JP5030744B2 - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP5030744B2
JP5030744B2 JP2007304369A JP2007304369A JP5030744B2 JP 5030744 B2 JP5030744 B2 JP 5030744B2 JP 2007304369 A JP2007304369 A JP 2007304369A JP 2007304369 A JP2007304369 A JP 2007304369A JP 5030744 B2 JP5030744 B2 JP 5030744B2
Authority
JP
Japan
Prior art keywords
bearing
housing
spacer
rigidity
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007304369A
Other languages
Japanese (ja)
Other versions
JP2009127766A (en
Inventor
政敏 水谷
俊介 小池
伸幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007304369A priority Critical patent/JP5030744B2/en
Publication of JP2009127766A publication Critical patent/JP2009127766A/en
Application granted granted Critical
Publication of JP5030744B2 publication Critical patent/JP5030744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、工作機械の主軸スピンドルなどに使用される軸受装置に関する。   The present invention relates to a bearing device used for a spindle of a machine tool.

工作機械のスピンドル装置では、軸受に異常が起こる前に、その予兆を検出して軸受異常が起きることを防ぐ要求がある。この軸受の異常検出のために、図9に示すように、軸受間座1の一部を磁歪材料2等で構成し、磁気特性の変化を検出するものがある(特許文献1〜3参照)。この検出値から転がり軸受3の予圧を検出し、例えば、内外輪の急激な温度上昇等の軸受異常を検出している。
特開2001−254742号公報 特開2004−84739号公報 特願2007−127763
In a spindle device of a machine tool, there is a need to detect a sign of the bearing before the abnormality occurs in the bearing to prevent the bearing abnormality from occurring. In order to detect the abnormality of the bearing, as shown in FIG. 9, a part of the bearing spacer 1 is constituted by a magnetostrictive material 2 or the like to detect a change in magnetic characteristics (see Patent Documents 1 to 3). . The preload of the rolling bearing 3 is detected from the detected value, and for example, a bearing abnormality such as a rapid temperature rise of the inner and outer rings is detected.
JP 2001-254742 A JP 2004-84739 A Japanese Patent Application No. 2007-127763

従来のスピンドル装置の主軸4が回転していない静止状態では、軸受外輪3gとハウジング5のはめあいは隙間ばめなので、ハウジング5の内周面5aと外輪外径面3gaとの間に僅かに隙間が存在する。したがって、軸受3にかかる予圧荷重は、すべて外輪間座1にかかっている。
しかし、主軸4を回転させると軸受3の発熱によってこの軸受3が膨張する。スピンドル装置のハウジング5は、一般的に外筒冷却等されているため、軸受3より温度が低くなる。そのため、ハウジング5の内周面5a、外輪外径面3ga間の径方向隙間がなくなり、軸受3とハウジング5のはめ合いがタイトつまり締まり嵌めになる。そのため、軸受3とハウジング5の静摩擦により、軸受3の予圧荷重が変化しても、間座にその力がすべてかからなくなり、予圧の検出誤差が大きくなる問題点がある。
In a stationary state in which the main shaft 4 of the conventional spindle device is not rotating, the fit between the bearing outer ring 3g and the housing 5 is a clearance fit, so there is a slight gap between the inner peripheral surface 5a of the housing 5 and the outer ring outer diameter surface 3ga. Exists. Therefore, all the preload applied to the bearing 3 is applied to the outer ring spacer 1.
However, when the main shaft 4 is rotated, the bearing 3 expands due to heat generated by the bearing 3. Since the housing 5 of the spindle device is generally cooled by an outer cylinder, the temperature is lower than that of the bearing 3. Therefore, there is no radial gap between the inner peripheral surface 5a of the housing 5 and the outer ring outer diameter surface 3ga, and the fit between the bearing 3 and the housing 5 is tight, that is, an interference fit. Therefore, even if the preload load of the bearing 3 changes due to the static friction between the bearing 3 and the housing 5, there is a problem that the force is not applied to the spacer and the preload detection error becomes large.

この発明の目的は、予圧の検出誤差を小さくし、軸受異常を正確に検出することができる軸受装置を提供することである。   An object of the present invention is to provide a bearing device capable of reducing a preload detection error and accurately detecting a bearing abnormality.

この発明における第1の発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち軸受に臨む部分の剛性を低下させる剛性低下部分を設け、前記ハウジングは、ハウジング本体と、このハウジング本体の内周面に設けられるリング部材とを有し、このリング部材を、前記軸受に臨むように配置し、且つ断面I形状に形成して前記剛性低下部分とし、このリング部材における内周部の軸方向両端に、前記リング部材の外周部に対し、前記内周部を相対的に軸方向に変位させる軸方向隙間を設けたものである。 Bearing device of the first invention in this inventions, in the bearing device is interposed configured to receive a preload between seat between raceway of a plurality of rolling bearings arranged in the axial direction, the spacer is axially The outer ring spacer interposed between the inner rings and the inner ring spacer interposed between the inner rings, and a detecting means for detecting a preload applied to the bearing is provided in the outer ring spacer, and the rolling bearing and a housing for fitting the outer ring spacer is provided, only set the rigidity reduction portion to reduce the rigidity of the part amount facing the bearing of the housing, wherein the housing is provided and the housing body, the inner peripheral surface of the housing body The ring member is disposed so as to face the bearing and is formed in a cross-section I shape as the rigidity-decreasing portion, and the ring member is provided at both ends in the axial direction of the inner peripheral portion of the ring member. Element To the outer peripheral portion, it is provided with a axial clearance for displacing the inner peripheral portion axially relative.

この構成によると、転がり軸受の運転により、軸受温度が上昇して内輪が膨張し、予圧が初期設定値よりも大きくなると、外輪間座の両端間に加わる軸方向力が増加する。軸受とハウジングの隙間がなくなり、そのはめあいが締まり嵌めとなった場合であっても、ハウジングに前記剛性低下部分を設けたため、軸受にかかる予圧荷重はハウジングに不所望に逃げていかず、外輪間座にかかる。つまり従来のような、軸受とハウジングの静摩擦に起因する軸受の予圧荷重の変化を未然に防止することが可能となる。したがって、検出手段による検出誤差を小さくし、軸受異常を正確に検出することができる。   According to this configuration, when the bearing temperature rises and the inner ring expands due to the operation of the rolling bearing, and the preload becomes larger than the initial set value, the axial force applied between both ends of the outer ring spacer increases. Even when the clearance between the bearing and the housing is eliminated and the fit is an interference fit, the rigidity reduction portion is provided in the housing, so the preload applied to the bearing does not escape undesirably to the housing, and the outer ring spacer It takes. That is, it is possible to prevent a change in the preload of the bearing due to the static friction between the bearing and the housing as in the prior art. Therefore, the detection error by the detection means can be reduced and the bearing abnormality can be accurately detected.

前記ハウジングは複数のハウジング構成部材を含み、これらハウジング構成部材は、ハウジング本体と、このハウジング本体の内周面に設けられるリング部材とを有し、このリング部材を、前記軸受に臨むように配置し、且つ断面I形状に形成して前記剛性低下部分としても良い。
このように剛性低下部分として、断面I形状のリング部材を適用することで、検出手段による検出誤差を簡単に小さくすることができる。また、ハウジングは複数のハウジング構成部材を含み、これらハウジング構成部材は、ハウジング本体と、このハウジング本体の内周面に設けられるリング部材とを有するため、ハウジング本体へのリング部材等の組立を容易化することができる。
The housing includes a plurality of housing constituent members. The housing constituent members include a housing main body and a ring member provided on an inner peripheral surface of the housing main body, and the ring member is disposed so as to face the bearing. In addition, the rigidity reduced portion may be formed by forming an I-shaped cross section.
As described above, by using the ring member having the I-shaped cross section as the rigidity reduced portion, the detection error by the detecting means can be easily reduced. Further, the housing includes a plurality of housing constituent members, and these housing constituent members include a housing main body and a ring member provided on the inner peripheral surface of the housing main body, so that assembly of the ring member and the like to the housing main body is easy. Can be

この発明における第2の発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち外輪間座に臨む部分の剛性を低下させる剛性低下部分を設け、この剛性低下部分は、前記ハウジングの内周面に溝を設けることにより、肉厚を薄くした部分であり、前記検出手段の出力部をハウジング外に引き出す貫通孔を、前記剛性低下部分に径方向に貫通するように設け、この貫通孔の孔径および本数によって、剛性低下部分の剛性を調整可能に構成したものである。
の場合、軸受に臨む部分に剛性低下部分を設ける場合よりも、装置全体の部品点数を低減することができる。したがって、軸受装置の構造を簡単化し、製造コストの低減を図ることができる。
A bearing device according to a second aspect of the present invention is a bearing device configured to receive a preload by interposing a spacer between race rings of a plurality of rolling bearings arranged in the axial direction. The outer ring spacer has an outer ring spacer interposed between the outer rings and the inner ring spacer interposed between the inner rings, and a detecting means for detecting a preload applied to the bearing is provided in the outer ring spacer, and the rolling bearing and the outer ring A housing that fits the spacer is provided, a rigidity-decreasing portion that reduces the rigidity of the portion facing the outer ring spacer in the housing is provided, and the rigidity-decreasing portion is provided with a groove on the inner peripheral surface of the housing, A through-hole through which the output portion of the detection means is drawn out of the housing is provided so as to penetrate the rigidity-decreasing portion in the radial direction, and the rigidity-decreasing portion depends on the diameter and number of the through-holes. Stiffness is obtained by adjustable configure.
In this case, from the case where the rigidity reduction portion at a portion facing the bearing also can be reduced the number of parts of the entire device. Therefore, the structure of the bearing device can be simplified and the manufacturing cost can be reduced.

前記外輪間座の軸方向の一部に、この間座の両端間に作用する軸方向力によって歪を生じる起歪部を設け、前記検出手段は、この起歪部の歪を検出するものであっても良い。
この場合、前記起歪部は、外輪間座の両端間に作用する軸方向力により歪を生じる。この起歪部に検出手段を設けることで、起歪部に生じた歪を検出することが可能となる。この検出値に基づき軸受予圧を求め、軸受異常を正確に検出することができる。
A strain generating portion that generates strain due to an axial force acting between both ends of the spacer is provided in a part of the outer ring spacer in the axial direction, and the detection means detects the strain of the strain generating portion. May be.
In this case, the strain generating portion is distorted by an axial force acting between both ends of the outer ring spacer. By providing the detecting means in the strain generating portion, it is possible to detect the strain generated in the strain generating portion. A bearing preload can be obtained based on this detected value, and a bearing abnormality can be accurately detected.

前記外輪間座の軸方向の一部に、この間座の両端間に作用する軸方向力によって磁気特性が変化する磁歪材を設け、前記検出手段は、この磁歪材の磁気特性の変化を検出するものであっても良い。
この場合、前記磁歪材は、外輪間座の両端間に作用する軸方向力により磁気特性が変化する。この磁気特性の変化を検出手段により検出して軸受予圧を求め、軸受異常を正確に検出することができる。
前記検出手段により検出される検出値から、軸受の異常検出を行う異常検出手段を設けても良い。
A magnetostrictive material whose magnetic characteristics change due to an axial force acting between both ends of the spacer is provided in a part in the axial direction of the outer ring spacer, and the detecting means detects a change in the magnetic characteristics of the magnetostrictive material. It may be a thing.
In this case, the magnetic characteristics of the magnetostrictive material change due to the axial force acting between both ends of the outer ring spacer. The change in the magnetic characteristics is detected by the detecting means to obtain the bearing preload, and the bearing abnormality can be accurately detected.
You may provide the abnormality detection means which detects the abnormality of a bearing from the detected value detected by the said detection means.

この発明における第1の発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち軸受に臨む部分の剛性を低下させる剛性低下部分を設け、前記ハウジングは、ハウジング本体と、このハウジング本体の内周面に設けられるリング部材とを有し、このリング部材を、前記軸受に臨むように配置し、且つ断面I形状に形成して前記剛性低下部分とし、このリング部材における内周部の軸方向両端に、前記リング部材の外周部に対し、前記内周部を相対的に軸方向に変位させる軸方向隙間を設けたため、予圧の検出誤差を小さくし、軸受異常を正確に検出することができる
この発明における第2の発明の軸受装置は、軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち外輪間座に臨む部分の剛性を低下させる剛性低下部分を設け、この剛性低下部分は、前記ハウジングの内周面に溝を設けることにより、肉厚を薄くした部分であり、前記検出手段の出力部をハウジング外に引き出す貫通孔を、前記剛性低下部分に径方向に貫通するように設け、この貫通孔の孔径および本数によって、剛性低下部分の剛性を調整可能に構成したため、予圧の検出誤差を小さくし、軸受異常を正確に検出することができる。
Bearing device of the first invention in this inventions, in the bearing device is interposed configured to receive a preload between seat between raceway of a plurality of rolling bearings arranged in the axial direction, the spacer is axially The outer ring spacer interposed between the inner rings and the inner ring spacer interposed between the inner rings, and a detecting means for detecting a preload applied to the bearing is provided in the outer ring spacer, and the rolling bearing and a housing for fitting the outer ring spacer is provided, only set the rigidity reduction portion to reduce the rigidity of the part amount facing the bearing of the housing, wherein the housing is provided and the housing body, the inner peripheral surface of the housing body The ring member is disposed so as to face the bearing and is formed in a cross-section I shape as the rigidity-decreasing portion, and the ring member is provided at both ends in the axial direction of the inner peripheral portion of the ring member. Element To the outer peripheral portion, due to the provision of the axial clearance for displacing the inner peripheral portion axially relative, it is possible to reduce the detection error of the preload, to accurately detect abnormal bearing condition.
A bearing device according to a second aspect of the present invention is a bearing device configured to receive a preload by interposing a spacer between race rings of a plurality of rolling bearings arranged in the axial direction. The outer ring spacer has an outer ring spacer interposed between the outer rings and the inner ring spacer interposed between the inner rings, and a detecting means for detecting a preload applied to the bearing is provided in the outer ring spacer, and the rolling bearing and the outer ring A housing that fits the spacer is provided, a rigidity-decreasing portion that reduces the rigidity of the portion facing the outer ring spacer in the housing is provided, and the rigidity-decreasing portion is provided with a groove on the inner peripheral surface of the housing, A through-hole through which the output portion of the detection means is drawn out of the housing is provided so as to penetrate the rigidity-decreasing portion in the radial direction, and the rigidity-decreasing portion depends on the diameter and number of the through-holes. Since adjustably configure the rigidity, it is possible to reduce the detection error of the preload, to accurately detect abnormal bearing condition.

この発明の第1の実施形態を図1ないし図5と共に説明する。第1の実施形態では、特に、ハウジングの軸受に臨む部分に、剛性低下部材として断面I形状のリング部材を設けている。以下、詳細に説明する。
図1に示すように、この第1の実施形態にかかる軸受装置は、ハウジング10に軸11を複数の軸受12で回転自在に支持したものである。この軸受装置は、例えば、工作機械のスピンドル装置に応用され、その場合、軸11はスピンドル装置の主軸11となる。この主軸装置に、主軸11を回転させるためのモータ13が組み込まれている。本実施形態では、主軸11にモータ13のロータ14が取付けられ、ハウジング10にこのモータ13のステータ15が取り付けられている。ロータ14は、永久磁石等からなり、ステータ15はコイルおよびコア等からなる。
A first embodiment of the present invention will be described with reference to FIGS. In the first embodiment, in particular, a ring member having an I-shaped cross section is provided as a rigidity reducing member at a portion facing the bearing of the housing. Details will be described below.
As shown in FIG. 1, the bearing device according to the first embodiment is a housing 10 in which a shaft 11 is rotatably supported by a plurality of bearings 12. This bearing device is applied to, for example, a spindle device of a machine tool. In this case, the shaft 11 becomes the main shaft 11 of the spindle device. A motor 13 for rotating the spindle 11 is incorporated in the spindle device. In the present embodiment, the rotor 14 of the motor 13 is attached to the main shaft 11, and the stator 15 of the motor 13 is attached to the housing 10. The rotor 14 is made of a permanent magnet or the like, and the stator 15 is made of a coil, a core, or the like.

図2に示すように、主軸11には、軸方向に離隔した複数の軸受12を締まり嵌め状態で嵌合し、内輪12i,12i間に内輪間座16を、外輪12g,12g間に外輪間座17を介在させている。軸受12は、内輪12iと外輪12gの間に複数の転動体Tを介在させた転がり軸受であり、これら転動体Tは保持器Rtで保持されている。軸受12は、軸方向の予圧を付与することが可能な軸受であり、アンギュラ玉軸受、深溝玉軸受、またはテーパころ軸受等が用いられる。図示の例ではアンギュラ玉軸受が用いられ、2個の軸受12,12が背面組合わせで設置されている。これら軸受12,12のうち一方の軸受12の近傍に、軸方向に離隔してモータ13が配置されている。   As shown in FIG. 2, a plurality of axially spaced bearings 12 are fitted to the main shaft 11 in an interference fit state, an inner ring spacer 16 is provided between the inner rings 12i and 12i, and an outer ring is provided between the outer rings 12g and 12g. A seat 17 is interposed. The bearing 12 is a rolling bearing in which a plurality of rolling elements T are interposed between the inner ring 12i and the outer ring 12g, and these rolling elements T are held by a cage Rt. The bearing 12 is a bearing capable of applying an axial preload, and an angular ball bearing, a deep groove ball bearing, a tapered roller bearing, or the like is used. In the illustrated example, an angular ball bearing is used, and the two bearings 12 and 12 are installed in a back surface combination. A motor 13 is arranged in the vicinity of one of the bearings 12, 12 so as to be spaced apart in the axial direction.

図1、図2に示すように、外輪間座17はリング状の間座本体18と、リング状の起歪部19とを有する。前記間座本体18は、第1の分割間座本体18aと、第2の分割間座本体18bとを有する。軸方向一方に設けられる第1の分割間座本体18aと、軸方向他方に設けられる第2の分割間座本体18bとの間に、前記リング状の起歪部19を挟み込んでいる。図1に示すように、これら第1,第2の分割間座本体18a,18b、および起歪部19の幅寸法、つまり外輪間座17の幅寸法H1は、内輪間座16の幅寸法H2と異なっており、一方の軸受12の内輪端面にナット20を当接させこのナット20を締め付けることにより、これら外輪間座17、内輪間座16の幅寸法差に応じて軸受に予圧が付与される。   As shown in FIGS. 1 and 2, the outer ring spacer 17 includes a ring-shaped spacer main body 18 and a ring-shaped strain generating portion 19. The spacer body 18 includes a first divided spacer body 18a and a second divided spacer body 18b. The ring-shaped strain generating portion 19 is sandwiched between a first split spacer body 18a provided on one axial side and a second split spacer body 18b provided on the other axial side. As shown in FIG. 1, the width dimension of the first and second divided spacer main bodies 18a and 18b and the strain generating portion 19, that is, the width dimension H1 of the outer ring spacer 17 is equal to the width dimension H2 of the inner ring spacer 16. The nut 20 is brought into contact with the end face of the inner ring of one bearing 12 and the nut 20 is tightened, whereby a preload is applied to the bearing in accordance with the width dimension difference between the outer ring spacer 17 and the inner ring spacer 16. The

前記ハウジング10は複数のハウジング構成部材を含む。これらハウジング構成部材は、ハウジング本体10aと、第1ないし第4のリング部材10b,10c,10d,10eと、蓋部材10fとを有する。図2に示すように、ハウジング本体10aの内周面10aaに、第1ないし第4のリング部材10b,10c,10d,10eが軸方向に隣接して順次設けられ、このハウジング本体10aの軸方向一端縁部を塞ぐ蓋部材10fが設けられる。
図2、図3に示すように、右側に配置される剛性低下部分としての第1のリング部材10bは、断面I形状に形成された環状部材であり、ハウジング本体10aの内周面10aaに嵌合される外周部10baと、前記一方の軸受12の外輪外径面に臨む内周部10bbと、これら外周部10baと内周部10bbとを繋ぐ円環部10bcとを有する。この円環部10bcは、ラジアル平面に平行に形成される。ただし、円環部10bcは、内外周部10bb,10baの軸方向左端寄りに付設されている。この第1のリング部材10bは、例えば鋼材等から一体に形成される。ただし、鋼材だけに限定されるものではない。
The housing 10 includes a plurality of housing components. These housing constituent members include a housing body 10a, first to fourth ring members 10b, 10c, 10d, and 10e, and a lid member 10f. As shown in FIG. 2, first to fourth ring members 10b, 10c, 10d, and 10e are sequentially provided adjacent to the inner peripheral surface 10aa of the housing body 10a in the axial direction. A lid member 10f that closes one end edge portion is provided.
As shown in FIG. 2 and FIG. 3, the first ring member 10b as a reduced-rigidity portion arranged on the right side is an annular member having an I-shaped cross section and is fitted to the inner peripheral surface 10aa of the housing body 10a. The outer peripheral portion 10ba to be joined, the inner peripheral portion 10bb facing the outer ring outer diameter surface of the one bearing 12, and the annular portion 10bc connecting the outer peripheral portion 10ba and the inner peripheral portion 10bb. The annular portion 10bc is formed in parallel to the radial plane. However, the annular portion 10bc is provided near the left end in the axial direction of the inner and outer peripheral portions 10bb and 10ba. The first ring member 10b is integrally formed from, for example, a steel material. However, it is not limited only to steel materials.

前記外周部10baの外周面10b1は、ハウジング本体10aの内周面10aaに締まり嵌めにより嵌合される。この外周部10baの右端縁部10b2をハウジング本体10aの底面10a1に当接させ、外周部10baの左端縁部10b5に、後述する第2のリング部材10cの右端凸部10caを当接させている。
前記ハウジング本体10aの底面10a1は、段部10a2を介して、軸方向から視て環状となる環状溝KMが形成されている。これにより、第1のリング部材10bの内周部10bbの右端縁部10b3を、前記環状溝KMに対し所定小距離、軸方向隙間δ1を隔てて配置する。また、内周部10bbの内周面10b4と、前記外輪外径面12gaとの間は、僅かな隙間が存在する隙間嵌めとしている。
The outer peripheral surface 10b1 of the outer peripheral portion 10ba is fitted to the inner peripheral surface 10aa of the housing body 10a by an interference fit. The right end edge portion 10b2 of the outer peripheral portion 10ba is brought into contact with the bottom surface 10a1 of the housing body 10a, and the right end convex portion 10ca of the second ring member 10c described later is brought into contact with the left end edge portion 10b5 of the outer peripheral portion 10ba. .
The bottom surface 10a1 of the housing body 10a is formed with an annular groove KM that is annular when viewed from the axial direction via a stepped portion 10a2. As a result, the right end edge portion 10b3 of the inner peripheral portion 10bb of the first ring member 10b is arranged with a predetermined small distance and an axial gap δ1 from the annular groove KM. Further, a gap fit between the inner peripheral surface 10b4 of the inner peripheral portion 10bb and the outer ring outer diameter surface 12ga is a gap.

前記第2のリング部材10cは、第1,第3のリング部材10b,10d間に介在され、外輪間座17の外径面に臨むように配置される。この第2のリング部材10cには、径方向に貫通する貫通孔21が形成されている。この貫通孔21は、後述するセンサの出力部である配線Saをハウジング10外に引き出すための孔である。
第2のリング部材10cの軸方向右端部は、外径側に形成された右端凸部10caと、この右端凸部10caに段部を介して内径側に連なる平坦面10cbとを有する。これらのうち右端凸部10caが、前記第1のリング部材10bの外周部10baの左端縁部10b5に当接する。平坦面10cbは、いわゆるラジアル平面に沿った平坦状に形成され、第1のリング部材10bの内周部10bbの左端縁部10b6に軸方向隙間δ2を隔てて配置される。また、第2のリング部材10cの内周面と、外輪間座17の外径面との間は、隙間が存在する隙間嵌めとしている。
The second ring member 10 c is interposed between the first and third ring members 10 b and 10 d and is disposed so as to face the outer diameter surface of the outer ring spacer 17. The second ring member 10c is formed with a through hole 21 penetrating in the radial direction. The through-hole 21 is a hole for drawing out a wiring Sa, which is an output part of a sensor described later, out of the housing 10.
The right end portion in the axial direction of the second ring member 10c has a right end convex portion 10ca formed on the outer diameter side, and a flat surface 10cb connected to the right end convex portion 10ca on the inner diameter side through a stepped portion. Among these, the right end convex portion 10ca abuts on the left end edge portion 10b5 of the outer peripheral portion 10ba of the first ring member 10b. The flat surface 10cb is formed in a flat shape along a so-called radial plane, and is disposed at the left end edge portion 10b6 of the inner peripheral portion 10bb of the first ring member 10b with an axial gap δ2 therebetween. Further, a gap fit is provided between the inner peripheral surface of the second ring member 10 c and the outer diameter surface of the outer ring spacer 17.

図2、図4に示すように、第2のリング部材10cの軸方向左端部は、外径側に形成された左端凸部10ccと、この左端凸部10ccに段部を介して内径側に連なる平坦面10cdとを有する。これらのうち左端凸部10ccが、第3のリング部材10dの外周部10daの右端縁部10d1に当接する。前記平坦面10cdは、ラジアル平面に沿った平坦状に形成され、第3のリング部材10dの内周部10dbの右端縁部10d2に軸方向隙間δ3を隔てて配置される。   As shown in FIGS. 2 and 4, the left end of the second ring member 10c in the axial direction has a left end convex portion 10cc formed on the outer diameter side, and an inner diameter side of the left end convex portion 10cc via a stepped portion. And a continuous flat surface 10cd. Of these, the left end convex portion 10cc comes into contact with the right end edge portion 10d1 of the outer peripheral portion 10da of the third ring member 10d. The flat surface 10cd is formed in a flat shape along a radial plane, and is disposed on the right end edge portion 10d2 of the inner peripheral portion 10db of the third ring member 10d with an axial gap δ3 therebetween.

図2、図4に示すように、左側に配置される剛性低下部分としての第3のリング部材10dは、断面I形状に形成された環状部材であり、ハウジング本体10aの内周面10aaに嵌合される外周部10daと、他方の軸受12の外輪外径面12gaに臨む内周部10dbと、これら内外周部10db,10daを繋ぐ円環部10dcとを有する。この円環部10dcはラジアル平面に平行に形成され、内外周部10db,10daの軸方向右端寄りに付設されている。この第3のリング部材10dも、第1のリング部材10bと同様に鋼材等から一体に形成される。ただし、鋼材だけに限定されるものではない。   As shown in FIG. 2 and FIG. 4, the third ring member 10d as the rigidity-decreasing portion disposed on the left side is an annular member having an I-shaped cross section, and is fitted to the inner peripheral surface 10aa of the housing body 10a. The outer peripheral part 10da to be joined, the inner peripheral part 10db facing the outer ring outer diameter surface 12ga of the other bearing 12, and the annular part 10dc connecting these inner and outer peripheral parts 10db, 10da. The annular portion 10dc is formed in parallel to the radial plane, and is provided near the right end in the axial direction of the inner and outer peripheral portions 10db and 10da. The third ring member 10d is also integrally formed from a steel material or the like similarly to the first ring member 10b. However, it is not limited only to steel materials.

前記外周部10daの外周面10d3は、ハウジング本体10aの内周面10aaに締まり嵌めにより嵌合される。この外周部10daの右端縁部10d1を、第2のリング部材10cの左端縁部10c1に当接させ、外周部10daの左端縁部10d4に、第4のリング部材10eの右端凸部10eaを当接させている。この第3のリング部材10dにおける内周部10dbの内周面10d5と、前記外輪外径面12gaとの間は、僅かな隙間が存在する隙間嵌めとしている。また、第4のリング部材10eの右端凸部10eaを外周部10daの左端縁部10d4に当接させた状態において、内周部10dbの左端縁部10d6と、第4のリング部材10eにおける軸方向右端部の平坦面10ebとの間に軸方向隙間δ4を形成している。
前記蓋部材10fは、ハウジング本体10aの軸方向一端縁部に当接し、且つ第4のリング部材10eの軸方向左端部に当接すると共に、前記他方の軸受12の外輪正面12gsに当接するように配置される。
The outer peripheral surface 10d3 of the outer peripheral portion 10da is fitted into the inner peripheral surface 10aa of the housing body 10a by an interference fit. The right end edge portion 10d1 of the outer peripheral portion 10da is brought into contact with the left end edge portion 10c1 of the second ring member 10c, and the right end convex portion 10ea of the fourth ring member 10e is contacted with the left end edge portion 10d4 of the outer peripheral portion 10da. Touching. A gap fit between the inner peripheral surface 10d5 of the inner peripheral portion 10db of the third ring member 10d and the outer ring outer diameter surface 12ga is a slight clearance. Further, in a state where the right end convex portion 10ea of the fourth ring member 10e is in contact with the left end edge portion 10d4 of the outer peripheral portion 10da, the left end edge portion 10d6 of the inner peripheral portion 10db and the axial direction of the fourth ring member 10e An axial gap δ4 is formed between the flat surface 10eb at the right end portion.
The lid member 10f abuts on one axial edge of the housing body 10a, abuts on the left axial end of the fourth ring member 10e, and abuts on the outer ring front surface 12gs of the other bearing 12. Be placed.

図2に示すように、前記間座本体18のうち、右側の第1の分割間座本体18aは、この軸方向右端部が一方の軸受3の外輪背面12ghに当接し、ラジアル平面に沿った平坦状の軸方向左端部が前記起歪部19に当接する。この第1の分割間座本体18aの軸方向右端部は、外径側に外輪背面12ghに当接する当接面18aaと、この当接面18aaに段部を介して内径側に連なる軸受12に当接しない非当接面とを有する。   As shown in FIG. 2, among the spacer main bodies 18, the right first divided spacer main body 18a has an axial right end in contact with the outer ring rear surface 12gh of one of the bearings 3 and along a radial plane. The flat left end in the axial direction is in contact with the strain-generating part 19. The right end of the first split spacer body 18a in the axial direction is connected to a contact surface 18aa that contacts the outer ring back surface 12gh on the outer diameter side, and a bearing 12 that is connected to the contact surface 18aa on the inner diameter side via a stepped portion. And a non-contact surface that does not contact.

第2の分割間座本体18bは、この軸方向左端部が他方の軸受12の外輪背面12ghに当接し、軸方向右端部がラジアル平面を成して、前記起歪部19に当接する。この第2の分割間座本体18bの軸方向左端部は、外径側に外輪背面12ghに当接する当接面18baと、この当接面18baに段部を介して内径側に連なる軸受12に当接しない非当接面とを有する。   In the second split spacer main body 18b, the left end in the axial direction abuts on the outer ring rear surface 12gh of the other bearing 12, and the right end in the axial direction forms a radial plane and abuts on the straining portion 19. The left end of the second split spacer main body 18b in the axial direction is connected to the contact surface 18ba that contacts the outer ring rear surface 12gh on the outer diameter side, and the bearing 12 that is continuous to the inner diameter side of the contact surface 18ba via a stepped portion. And a non-contact surface that does not contact.

起歪部19、センサ等について説明する。
図1、図2に示すように、起歪部19は、この間座17の両端間に作用する軸方向力によって歪を生じるリング状の部材である。起歪部19は、例えば、この半径方向の一部分に、半径方向の他の部分よりも剛性が相対的に小さい弱部を有する。この起歪部19の弱部に、第1の分割間座本体18aから軸方向力を付与する。起歪部19の例えば右端面に歪ゲージ等の歪センサS1(図2)を設け、検出手段としての歪センサS1により、前記起歪部19の歪を検出する。この例では、起歪部19の右端面のいわゆる梁が伸びている部分の歪を検出しているが、この例に限定されるものではない。例えば、起歪部19の左端面に歪センサS1を設けて、この歪センサS1により、起歪部19の左端面のいわゆる圧縮されている部分の歪を検出しても良い。また、歪センサS1を円周方向複数箇所に設けて、これら複数の歪センサS1のセンサ出力を加算することで、歪検出感度を大きくしても良い。
The strain generating unit 19, the sensor, and the like will be described.
As shown in FIGS. 1 and 2, the strain generating portion 19 is a ring-shaped member that generates strain due to an axial force acting between both ends of the spacer 17. The strain generating portion 19 has, for example, a weak portion at a part in the radial direction that is relatively less rigid than the other parts in the radial direction. An axial force is applied to the weak part of the strain generating part 19 from the first split spacer body 18a. For example, a strain sensor S1 such as a strain gauge is provided on the right end surface of the strain generating section 19, and the strain of the strain generating section 19 is detected by the strain sensor S1 serving as a detecting means. In this example, the distortion of a portion where a so-called beam on the right end surface of the strain generating portion 19 is extended is detected, but the present invention is not limited to this example. For example, a strain sensor S <b> 1 may be provided on the left end surface of the strain generating portion 19, and the strain of the so-called compressed portion of the left end surface of the strain generating portion 19 may be detected by the strain sensor S <b> 1. Further, the strain detection sensitivity may be increased by providing strain sensors S1 at a plurality of locations in the circumferential direction and adding the sensor outputs of the plurality of strain sensors S1.

歪センサS1の出力部である配線Saは、前記第2のリング部材10cの貫通孔21、およびこの貫通孔21に連通するハウジング本体10aに設けられた孔22を介してハウジング10外に引き出され、転がり軸受の異常を検出する異常検出手段23に電気的に接続されている。歪センサS1により検出した歪は、電気信号に変換される。異常検出手段23は、前記配線Saを介して入力された電気信号に比例する異常検出値を算出する電子回路等からなる。   The wiring Sa, which is the output portion of the strain sensor S1, is drawn out of the housing 10 through the through hole 21 of the second ring member 10c and the hole 22 provided in the housing body 10a communicating with the through hole 21. Further, it is electrically connected to an abnormality detecting means 23 for detecting an abnormality of the rolling bearing. The strain detected by the strain sensor S1 is converted into an electric signal. The abnormality detection means 23 includes an electronic circuit or the like that calculates an abnormality detection value proportional to the electrical signal input via the wiring Sa.

この異常検出手段23は、上記電気信号と異常検出値の関係を演算式またはテーブル等で設定した図示外の関係設定手段を有し、検出した歪に基づき変換された電気信号を前記関係設定手段に照らし検出値を算出する。また、異常検出手段23は、例えば、ピークホールド処理により前記電気信号のピーク電圧を測定し、このピーク電圧が所定の閾値外となったとき、軸受異常であると判定するようにしても良い。異常検出手段23は、独立して設けられた電子回路であっても、またスピンドル装置を制御する制御装置の一部であっても良い。   The abnormality detection means 23 has a relationship setting means (not shown) in which the relationship between the electrical signal and the abnormality detection value is set by an arithmetic expression or a table, and the relationship setting means Calculate the detection value in light of. Further, the abnormality detection means 23 may measure the peak voltage of the electrical signal by, for example, peak hold processing, and determine that the bearing is abnormal when the peak voltage falls outside a predetermined threshold. The abnormality detection means 23 may be an electronic circuit provided independently, or may be a part of a control device that controls the spindle device.

上記構成の作用、効果を説明する。モータ13により主軸11を回転させ、軸受12の温度が上昇して内輪12iが膨張し、予圧が初期設定値よりも大きくなると、外輪間座17の両端間に加わる軸方向力が増加する。この外輪間座17のうち起歪部19に、第1の分割間座本体18aから軸方向力が加わると、この起歪部19に応力が作用する。これにより、この起歪部19に設けた歪センサS1に歪を生じる。異常検出手段23は、検出した歪に基づく電気信号を前記関係設定手段に照らし予圧量を算出する。したがって、起歪部19に加わる軸方向外力と電気信号との関係を予め調べておけば、軸受装置に組み込まれた軸受12の初期予圧および運転時に増加した予圧を知ることができる。この増加した予圧に基づき軸受異常を判定することができる。   The operation and effect of the above configuration will be described. When the main shaft 11 is rotated by the motor 13 and the temperature of the bearing 12 rises, the inner ring 12i expands, and the preload becomes larger than the initial set value, the axial force applied between both ends of the outer ring spacer 17 increases. When an axial force is applied to the strain generating portion 19 of the outer ring spacer 17 from the first split spacer main body 18a, stress is applied to the strain generating portion 19. As a result, strain is generated in the strain sensor S1 provided in the strain generating portion 19. The abnormality detection means 23 calculates an amount of preload by illuminating an electrical signal based on the detected strain against the relationship setting means. Therefore, if the relationship between the axial external force applied to the strain generating portion 19 and the electrical signal is examined in advance, the initial preload of the bearing 12 incorporated in the bearing device and the preload increased during operation can be known. A bearing abnormality can be determined based on the increased preload.

前記主軸11の回転による軸受12の温度上昇によって、この軸受12が膨張するのに対し、ハウジング10は外筒冷却等しているため、軸受12より温度が低くなる。したがって、第1,第3リング部材10b,10dの内周部10bb,10dbの内周面10b4,10d5と、外輪外径面12gaとの間の僅かな径方向隙間がなくなり、締まり嵌めになる。   The bearing 12 expands due to the temperature rise of the bearing 12 due to the rotation of the main shaft 11, whereas the housing 10 is cooled by the outer cylinder and the temperature is lower than that of the bearing 12. Therefore, there is no slight radial gap between the inner peripheral surfaces 10b4 and 10d5 of the inner peripheral portions 10bb and 10db of the first and third ring members 10b and 10d and the outer ring outer diameter surface 12ga, and an interference fit is obtained.

このように締まり嵌めとなった場合であっても、ハウジング10に剛性低下部分としての第1,第3リング部材10b,10dを設けたため、軸受にかかる予圧荷重はハウジング10に不所望に逃げていかず、外輪間座17にかかる。すなわち、上記各リング部材10b,10dの内周部10bb,10dbの内周面10b4,10d5と、これに対応する外輪外径面12gaとが締まり嵌めになり一体化するが、上記各リング部材10b,10dの内周部10bb,10dbが、外輪12g,12gと共に軸方向に変位する。つまり、各リング部材10b,10dは、外周部10ba,10daをいわゆる固定端とし、内周部10bb,10dbを自由端とする片持ち梁形状をなす。図3に示すように、第1リング部材10bの内周部10bbは、その左右両端に軸方向隙間δ1,δ2が形成され、円環部10bcの主に内径側部分が弾性変形し得るので、前記内周部10bbは外周部10baに対し、相対的に前記軸方向隙間δ1,δ2分軸方向に変位する。   Even in the case of such an interference fit, since the first and third ring members 10b and 10d as the rigidity-decreasing portions are provided in the housing 10, the preload applied to the bearing escapes to the housing 10 undesirably. Instead, it takes over the outer ring spacer 17. That is, the inner peripheral surfaces 10b4 and 10d5 of the inner peripheral portions 10bb and 10db of the ring members 10b and 10d and the outer ring outer diameter surface 12ga corresponding thereto are integrated with an interference fit. , 10d are displaced in the axial direction together with the outer rings 12g, 12g. That is, each of the ring members 10b and 10d has a cantilever shape in which the outer peripheral portions 10ba and 10da are so-called fixed ends and the inner peripheral portions 10bb and 10db are free ends. As shown in FIG. 3, the inner peripheral portion 10bb of the first ring member 10b is formed with axial gaps δ1, δ2 at both left and right ends, and the inner diameter side portion of the annular portion 10bc can be elastically deformed. The inner peripheral portion 10bb is relatively displaced in the axial direction of the axial gaps δ1, δ2 relative to the outer peripheral portion 10ba.

したがって、従来のような、軸受とハウジングの静摩擦に起因する軸受の予圧荷重の変化を未然に防止することが可能となる。それ故、歪センサS1による検出誤差を小さくし、軸受異常を正確に検出することができる。また、ハウジング構成部材は、ハウジング本体10aと、このハウジング本体10の内周面10aaに設けられる第1〜第4リング部材10b,10c,10d,10eとを有するため、ハウジング本体10aへのリング部材等の組立を容易化することができる。   Accordingly, it is possible to prevent a change in the preload of the bearing due to static friction between the bearing and the housing as in the past. Therefore, the detection error by the strain sensor S1 can be reduced and the bearing abnormality can be accurately detected. Further, since the housing constituent member includes the housing main body 10a and the first to fourth ring members 10b, 10c, 10d, and 10e provided on the inner peripheral surface 10aa of the housing main body 10, the ring member to the housing main body 10a is provided. Etc. can be easily assembled.

次に、この発明の第2の実施形態を図6と共に説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

第2の実施形態に係る軸受装置では、特に、ハウジング10Aの外輪間座17に臨む部分に、剛性低下部分を設けている。
前記ハウジング10Aはハウジング本体10Aaと蓋部材10fとを有し、前記ハウジング本体10Aaのうち外輪間座17に臨む内周面に、溝24を設けている。この溝24は断面矩形状の環状溝であり、このハウジング本体10Aaのうち溝24を設けて肉厚を薄くした部分が、剛性低下部分25である。剛性低下部分25は、ハウジング本体10Aaの厚肉部分26よりも剛性が低く構成されている。また、この剛性低下部分25には、歪センサS1の配線Saをハウジング10A外に引き出す貫通孔25aが形成されている。この貫通孔25aを径方向に貫通するように形成されている。その他の構成は、第1の実施形態と同様の構成となっている。
In the bearing device according to the second embodiment, in particular, a rigidity-decreasing portion is provided in a portion facing the outer ring spacer 17 of the housing 10A.
The housing 10A includes a housing main body 10Aa and a lid member 10f, and a groove 24 is provided on an inner peripheral surface of the housing main body 10Aa facing the outer ring spacer 17. The groove 24 is an annular groove having a rectangular cross section, and a portion of the housing main body 10Aa in which the groove 24 is provided to reduce the thickness is a rigidity-decreasing portion 25. The rigidity reduced portion 25 is configured to have a rigidity lower than that of the thick portion 26 of the housing main body 10Aa. In addition, the rigidity reduced portion 25 is formed with a through hole 25a through which the wiring Sa of the strain sensor S1 is drawn out of the housing 10A. The through hole 25a is formed so as to penetrate in the radial direction. Other configurations are the same as those in the first embodiment.

第2の実施形態の構成によると、図1に示す第1の実施形態のものより、装置全体の部品点数を低減することができる。つまり複数のハウジング構成部材として、第1〜第4のリング部材等が不要となり、軸受装置の構造を簡単化し、製造コストの低減を図ることができる。また、ハウジング本体10Aaの溝24は、旋削加工等によって簡単に形成することができる。   According to the configuration of the second embodiment, the number of parts of the entire apparatus can be reduced as compared with that of the first embodiment shown in FIG. That is, the first to fourth ring members and the like are not required as the plurality of housing constituent members, the structure of the bearing device can be simplified, and the manufacturing cost can be reduced. Further, the groove 24 of the housing main body 10Aa can be easily formed by turning or the like.

第2の実施形態では、主軸11の回転による軸受12の温度上昇によって、軸受12が膨張しハウジング本体10Aaと外輪外径面との嵌め合いは、隙間嵌めから締まり嵌めとなる。しかし、前記肉厚を薄くしたハウジング本体10Aaの剛性低下部分25が弾性変形するため、軸受12にかかる予圧荷重はハウジング本体10Aaに不所望に逃げていかず、外輪間座17にかかる。それ故、歪センサS1による検出誤差を小さくし、軸受異常を正確に検出することができる。
第2の実施形態では、ハウジング本体10Aaの剛性低下部分25の肉厚によって、剛性を調整しているが、剛性低下部分25に形成した前記貫通孔25aの孔径、貫通孔25aの本数によって剛性を調整し得る。これら剛性低下部分25の肉厚と貫通孔25aの孔径等とによって剛性を調整することも可能である。
In the second embodiment, the bearing 12 expands due to the temperature rise of the bearing 12 due to the rotation of the main shaft 11, and the fit between the housing main body 10Aa and the outer ring outer diameter surface becomes a tight fit from the gap fit. However, since the reduced rigidity portion 25 of the housing body 10Aa having the reduced thickness is elastically deformed, the preload applied to the bearing 12 does not escape undesirably to the housing body 10Aa but is applied to the outer ring spacer 17. Therefore, the detection error by the strain sensor S1 can be reduced and the bearing abnormality can be accurately detected.
In the second embodiment, the rigidity is adjusted by the thickness of the rigidity reduced portion 25 of the housing main body 10Aa. However, the rigidity is determined by the diameter of the through hole 25a formed in the rigidity reduced portion 25 and the number of the through holes 25a. Can be adjusted . The rigidity can be adjusted by the thickness of the reduced rigidity portion 25 and the hole diameter of the through hole 25a.

次に、この発明の第3の実施形態を図7、図8と共に説明する。図1および図6も参照しつつ説明する。
この第3の実施形態では、第1または第2の実施形態の、起歪部および歪センサに代えて、複数の磁歪材27と、複数のコイル28と、これら磁歪材27およびコイル28を保持するリング部材RBとを設けている。
複数(本実施形態では3個)の磁歪材27は、リング部材RBに円周方向一定間隔おきに設けられている。リング部材RBは、例えばステンレス鋼等の非磁性材料で製作され、磁歪材27を保持つまり収容する収容孔RBaが形成されている。なお、複数の磁歪材127を円周方向適当間隔おきに設けることも可能である。また、磁歪材の個数は、3個に限定されるものではなく、適切な数は状況に応じて選べば良い。各磁歪材27は、主軸11(図1等参照)の軸方向に平行な円柱状の部材であり、この円柱状の部材の外周に図示外のコイルボビンが嵌合され、このコイルボビンにコイル28が巻回されている。各磁歪材27にコイルボビンを介してコイル28を巻回することで、磁歪式センサS2が構成される。複数の磁歪材27にわたってコイル28を直列に接続しても良い。このコイル28は、例えばエナメル線からなる。
Next, a third embodiment of the present invention will be described with reference to FIGS. This will be described with reference to FIGS. 1 and 6 as well.
In the third embodiment, a plurality of magnetostrictive materials 27, a plurality of coils 28, and the magnetostrictive materials 27 and 28 are held instead of the strain generating portion and the strain sensor of the first or second embodiment. And a ring member RB to be provided.
A plurality (three in this embodiment) of the magnetostrictive material 27 is provided on the ring member RB at regular intervals in the circumferential direction. The ring member RB is made of, for example, a nonmagnetic material such as stainless steel, and has an accommodation hole RBa that holds or accommodates the magnetostrictive material 27. It is also possible to provide a plurality of magnetostrictive materials 127 at appropriate intervals in the circumferential direction. Further, the number of magnetostrictive materials is not limited to three, and an appropriate number may be selected according to the situation. Each magnetostrictive material 27 is a cylindrical member parallel to the axial direction of the main shaft 11 (see FIG. 1 and the like). A coil bobbin (not shown) is fitted to the outer periphery of the cylindrical member, and a coil 28 is fitted to the coil bobbin. It is wound. A magnetostrictive sensor S2 is configured by winding a coil 28 around each magnetostrictive material 27 via a coil bobbin. The coil 28 may be connected in series across the plurality of magnetostrictive materials 27. The coil 28 is made of enameled wire, for example.

前記磁歪式センサS2のコイル両端の出力部である配線Saは、ハウジング11の貫通孔を介してハウジング10(10A)外に引き出され、異常検出手段23に電気的に接続されている。この場合、異常検出手段23は、磁歪式センサS2を構成するコイル28に一定周期の正弦波を印加し、その位相遅れからインダクタンスを検出し、予圧量等を算出する電子回路からなる。この異常検出手段23は、上記位相遅れと予圧量の関係を演算式またはテーブル等で設定した関係設定手段(図示せず)を有していて、検出した位相遅れを前記関係設定手段に照らし予圧量等を算出する。コイル28のインダクタンスの検出には、上記のほかに、コンデンサとコイルの共振周波数を測定してもよく、また、ブリッジ回路を使用しても良い。また、位相検波回路を使用してコイルインダクタンスを検出してもよい。この位相検波回路によるインダクタンス測定方式は、コイルに一定周期一定振幅の正弦波電流を通電して、コイル両端電圧のインダクタンス成分を位相検波回路で検出するもので、コイルの抵抗成分の影響を受けずにインダクタンスを精度よく測定することができる。   The wiring Sa, which is the output part at both ends of the coil of the magnetostrictive sensor S2, is drawn out of the housing 10 (10A) through the through hole of the housing 11, and is electrically connected to the abnormality detecting means 23. In this case, the abnormality detection means 23 is composed of an electronic circuit that applies a sine wave having a fixed period to the coil 28 constituting the magnetostrictive sensor S2, detects an inductance from the phase delay, and calculates a preload amount and the like. The abnormality detection means 23 has a relationship setting means (not shown) in which the relationship between the phase delay and the preload amount is set by an arithmetic expression or a table, and the preload is detected in light of the detected phase delay. Calculate the amount. In addition to the above, the inductance of the coil 28 may be detected by measuring the resonance frequency of the capacitor and the coil, or using a bridge circuit. Further, the coil inductance may be detected using a phase detection circuit. This inductance measurement method using a phase detector circuit is a method in which a sine wave current having a constant period and constant amplitude is applied to the coil and the inductance component of the voltage across the coil is detected by the phase detector circuit, and is not affected by the resistance component of the coil. Inductance can be accurately measured.

以上説明した軸受装置を、スピンドル装置以外の装置、ロボット等に適用することも可能である。本実施形態では、2個の軸受を背面組み合わせで設置したが、正面組み合わせで設置する場合もあり得る。また、軸受の個数は2個に必ずしも限定されるものではない。
本実施形態では、外輪間座の第1,第2間座部材の軸方向端部に起歪体を設けたが、前記スピンドル装置以外の装置において、例えば、内輪間座の間座本体の軸方向端部に起歪体を設けても良い。この場合、外輪回転となり、センサ出力用の配線を、軸内部を通して軸受装置外に引き出すことが望ましい。
The bearing device described above can also be applied to devices other than spindle devices, robots, and the like. In the present embodiment, the two bearings are installed in the rear combination, but may be installed in the front combination. Further, the number of bearings is not necessarily limited to two.
In the present embodiment, the strain-generating body is provided at the axial ends of the first and second spacer members of the outer ring spacer. However, in an apparatus other than the spindle device, for example, the shaft of the inner ring spacer body You may provide a strain body in the direction edge part. In this case, it is desirable to rotate the outer ring and to draw the sensor output wiring out of the bearing device through the shaft.

この発明の第1の実施形態に係る軸受装置等の断面図である。It is sectional drawing of the bearing apparatus etc. which concern on 1st Embodiment of this invention. 同軸受装置の要部の断面図である。It is sectional drawing of the principal part of the bearing apparatus. ハウジング構成部材の要部の拡大断面図である。It is an expanded sectional view of the principal part of a housing structural member. ハウジング構成部材の別の要部の拡大断面図である。It is an expanded sectional view of another principal part of a housing structural member. 同軸受装置の断面I形状のリング部材の断面図である。It is sectional drawing of the ring member of the cross-section I shape of the same bearing apparatus. この発明の第2の実施形態に係る軸受装置等の断面図である。It is sectional drawing of the bearing apparatus etc. which concern on 2nd Embodiment of this invention. この発明の第3の実施形態に係る軸受装置のセンサ部の要部の断面図である。It is sectional drawing of the principal part of the sensor part of the bearing apparatus which concerns on 3rd Embodiment of this invention. 同センサ部の磁歪式センサの拡大断面図である。It is an expanded sectional view of the magnetostriction type sensor of the sensor part. 従来例の軸受装置等の断面図である。It is sectional drawing of the bearing apparatus etc. of a prior art example.

符号の説明Explanation of symbols

10…ハウジング
10a…ハウジング本体
10b…第1のリング部材
10d…第3のリング部材
11…主軸
12…軸受
12g…外輪
16…内輪間座
17…外輪間座
18…間座本体
19…起歪部
23…異常検出手段
24…溝
25…剛性低下部分
S1…歪センサ
S2…磁歪式センサ
DESCRIPTION OF SYMBOLS 10 ... Housing 10a ... Housing main body 10b ... 1st ring member 10d ... 3rd ring member 11 ... Main shaft 12 ... Bearing 12g ... Outer ring 16 ... Inner ring spacer 17 ... Outer ring spacer 18 ... Spacer main body 19 ... Strain part 23 ... Abnormality detection means 24 ... Groove 25 ... Decrease in rigidity S1 ... Strain sensor S2 ... Magnetostrictive sensor

Claims (5)

軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、
前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、
前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち軸受に臨む部分の剛性を低下させる剛性低下部分を設け、前記ハウジングは、ハウジング本体と、このハウジング本体の内周面に設けられるリング部材とを有し、このリング部材を、前記軸受に臨むように配置し、且つ断面I形状に形成して前記剛性低下部分とし、このリング部材における内周部の軸方向両端に、前記リング部材の外周部に対し、前記内周部を相対的に軸方向に変位させる軸方向隙間を設けた軸受装置。
In a bearing device configured to receive a preload with a spacer interposed between race rings of a plurality of rolling bearings arranged in the axial direction,
The spacer includes an outer ring spacer interposed between the outer rings arranged in the axial direction and an inner ring spacer interposed between the inner rings, and detecting means for detecting a preload applied to the bearing is provided as the outer ring spacer. Provided in
A housing for fitting the rolling bearing and the outer ring spacer is provided, only set the rigidity reduction portion to reduce the rigidity of the part amount facing the bearing of the housing, wherein the housing includes a housing body, the inner periphery of the housing body A ring member provided on a surface of the ring member, the ring member is disposed so as to face the bearing, and is formed in a cross-section I shape as the rigidity-decreasing portion. The axial direction clearance which displaces the said inner peripheral part to an axial direction relatively with respect to the outer peripheral part of the said ring member is provided .
軸方向に並ぶ複数の転がり軸受の軌道輪間に間座を介在させて予圧を受けるように構成した軸受装置において、In a bearing device configured to receive a preload with a spacer interposed between race rings of a plurality of rolling bearings arranged in the axial direction,
前記間座は、軸方向に並ぶ外輪間に介在する外輪間座と、内輪間に介在する内輪間座とを有し、軸受にかかる予圧荷重を検出するための検出手段を、前記外輪間座に設け、The spacer includes an outer ring spacer interposed between the outer rings arranged in the axial direction and an inner ring spacer interposed between the inner rings, and detecting means for detecting a preload applied to the bearing is provided as the outer ring spacer. Provided in
前記転がり軸受および外輪間座を嵌合するハウジングを設け、このハウジングのうち外輪間座に臨む部分の剛性を低下させる剛性低下部分を設け、この剛性低下部分は、前記ハウジングの内周面に溝を設けることにより、肉厚を薄くした部分であり、前記検出手段の出力部をハウジング外に引き出す貫通孔を、前記剛性低下部分に径方向に貫通するように設け、この貫通孔の孔径および本数によって、剛性低下部分の剛性を調整可能に構成した軸受装置。A housing for fitting the rolling bearing and the outer ring spacer is provided, and a rigidity decreasing portion for decreasing the rigidity of the portion facing the outer ring spacer is provided in the housing, and the rigidity decreasing portion is a groove on the inner peripheral surface of the housing. By providing a through-hole through which the output portion of the detection means is drawn out of the housing, so as to penetrate the rigidity-reduced portion in the radial direction, the diameter and number of the through-holes are provided. The bearing device is configured so that the rigidity of the rigidity-decreasing portion can be adjusted.
請求項1または請求項2において、前記外輪間座の軸方向の一部に、この間座の両端間に作用する軸方向力によって歪を生じる起歪部を設け、前記検出手段は、この起歪部の歪を検出する軸受装置。 In Claim 1 or Claim 2 , the strain generating part which generates distortion by the axial direction force which acts between the both ends of this spacer is provided in a part of the axial direction of said outer ring spacer, and the above-mentioned detection means Bearing device that detects the distortion of the part. 請求項1または請求項2において、前記外輪間座の軸方向の一部に、この間座の両端間に作用する軸方向力によって磁気特性が変化する磁歪材を設け、前記検出手段は、この磁歪材の磁気特性の変化を検出する軸受装置。 3. The magnetostrictive material according to claim 1 or 2 , wherein a magnetic characteristic is changed in part in an axial direction of the outer ring spacer due to an axial force acting between both ends of the spacer, and the detecting means includes the magnetostrictive member. Bearing device that detects changes in magnetic properties of materials. 請求項1ないし請求項のいずれか1項において、前記検出手段により検出される検出値から、軸受の異常検出を行う異常検出手段を設けた軸受装置。 In any one of claims 1 to 4, wherein the detection value detected by the detecting means, a bearing device provided with abnormality detecting means for detecting an abnormality of the bearing.
JP2007304369A 2007-11-26 2007-11-26 Bearing device Expired - Fee Related JP5030744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304369A JP5030744B2 (en) 2007-11-26 2007-11-26 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304369A JP5030744B2 (en) 2007-11-26 2007-11-26 Bearing device

Publications (2)

Publication Number Publication Date
JP2009127766A JP2009127766A (en) 2009-06-11
JP5030744B2 true JP5030744B2 (en) 2012-09-19

Family

ID=40818905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304369A Expired - Fee Related JP5030744B2 (en) 2007-11-26 2007-11-26 Bearing device

Country Status (1)

Country Link
JP (1) JP5030744B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243441A (en) * 1994-03-08 1995-09-19 Matsushita Electric Ind Co Ltd Support device for rolling bearing, its manufacture and rotational device
JP2001054803A (en) * 1999-08-13 2001-02-27 Toshiba Mach Co Ltd Preload control type spindle unit
JP2001254742A (en) * 2000-03-08 2001-09-21 Ntn Corp Bearing device
JP2003206925A (en) * 2002-01-15 2003-07-25 Nsk Ltd Pre-load measuring method for bearing, pre-load measuring device, and spindle device
JP3997519B2 (en) * 2002-10-24 2007-10-24 株式会社Ihi Thrust load detector for plain bearings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Also Published As

Publication number Publication date
JP2009127766A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4942665B2 (en) Bearing with sensor mounted on cage
KR20100016484A (en) Bearing device and device for sensing bearing preload
KR101428829B1 (en) A sensorized bearing unit
JP4993492B2 (en) Bearing device
EP1550813B1 (en) Rolling element bearing unit with sensor and hub unit with sensor
JP4888074B2 (en) Rolling bearing device for wheels
EP1508022B1 (en) In-bearing torque sensor assembly
EP1674843A2 (en) Sensor-equipped rolling bearing unit
JP4391406B2 (en) Thrust bearing
JP5030744B2 (en) Bearing device
JP2008286219A (en) Bearing device and bearing preload detecting device
JP2009036312A (en) Bearing device
JP2017160974A (en) Bearing device with sensor
JP2008281388A (en) Bearing with bearing load measuring device, and method of measuring bearing load
KR20100075578A (en) Bearing device
JP4671605B2 (en) Torque detection device
CN108474701B (en) Load detector
JP2001254742A (en) Bearing device
JP2008281157A (en) Bearing device and bearing pre-load detection device
JP2018004290A (en) Thrust load measurement device
JP2005133891A (en) Preload measuring method and device for bearing
JPH11264779A (en) Torque and thrust detecting device
JP2006258202A (en) Tapered roller bearing device
JP2008281158A (en) Bearing device and bearing pre-load detection device
JP3988702B2 (en) Hub unit with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees