling bearing 33 generate heat due to an excessive load or damage to the rolling bearing 32 and the rolling bearing 33, and the preload becomes excessive due to the thermal expansion due to the heat generation.
  • the rolling bearing 32 and the rolling bearing 33 may be burnt out.
  • the bearing device 30 has a diagnostic unit 46, the diagnostic unit 46 determines the abnormality of the rolling bearing 32 and the rolling bearing 33 by comparing the preload calculated by the calculation unit 45 with a predetermined threshold value. be able to. As a result, appropriate workarounds can be taken so that the rolling bearing 32 and the rolling bearing 33 do not burn out.
  • the spindle device 100 reduces the rotation speed of the shaft 10 when a signal indicating that the preload calculated by the calculation unit 45 exceeds a predetermined threshold value is output from the diagnosis unit 46.
  • the pump may be controlled to circulate the refrigerant so as to increase the circulation amount of the refrigerant flowing through the flow path defined by the groove 31da and the inner peripheral surface 20c.
  • spindle device 110 the spindle device according to the second embodiment
  • spindle device 110 the differences from the spindle device 100 will be mainly described, and the overlapping description will not be repeated.
  • the spindle device 110 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60.
  • the bearing device 30 has a strain sensor 40. In these respects, the spindle device 110 is common to the spindle device 100.
  • the spindle device 110 is different from the spindle device 100 in terms of the structure of the outer ring spacer 35 and the arrangement of the strain sensor 40.
  • FIG. 7 is a cross-sectional view orthogonal to the rotation center axis A of the spindle device 110.
  • the outer cylinder 20 is not shown.
  • the outer peripheral surface 35b does not have a flat portion 35ba.
  • a recess 35aa is formed on the inner peripheral surface 35a.
  • a plurality of recesses 35aa may be formed at equal intervals along the circumferential direction.
  • the inner peripheral surface 35a is recessed on the outer peripheral surface 35b side in the recess 35aa.
  • the recess 35aa has a bottom surface 35ab.
  • the bottom surface 35ab is a flat surface.
  • the sensor 40 is attached to the bottom surface 35ab.
  • the installation location of the strain sensor 40 can be secured only by forming the recess 35aa on the inner peripheral surface 35a, so that the structure of the outer ring spacer 35 is not significantly changed.
  • the installation location of the strain sensor 40 can be secured without significantly reducing the rigidity of the outer ring spacer 35.
  • spindle device 120 the spindle device according to the third embodiment.
  • spindle device 120 the differences from the spindle device 100 will be mainly described, and the overlapping description will not be repeated.
  • the spindle device 120 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60.
  • the bearing device 30 has a strain sensor 40. In these respects, the spindle device 120 is common to the spindle device 100.
  • the spindle device 120 is different from the spindle device 100 in terms of the structure of the strain sensor 40.
  • FIG. 8 is a schematic structural diagram of the strain sensor 40 in the spindle device 120.
  • the strain sensor 40 has a semiconductor integrated circuit 47.
  • the semiconductor integrated circuit 47 is attached to the substrate 41.
  • a detection unit 42 and a processing unit 43 are monolithically formed. That is, in the strain sensor 40 of the spindle device 120, the detection unit 42 and the processing unit 43 are one-chip ICs (Integrated Circuits).
  • the strain sensor 40 of the spindle device 120 has a semiconductor integrated circuit 47 in which the detection unit 42 and the processing unit 43 are monolithically formed, the strain sensor 40 can be miniaturized, and the outer ring spacer 35 can be used. Will be easier to incorporate.
  • the above embodiment is particularly advantageously applied to bearing devices and spindle devices used in machine tools.
  • 10 shafts 10a 1st end, 10b 2nd end, 10c outer peripheral surface, 10d stepped portion, 20 outer cylinder, 20a 1st end, 20b 2nd end, 20c inner peripheral surface, 30 bearing device, 31 housing, 31a 1st End, 31b 2nd end, 31c inner peripheral surface, 31d outer peripheral surface, 31da groove, 32 rolling bearing, 32a inner ring, 32aa inner peripheral surface, 32ab outer peripheral surface, 32b outer ring, 32ba inner peripheral surface, 32bb outer peripheral surface, 32c rolling element , 32d cage, 33 rolling bearing, 33a inner ring, 33aa inner peripheral surface, 33ab outer peripheral surface, 33b outer ring, 33ba inner peripheral surface, 33bb outer peripheral surface, 33c rolling element, 33d cage, 34 inner ring spacer, 34a inner peripheral surface , 34b outer peripheral surface, 35 outer ring bearing, 35a inner peripheral surface, 35aa recess, 35ab bottom surface, 35b outer peripheral surface, 35ba flat part, 36

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

A bearing device (30) comprises: a first rolling bearing (32) which has a first inner ring (32a), a first outer ring (32b), and a first rolling element (32c) arranged between the first inner ring (32a) and the first outer ring (32b), and to which a preload is applied; a non-rotating member (35) arranged on the preload path; and at least one strain sensor (40) attached to a non-rotating member (34). The first inner ring (32a) is rotatable with respect to the first outer ring (32b) and the non-rotating member (35). The strain sensor (40) has a detection unit (42) that outputs a signal (SG1) corresponding to the strain of the non-rotating member (35), and a processing unit (43) that receives input of the signal (SG1). The processing unit (43) includes an amplification unit (43a) that amplifies the signal (SG1).

Description

軸受装置及びスピンドル装置Bearing equipment and spindle equipment
 本発明は、軸受装置及びスピンドル装置に関する。 The present invention relates to a bearing device and a spindle device.
 特許文献1(特開2003-120666号公報)には、軸受装置が記載されている。特許文献1に記載の軸受装置は、第1転がり軸受と、第2転がり軸受と、内輪間座と、外輪間座と、ひずみセンサとを有している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-120666) describes a bearing device. The bearing device described in Patent Document 1 includes a first rolling bearing, a second rolling bearing, an inner ring spacer, an outer ring spacer, and a strain sensor.
 第1転がり軸受及び第2転がり軸受には、予圧が印加されている。内輪間座は、第1転がり軸受の内輪と第2転がり軸受の内輪との間に配置されている。外輪間座は、第1転がり軸受の外輪と第2転がり軸受の外輪との間に配置されている。ひずみセンサは、外輪間座に取り付けられている。 Preload is applied to the first rolling bearing and the second rolling bearing. The inner ring spacer is arranged between the inner ring of the first rolling bearing and the inner ring of the second rolling bearing. The outer ring spacer is arranged between the outer ring of the first rolling bearing and the outer ring of the second rolling bearing. The strain sensor is attached to the outer ring spacer.
特開2003-120666号公報Japanese Unexamined Patent Publication No. 2003-120666
 特許文献1に記載の軸受装置においては、外輪間座のひずみをひずみセンサで測定しながら第1転がり軸受及び第2転がり軸受に印加される予圧が調整される。これにより、予圧の管理が可能になり、適正な予圧を第1転がり軸受及び第2転がり軸受に印加することが可能になる。 In the bearing device described in Patent Document 1, the preload applied to the first rolling bearing and the second rolling bearing is adjusted while measuring the strain of the outer ring spacer with a strain sensor. As a result, the preload can be managed, and an appropriate preload can be applied to the first rolling bearing and the second rolling bearing.
 しかしながら、特許文献1に記載の軸受装置においては、ひずみセンサの構成の詳細が明らかではない。その結果、ひずみセンサからの出力にノイズが重畳され、外輪間座におけるひずみの測定結果が、ノイズの影響を受けてしまうおそれがある。ひずみの測定結果がノイズの影響を受けると、第1転がり軸受及び第2転がり軸受に印加されている予圧を正確に把握できないおそれがある。 However, in the bearing device described in Patent Document 1, the details of the configuration of the strain sensor are not clear. As a result, noise is superimposed on the output from the strain sensor, and the measurement result of strain in the outer ring spacer may be affected by the noise. If the strain measurement result is affected by noise, the preload applied to the first rolling bearing and the second rolling bearing may not be accurately grasped.
 本発明は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本発明は、ひずみの測定に際してノイズの影響を低減することができる軸受装置及びスピンドル装置を提供するものである。 The present invention has been made in view of the above-mentioned problems of the prior art. More specifically, the present invention provides a bearing device and a spindle device capable of reducing the influence of noise when measuring strain.
 本発明に係る軸受装置は、第1内輪と、第1外輪と、第1内輪と第1外輪との間に配置された第1転動体とを有し、予圧が印加された第1転がり軸受と、予圧の経路上に配置された非回転部材と、非回転部材に取り付けられた少なくとも1以上のひずみセンサとを備える。第1内輪は、第1外輪及び非回転部材に対して回転可能になっている。ひずみセンサは、非回転部材のひずみに応じた信号を出力する検知部と、信号が入力される処理部とを有している。処理部は、信号を増幅する増幅部を含む。 The bearing device according to the present invention has a first rolling bearing having a first inner ring, a first outer ring, and a first rolling element arranged between the first inner ring and the first outer ring, and a preload is applied to the first rolling bearing. A non-rotating member arranged on the preload path, and at least one strain sensor attached to the non-rotating member. The first inner ring is rotatable with respect to the first outer ring and the non-rotating member. The strain sensor has a detection unit that outputs a signal corresponding to the strain of the non-rotating member, and a processing unit that inputs the signal. The processing unit includes an amplification unit that amplifies the signal.
 上記の軸受装置において、処理部は、増幅部において増幅された信号に基づいてひずみを算出する出力部をさらに含んでいてもよい。 In the above bearing device, the processing unit may further include an output unit that calculates strain based on the signal amplified by the amplification unit.
 上記の軸受装置において、ひずみセンサは、非回転部材に取り付けられた基板をさらに有していてもよい。検知部及び処理部は、基板上に取り付けられていてもよい。 In the above bearing device, the strain sensor may further have a substrate attached to a non-rotating member. The detection unit and the processing unit may be mounted on the substrate.
 上記の軸受装置において、ひずみセンサは、検知部及び処理部がモノリシックに形成された半導体集積回路を有していてもよい。 In the above bearing device, the strain sensor may have a semiconductor integrated circuit in which a detection unit and a processing unit are monolithically formed.
 上記の軸受装置は、記憶部と、演算部とをさらに備えていてもよい。記憶部には、ひずみと予圧との関係を示す情報が格納されていてもよい。演算部は、ひずみ及び情報に基づいて予圧を算出するように構成されていてもよい。 The above bearing device may further include a storage unit and a calculation unit. Information indicating the relationship between strain and preload may be stored in the storage unit. The calculation unit may be configured to calculate the preload based on the strain and information.
 上記の軸受装置は、記憶部と、演算部とをさらに備えていてもよい。ひずみセンサの数は、複数であってもよい。演算部は、それぞれのひずみセンサからのひずみに基づいて代表値を算出するように構成されていてもよい。記憶部には、代表値と予圧との関係を示す情報が格納されていてもよい。演算部は、代表値及び情報に基づいて予圧を算出するように構成されていてもよい。 The above bearing device may further include a storage unit and a calculation unit. The number of strain sensors may be plural. The calculation unit may be configured to calculate a representative value based on the strain from each strain sensor. Information indicating the relationship between the representative value and the preload may be stored in the storage unit. The calculation unit may be configured to calculate the preload based on the representative value and the information.
 上記の軸受装置は、診断部をさらに備えていてもよい。診断部は、演算部において算出された予圧と所定の閾値とを比較するように構成されていてもよい。 The above bearing device may further include a diagnostic unit. The diagnostic unit may be configured to compare the preload calculated by the calculation unit with a predetermined threshold value.
 上記の軸受装置は、第2内輪と、第2外輪と、第2内輪と第2外輪との間に配置された第2転動体とを有し、予圧が印加された第2転がり軸受をさらに備えていてもよい。第2内輪は、第2外輪及び非回転部材に対して回転可能になっていてもよい。非回転部材は、第1外輪と第2外輪との間に配置された外輪間座であってもよい。 The above bearing device has a second inner ring, a second outer ring, and a second rolling element arranged between the second inner ring and the second outer ring, and further adds a second rolling bearing to which a preload is applied. You may have. The second inner ring may be rotatable with respect to the second outer ring and the non-rotating member. The non-rotating member may be an outer ring spacer arranged between the first outer ring and the second outer ring.
 上記の軸受装置において、外輪間座は、平坦部を含む外周面を有していてもよい。ひずみセンサは、平坦部に取り付けられていてもよい。 In the above bearing device, the outer ring spacer may have an outer peripheral surface including a flat portion. The strain sensor may be mounted on a flat surface.
 上記の軸受装置において、外輪間座は、内周面と、外周面とを有していてもよい。内周面には、外周面側に向かって窪む凹部が形成されていてもよい。凹部の底面は、平坦面になっていてもよい。ひずみセンサは、平坦面に取り付けられていてもよい。 In the above bearing device, the outer ring spacer may have an inner peripheral surface and an outer peripheral surface. The inner peripheral surface may be formed with a recess that is recessed toward the outer peripheral surface side. The bottom surface of the recess may be a flat surface. The strain sensor may be mounted on a flat surface.
 本発明に係るスピンドル装置は、上記の軸受装置と、第1転がり軸受により回転可能に支持される軸と、軸を回転させるモータとを備える。 The spindle device according to the present invention includes the above-mentioned bearing device, a shaft rotatably supported by the first rolling bearing, and a motor for rotating the shaft.
 本発明に係る軸受装置及びスピンドル装置によると、ひずみの測定に際してノイズの影響を低減することができる。 According to the bearing device and spindle device according to the present invention, the influence of noise can be reduced when measuring strain.
スピンドル装置100の断面図である。It is sectional drawing of the spindle device 100. 図1のIIにおける拡大図である。It is an enlarged view in II of FIG. 図2のIII-IIIにおける断面図である。It is sectional drawing in III-III of FIG. スピンドル装置100におけるひずみセンサ40の模式的な構造図である。It is a schematic structural drawing of the strain sensor 40 in the spindle device 100. スピンドル装置100におけるひずみセンサ40のブロック図である。It is a block diagram of the strain sensor 40 in the spindle device 100. 軸受装置30に印加される予圧とひずみ信号SG4a~ひずみ信号SG4dとの関係を示す模式的なグラフである。6 is a schematic graph showing the relationship between the preload applied to the bearing device 30 and the strain signals SG4a to the strain signals SG4d. スピンドル装置110の回転中心軸Aに直交する断面図である。It is sectional drawing which is orthogonal to the rotation center axis A of the spindle device 110. スピンドル装置120におけるひずみセンサ40の模式的な構造図である。It is a schematic structural drawing of the strain sensor 40 in the spindle device 120.
 実施形態の詳細を、図面を参照しながら説明する。以下の図面においては、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。 The details of the embodiment will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate explanations will not be repeated.
 (第1実施形態)
 以下に、第1実施形態に係るスピンドル装置(以下においては、「スピンドル装置100」とする)を説明する。
(First Embodiment)
Hereinafter, the spindle device according to the first embodiment (hereinafter referred to as “spindle device 100”) will be described.
 <スピンドル装置100の全体構成>
 図1は、スピンドル装置100の断面図である。図2は、図1のIIにおける拡大図である。スピンドル装置100は、例えば工作機械に用いられるビルトインモータ方式のスピンドル装置である。図1及び図2に示されるように、スピンドル装置100は、軸10と、外筒20と、軸受装置30と、モータ50と、軸受装置60とを有している。
<Overall configuration of spindle device 100>
FIG. 1 is a cross-sectional view of the spindle device 100. FIG. 2 is an enlarged view of FIG. 1 II. The spindle device 100 is a built-in motor type spindle device used in, for example, a machine tool. As shown in FIGS. 1 and 2, the spindle device 100 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60.
 <軸10の詳細構成>
 軸10は、第1端10aと、第2端10bとを有している。第1端10a及び第2端10bは、軸10の回転中心軸Aに沿う方向における端である。以下においては、回転中心軸Aに沿う方向を、「軸方向」という。第2端10bは、第1端10aの反対側の端である。第1端10aには、エンドミル等の切削工具が取り付けられる。軸10は、外周面10cを有している。軸10は、外周面10cにおいて、段差部10dを有している。段差部10dにおける軸10の外径は、段差部10dの第2端10b側に隣接する部分における軸10の外径よりも大きくなっている。段差部10dは、第1端10a側に位置している。
<Detailed configuration of axis 10>
The shaft 10 has a first end 10a and a second end 10b. The first end 10a and the second end 10b are ends of the shaft 10 in the direction along the rotation center axis A. In the following, the direction along the rotation center axis A is referred to as "axial direction". The second end 10b is the opposite end of the first end 10a. A cutting tool such as an end mill is attached to the first end 10a. The shaft 10 has an outer peripheral surface 10c. The shaft 10 has a stepped portion 10d on the outer peripheral surface 10c. The outer diameter of the shaft 10 in the step portion 10d is larger than the outer diameter of the shaft 10 in the portion adjacent to the second end 10b side of the step portion 10d. The step portion 10d is located on the first end 10a side.
 <外筒20の詳細構成>
 外筒20は、筒状形状を有している。外筒20は、軸方向に沿って延在している。外筒20の内部には、軸10が収納されている。外筒20は、軸方向において、第1端20aと、第2端20bとを有している。第1端20aは、第1端10a側の端である。第2端20bは、第1端20aの反対側の端である。外筒20は、内周面20cを有している。
<Detailed configuration of outer cylinder 20>
The outer cylinder 20 has a tubular shape. The outer cylinder 20 extends along the axial direction. The shaft 10 is housed inside the outer cylinder 20. The outer cylinder 20 has a first end 20a and a second end 20b in the axial direction. The first end 20a is an end on the first end 10a side. The second end 20b is the opposite end of the first end 20a. The outer cylinder 20 has an inner peripheral surface 20c.
 <軸受装置30の詳細構成>
 軸受装置30は、ハウジング31と、転がり軸受32と、転がり軸受33と、内輪間座34と、外輪間座35と、蓋部材36と、ナット37と、間座38と、ひずみセンサ40とを有している。
<Detailed configuration of bearing device 30>
The bearing device 30 includes a housing 31, a rolling bearing 32, a rolling bearing 33, an inner ring spacer 34, an outer ring spacer 35, a lid member 36, a nut 37, a spacer 38, and a strain sensor 40. Have.
 ハウジング31は、筒状形状を有している。ハウジング31は、軸方向において、第1端31aと、第2端31bとを有している。第1端31aは第1端10a側の端であり、第2端31bは第1端31aの反対側の端である。ハウジング31は、内周面31cと、外周面31dとを有している。ハウジング31は、外周面31dが内周面20cと接するように配置されている。外周面31dには、溝31daが形成されている。溝31daと内周面20cとにより、冷媒が流れる流路が画されている。 The housing 31 has a tubular shape. The housing 31 has a first end 31a and a second end 31b in the axial direction. The first end 31a is the end on the side of the first end 10a, and the second end 31b is the end on the opposite side of the first end 31a. The housing 31 has an inner peripheral surface 31c and an outer peripheral surface 31d. The housing 31 is arranged so that the outer peripheral surface 31d is in contact with the inner peripheral surface 20c. A groove 31da is formed on the outer peripheral surface 31d. A flow path through which the refrigerant flows is defined by the groove 31da and the inner peripheral surface 20c.
 転がり軸受32は、例えばアンギュラ玉軸受である。転がり軸受32は、軸10を回転中心軸A周りに回転可能に支持している。転がり軸受32は、内輪32aと、外輪32bと、転動体32cと、保持器32dとを有している。 The rolling bearing 32 is, for example, an angular contact ball bearing. The rolling bearing 32 rotatably supports the shaft 10 around the rotation center axis A. The rolling bearing 32 has an inner ring 32a, an outer ring 32b, a rolling element 32c, and a cage 32d.
 内輪32aは、内周面32aaと、外周面32abを有している。内輪32aは、軸10に取り付けられている。より具体的には、内輪32aは、内周面32aaが外周面10cに接するように、軸10に取り付けられている。内輪32aは、段差部10dの第2端10b側に隣接して配置されている。内輪32aは、軸10の回転に伴い、外輪32b及び外輪間座35に対して相対的に回転する。 The inner ring 32a has an inner peripheral surface 32aa and an outer peripheral surface 32ab. The inner ring 32a is attached to the shaft 10. More specifically, the inner ring 32a is attached to the shaft 10 so that the inner peripheral surface 32aa is in contact with the outer peripheral surface 10c. The inner ring 32a is arranged adjacent to the second end 10b side of the step portion 10d. The inner ring 32a rotates relative to the outer ring 32b and the outer ring spacer 35 as the shaft 10 rotates.
 外輪32bは、内周面32baと、外周面32bbとを有している。外輪32bは、ハウジング31に取り付けられている。より具体的には、外輪32bは、外周面32bbが内周面31cに接するように、ハウジング31に取り付けられている。外輪32bは、内周面32baが外周面31abに対向するように配置されている。 The outer ring 32b has an inner peripheral surface 32ba and an outer peripheral surface 32bb. The outer ring 32b is attached to the housing 31. More specifically, the outer ring 32b is attached to the housing 31 so that the outer peripheral surface 32bb is in contact with the inner peripheral surface 31c. The outer ring 32b is arranged so that the inner peripheral surface 32ba faces the outer peripheral surface 31ab.
 転動体32cは、内輪32aと外輪32bとの間に配置されている。より具体的には、転動体32cは、外周面32ab及び内周面32baに接するように配置されている。転動体32cの数は、複数である。 The rolling element 32c is arranged between the inner ring 32a and the outer ring 32b. More specifically, the rolling element 32c is arranged so as to be in contact with the outer peripheral surface 32ab and the inner peripheral surface 32ba. The number of rolling elements 32c is plural.
 保持器32dは、内輪32aと外輪32bとの間に配置されている。保持器32dは、周方向における転動体32cの間隔が一定範囲内になるように保持されている。周方向とは、回転中心軸Aを中心とする円周に沿う方向である。 The cage 32d is arranged between the inner ring 32a and the outer ring 32b. The cage 32d is held so that the distance between the rolling elements 32c in the circumferential direction is within a certain range. The circumferential direction is a direction along the circumference centered on the rotation center axis A.
 転がり軸受33は、例えばアンギュラ玉軸受である。転がり軸受33は、軸10を回転中心軸A周りに回転可能に支持している。転がり軸受33は、内輪33aと、外輪33bと、転動体33cと、保持器33dとを有している。 The rolling bearing 33 is, for example, an angular contact ball bearing. The rolling bearing 33 rotatably supports the shaft 10 around the rotation center axis A. The rolling bearing 33 has an inner ring 33a, an outer ring 33b, a rolling element 33c, and a cage 33d.
 内輪33aは、内周面33aaと、外周面33abを有している。内輪33aは、軸10に取り付けられている。より具体的には、内輪33aは、内周面33aaが外周面10cに接するように、軸10に取り付けられている。内輪33aは、軸10の回転に伴い、外輪33b及び外輪間座35に対して相対的に回転する。 The inner ring 33a has an inner peripheral surface 33aa and an outer peripheral surface 33ab. The inner ring 33a is attached to the shaft 10. More specifically, the inner ring 33a is attached to the shaft 10 so that the inner peripheral surface 33aa is in contact with the outer peripheral surface 10c. The inner ring 33a rotates relative to the outer ring 33b and the outer ring spacer 35 as the shaft 10 rotates.
 外輪33bは、内周面33baと、外周面33bbとを有している。外輪33bは、ハウジング31に取り付けられている。より具体的には、外輪33bは、外周面33bbが内周面31cに接するように、ハウジング31に取り付けられている。外輪33bは、内周面33baが外周面31abに対向するように配置されている。 The outer ring 33b has an inner peripheral surface 33ba and an outer peripheral surface 33bb. The outer ring 33b is attached to the housing 31. More specifically, the outer ring 33b is attached to the housing 31 so that the outer peripheral surface 33bb is in contact with the inner peripheral surface 31c. The outer ring 33b is arranged so that the inner peripheral surface 33ba faces the outer peripheral surface 31ab.
 転動体33cは、内輪33aと外輪33bとの間に配置されている。より具体的には、転動体33cは、外周面33ab及び内周面33baに接するように配置されている。転動体33cの数は、複数である。 The rolling element 33c is arranged between the inner ring 33a and the outer ring 33b. More specifically, the rolling element 33c is arranged so as to be in contact with the outer peripheral surface 33ab and the inner peripheral surface 33ba. The number of rolling elements 33c is plural.
 保持器33dは、内輪33aと外輪33bとの間に配置されている。保持器33dは、周方向における転動体33cの間隔が一定範囲内になるように保持されている。 The cage 33d is arranged between the inner ring 33a and the outer ring 33b. The cage 33d is held so that the distance between the rolling elements 33c in the circumferential direction is within a certain range.
 転がり軸受32及び転がり軸受33は、背面組み合わせ(DB組み合わせ)で設置されている。転がり軸受32及び転がり軸受33は、正面組み合わせ(DF組み合わせ)で設置されていてもよい。 The rolling bearing 32 and the rolling bearing 33 are installed in a back combination (DB combination). The rolling bearing 32 and the rolling bearing 33 may be installed in a front combination (DF combination).
 内輪間座34は、筒状形状を有している。内輪間座34は、軸方向に沿って延在している。内輪間座34は、内周面34aと、外周面34bとを有している。内輪間座34は、軸10に取り付けられている。より具体的には、内輪間座34は、内周面34aが外周面10cに接するように軸10に取り付けられている。内輪間座34は、軸方向において、内輪32aと内輪33aとの間に配置されている。 The inner ring spacer 34 has a tubular shape. The inner ring spacer 34 extends along the axial direction. The inner ring spacer 34 has an inner peripheral surface 34a and an outer peripheral surface 34b. The inner ring spacer 34 is attached to the shaft 10. More specifically, the inner ring spacer 34 is attached to the shaft 10 so that the inner peripheral surface 34a is in contact with the outer peripheral surface 10c. The inner ring spacer 34 is arranged between the inner ring 32a and the inner ring 33a in the axial direction.
 外輪間座35は、筒状形状を有している。外輪間座35は、軸方向に沿って延在している。外輪間座35は、内周面35aと、外周面35bとを有している。外輪間座35は、内周面35aが外周面34bと対向するとともに、外周面35bが内周面31cに対向するように配置されている。外輪間座35は、軸方向において、外輪32bと外輪33bとの間に配置されている。 The outer ring spacer 35 has a tubular shape. The outer ring spacer 35 extends along the axial direction. The outer ring spacer 35 has an inner peripheral surface 35a and an outer peripheral surface 35b. The outer ring spacer 35 is arranged so that the inner peripheral surface 35a faces the outer peripheral surface 34b and the outer peripheral surface 35b faces the inner peripheral surface 31c. The outer ring spacer 35 is arranged between the outer ring 32b and the outer ring 33b in the axial direction.
 図3は、図2のIII-IIIにおける断面図である。なお、図3中において、外筒20及びハウジング31は、図示が省略されている。図3に示されるように、外周面35bは、平坦部35baを有している。平坦部35baの数は、複数であることが好ましい。図3の例において、平坦部35baの数は、4である。但し、平坦部35baの数は、これに限られない。平坦部35baの数は、例えば2であってもよい。平坦部35baは、周方向に沿って等間隔で形成されていることが好ましい。 FIG. 3 is a cross-sectional view taken along the line III-III of FIG. In FIG. 3, the outer cylinder 20 and the housing 31 are not shown. As shown in FIG. 3, the outer peripheral surface 35b has a flat portion 35ba. The number of flat portions 35ba is preferably a plurality. In the example of FIG. 3, the number of flat portions 35ba is 4. However, the number of flat portions 35ba is not limited to this. The number of flat portions 35ba may be 2, for example. The flat portions 35ba are preferably formed at equal intervals along the circumferential direction.
 図1及び図2に示されるように、蓋部材36は、第1部分36aと、第2部分36bとを有している。蓋部材36は、第1部分36aにおいて、ハウジング31に取り付けられている。第2部分36bは、外輪32bに接するように軸方向に沿って第1部分36aから延在している。 As shown in FIGS. 1 and 2, the lid member 36 has a first portion 36a and a second portion 36b. The lid member 36 is attached to the housing 31 in the first portion 36a. The second portion 36b extends from the first portion 36a along the axial direction so as to be in contact with the outer ring 32b.
 ナット37は、外周面10cに螺合されている。ナット37は、転がり軸受33よりも第2端10b側に位置している。 The nut 37 is screwed onto the outer peripheral surface 10c. The nut 37 is located closer to the second end 10b than the rolling bearing 33.
 間座38は、筒状形状を有している。間座38は、内周面38aと、外周面38bとを有している。間座38は、軸10に取り付けられている。より具体的には、間座38は、内周面38aが外周面10cに接するように軸10に取り付けられている。外周面38bは、内周面31cに対向している。間座38は、軸方向において、内輪33aとナット37との間に配置されている。 The spacer 38 has a tubular shape. The spacer 38 has an inner peripheral surface 38a and an outer peripheral surface 38b. The spacer 38 is attached to the shaft 10. More specifically, the spacer 38 is attached to the shaft 10 so that the inner peripheral surface 38a is in contact with the outer peripheral surface 10c. The outer peripheral surface 38b faces the inner peripheral surface 31c. The spacer 38 is arranged between the inner ring 33a and the nut 37 in the axial direction.
 ナット37を第1端10a側に向かって移動させることにより、内輪33aには、予圧が印加される。ナット37を第1端10a側に向かって移動させることにより、内輪33a及び転動体33cを介して、外輪33bに予圧が印加される。ナット37を第1端10a側に向かって移動させることにより、内輪33a及び内輪間座34を介して、内輪32aに予圧が印加される。ナット37を第1端10a側に向かって移動させることにより、内輪33a、転動体33c、外輪33b及び外輪間座35を介して、外輪32bに予圧が印加される。すなわち、外輪間座35は、予圧の経路上に配置された非回転部材である。 By moving the nut 37 toward the first end 10a, a preload is applied to the inner ring 33a. By moving the nut 37 toward the first end 10a, a preload is applied to the outer ring 33b via the inner ring 33a and the rolling element 33c. By moving the nut 37 toward the first end 10a, a preload is applied to the inner ring 32a via the inner ring 33a and the inner ring spacer 34. By moving the nut 37 toward the first end 10a, a preload is applied to the outer ring 32b via the inner ring 33a, the rolling element 33c, the outer ring 33b, and the outer ring spacer 35. That is, the outer ring spacer 35 is a non-rotating member arranged on the preload path.
 <ひずみセンサ40の詳細構成>
 ひずみセンサ40は、外輪間座35に取り付けられている。より具体的には、ひずみセンサ40は、平坦部35baに取り付けられている。ひずみセンサ40の数は、好ましくは複数である。ひずみセンサ40の数は、好ましくは、平坦部35baの数に等しい。
<Detailed configuration of strain sensor 40>
The strain sensor 40 is attached to the outer ring spacer 35. More specifically, the strain sensor 40 is attached to the flat portion 35ba. The number of strain sensors 40 is preferably a plurality. The number of strain sensors 40 is preferably equal to the number of flat portions 35ba.
 図4は、スピンドル装置100におけるひずみセンサ40の模式的な構造図である。図4に示されるように、ひずみセンサ40は、基板41と、検知部42と、処理部43とを有している。 FIG. 4 is a schematic structural diagram of the strain sensor 40 in the spindle device 100. As shown in FIG. 4, the strain sensor 40 includes a substrate 41, a detection unit 42, and a processing unit 43.
 基板41は、平坦部35baに接着等により固定されている。基板41は、熱膨張係数が外輪間座35と同程度の材料により形成されていることが好ましい。検知部42及び処理部43は、基板41に取り付けられている。検知部42及び処理部43は、例えばリード線(図示せず)により電気的に接続されている。 The substrate 41 is fixed to the flat portion 35ba by adhesion or the like. The substrate 41 is preferably made of a material having a coefficient of thermal expansion similar to that of the outer ring spacer 35. The detection unit 42 and the processing unit 43 are attached to the substrate 41. The detection unit 42 and the processing unit 43 are electrically connected by, for example, a lead wire (not shown).
 検知部42は、例えばひずみゲージである。検知部42は、周囲の温度変化により検知部からの出力がドリフトすることを避けるため、好ましくは、抵抗温度係数(温度変化に対して電気抵抗値が変動する割合)が小さい材料により形成されている。図5は、スピンドル装置100におけるひずみセンサ40のブロック図である。図5に示されるように、検知部42は、外輪間座35のひずみに応じた電気信号SG1を出力する。より具体的には、検知部42は、軸方向における外輪間座35のひずみに応じた電気信号SG1を出力する。 The detection unit 42 is, for example, a strain gauge. The detection unit 42 is preferably formed of a material having a small resistance temperature coefficient (the rate at which the electric resistance value fluctuates with respect to a temperature change) in order to prevent the output from the detection unit from drifting due to a change in ambient temperature. There is. FIG. 5 is a block diagram of the strain sensor 40 in the spindle device 100. As shown in FIG. 5, the detection unit 42 outputs an electric signal SG1 corresponding to the strain of the outer ring spacer 35. More specifically, the detection unit 42 outputs an electric signal SG1 according to the strain of the outer ring spacer 35 in the axial direction.
 処理部43には、検知部42から出力された電気信号SG1が入力される。処理部43は、増幅部43aと、出力部43bとを有している。増幅部43aは、電気信号SG1を増幅し、増幅信号SG2を出力する。増幅部43aは、例えば、アンプ回路である。出力部43bは、増幅信号SG2に基づいて外輪間座35のひずみを算出するように構成されている。より具体的には、出力部43bは、CPU(Central Processing Unit)と、ADC(Analog to Digital Converter)回路とを有している。出力部43bは、ADC回路において増幅信号SG2をデジタル化してデジタル信号SG3を生成し、CPUにおいてデジタル信号SG3に対する信号処理を行うことにより、外輪間座35のひずみを算出する。なお、増幅信号SG2からデジタル信号SG3を生成することにより、ノイズの影響をさらに低減することができる。出力部43bは、外輪間座35のひずみを示すひずみ信号SG4を出力する。 The electric signal SG1 output from the detection unit 42 is input to the processing unit 43. The processing unit 43 has an amplification unit 43a and an output unit 43b. The amplification unit 43a amplifies the electric signal SG1 and outputs the amplification signal SG2. The amplifier unit 43a is, for example, an amplifier circuit. The output unit 43b is configured to calculate the strain of the outer ring spacer 35 based on the amplification signal SG2. More specifically, the output unit 43b has a CPU (Central Processing Unit) and an ADC (Analog to Digital Converter) circuit. The output unit 43b calculates the distortion of the outer ring spacer 35 by digitizing the amplification signal SG2 in the ADC circuit to generate the digital signal SG3 and performing signal processing on the digital signal SG3 in the CPU. By generating the digital signal SG3 from the amplified signal SG2, the influence of noise can be further reduced. The output unit 43b outputs a strain signal SG4 indicating the strain of the outer ring spacer 35.
 ひずみセンサ40は、周囲の温度変化の影響を補正するため、温度センサ(図示せず)をさらに有していてもよい。出力部43bは、温度センサにより検知された周囲の温度に基づいて、算出されるひずみの値を補正してもよい。 The strain sensor 40 may further have a temperature sensor (not shown) in order to compensate for the influence of ambient temperature changes. The output unit 43b may correct the calculated strain value based on the ambient temperature detected by the temperature sensor.
 軸受装置30は、記憶部44と、演算部45とをさらに有していてもよい。記憶部44には、外輪間座35におけるひずみと軸受装置30に印加される予圧との関係を示す情報が格納されている。この情報は、予め測定又は解析された外輪間座35におけるひずみと軸受装置30に印加される予圧との間の関係式又はテーブルである。演算部45は、ひずみ信号SG4及び記憶部44に格納されている情報に基づいて、軸受装置30に印加されている予圧を算出する。 The bearing device 30 may further include a storage unit 44 and a calculation unit 45. The storage unit 44 stores information indicating the relationship between the strain in the outer ring spacer 35 and the preload applied to the bearing device 30. This information is a relational expression or table between the strain in the outer ring spacer 35 measured or analyzed in advance and the preload applied to the bearing device 30. The calculation unit 45 calculates the preload applied to the bearing device 30 based on the information stored in the strain signal SG4 and the storage unit 44.
 軸受装置30に含まれている4つのひずみセンサ40から出力される4つのひずみ信号SG4を、それぞれ、ひずみ信号SG4a、ひずみ信号SG4b、ひずみ信号SG4c及びひずみ信号SG4dとする。演算部45は、ひずみ信号SG4a~ひずみ信号SG4dに基づいて、外輪間座35におけるひずみの代表値を算出するように構成されていてもよい。 The four strain signals SG4 output from the four strain sensors 40 included in the bearing device 30 are the strain signal SG4a, the strain signal SG4b, the strain signal SG4c, and the strain signal SG4d, respectively. The calculation unit 45 may be configured to calculate a representative value of strain in the outer ring spacer 35 based on the strain signals SG4a to SG4d.
 外輪間座35におけるひずみの代表値は、例えば、ひずみ信号SG4a~ひずみ信号SG4dが示すひずみの値の平均値、ひずみ信号SG4a~ひずみ信号SG4dが示すひずみの値の最大値、ひずみ信号SG4a~ひずみ信号SG4dが示すひずみの値の最小値、ひずみ信号SG4a~ひずみ信号SG4dが示すひずみの値の最大値及び最小値の差又はひずみ信号SG4a~ひずみ信号SG4dが示すひずみの値の合計値である。 The representative values of the strain in the outer ring spacer 35 are, for example, the average value of the strain values indicated by the strain signal SG4a to the strain signal SG4d, the maximum value of the strain value indicated by the strain signal SG4a to the strain signal SG4d, and the strain signal SG4a to the strain. It is the minimum value of the strain value indicated by the signal SG4d, the difference between the maximum and minimum values of the strain value indicated by the strain signal SG4a to the strain signal SG4d, or the total value of the strain values indicated by the strain signal SG4a to the strain signal SG4d.
 記憶部44には、上記の代表値と軸受装置30に印加される予圧との関係を示す情報が格納されていてもよい。演算部45は、上記の代表値及び記憶部44に格納されている情報に基づいて、軸受装置30に印加されている予圧を算出してもよい。演算部45は、算出される予圧の値の変動を抑制するため、ひずみ信号SG4a~ひずみ信号SG4dに対してローパスフィルタ処理を行った上で軸受装置30に印加されている予圧を算出してもよく、算出された予圧に対してローパスフィルタ処理を行ってもよい。 The storage unit 44 may store information indicating the relationship between the above representative value and the preload applied to the bearing device 30. The calculation unit 45 may calculate the preload applied to the bearing device 30 based on the above representative value and the information stored in the storage unit 44. In order to suppress fluctuations in the calculated preload value, the calculation unit 45 may calculate the preload applied to the bearing device 30 after performing low-pass filter processing on the strain signals SG4a to SG4d. Often, a low-pass filter process may be performed on the calculated preload.
 軸受装置30は、診断部46をさらに有していてもよい。診断部46は、演算部45により算出された予圧と所定の閾値とを比較するように構成されている。診断部46は、演算部45により算出された予圧が所定の閾値を超える場合、転がり軸受32又は転がり軸受33に異常が発生していることを示す信号を出力してもよい。 The bearing device 30 may further include a diagnostic unit 46. The diagnosis unit 46 is configured to compare the preload calculated by the calculation unit 45 with a predetermined threshold value. When the preload calculated by the calculation unit 45 exceeds a predetermined threshold value, the diagnosis unit 46 may output a signal indicating that an abnormality has occurred in the rolling bearing 32 or the rolling bearing 33.
 記憶部44は、例えばマイクロコントローラに搭載されているメモリ回路により構成されており、演算部45及び診断部46は例えばマイクロコントローラに搭載されているCPUにより構成されている。 The storage unit 44 is composed of, for example, a memory circuit mounted on the microcontroller, and the arithmetic unit 45 and the diagnostic unit 46 are composed of, for example, a CPU mounted on the microcontroller.
 ひずみ信号SG4a及びひずみ信号SG4cを、回転中心軸Aに関して互いに対称な位置にあるひずみセンサ40からのひずみ信号SG4とし、ひずみ信号SG4b及びひずみ信号SG4dを、回転中心軸Aに関して互いに対称な位置にあるひずみセンサ40からのひずみ信号SG4とする。演算部45は、ひずみ信号SG4a及びひずみ信号SG4cに基づいて外輪間座35に加わる上下方向の曲げモーメント荷重を算出するとともに、ひずみ信号SG4b及びひずみ信号SG4dに基づいて外輪間座35に加わる左右方向の曲げモーメント荷重を算出するように構成されていてもよい。これにより、第1端10aに取り付けられた切削工具に印加されている負荷を把握することが可能になる。 The strain signal SG4a and the strain signal SG4c are the strain signals SG4 from the strain sensor 40 located at positions symmetrical with respect to the rotation center axis A, and the strain signal SG4b and the strain signal SG4d are located at positions symmetrical with respect to the rotation center axis A. Let the strain signal SG4 from the strain sensor 40. The calculation unit 45 calculates the bending moment load in the vertical direction applied to the outer ring spacer 35 based on the strain signal SG4a and the strain signal SG4c, and the lateral direction applied to the outer ring spacer 35 based on the strain signal SG4b and the strain signal SG4d. It may be configured to calculate the bending moment load of. This makes it possible to grasp the load applied to the cutting tool attached to the first end 10a.
 外輪間座35には、ひずみセンサ40以外のセンサが取り付けられていてもよい。例えば、外輪間座35には、内輪32a(内輪33a)と対向するように熱流束センサ(図示せず)が取り付けられていてもよい。これにより、転がり軸受32及び転がり軸受33の温度上昇を早期に検出することができるため、診断部46における比較結果と合わせて考慮することにより、転がり軸受32及び転がり軸受33の異常をより総合的に判断することが可能となる。 A sensor other than the strain sensor 40 may be attached to the outer ring spacer 35. For example, a heat flux sensor (not shown) may be attached to the outer ring spacer 35 so as to face the inner ring 32a (inner ring 33a). As a result, the temperature rise of the rolling bearing 32 and the rolling bearing 33 can be detected at an early stage. Therefore, by considering this together with the comparison result in the diagnostic unit 46, the abnormalities of the rolling bearing 32 and the rolling bearing 33 can be more comprehensively detected. It becomes possible to judge.
 <モータ50の詳細構成>
 図1に示されるように、モータ50は、筒状部材51と、ロータ52と、ステータ53とを有している。
<Detailed configuration of motor 50>
As shown in FIG. 1, the motor 50 includes a tubular member 51, a rotor 52, and a stator 53.
 筒状部材51は、筒状形状を有している。筒状部材51は、軸方向に沿って延在している。筒状部材51は、内周面51aと、外周面51bとを有している。筒状部材51は、軸10に取り付けられている。より具体的には、筒状部材51は、内周面51aが外周面10cに接するように軸10に取り付けられている。筒状部材51は、ナット37よりも第2端10b側に位置している。 The tubular member 51 has a tubular shape. The tubular member 51 extends along the axial direction. The tubular member 51 has an inner peripheral surface 51a and an outer peripheral surface 51b. The tubular member 51 is attached to the shaft 10. More specifically, the tubular member 51 is attached to the shaft 10 so that the inner peripheral surface 51a is in contact with the outer peripheral surface 10c. The tubular member 51 is located closer to the second end 10b than the nut 37.
 ロータ52は、外周面51bに取り付けられている。ステータ53は、ロータ52と対向するように、内周面20cに取り付けられている。ステータ53に流れる電流の方向が順次切り替えられることにより、ロータ52に対する回転力が発生し、当該回転力により軸10が回転中心軸A周りに回転する。 The rotor 52 is attached to the outer peripheral surface 51b. The stator 53 is attached to the inner peripheral surface 20c so as to face the rotor 52. By sequentially switching the direction of the current flowing through the stator 53, a rotational force is generated on the rotor 52, and the rotational force causes the shaft 10 to rotate around the rotation center axis A.
 <軸受装置60の詳細構成>
 軸受装置60は、端部材61と、転がり軸受62と、内輪押さえ部材63と、位置決め部材64と、位置決め部材65と、ナット66とを有している。
<Detailed configuration of bearing device 60>
The bearing device 60 includes an end member 61, a rolling bearing 62, an inner ring holding member 63, a positioning member 64, a positioning member 65, and a nut 66.
 端部材61は、第2端20bに取り付けられている。端部材61には、貫通穴61aが形成されている。貫通穴61aは、軸方向に沿って端部材61を貫通している。貫通穴61aには、軸10が挿通されている。 The end member 61 is attached to the second end 20b. A through hole 61a is formed in the end member 61. The through hole 61a penetrates the end member 61 along the axial direction. A shaft 10 is inserted through the through hole 61a.
 転がり軸受62は、例えば円筒ころ軸受である。転がり軸受62は、軸10を回転中心軸A周りに回転可能に支持している。転がり軸受62は、内輪が筒状部材51の第2端10b側の端に接するように配置されている。転がり軸受62の内輪は、軸10に取り付けられており、転がり軸受62の外輪は、貫通穴61aの内壁面に取り付けられている。 The rolling bearing 62 is, for example, a cylindrical roller bearing. The rolling bearing 62 rotatably supports the shaft 10 around the rotation center axis A. The rolling bearing 62 is arranged so that the inner ring is in contact with the end of the tubular member 51 on the second end 10b side. The inner ring of the rolling bearing 62 is attached to the shaft 10, and the outer ring of the rolling bearing 62 is attached to the inner wall surface of the through hole 61a.
 内輪押さえ部材63は、転がり軸受62よりも第2端10bに近い位置において軸10に取り付けられている。内輪押さえ部材63は、第2端10b側から転がり軸受62の内輪に接している。位置決め部材64は、端部材61に取り付けられている。位置決め部材64は、第2端10b側から転がり軸受62の外輪に接している。位置決め部材65は、軸方向において位置決め部材64との間で転がり軸受62の外輪を挟み込むように、端部材61に取り付けられている。転がり軸受62の外輪は、位置決め部材64及び位置決め部材65に挟み込まれている。軸10の伸縮に応じて、転がり軸受62の内輪は、軸10と一体的に貫通穴61aに沿って軸方向に摺動する。 The inner ring holding member 63 is attached to the shaft 10 at a position closer to the second end 10b than the rolling bearing 62. The inner ring holding member 63 is in contact with the inner ring of the rolling bearing 62 from the second end 10b side. The positioning member 64 is attached to the end member 61. The positioning member 64 is in contact with the outer ring of the rolling bearing 62 from the second end 10b side. The positioning member 65 is attached to the end member 61 so as to sandwich the outer ring of the rolling bearing 62 with the positioning member 64 in the axial direction. The outer ring of the rolling bearing 62 is sandwiched between the positioning member 64 and the positioning member 65. The inner ring of the rolling bearing 62 slides in the axial direction along the through hole 61a integrally with the shaft 10 according to the expansion and contraction of the shaft 10.
 ナット66は、転がり軸受62の内輪との間で内輪押さえ部材63を挟み込むように、外周面10cに螺合されている。すなわち、ナット66により、内輪押さえ部材63の脱落が防止されている。 The nut 66 is screwed onto the outer peripheral surface 10c so as to sandwich the inner ring holding member 63 with the inner ring of the rolling bearing 62. That is, the nut 66 prevents the inner ring holding member 63 from falling off.
 <軸受装置30の効果>
 軸受装置30においては、予圧の経路上にある非回転部材(外輪間座35)に、検知部42と処理部43とを有するひずみセンサ40が取り付けられている。すなわち、軸受装置30においては、検知部42及び処理部43がともに同一の部材に取り付けられているため、検知部42と処理部43との間を接続しているリード線にノイズが乗りにくい。さらに、処理部43は、増幅部43aを有しており、増幅部43aにおいて検知部42から出力された電気信号SG1が増幅されて増幅信号SG2となる。電気信号SG1が増幅されて増幅信号SG2になると、ノイズに対する影響を受けにくくなる。このような観点から、軸受装置30においては、予圧の経路上にある非回転部材のひずみ測定に際し、ノイズの影響を受けにくい。
<Effect of bearing device 30>
In the bearing device 30, a strain sensor 40 having a detection unit 42 and a processing unit 43 is attached to a non-rotating member (outer ring spacer 35) on the preload path. That is, in the bearing device 30, since the detection unit 42 and the processing unit 43 are both attached to the same member, it is difficult for noise to get on the lead wire connecting the detection unit 42 and the processing unit 43. Further, the processing unit 43 has an amplification unit 43a, and the electrical signal SG1 output from the detection unit 42 is amplified by the amplification unit 43a to become the amplification signal SG2. When the electric signal SG1 is amplified to become the amplified signal SG2, it becomes less susceptible to noise. From this point of view, the bearing device 30 is less susceptible to noise when measuring the strain of the non-rotating member on the preload path.
 軸受装置30においては、基板41に検知部42及び処理部43が取り付けられているため、基板41内にひずみセンサ40を構築することができる。そのため、軸受装置30においては、ひずみセンサ40の取り扱いが容易になる(操作性が向上する)。 In the bearing device 30, since the detection unit 42 and the processing unit 43 are attached to the substrate 41, the strain sensor 40 can be constructed in the substrate 41. Therefore, in the bearing device 30, the strain sensor 40 can be easily handled (operability is improved).
 軸受装置30においては、平坦部35baを外周面35bに形成するだけでひずみセンサ40の設置場所を確保することができるため、外輪間座35の構造を大きく変更することなく、また外輪間座35の剛性を大きく低下させることなく、ひずみセンサ40の設置場所を確保することができる。 In the bearing device 30, since the installation location of the strain sensor 40 can be secured only by forming the flat portion 35ba on the outer peripheral surface 35b, the structure of the outer ring spacer 35 is not significantly changed, and the outer ring spacer 35 is used. The installation location of the strain sensor 40 can be secured without significantly reducing the rigidity of the strain sensor 40.
 図6は、軸受装置30に印加される予圧とひずみ信号SG4a~ひずみ信号SG4dとの関係を示す模式的なグラフである。図6に示されるように、予圧による外輪間座35に生じるひずみは、周方向に沿って均一ではない場合も想定され、この場合には、ひずみ信号SG4a~ひずみ信号SG4dの値に、ばらつきが生じる。軸受装置30においては、演算部45がひずみ信号SG4a~ひずみ信号SG4dに基づいて外輪間座35におけるひずみの代表値を算出するとともに、当該代表値と記憶部44に格納された情報とに基づいて外輪間座35に印加されている予圧を算出することにより、外輪間座35に印加されている予圧をより正確に算出することができる。 FIG. 6 is a schematic graph showing the relationship between the preload applied to the bearing device 30 and the strain signals SG4a to the strain signals SG4d. As shown in FIG. 6, it is assumed that the strain generated in the outer ring spacer 35 due to the preload is not uniform along the circumferential direction. In this case, the values of the strain signal SG4a to the strain signal SG4d vary. Occurs. In the bearing device 30, the calculation unit 45 calculates the representative value of the strain in the outer ring spacer 35 based on the strain signals SG4a to SG4d, and based on the representative value and the information stored in the storage unit 44. By calculating the preload applied to the outer ring spacer 35, the preload applied to the outer ring spacer 35 can be calculated more accurately.
 例えば軸10を高速回転させた際、過大負荷や転がり軸受32及び転がり軸受33の損傷により、転がり軸受32及び転がり軸受33が発熱し、当該発熱による熱膨張に起因して予圧が過大になり、転がり軸受32及び転がり軸受33が焼損する場合がある。軸受装置30は、診断部46を有しているため、診断部46が演算部45において算出された予圧と所定の閾値とを比較することにより、転がり軸受32及び転がり軸受33の異常を判定することができる。その結果、転がり軸受32及び転がり軸受33が焼損しないように適切な回避策を講じることができる。 For example, when the shaft 10 is rotated at high speed, the rolling bearing 32 and the rolling bearing 33 generate heat due to an excessive load or damage to the rolling bearing 32 and the rolling bearing 33, and the preload becomes excessive due to the thermal expansion due to the heat generation. The rolling bearing 32 and the rolling bearing 33 may be burnt out. Since the bearing device 30 has a diagnostic unit 46, the diagnostic unit 46 determines the abnormality of the rolling bearing 32 and the rolling bearing 33 by comparing the preload calculated by the calculation unit 45 with a predetermined threshold value. be able to. As a result, appropriate workarounds can be taken so that the rolling bearing 32 and the rolling bearing 33 do not burn out.
 例えば、スピンドル装置100は、演算部45において算出された予圧が所定の閾値を超えていることを示す信号が診断部46から出力された場合に、軸10の回転数を低減するようにモータ50の制御を行ってもよく、溝31daと内周面20cとにより画された流路に流す冷媒の循環量を増やすように冷媒を循環させるポンプの制御を行ってもよい。 For example, the spindle device 100 reduces the rotation speed of the shaft 10 when a signal indicating that the preload calculated by the calculation unit 45 exceeds a predetermined threshold value is output from the diagnosis unit 46. The pump may be controlled to circulate the refrigerant so as to increase the circulation amount of the refrigerant flowing through the flow path defined by the groove 31da and the inner peripheral surface 20c.
 (第2実施形態)
 以下に、第2実施形態に係るスピンドル装置(以下においては、「スピンドル装置110」とする)を説明する。ここでは、スピンドル装置100と異なる点を主に説明し、重複する説明は繰り返さない。
(Second Embodiment)
Hereinafter, the spindle device according to the second embodiment (hereinafter referred to as “spindle device 110”) will be described. Here, the differences from the spindle device 100 will be mainly described, and the overlapping description will not be repeated.
 スピンドル装置110は、軸10と、外筒20と、軸受装置30と、モータ50と、軸受装置60とを有している。軸受装置30は、ひずみセンサ40を有している。これらの点に関して、スピンドル装置110は、スピンドル装置100と共通している。 The spindle device 110 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60. The bearing device 30 has a strain sensor 40. In these respects, the spindle device 110 is common to the spindle device 100.
 しかしながら、スピンドル装置110は、外輪間座35の構造及びひずみセンサ40の配置に関して、スピンドル装置100と異なっている。 However, the spindle device 110 is different from the spindle device 100 in terms of the structure of the outer ring spacer 35 and the arrangement of the strain sensor 40.
 図7は、スピンドル装置110の回転中心軸Aに直交する断面図である。図7中においては、外筒20の図示は省略されている。図7に示されるように、外周面35bは、平坦部35baを有していない。内周面35aには、凹部35aaが形成されている。凹部35aaは、周方向に沿って、等間隔で複数形成されていてもよい。内周面35aは、凹部35aaにおいて、外周面35b側に窪んでいる。 FIG. 7 is a cross-sectional view orthogonal to the rotation center axis A of the spindle device 110. In FIG. 7, the outer cylinder 20 is not shown. As shown in FIG. 7, the outer peripheral surface 35b does not have a flat portion 35ba. A recess 35aa is formed on the inner peripheral surface 35a. A plurality of recesses 35aa may be formed at equal intervals along the circumferential direction. The inner peripheral surface 35a is recessed on the outer peripheral surface 35b side in the recess 35aa.
 凹部35aaは、底面35abを有している。底面35abは、平坦面になっている。センサ40は、底面35abに取り付けられている。 The recess 35aa has a bottom surface 35ab. The bottom surface 35ab is a flat surface. The sensor 40 is attached to the bottom surface 35ab.
 スピンドル装置110の軸受装置30においては、凹部35aaを内周面35aに形成するだけでひずみセンサ40の設置場所を確保することができるため、外輪間座35の構造を大きく変更することなく、また外輪間座35の剛性を大きく低下させることなく、ひずみセンサ40の設置場所を確保することができる。 In the bearing device 30 of the spindle device 110, the installation location of the strain sensor 40 can be secured only by forming the recess 35aa on the inner peripheral surface 35a, so that the structure of the outer ring spacer 35 is not significantly changed. The installation location of the strain sensor 40 can be secured without significantly reducing the rigidity of the outer ring spacer 35.
 (第3実施形態)
 以下に、第3実施形態に係るスピンドル装置(以下においては、「スピンドル装置120」とする)を説明する。ここでは、スピンドル装置100と異なる点を主に説明し、重複する説明は繰り返さない。
(Third Embodiment)
Hereinafter, the spindle device according to the third embodiment (hereinafter referred to as “spindle device 120”) will be described. Here, the differences from the spindle device 100 will be mainly described, and the overlapping description will not be repeated.
 スピンドル装置120は、軸10と、外筒20と、軸受装置30と、モータ50と、軸受装置60とを有している。軸受装置30は、ひずみセンサ40を有している。これらの点に関して、スピンドル装置120は、スピンドル装置100と共通している。 The spindle device 120 includes a shaft 10, an outer cylinder 20, a bearing device 30, a motor 50, and a bearing device 60. The bearing device 30 has a strain sensor 40. In these respects, the spindle device 120 is common to the spindle device 100.
 しかしながら、スピンドル装置120は、ひずみセンサ40の構造に関して、スピンドル装置100と異なっている。 However, the spindle device 120 is different from the spindle device 100 in terms of the structure of the strain sensor 40.
 図8は、スピンドル装置120におけるひずみセンサ40の模式的な構造図である。図8に示されるように、ひずみセンサ40は、半導体集積回路47を有している。半導体集積回路47は、基板41に取り付けられている。半導体集積回路47には、検知部42及び処理部43がモノリシックに形成されている。すなわち、スピンドル装置120のひずみセンサ40においては、検知部42及び処理部43が、ワンチップ化されたIC(Integrated Circuit)になっている。 FIG. 8 is a schematic structural diagram of the strain sensor 40 in the spindle device 120. As shown in FIG. 8, the strain sensor 40 has a semiconductor integrated circuit 47. The semiconductor integrated circuit 47 is attached to the substrate 41. In the semiconductor integrated circuit 47, a detection unit 42 and a processing unit 43 are monolithically formed. That is, in the strain sensor 40 of the spindle device 120, the detection unit 42 and the processing unit 43 are one-chip ICs (Integrated Circuits).
 スピンドル装置120のひずみセンサ40は、検知部42及び処理部43がモノリシックに形成された半導体集積回路47を有していることにより、ひずみセンサ40を小型化することができ、外輪間座35への組み込みがより容易になる。 Since the strain sensor 40 of the spindle device 120 has a semiconductor integrated circuit 47 in which the detection unit 42 and the processing unit 43 are monolithically formed, the strain sensor 40 can be miniaturized, and the outer ring spacer 35 can be used. Will be easier to incorporate.
 以上のように本発明の実施形態について説明を行ったが、上述の実施形態を様々に変形することも可能である。また、本発明の範囲は、上述の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更を含むことが意図される。 Although the embodiment of the present invention has been described as described above, it is also possible to modify the above-described embodiment in various ways. Moreover, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 上記の実施形態は、工作機械に用いられる軸受装置及びスピンドル装置に特に有利に適用される。 The above embodiment is particularly advantageously applied to bearing devices and spindle devices used in machine tools.
 10 軸、10a 第1端、10b 第2端、10c 外周面、10d 段差部、20 外筒、20a 第1端、20b 第2端、20c 内周面、30 軸受装置、31 ハウジング、31a 第1端、31b 第2端、31c 内周面、31d 外周面、31da 溝、32 転がり軸受、32a 内輪、32aa 内周面、32ab 外周面、32b 外輪、32ba 内周面、32bb 外周面、32c 転動体、32d 保持器、33 転がり軸受、33a 内輪、33aa 内周面、33ab 外周面、33b 外輪、33ba 内周面、33bb 外周面、33c 転動体、33d 保持器、34 内輪間座、34a 内周面、34b 外周面、35 外輪間座、35a 内周面、35aa 凹部、35ab 底面、35b 外周面、35ba 平坦部、36 蓋部材、36a 第1部分、36b 第2部分、37 ナット、38 間座、38a 内周面、38b 外周面、40 ひずみセンサ、41 基板、42 検知部、43 処理部、43a 増幅部、43b 出力部、44 記憶部、45 演算部、46 診断部、47 半導体集積回路、50 モータ、51 筒状部材、51a 内周面、51b 外周面、52 ロータ、53 ステータ、61 端部材、61a 貫通穴、62 転がり軸受、63 内輪押さえ部材、64 位置決め部材、65 位置決め部材、66 ナット、100,110,120 スピンドル装置、A 回転中心軸、SG1 電気信号、SG2 増幅信号、SG3 デジタル信号、SG4b,SG4c,SG4a,SG4d,SG4 ひずみ信号。 10 shafts, 10a 1st end, 10b 2nd end, 10c outer peripheral surface, 10d stepped portion, 20 outer cylinder, 20a 1st end, 20b 2nd end, 20c inner peripheral surface, 30 bearing device, 31 housing, 31a 1st End, 31b 2nd end, 31c inner peripheral surface, 31d outer peripheral surface, 31da groove, 32 rolling bearing, 32a inner ring, 32aa inner peripheral surface, 32ab outer peripheral surface, 32b outer ring, 32ba inner peripheral surface, 32bb outer peripheral surface, 32c rolling element , 32d cage, 33 rolling bearing, 33a inner ring, 33aa inner peripheral surface, 33ab outer peripheral surface, 33b outer ring, 33ba inner peripheral surface, 33bb outer peripheral surface, 33c rolling element, 33d cage, 34 inner ring spacer, 34a inner peripheral surface , 34b outer peripheral surface, 35 outer ring bearing, 35a inner peripheral surface, 35aa recess, 35ab bottom surface, 35b outer peripheral surface, 35ba flat part, 36 lid member, 36a first part, 36b second part, 37 nut, 38 spacer 38a inner peripheral surface, 38b outer peripheral surface, 40 strain sensor, 41 board, 42 detection unit, 43 processing unit, 43a amplification unit, 43b output unit, 44 storage unit, 45 arithmetic unit, 46 diagnostic unit, 47 semiconductor integrated circuit, 50 Motor, 51 tubular member, 51a inner peripheral surface, 51b outer peripheral surface, 52 rotor, 53 stator, 61 end member, 61a through hole, 62 rolling bearing, 63 inner ring holding member, 64 positioning member, 65 positioning member, 66 nut, 100, 110, 120 Spindle device, A rotation center axis, SG1 electric signal, SG2 amplification signal, SG3 digital signal, SG4b, SG4c, SG4a, SG4d, SG4 distortion signal.

Claims (11)

  1.  第1内輪と、第1外輪と、前記第1内輪と前記第1外輪との間に配置された第1転動体とを有し、予圧が印加された第1転がり軸受と、
     前記予圧の経路上に配置された非回転部材と、
     前記非回転部材に取り付けられた少なくとも1以上のひずみセンサとを備え、
     前記第1内輪は、前記第1外輪及び前記非回転部材に対して回転可能になっており、
     前記ひずみセンサは、前記非回転部材のひずみに応じた信号を出力する検知部と、前記信号が入力される処理部とを有し、
     前記処理部は、前記信号を増幅する増幅部を含む、軸受装置。
    A first rolling bearing having a first inner ring, a first outer ring, and a first rolling element arranged between the first inner ring and the first outer ring, and to which a preload is applied.
    The non-rotating member arranged on the preload path and
    It comprises at least one strain sensor attached to the non-rotating member.
    The first inner ring is rotatable with respect to the first outer ring and the non-rotating member.
    The strain sensor has a detection unit that outputs a signal corresponding to the strain of the non-rotating member, and a processing unit that inputs the signal.
    The processing unit is a bearing device including an amplification unit that amplifies the signal.
  2.  前記処理部は、前記増幅部において増幅された前記信号に基づいて前記ひずみを算出する出力部をさらに含む、請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the processing unit further includes an output unit that calculates the strain based on the signal amplified by the amplification unit.
  3.  前記ひずみセンサは、前記非回転部材に取り付けられた基板をさらに有し、
     前記検知部及び前記処理部は、前記基板上に取り付けられている、請求項1又は請求項2に記載の軸受装置。
    The strain sensor further comprises a substrate attached to the non-rotating member.
    The bearing device according to claim 1 or 2, wherein the detection unit and the processing unit are mounted on the substrate.
  4.  前記ひずみセンサは、前記検知部及び前記処理部がモノリシックに形成された半導体集積回路を有する、請求項1~請求項3のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 3, wherein the strain sensor has a semiconductor integrated circuit in which the detection unit and the processing unit are monolithically formed.
  5.  記憶部と、
     演算部とをさらに備え、
     前記記憶部には、前記ひずみと前記予圧との関係を示す情報が格納されており、
     前記演算部は、前記ひずみ及び前記情報に基づいて前記予圧を算出するように構成されている、請求項1~請求項4のいずれか1項に記載の軸受装置。
    Memory and
    With a calculation unit
    Information indicating the relationship between the strain and the preload is stored in the storage unit.
    The bearing device according to any one of claims 1 to 4, wherein the calculation unit is configured to calculate the preload based on the strain and the information.
  6.  記憶部と、
     演算部とをさらに備え、
     前記ひずみセンサの数は複数であり、
     前記演算部は、それぞれの前記ひずみセンサからの前記ひずみに基づいて代表値を算出するように構成されており、
     前記記憶部には、前記代表値と前記予圧との関係を示す情報が格納されており、
     前記演算部は、前記代表値及び前記情報に基づいて前記予圧を算出するように構成されている、請求項1~請求項4のいずれか1項に記載の軸受装置。
    Memory and
    With a calculation unit
    The number of the strain sensors is plural,
    The calculation unit is configured to calculate a representative value based on the strain from each of the strain sensors.
    Information indicating the relationship between the representative value and the preload is stored in the storage unit.
    The bearing device according to any one of claims 1 to 4, wherein the calculation unit is configured to calculate the preload based on the representative value and the information.
  7.  診断部をさらに備え、
     前記診断部は、前記演算部において算出された前記予圧と所定の閾値とを比較するように構成されている、請求項6に記載の軸受装置。
    With more diagnostics
    The bearing device according to claim 6, wherein the diagnostic unit is configured to compare the preload calculated by the calculation unit with a predetermined threshold value.
  8.  第2内輪と、第2外輪と、前記第2内輪と前記第2外輪との間に配置された第2転動体とを有し、前記予圧が印加された第2転がり軸受をさらに備え、
     前記第2内輪は、前記第2外輪及び前記非回転部材に対して回転可能になっており、
     前記非回転部材は、前記第1外輪と前記第2外輪との間に配置された外輪間座である、請求項1~請求項7のいずれか1項に記載の軸受装置。
    A second rolling bearing having a second inner ring, a second outer ring, a second rolling element arranged between the second inner ring and the second outer ring, and the preload applied to the second rolling bearing is further provided.
    The second inner ring is rotatable with respect to the second outer ring and the non-rotating member.
    The bearing device according to any one of claims 1 to 7, wherein the non-rotating member is an outer ring spacer arranged between the first outer ring and the second outer ring.
  9.  前記外輪間座は、平坦部を含む外周面を有し、
     前記ひずみセンサは、前記平坦部に取り付けられている、請求項8に記載の軸受装置。
    The outer ring spacer has an outer peripheral surface including a flat portion, and has an outer peripheral surface.
    The bearing device according to claim 8, wherein the strain sensor is attached to the flat portion.
  10.  前記外輪間座は、内周面と、外周面とを有し、
     前記内周面には、前記外周面側に向かって窪む凹部が形成されており、
     前記凹部の底面は、平坦面になっており、
     前記ひずみセンサは、前記平坦面に取り付けられている、請求項8に記載の軸受装置。
    The outer ring spacer has an inner peripheral surface and an outer peripheral surface.
    The inner peripheral surface is formed with a recess that is recessed toward the outer peripheral surface side.
    The bottom surface of the recess is a flat surface.
    The bearing device according to claim 8, wherein the strain sensor is mounted on the flat surface.
  11.  請求項1~請求項10のいずれか1項に記載の前記軸受装置と、
     前記第1転がり軸受により回転可能に支持される軸と、
     前記軸を回転させるモータとを備える、スピンドル装置。
    The bearing device according to any one of claims 1 to 10.
    A shaft rotatably supported by the first rolling bearing and
    A spindle device including a motor for rotating the shaft.
PCT/JP2020/026670 2019-07-12 2020-07-08 Bearing device and spindle device WO2021010247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020003361.9T DE112020003361T5 (en) 2019-07-12 2020-07-08 bearing device and spindle device
CN202080050160.0A CN114207305A (en) 2019-07-12 2020-07-08 Bearing device and spindle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130066 2019-07-12
JP2019130066A JP7486291B2 (en) 2019-07-12 2019-07-12 Bearing device and spindle device

Publications (1)

Publication Number Publication Date
WO2021010247A1 true WO2021010247A1 (en) 2021-01-21

Family

ID=74210724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026670 WO2021010247A1 (en) 2019-07-12 2020-07-08 Bearing device and spindle device

Country Status (4)

Country Link
JP (1) JP7486291B2 (en)
CN (1) CN114207305A (en)
DE (1) DE112020003361T5 (en)
WO (1) WO2021010247A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023072186A (en) * 2021-11-12 2023-05-24 Dgshape株式会社 Spindle unit and cutting machine
CN117091841B (en) * 2023-10-09 2023-12-26 山西阳光三极科技股份有限公司 Bearing detection device of railway wagon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124321U (en) * 1989-03-24 1990-10-12
JPH0615903U (en) * 1992-07-29 1994-03-01 エヌティエヌ株式会社 Preload switching spindle unit
JPH11304618A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Semiconductor strain sensor
JP2003120666A (en) * 2001-10-17 2003-04-23 Dainippon Printing Co Ltd Bearing device
JP2007240378A (en) * 2006-03-09 2007-09-20 Tokyo Sokki Kenkyusho Co Ltd Strain/temperature measurement method
JP2009127765A (en) * 2007-11-26 2009-06-11 Ntn Corp Bearing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835520A (en) * 1994-07-27 1996-02-06 Hitachi Seiki Co Ltd Preload adjusting device for main shaft bearing
JP2002364661A (en) * 2001-06-11 2002-12-18 Nsk Ltd Measuring method of bearing preload and spindle unit
WO2008142841A1 (en) * 2007-05-14 2008-11-27 Ntn Corporation Bearing device and device for sensing bearing preload
KR20100075578A (en) * 2007-11-09 2010-07-02 엔티엔 가부시키가이샤 Bearing device
CN103527643B (en) * 2013-09-18 2016-01-27 浙江工业大学 With the magnet fluid sealing axle of torque measurement
US10197093B2 (en) * 2013-10-17 2019-02-05 Aktiebolaget Skf Bearing arrangement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124321U (en) * 1989-03-24 1990-10-12
JPH0615903U (en) * 1992-07-29 1994-03-01 エヌティエヌ株式会社 Preload switching spindle unit
JPH11304618A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Semiconductor strain sensor
JP2003120666A (en) * 2001-10-17 2003-04-23 Dainippon Printing Co Ltd Bearing device
JP2007240378A (en) * 2006-03-09 2007-09-20 Tokyo Sokki Kenkyusho Co Ltd Strain/temperature measurement method
JP2009127765A (en) * 2007-11-26 2009-06-11 Ntn Corp Bearing device

Also Published As

Publication number Publication date
JP2021014886A (en) 2021-02-12
CN114207305A (en) 2022-03-18
JP7486291B2 (en) 2024-05-17
DE112020003361T5 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
WO2021010247A1 (en) Bearing device and spindle device
CN107436207B (en) Load detection device
JP5056310B2 (en) Torque detection device
WO2022065199A1 (en) Bearing device
EP3425225B1 (en) Detecting apparatus for detecting axial displacement of bearing unit
WO2019221251A1 (en) Bearing state monitoring method and state monitoring device
JP2009068533A (en) Bearing device
JP2011169418A (en) Thrust bearing, rotary machine, and thrust load measuring method
JP7206315B2 (en) Bearing and spindle devices
JP2023093706A (en) Torque detection sensor, power transmission device, and robot
US10989614B2 (en) Torque sensor and robot
JP2004169756A (en) Bearing device with sensor
WO2022210720A1 (en) Bearing device, spindle device, and spacer
JP2017044312A (en) Bearing with sensor and state monitoring system
JP2020037963A (en) Bearing device
JP2020060227A (en) Bearing device
JP7411405B2 (en) Bearing devices, spindle devices, bearings, and spacers
JP2023047505A (en) Bearing device and spindle device
JP2004191181A (en) Temperature sensor device and rolling device with the same
JP5030744B2 (en) Bearing device
JPH11264779A (en) Torque and thrust detecting device
JP2021110639A (en) Method for calculation, bearing device, and main shaft device of machine tool
JP4716079B2 (en) Rotation amount detection device
JP2024039154A (en) Bearing device and spindle device
JP2001200841A (en) Bearing abnormality detecting device in bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839574

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20839574

Country of ref document: EP

Kind code of ref document: A1