JP2002364661A - Measuring method of bearing preload and spindle unit - Google Patents

Measuring method of bearing preload and spindle unit

Info

Publication number
JP2002364661A
JP2002364661A JP2001176052A JP2001176052A JP2002364661A JP 2002364661 A JP2002364661 A JP 2002364661A JP 2001176052 A JP2001176052 A JP 2001176052A JP 2001176052 A JP2001176052 A JP 2001176052A JP 2002364661 A JP2002364661 A JP 2002364661A
Authority
JP
Japan
Prior art keywords
preload
bearing
rotating
spindle unit
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001176052A
Other languages
Japanese (ja)
Inventor
Shigeru Endo
茂 遠藤
Ikunori Sakatani
郁紀 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001176052A priority Critical patent/JP2002364661A/en
Publication of JP2002364661A publication Critical patent/JP2002364661A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spindle unit capable of accurately measuring the preload of a bearing and adjusting rotational precision based on the measured preload. SOLUTION: A variation sensor 12 is attached to an inner-ring spacer 7b which is disposed between respective inner rings 5a, 5b of two rolling bearings 2a, 2b and rotates with the inner rings 5a, 5b. A vibration signal detected by the vibration sensor 12 is transmitted from a transmission antenna 29 via an electric wave R. The sent signal is received by a receiving antenna 14 provided on an outer-ring spacer 8b between outer rings 6a, 6b on the static side. The preload of the bearings 2a, 2b is determined based on the received vibration signal by a calculating circuit 19. A preload variable mechanism 21 is controlled by a hydraulic system 26 based on the determined preload for the optimization of the preload of the bearings 2a, 2b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械や産業機
械などに使用されるスピンドルユニットに関し、特に、
このスピンドルユニットの軸受の予圧測定方法、及びこ
の予圧測定方法を用いて予圧を求めるとともに、求めた
予圧から予圧を調節するスピンドルユニットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle unit used for a machine tool, an industrial machine, etc.
The present invention relates to a method for measuring a preload of a bearing of a spindle unit, a spindle unit for obtaining a preload by using the method for measuring a preload, and adjusting the preload from the obtained preload.

【0002】[0002]

【従来の技術】スピンドルユニットは、工作機械や産業
機械などの主軸に使用され、回転軸をこの回転軸の軸線
に沿う方向に離して配置した2つの転がり軸受で支持し
た構造である。この2つの軸受の間には、内輪間座と外
輪間座が配置されている。また、それぞれの軸受には、
回転軸の回転精度を高めるために予圧を与えている。こ
の予圧は、例えばアンギュラ玉軸受や円錐ころ軸受など
を2つ対向させて配置し、それぞれの軌道輪環の隙間を
調節することで調整される。また、予圧が変化すると、
回転精度や軸受部の剛性が変化するため、常に高い回転
精度が要求される場合や、予圧が過大になりやすい高速
回転の場合は、この予圧を測定し、適正な状態にあるか
確認する必要がある。
2. Description of the Related Art A spindle unit is used for a main shaft of a machine tool, an industrial machine, or the like, and has a structure in which a rotating shaft is supported by two rolling bearings which are arranged apart in a direction along the axis of the rotating shaft. An inner ring spacer and an outer ring spacer are arranged between the two bearings. Also, each bearing has
Preload is applied to increase the rotation accuracy of the rotating shaft. This preload is adjusted by, for example, arranging two angular ball bearings, tapered roller bearings, and the like so as to face each other, and adjusting the clearance between the respective races. Also, when the preload changes,
If high rotational accuracy is required due to changes in rotational accuracy or bearing rigidity, or high-speed rotation where preload is likely to be excessive, it is necessary to measure this preload and confirm that it is in an appropriate state. There is.

【0003】そこで、運転中のスピンドルユニットの転
がり軸受の予圧を測定する方法として、スピンドルユニ
ットを形成する2つの転がり軸受の静止輪の間に配置さ
れる間座に歪ゲージなどの荷重センサを取り付け、間座
に加わる軸方向の荷重から直接的に測定する方法と、回
転するスピンドルユニットの振動を計測し、その振動を
周波数解析し、転がり軸受のばね定数と回転側の質量に
起因して発生するラジアル方向あるいはアキシアル方向
の固有振動数を算出することにより、転がり軸受の予圧
を求める方法が使用されてきた。
Therefore, as a method of measuring the preload of the rolling bearing of the spindle unit during operation, a load sensor such as a strain gauge is mounted on a spacer disposed between stationary wheels of two rolling bearings forming the spindle unit. , A method to measure directly from the axial load applied to the spacer, and a method to measure the vibration of the rotating spindle unit, analyze the frequency, and generate the vibration due to the spring constant of the rolling bearing and the mass on the rotating side. A method of calculating a preload of a rolling bearing by calculating a natural frequency in a radial direction or an axial direction has been used.

【0004】振動から予圧を求める場合、振動を検出す
る振動センサを静止側の部材に取り付け、回転軸から転
がり軸受の回転輪、転動体、静止輪を経て静止側の部材
まで伝達された回転側の振動を検出する方法と、非接触
変位計を用いて回転側の振動を検出する方法がある。
In order to obtain a preload from vibration, a vibration sensor for detecting vibration is attached to a stationary member, and the rotating side transmitted from the rotating shaft to the stationary member through the rotating wheel of the rolling bearing, the rolling element, and the stationary wheel. There is a method of detecting vibration on the rotating side, and a method of detecting vibration on the rotating side using a non-contact displacement meter.

【0005】また、予圧を調整するために、例えば背面
組み合わせのアンギュラ玉軸受の場合、静止輪を互いに
軸に沿って押圧し、静止輪の間に配置された間座を圧縮
して予圧を軽減する方向に調整する予圧可変機構を備え
たスピンドルユニットがある。
In order to adjust the preload, for example, in the case of a back-to-back angular ball bearing, the stationary wheels are pressed along the axis with each other, and the spacer disposed between the stationary wheels is compressed to reduce the preload. There is a spindle unit provided with a variable preload mechanism that adjusts in the direction of rotation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、定位置
予圧を与えた軸受の予圧を求めるために、静止輪の間に
配置される間座に、軸方向の荷重を検地するための荷重
センサを組み込んだ方法を適用すると、本来は軸受の予
圧を検知したいにもかかわらず、間座の端面と静止輪の
端面とを隙間なく押えこむためのねじやベアリングナッ
トによる締め付け荷重をも含んだ値を検知してしまう。
したがって、正確な予圧の変化を測定しにくい。
However, in order to determine the preload of a bearing having a fixed position preload, a load sensor for detecting an axial load is incorporated in a spacer disposed between stationary wheels. By applying this method, it is possible to detect the value including the tightening load by screws and bearing nuts that press the gap between the end face of the spacer and the end face of the stationary wheel without gaps, despite the fact that you originally want to detect the preload of the bearing. Resulting in.
Therefore, it is difficult to accurately measure a change in preload.

【0007】また、予圧可変機構を備えて使用中の予圧
を一定にした定圧予圧が与えられたスピンドルユニット
の軸受の予圧を求めるために、静止輪の間に配置される
間座に荷重センサを組み込んだ方法を適用すると、荷重
センサが検出した信号が、予圧可変機構によって予圧を
軽減するために押し縮められて加えられた荷重によるも
のか、温度変化で間座が膨張して加わった荷重によるも
のか、判別がつかない場合がある。
Further, in order to obtain a preload of a bearing of a spindle unit to which a constant pressure preload provided with a constant preload during use by providing a variable preload mechanism, a load sensor is provided on a spacer disposed between stationary wheels. When the incorporated method is applied, the signal detected by the load sensor is based on the load applied by compressing and contracting to reduce the preload by the preload variable mechanism, or the load applied by expanding the spacer due to temperature change May not be determined.

【0008】また、振動から予圧を算出する場合、静止
側の部材に振動センサを取り付けて振動を検出する方法
では、振動の伝達経路が長いため、回転側の振動が伝達
経路の途中で減衰するとともに、新たなノイズが加わっ
て、正確な振動数が計測できない場合がある。また、非
接触変位計を回転側の部材に近接させて回転側の変位
(すなわち振動)を検出する方法では、検出される変位
量が小さいため、正確な振動数が計測できない場合があ
る。
In the case of calculating the preload from the vibration, in the method of detecting the vibration by attaching the vibration sensor to the stationary member, the vibration on the rotating side is attenuated in the middle of the transmission path because the vibration transmission path is long. At the same time, new noise may be added, and an accurate frequency may not be measured. Further, in the method of detecting the displacement (ie, vibration) on the rotation side by bringing the non-contact displacement meter close to the member on the rotation side, the amount of displacement to be detected is small, so that accurate frequency measurement may not be possible.

【0009】そこで、本発明は、正確に予圧が測定でき
る軸受の予圧測定方法と、この軸受の予圧測定方法を適
用して予圧を求め得るスピンドルユニット、及び求めた
予圧から回転精度を適正に調整するスピンドルユニット
を提供することを目的とする。
Accordingly, the present invention provides a bearing preload measuring method capable of accurately measuring a preload, a spindle unit capable of obtaining a preload by applying the bearing preload measuring method, and appropriately adjusting the rotational accuracy from the obtained preload. It is an object to provide a spindle unit that performs

【0010】[0010]

【課題を解決するための手段】本発明は、軸受に支持さ
れた回転体の回転中の振動を検出し、検出した振動から
回転体の固有振動数を求め、この固有振動数と前記振動
に起因する質量とから回転体を支持している軸受のばね
定数を求め、このばね定数から軸受の予圧を求める軸受
の予圧測定方法において、軸受の回転輪を含む回転側に
設けた振動センサで振動を検出する予圧測定方法とす
る。
SUMMARY OF THE INVENTION According to the present invention, a vibration during rotation of a rotating body supported by a bearing is detected, a natural frequency of the rotating body is obtained from the detected vibration, and the natural frequency and the vibration are calculated. The spring constant of the bearing supporting the rotating body is determined from the resulting mass and the preload of the bearing is determined from the spring constant. Is a preload measuring method for detecting the preload.

【0011】また、転がり軸受を挟んで、この軸受の回
転輪を含む回転側と、軸受の静止輪を含む静止側とを備
えたスピンドルユニットにおいて、回転側に取り付けた
振動センサと、この振動センサで検出された信号を静止
側に伝播する伝播手段と、この伝播手段によって伝えら
れた信号を基に固有振動数を求め、この固有振動数と前
記振動に起因する質量とから軸受のばね定数を求め、こ
のばね定数から軸受の予圧を求める予圧測定装置とを備
えたスピンドルユニットとする。
In a spindle unit having a rotating side including a rotating wheel of the bearing and a stationary side including a stationary wheel of the bearing with a rolling bearing interposed therebetween, a vibration sensor mounted on the rotating side, and the vibration sensor Propagation means for propagating the signal detected at the stationary side, the natural frequency is obtained based on the signal transmitted by this propagation means, the spring constant of the bearing from the natural frequency and the mass caused by the vibration, And a preload measuring device for obtaining the preload of the bearing from the spring constant.

【0012】または、転がり軸受を挟んで、この軸受の
回転輪を含む回転側と、軸受の静止輪を含む静止側とを
備えたスピンドルユニットにおいて、回転側に取り付け
た振動センサと、この振動センサで検出された信号を静
止側に伝播する伝播手段と、この伝播手段によって伝え
られた信号を基に回転体の固有振動数を求め、この固有
振動数と前記振動に起因する質量とから軸受のばね定数
を求め、このばね定数から軸受の予圧を求める予圧測定
装置と、軸受の予圧を変化させる予圧可変機構とを備
え、予圧測定装置で求められた実測予圧と軸受に予め設
定された目標予圧とを比較し、この結果を予圧可変機構
にフィードバックして軸受の予圧を制御するスピンドル
ユニットとする。
Alternatively, in a spindle unit having a rotating side including a rotating wheel of the bearing and a stationary side including a stationary wheel of the bearing with a rolling bearing interposed therebetween, a vibration sensor attached to the rotating side, and the vibration sensor Propagation means for propagating the signal detected at the stationary side to the stationary side, the natural frequency of the rotating body is determined based on the signal transmitted by this propagation means, and the bearing of the bearing is determined from the natural frequency and the mass caused by the vibration. A preload measuring device that obtains a spring constant and obtains a preload of the bearing from the spring constant, and a preload variable mechanism that changes the preload of the bearing are provided, and the actual preload obtained by the preload measuring device and the target preload set in the bearing are set. The result is fed back to a variable preload mechanism to provide a spindle unit that controls the preload of the bearing.

【0013】このとき、振動センサは、回転側に配置さ
れている回転間座に取り付けるとよい。
At this time, the vibration sensor is preferably mounted on a rotating spacer disposed on the rotating side.

【0014】また、伝播手段は、回転側に設けられた送
信要素と、静止側に設けられた受信要素とを備える。両
要素をアンテナとする場合は、これらのアンテナの間で
検出した振動センサの信号を電波で伝播させる。また、
両要素をコイルとする場合は、これらのコイル間で検出
した振動センサの信号を電磁誘導で伝播させる。
[0014] The propagation means includes a transmitting element provided on the rotating side and a receiving element provided on the stationary side. When both elements are antennas, the signal of the vibration sensor detected between these antennas is propagated by radio waves. Also,
When both elements are coils, the signal of the vibration sensor detected between these coils is propagated by electromagnetic induction.

【0015】回転側への電力の供給は、静止側に設けた
送電部コイルから回転側に設けた受電部コイルへの電磁
誘導によって行うか、もしくは、回転側に設けた発電機
の電機子に励起される電力によって行うことができる。
The supply of power to the rotating side is performed by electromagnetic induction from a power transmitting unit coil provided on the stationary side to a power receiving unit coil provided on the rotating side, or to an armature of a generator provided on the rotating side. This can be done by the excited power.

【0016】検出信号を回転側から静止側へ伝播するた
めに、振動センサで検出した信号を回転側に設けた変調
回路で変調し、この変調した信号を送信要素から送信
し、この送信された信号を受信要素で受信し、この受信
した信号を静止側に設けた復調回路で復調するとよい。
In order to propagate the detection signal from the rotating side to the stationary side, the signal detected by the vibration sensor is modulated by a modulation circuit provided on the rotating side, and the modulated signal is transmitted from the transmitting element. The signal may be received by a receiving element, and the received signal may be demodulated by a demodulation circuit provided on the stationary side.

【0017】また、振動センサと送信要素と受電部コイ
ルまたは電機子とを、2つの軸受の間に設けられた回転
側の回転間座に取り付け、受信要素と送電部コイルと
を、静止側に設けられた静止間座に取り付ける。
Further, the vibration sensor, the transmitting element, and the power receiving unit coil or the armature are mounted on a rotating side spacer provided between the two bearings, and the receiving element and the power transmitting unit coil are mounted on the stationary side. Attach to the provided stationary spacer.

【0018】[0018]

【発明の実施の形態】本発明の第1の実施形態につい
て、図1を参照して説明する。図1のスピンドルユニッ
ト1は、複数、例えば2つのアンギュラ玉軸受2a,2
bと、回転軸3と、ハウジング4とを備えている。アン
ギュラ玉軸受2a,2bは、回転軸3の軸に沿う方向に
互いに鏡対称の関係、すなわち背面組み合わせの関係、
かつ互いに離れて配置されている。そして、各軸受2
a,2bの回転輪である内輪5a,5bは、ベアリング
ナットAを締め付けることで発生する軸方向荷重によっ
て内輪間座7a,7b,7cとともに回転輪に固定され
ている。また、各軸受2a,2bの静止輪である外輪6
a,6bは、ハウジング4の内側にすきまばめ、また
は、しまりばめで固定されている。内輪5a,5bの間
及び回転軸3に沿う方向の両隣には、回転軸3に沿って
内輪5a、5bの位置決めするためにリング状の内輪間
座7a,7b,7cが配置されている。また、外輪6
a,6bの間及び回転軸3に沿う方向の両隣には、ハウ
ジング4に沿ってリング状の外輪間座8a,8b,8c
が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. The spindle unit 1 of FIG. 1 includes a plurality of, for example, two angular ball bearings 2a, 2a.
b, a rotating shaft 3 and a housing 4. The angular ball bearings 2a and 2b are mirror-symmetrical to each other in a direction along the axis of the rotating shaft 3, that is, a back-to-back combination.
And are spaced apart from each other. And each bearing 2
The inner rings 5a and 5b, which are the rotating wheels a and 2b, are fixed to the rotating wheels together with the inner ring spacers 7a, 7b and 7c by an axial load generated by tightening the bearing nut A. In addition, the outer ring 6 which is a stationary wheel of each bearing 2a, 2b
a and 6b are fixed inside the housing 4 by a clearance fit or an interference fit. Between the inner rings 5a and 5b and on both sides in the direction along the rotating shaft 3, ring-shaped inner ring spacers 7a, 7b and 7c are arranged for positioning the inner rings 5a and 5b along the rotating shaft 3. In addition, outer ring 6
The ring-shaped outer ring spacers 8a, 8b, 8c are provided along the housing 4 between the a and 6b and on both sides in the direction along the rotating shaft 3.
Is arranged.

【0019】内輪5a,5bの間の内輪間座7bの軸方
向の中央部には、径外方向に形成されたリング状の凸部
9が形成されている。さらにこの凸部9の中央には、溝
10が一部に設けられ、この溝10の底部11に振動セ
ンサ12が取付けられている。そして、凸部9の外周に
は、溝10を覆う保護リング13が取り付けられてい
る。
At the axial center of the inner race spacer 7b between the inner races 5a and 5b, there is formed a ring-shaped projection 9 formed in a radially outward direction. Further, a groove 10 is provided in a part of the center of the protrusion 9, and a vibration sensor 12 is attached to a bottom 11 of the groove 10. A protection ring 13 that covers the groove 10 is attached to the outer periphery of the projection 9.

【0020】また、外輪6a,6bの間の外輪間座8b
の内面には、内輪間座7bの凸部9に対向する位置に、
受信要素の一例である受信アンテナ14と、発電機の電
機子30に磁束の変化を与えるための鉄輪に複数の穴を
設けた励磁環15とが取り付けられている。受信アンテ
ナ14の信号線16は、外輪間座8bを貫通し、ハウジ
ング4に設けられた配線引出し路18を通してスピンド
ルユニット1の外に配置された演算回路19に接続され
ている。
An outer ring spacer 8b between the outer rings 6a, 6b
At the position facing the convex portion 9 of the inner ring spacer 7b,
A receiving antenna 14, which is an example of a receiving element, and an excitation ring 15 provided with a plurality of holes in an iron ring for giving a change in magnetic flux to an armature 30 of a generator are attached. The signal line 16 of the receiving antenna 14 passes through the outer ring spacer 8b and is connected to an arithmetic circuit 19 disposed outside the spindle unit 1 through a wiring lead-out path 18 provided in the housing 4.

【0021】ハウジング4の端部には、軸受2a,2b
の予圧を調整する油圧式の予圧可変機構21がボルト2
2で取り付けられている。予圧可変機構21は、リング
状に形成されたシリンダ23を備えた蓋24と、この蓋
24のシリンダ23に挿入されたリング状のピストン2
5とで構成されている。そして、ピストン25は、演算
回路19に接続された油圧装置26によって供給された
油圧で、外輪間座8aを回転軸3に沿って外輪間座8
b,8cの方向に押圧する。
Bearings 2a, 2b are provided at the ends of the housing 4.
The hydraulic preload variable mechanism 21 for adjusting the preload of the
2 attached. The variable preload mechanism 21 includes a lid 24 having a cylinder 23 formed in a ring shape, and a ring-shaped piston 2 inserted into the cylinder 23 of the lid 24.
5 is comprised. The piston 25 moves the outer race spacer 8a along the rotating shaft 3 with the hydraulic pressure supplied by the hydraulic device 26 connected to the arithmetic circuit 19.
Press in the direction of b, 8c.

【0022】また、図2及び図3に示すように内輪間座
7bの溝10には、振動センサ12の他に、振動センサ
12で検出した信号を電波Rで送信するための変調回路
27、発信器28、送信要素の一例である送信アンテナ
29、及びこれらに電力を供給するための発電機の電機
子30が前記底部11に取り付けられている。電機子3
0は、コイルと鉄心と磁石とを備え、回転軸3とともに
回転し、相対的に移動する外輪間座8bの内面に取り付
けられた励磁環15に設けられた穴によって磁場の変化
を受け、電磁誘導により発電する。なお、発生した電力
は、交流電流であるので、電機子30の後に整流回路を
設けて直流電流にして電力を供給する。
As shown in FIGS. 2 and 3, in addition to the vibration sensor 12, a modulation circuit 27 for transmitting a signal detected by the vibration sensor 12 as a radio wave R is provided in the groove 10 of the inner ring spacer 7b. A transmitter 28, a transmission antenna 29, which is an example of a transmission element, and an armature 30 of a generator for supplying power thereto are mounted on the bottom 11. Armature 3
Reference numeral 0 designates a coil, an iron core, and a magnet, which rotates together with the rotating shaft 3 and receives a change in a magnetic field by a hole provided in an excitation ring 15 attached to an inner surface of an outer ring spacer 8b which moves relatively. Generate electricity by induction. Since the generated electric power is an alternating current, a rectifying circuit is provided after the armature 30 to supply the electric power as a direct current.

【0023】演算回路19は、図4に示すように受信ア
ンテナ14で受信した電波Rが入力される受信器31
と、受信した電波Rを元の信号に戻す復調回路32と、
信号に含まれる周波数を分解するためのFFT(Fast F
ourier transform、高速フーリエ変換)部33と、分解
された信号から固有振動数を求める固有値解析部34
と、求められた固有振動数から予圧を求める予圧計算部
35と、求められた予圧をアナログ信号に変換するD/
A変換部36とを備えている。
The arithmetic circuit 19 includes a receiver 31 to which the radio wave R received by the receiving antenna 14 is input as shown in FIG.
A demodulation circuit 32 for returning the received radio wave R to the original signal;
FFT (Fast FFT) for decomposing the frequency included in the signal
ourier transform (fast Fourier transform) unit 33 and an eigenvalue analyzing unit 34 for obtaining an eigenfrequency from the decomposed signal.
A preload calculating unit 35 for obtaining a preload from the obtained natural frequency, and a D / D converter for converting the obtained preload into an analog signal.
A conversion unit 36.

【0024】予圧可変機構21に油圧を供給する油圧装
置26は、補償回路による制御の一例としてPID(比
例積分微分)制御を行うPID制御部37と、供給する
油圧を調整する油圧弁38とを備えている。
The hydraulic device 26 for supplying hydraulic pressure to the variable preload mechanism 21 includes a PID control unit 37 for performing PID (proportional-integral-derivative) control as an example of control by a compensation circuit, and a hydraulic valve 38 for adjusting the supplied hydraulic pressure. Have.

【0025】前記玉軸受2a,2bの内輪5a,5bを
含むスピンドルユニット1の回転側から前記玉軸受2
a,2bの外輪6a,6bを含むスピンドルユニット1
の静止側に振動センサ12の信号を伝播する伝播手段
は、回転側の発信器28と送信アンテナ29、及び静止
側の受信アンテナ14と受信器31で構成される。そし
て、振動センサ12と伝播手段と演算回路19によっ
て、予圧測定装置が構成される。
From the rotation side of the spindle unit 1 including the inner rings 5a, 5b of the ball bearings 2a, 2b, the ball bearing 2
spindle unit 1 including outer rings 6a, 6b
Propagation means for propagating the signal of the vibration sensor 12 to the stationary side includes a transmitter 28 and a transmitting antenna 29 on the rotating side, and a receiving antenna 14 and a receiver 31 on the stationary side. The vibration sensor 12, the propagation means and the arithmetic circuit 19 constitute a preload measuring device.

【0026】以上のように構成されたスピンドルユニッ
ト1は、回転軸3が回転することで、電機子30に電力
を生じる。そして、この電力によって、内輪間座7bに
設けられた振動センサ12で、回転軸3の振動を計測す
る。計測された信号は、変調回路27で変調され、発信
器28で内輪間座7bに設けられた送信アンテナ29か
ら電波Rとなって送信される。送信された電波Rは、送
信アンテナ29と対向する位置のに設けられた受信アン
テナ14から受信器31に受信され、復調回路32で元
の信号に復調される。
The spindle unit 1 configured as described above generates electric power in the armature 30 when the rotating shaft 3 rotates. Then, the vibration of the rotating shaft 3 is measured by the vibration sensor 12 provided on the inner race spacer 7b using the electric power. The measured signal is modulated by the modulation circuit 27 and transmitted by the transmitter 28 as a radio wave R from the transmission antenna 29 provided on the inner ring spacer 7b. The transmitted radio wave R is received by the receiver 31 from the reception antenna 14 provided at a position facing the transmission antenna 29, and is demodulated to the original signal by the demodulation circuit 32.

【0027】なお、信号の伝播を行う方法は、送信アン
テナ29の代わりに内輪間座7bの外周面に信号線を巻
いて形成した送信要素としての回転側コイルと、受信ア
ンテナ14の代わりにこの回転側コイルの外周の位置に
相当する外輪間座8bの内面に信号線を巻いて形成した
受信要素としての静止側コイルとを設け、回転側コイル
から静止側コイルに電磁誘導で信号を伝播させる方法で
あってもよい。
The method of propagating a signal is such that, instead of the transmitting antenna 29, a rotating coil as a transmitting element formed by winding a signal line around the outer peripheral surface of the inner ring spacer 7b, and the receiving antenna 14 instead of the receiving antenna 14. A stationary coil as a receiving element formed by winding a signal line is provided on the inner surface of the outer ring spacer 8b corresponding to the position of the outer periphery of the rotating coil, and a signal is transmitted from the rotating coil to the stationary coil by electromagnetic induction. It may be a method.

【0028】静止側に伝播された振動センサ12の信号
は、演算回路19のFFT部33で周波数の成分毎に分
解されて固有値解析部34で固有振動数が求められる。
この固有振動数は、回転軸3を含めた回転体の質量と、
この回転体を支持している軸受2a,2bのばね定数に
よって決定される値である。
The signal of the vibration sensor 12 propagated to the stationary side is decomposed for each frequency component by the FFT unit 33 of the arithmetic circuit 19, and the eigenvalue analysis unit 34 obtains a natural frequency.
This natural frequency is determined by the mass of the rotating body including the rotating shaft 3,
This is a value determined by the spring constant of the bearings 2a and 2b supporting this rotating body.

【0029】したがって、 m:回転側の質量 f:固有振動数 ω:固有振動数の角速度 ω=2πf とすると、軸受のばね定数Kは、 K=ω ×m の式で求めることができる。Accordingly, if m: mass on the rotation side f n : natural frequency ω n : angular velocity of natural frequency ω n = 2πf n , the spring constant K of the bearing is expressed by the following equation: K = ω n 2 × m You can ask.

【0030】また、このときの軸受2a,2bの軸受名
番(形式番号)が分かれば、軸受2a,2bの内部設計
諸元が分かるので、軸受2a,2bにかかる予圧と軸受
接触部(転動体と軌道の接触部)の変形量から軸受2
a,2bのばね定数を計算で求めることができる。そこ
で、前もって予圧と軸受2a,2bのばね定数との関係
を計算で求め、この関係式を予圧計算部35に備えるこ
とで、軸受2a,2bのばね定数Kを基に予圧を求める
ことができる。
If the names (model numbers) of the bearings 2a and 2b at this time are known, the internal design specifications of the bearings 2a and 2b can be known. Bearing 2 from the amount of deformation of the contact part between the moving body and the track)
The spring constants of a and 2b can be obtained by calculation. Therefore, the relationship between the preload and the spring constants of the bearings 2a and 2b is obtained in advance by calculation, and by providing this relational expression in the preload calculation unit 35, the preload can be obtained based on the spring constant K of the bearings 2a and 2b. .

【0031】そこで、予圧計算部35では、固有解析部
34で求められた固有振動数を基に予圧を求める。求め
られた予圧は、D/A変換部36によってアナログ信号
に変換され、油圧装置26に出力される。
Therefore, the preload calculator 35 calculates a preload based on the natural frequency obtained by the natural analyzer 34. The obtained preload is converted into an analog signal by the D / A converter 36 and output to the hydraulic device 26.

【0032】油圧装置26は、入力された予圧を基にP
ID制御部37で油圧弁38の開閉を制御して予圧可変
機構21のピストン25押圧力を調整する。このとき、
本実施形態のスピンドルユニット1の軸受2a,2b
は、背面組み合わせの状態に配置されているので、油圧
があがってピストン25が押され、軸受2a,2bの外
輪5a,5b及び外輪間座8a,8b,8cがハウジン
グ4に沿って圧縮されると、予圧が小さくなり、油圧が
低下して外輪5a,5b及び外輪間座8a,8b,8c
がハウジングに沿って伸びると、予圧が大きくなる。そ
して、予圧が変化することで、スピンドルユニット1の
回転体の固有振動数が変化するので、それに基づいて再
び予圧を調整することを繰り返すことで、予圧を最適化
して回転精度を調整することができる。
The hydraulic device 26 operates based on the input preload based on the input preload.
The opening and closing of the hydraulic valve 38 is controlled by the ID control unit 37 to adjust the pressing force of the piston 25 of the variable preload mechanism 21. At this time,
Bearings 2a, 2b of the spindle unit 1 of the present embodiment
Are arranged in a back-to-back combination, the hydraulic pressure rises, the piston 25 is pushed, and the outer rings 5a, 5b and the outer ring spacers 8a, 8b, 8c of the bearings 2a, 2b are compressed along the housing 4. The preload decreases, the hydraulic pressure decreases, and the outer races 5a, 5b and the outer race spacers 8a, 8b, 8c are reduced.
Extends along the housing, the preload increases. Since the natural frequency of the rotating body of the spindle unit 1 changes as the preload changes, it is possible to optimize the preload again and adjust the rotational accuracy by repeating the preload adjustment based on the change. it can.

【0033】つまり、このスピンドルユニット1は、運
転中の軸受の予圧の変化を測定し、常時最適な予圧の状
態になるように制御することができる。また、このスピ
ンドルユニット1は、回転側となる内輪間座7bに振動
センサ12を直接取り付けて回転体の固有振動数を検出
するので、静止側の振動を計測したり、非接触変位計で
回転側の振動を計測したりする方法と比較して、検出信
号の減衰やノイズが少なく、信号が明瞭である。したが
って、正確な予圧を求めることができるので、それに基
づいて予圧の調整をすることで、スピンドルユニット1
の回転精度をよくすることができ、回転を高速化するこ
とができる。
That is, the spindle unit 1 can measure a change in the preload of the bearing during operation and can control the spindle unit 1 so that it always has an optimal preload state. In addition, since the spindle unit 1 detects the natural frequency of the rotating body by directly attaching the vibration sensor 12 to the inner ring spacer 7b on the rotating side, the stationary unit can measure the vibration on the stationary side, and can rotate by the non-contact displacement meter. Compared with the method of measuring the vibration on the side, the detection signal is less attenuated and noise is less, and the signal is clear. Therefore, an accurate preload can be obtained, and by adjusting the preload based on the preload, the spindle unit 1 can be adjusted.
The rotation accuracy can be improved, and the rotation speed can be increased.

【0034】なお、本実施形態で求めた固有振動数は、
ラジアル方向またはアキシアル方向のいずれの方向の固
有振動数であってもよいが、アキシアル方向の固有振動
数を求めた方がノイズが少ないのでよい。
The natural frequency obtained in the present embodiment is:
The natural frequency in either the radial direction or the axial direction may be used, but it is better to obtain the natural frequency in the axial direction because noise is reduced.

【0035】また、内輪間座の溝10に振動センサ12
とともに温度センサなど他のセンサを取り付け、振動セ
ンサ12の信号と同様の方法で信号を伝播させてセンサ
情報を取り出してもよい。振動センサ12とともに温度
センサを取り付けると、回転による回転軸3の温度上昇
を正確に測定することができる。そこで、この温度の値
を予圧の調整に利用すると、温度変化によるスピンドル
ユニット1の熱膨張や熱収縮の影響を加味した軸受の予
圧の制御ができるのでよい。
The vibration sensor 12 is provided in the groove 10 of the inner ring spacer.
At the same time, another sensor such as a temperature sensor may be attached, and the sensor information may be extracted by transmitting the signal in the same manner as the signal of the vibration sensor 12. If a temperature sensor is attached together with the vibration sensor 12, the temperature rise of the rotating shaft 3 due to the rotation can be accurately measured. Therefore, if this temperature value is used for adjusting the preload, the preload of the bearing can be controlled in consideration of the influence of thermal expansion and thermal contraction of the spindle unit 1 due to a temperature change.

【0036】また、スピンドルユニット1の運転中の振
動や温度を継続的に検出し、その値から予圧の変化を推
定することで、スピンドルユニットの軸受のより正確な
予圧の制御ができる。検出した軸の温度から、回転軸3
の軸方向の熱膨張量を推定し、その値を用いて加工対象
物との相対的な送り量を補正することで、加工対象物の
寸法精度を向上することができる。
Further, by continuously detecting the vibration and temperature during the operation of the spindle unit 1 and estimating the change of the preload from the values, more accurate control of the preload of the bearing of the spindle unit can be performed. From the detected shaft temperature, the rotating shaft 3
By estimating the amount of thermal expansion in the axial direction, and using that value to correct the relative feed amount to the workpiece, the dimensional accuracy of the workpiece can be improved.

【0037】次に本発明の第2の実施形態について、図
5を参照して説明する。なお、第1の実施形態と同じ構
成については同一の符号を付してその説明を省略する。
図5のブロック図で示すスピンドルユニット1は、第1
の実施形態の送信アンテナ29の代わりに送信要素とし
ての送信コイル41を内輪間座7bに、受信アンテナ1
4の代わりに受信要素としての受信コイル42を外輪間
座8bに設ける。また回転側への電力の供給は、内輪間
座7bに取り付けられた受電部コイル43と、外輪間座
8bに取り付けられた送電部コイル44と、この送電部
コイル44に磁場を発生させる電流を流す電源回路45
とによって行われる。
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
The spindle unit 1 shown in the block diagram of FIG.
Instead of the transmitting antenna 29 of the embodiment, a transmitting coil 41 as a transmitting element is provided on the inner ring spacer 7b, and the receiving antenna 1
A receiving coil 42 as a receiving element is provided in the outer ring spacer 8b instead of the receiving coil 42. The power supply to the rotating side is performed by the power receiving unit coil 43 attached to the inner ring spacer 7b, the power transmitting unit coil 44 attached to the outer ring spacer 8b, and the current for generating a magnetic field in the power transmitting unit coil 44. Power supply circuit 45
And done by

【0038】このように構成されたスピンドルユニット
1は、内輪間座7bの振動センサ12で検出された信号
は、変調回路27及び送信器28を経て送信コイル41
から磁場Hによる電磁誘導で外輪間座8bの受信コイル
42で受信され、演算回路19で処理される。また、回
転側である内輪間座7aに取り付けられた振動センサ1
2、変調回路27、発信器28への電力は、外輪間座8
bの送電部コイル44に電源回路45で通電して磁場を
発生させ、電磁誘導で内輪間座7bの受電部コイル43
を励起して発電することで供給される。
In the spindle unit 1 configured as described above, the signal detected by the vibration sensor 12 of the inner ring spacer 7b is transmitted to the transmission coil 41 via the modulation circuit 27 and the transmitter 28.
Are received by the receiving coil 42 of the outer ring spacer 8 b by electromagnetic induction by the magnetic field H, and are processed by the arithmetic circuit 19. Further, the vibration sensor 1 attached to the inner ring spacer 7a on the rotating side
2. The power to the modulation circuit 27 and the transmitter 28 is supplied to the outer ring spacer 8
b of the power transmitting unit coil 44 of the inner ring spacer 7b by electromagnetic induction to generate a magnetic field.
Is supplied by exciting and generating power.

【0039】なお、送信コイル41と受電部コイル43
とを兼用して回転側コイルとし、受信コイル42と送電
部コイル44を兼用して静止側コイルとすると、装置が
簡略化されるのでよい。
The transmitting coil 41 and the power receiving unit coil 43
If both are used as the rotating side coil, and the receiving coil 42 and the power transmitting unit coil 44 are also used as the stationary side coil, the device may be simplified.

【0040】なお、各実施形態において、外輪側を静止
輪側とし、内輪側を回転輪側として説明したが、外輪側
が回転輪側で、内輪側が静止輪側であってもよい。この
場合、振動センサ12は、回転輪側となる外輪間座に取
り付けるものとする。
In each of the embodiments, the outer wheel side is the stationary wheel side, and the inner wheel side is the rotating wheel side. However, the outer wheel side may be the rotating wheel side, and the inner wheel side may be the stationary wheel side. In this case, the vibration sensor 12 is attached to the outer ring spacer on the rotating wheel side.

【0041】[0041]

【発明の効果】本発明の軸受の予圧測定方法によれば、
回転側に設けられた振動センサによって振動を検出する
ので、減衰やノイズの少ない明瞭な信号が検出でき、正
確な軸受の予圧を求めることができる。また、前記予圧
測定方法で求められた予圧を基に、スピンドルユニット
の予圧可変機構を制御し、軸受の予圧を最適な予圧にす
ることで、回転精度のよい、かつ、回転の高速化に適す
るスピンドルユニットとすることができる。
According to the bearing preload measuring method of the present invention,
Since vibration is detected by the vibration sensor provided on the rotating side, a clear signal with little attenuation and noise can be detected, and an accurate bearing preload can be obtained. Further, based on the preload obtained by the preload measuring method, the preload variable mechanism of the spindle unit is controlled to make the preload of the bearing an optimum preload, so that the rotation accuracy is high and the rotation speed is high. It can be a spindle unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態のスピンドルユニット
を示す断面図。
FIG. 1 is a sectional view showing a spindle unit according to a first embodiment of the present invention.

【図2】図1のスピンドルユニットの内輪間座を示す
図。
FIG. 2 is a view showing an inner ring spacer of the spindle unit of FIG. 1;

【図3】図1中のF3−F3に沿う内輪間座と外輪間座
の断面図。
FIG. 3 is a sectional view of an inner ring spacer and an outer ring spacer along F3-F3 in FIG. 1;

【図4】図1のスピンドルユニットの信号系統を示すブ
ロック図。
FIG. 4 is a block diagram showing a signal system of the spindle unit of FIG. 1;

【図5】本発明の第2の実施形態のスピンドルユニット
の信号系統を示すブロック図。
FIG. 5 is a block diagram showing a signal system of a spindle unit according to a second embodiment of the present invention.

【符号の説明】 1…スピンドルユニット 2a,2b…軸受 5a,5b…内輪(回転輪) 6a,6b…外輪(静止輪) 7b…内輪間座 8b…外輪間座 12…振動センサ 14…受信アンテナ(受信要素) 15…励磁環 21…予圧可変機構 27…変調回路 28…復調回路 29…送信アンテナ(送信要素) 30…電機子 41…送信コイル 41…受信コイル 43…受信部コイル 44…送信部コイル R…電波 H…磁場DESCRIPTION OF SYMBOLS 1 ... Spindle unit 2a, 2b ... Bearing 5a, 5b ... Inner ring (rotating wheel) 6a, 6b ... Outer ring (stationary wheel) 7b ... Inner ring spacer 8b ... Outer ring spacer 12 ... Vibration sensor 14 ... Reception antenna (Receiving element) 15 ... Excitation ring 21 ... Preload variable mechanism 27 ... Modulating circuit 28 ... Demodulating circuit 29 ... Transmitting antenna (transmitting element) 30 ... Armature 41 ... Transmitting coil 41 ... Receiving coil 43 ... Receiving coil 44 ... Transmitting unit Coil R: Radio wave H: Magnetic field

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G08C 17/02 G08C 19/00 C 19/00 17/00 B Fターム(参考) 2F073 AA35 AB12 BB02 BC02 BC10 CC01 EE12 FF02 FF03 GG01 GG04 2G024 AC02 BA08 CA11 DA03 EA11 3J012 AB04 AB07 BB03 BB05 CB05 FB10 3J101 AA02 AA42 AA54 AA62 AA81 BA71 BA77 FA01 FA24 FA26 FA41 GA31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) G08C 17/02 G08C 19/00 C 19/00 17/00 BFterm (reference) 2F073 AA35 AB12 BB02 BC02 BC10 CC01 EE12 FF02 FF03 GG01 GG04 2G024 AC02 BA08 CA11 DA03 EA11 3J012 AB04 AB07 BB03 BB05 CB05 FB10 3J101 AA02 AA42 AA54 AA62 AA81 BA71 BA77 FA01 FA24 FA26 FA41 GA31

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】軸受に支持された回転体の回転中の振動を
検出し、検出した振動を基に固有振動数を求め、この固
有振動数と前記振動に起因する質量とから前記軸受のば
ね定数を求め、このばね定数から前記軸受の予圧を求め
る軸受の予圧測定方法において、 前記軸受の回転輪を含む回転側に設けられた振動センサ
によって前記振動を検出することを特徴とする軸受の予
圧測定方法。
An object of the present invention is to detect vibration during rotation of a rotating body supported by a bearing, determine a natural frequency based on the detected vibration, and obtain a spring of the bearing from the natural frequency and a mass caused by the vibration. A method for measuring a constant, and obtaining a preload of the bearing from the spring constant, wherein the vibration is detected by a vibration sensor provided on a rotating side including a rotating wheel of the bearing. Measuring method.
【請求項2】転がり軸受を挟んで、この軸受の回転輪を
含む回転側と、前記軸受の静止輪を含む静止側とを備え
るスピンドルユニットにおいて、 前記回転側に取り付けられた振動センサと、前記静止側
に前記振動センサが検出した信号を伝える伝播手段と、
この伝播手段によって伝えられた信号を基に固有振動数
を求め、この固有振動数と前記振動に起因する質量とか
ら前記軸受のばね定数を求め、このばね定数から前記軸
受の予圧を求める予圧測定装置とを備えていることを特
徴とするスピンドルユニット。
2. A spindle unit having a rotating side including a rotating ring of the bearing and a stationary side including a stationary ring of the bearing, with a vibration sensor attached to the rotating side; Propagation means for transmitting a signal detected by the vibration sensor to a stationary side,
Preload measurement for obtaining a natural frequency based on a signal transmitted by the propagation means, obtaining a spring constant of the bearing from the natural frequency and a mass caused by the vibration, and obtaining a preload of the bearing from the spring constant. A spindle unit comprising a device.
【請求項3】転がり軸受を挟んで、この軸受の回転輪を
含む回転側と、前記軸受の静止輪を含む静止側とを備え
るスピンドルユニットにおいて、 前記回転側に取り付けられた振動センサと、前記静止側
に前記振動センサが検出した信号を伝える伝播手段と、
この伝播手段によって伝えられた信号を基に固有振動数
を求め、この固有振動数と前記振動に起因する質量とか
ら前記軸受のばね定数を求め、このばね定数から前記軸
受の予圧を求める予圧測定装置と、前記軸受の予圧を変
化させる予圧可変機構とを備え、 前記予圧測定装置で求められた実測予圧と前記軸受に予
め設定された目標予圧とを比較し、この結果を前記予圧
可変機構にフィードバックして前記軸受の予圧を制御す
ることを特徴とするスピンドルユニット。
3. A spindle unit having a rotating side including a rotating wheel of the bearing, and a stationary side including a stationary wheel of the bearing, with a vibration sensor attached to the rotating side; Propagation means for transmitting a signal detected by the vibration sensor to a stationary side,
Preload measurement for obtaining a natural frequency based on a signal transmitted by the propagation means, obtaining a spring constant of the bearing from the natural frequency and a mass caused by the vibration, and obtaining a preload of the bearing from the spring constant. Device, comprising a preload variable mechanism for changing the preload of the bearing, comparing the measured preload determined by the preload measurement device with a target preload preset for the bearing, and the result is sent to the preload variable mechanism. A spindle unit for controlling the preload of the bearing by feedback.
【請求項4】前記回転側は、回転間座を備え、この回転
間座に前記振動センサを取り付けたことを特徴とする請
求項2または請求項3に記載のスピンドルユニット。
4. The spindle unit according to claim 2, wherein the rotating side includes a rotating spacer, and the vibration sensor is attached to the rotating spacer.
【請求項5】前記伝播手段は、前記回転側に設けられた
送信要素と、前記静止側に設けられた受信要素を備える
ことを特徴とする請求項2から請求項4の内のいずれか
1項に記載のスピンドルユニット。
5. The apparatus according to claim 2, wherein said propagation means includes a transmitting element provided on said rotating side and a receiving element provided on said stationary side. A spindle unit according to the item.
【請求項6】前記送信及び受信の両要素がアンテナであ
って、これらの間で、前記振動センサの信号を電波で伝
播することを特徴とする請求項5に記載のスピンドルユ
ニット。
6. The spindle unit according to claim 5, wherein both the transmitting and receiving elements are antennas, and the signal of the vibration sensor is propagated between them by radio waves.
【請求項7】前記送信及び受信の両要素がコイルであっ
て、これらの間で、前記振動センサの信号を電磁誘導で
伝播することを特徴とする請求項5に記載のスピンドル
ユニット。
7. The spindle unit according to claim 5, wherein both the transmitting and receiving elements are coils, and a signal of the vibration sensor is propagated between the coils by electromagnetic induction.
【請求項8】前記回転側への電力の供給は、前記静止側
に設けた送電部コイルから前記回転側に設けた受電部コ
イルへの電磁誘導によって行われることを特徴とする請
求項2から請求項7の内のいずれか1項に記載のスピン
ドルユニット。
8. The power supply to the rotating side is performed by electromagnetic induction from a power transmitting unit coil provided on the stationary side to a power receiving unit coil provided on the rotating side. The spindle unit according to claim 7.
【請求項9】前記回転部への電力の供給は、前記回転側
に設けた発電機の電機子で励起される電力を用いること
を特徴とする請求項2から請求項7の内のいずれか1項
に記載のスピンドルユニット。
9. The power supply to the rotating section uses power excited by an armature of a generator provided on the rotating side. Item 2. The spindle unit according to item 1.
【請求項10】前記振動センサで検出した信号を前記回
転側に設けた変調回路で変調し、この変調された信号を
前記送信要素から送信し、この送信された信号を前記受
信要素で受信し、この受信した信号を前記静止側に設け
た復調回路で復調することを特徴とする請求項5から請
求項9の内のいずれか1項に記載のスピンドルユニッ
ト。
10. A signal detected by the vibration sensor is modulated by a modulation circuit provided on the rotation side, the modulated signal is transmitted from the transmitting element, and the transmitted signal is received by the receiving element. 10. The spindle unit according to claim 5, wherein the received signal is demodulated by a demodulation circuit provided on the stationary side.
【請求項11】前記振動センサと前記送信要素と前記受
電部コイルまたは前記電機子とを、前記回転側と前記静
止側の間に設けられた少なくとも2つの軸受の回転輪の
間に配置される前記回転側の間座に取り付けたことを特
徴とする請求項5から請求項10の内のいずれか1項に
記載のスピンドルユニット。
11. The vibration sensor, the transmitting element, and the power receiving unit coil or the armature are disposed between rotating wheels of at least two bearings provided between the rotating side and the stationary side. The spindle unit according to any one of claims 5 to 10, wherein the spindle unit is attached to the rotating side spacer.
【請求項12】前記受信要素と、前記送電部コイルと
を、前記回転側と前記静止側の間に設けられた少なくと
も2つの軸受の静止輪の間に配置される前記静止側の間
座に取り付けたことを特徴とする請求項5から請求項1
0の内のいずれか1項に記載のスピンドルユニット。
12. The stationary element according to claim 1, wherein the receiving element and the power transmitting unit coil are mounted on the stationary side spacer between at least two stationary wheels of a bearing provided between the rotating side and the stationary side. 5. The device according to claim 5, wherein the device is attached.
The spindle unit according to any one of 0.
JP2001176052A 2001-06-11 2001-06-11 Measuring method of bearing preload and spindle unit Pending JP2002364661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176052A JP2002364661A (en) 2001-06-11 2001-06-11 Measuring method of bearing preload and spindle unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176052A JP2002364661A (en) 2001-06-11 2001-06-11 Measuring method of bearing preload and spindle unit

Publications (1)

Publication Number Publication Date
JP2002364661A true JP2002364661A (en) 2002-12-18

Family

ID=19017096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176052A Pending JP2002364661A (en) 2001-06-11 2001-06-11 Measuring method of bearing preload and spindle unit

Country Status (1)

Country Link
JP (1) JP2002364661A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029436A1 (en) * 2003-09-19 2005-03-31 Ntn Corporation Wireless sensor system and wireless sensor-equipped bearing device
DE102005042776A1 (en) * 2005-09-08 2007-03-15 Walter Dittel Gmbh sensor arrangement
CN100428285C (en) * 2003-09-19 2008-10-22 Ntn株式会社 Wireless sensor system and wireless sensor-equipped bearing device
JP2009068533A (en) * 2007-09-11 2009-04-02 Ntn Corp Bearing device
US7561035B2 (en) 2002-09-09 2009-07-14 Ntn Corporation Wireless sensor system and bearing assembly equipped with the same
JP2009195983A (en) * 2008-01-23 2009-09-03 Nippon Steel Corp Rolling mill equipped with rolling bearing, and method for controlling thickness of sheet
US7688216B2 (en) 2003-08-29 2010-03-30 Ntn Corporation Wireless sensor system and wheel support bearing assembly utilizing the same
JP2010101491A (en) * 2008-10-21 2010-05-06 Metso Lindemann Gmbh Device for supporting shaft of working equipment in axial direction
CN111670311A (en) * 2018-02-13 2020-09-15 Ntn株式会社 Bearing device and spindle device
CN114207305A (en) * 2019-07-12 2022-03-18 Ntn株式会社 Bearing device and spindle device
EP3835749A4 (en) * 2018-08-06 2022-04-27 Zhejiang Ute Bearing Co., Ltd Integrated bearing seat capable of accurately detecting operating condition of bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561035B2 (en) 2002-09-09 2009-07-14 Ntn Corporation Wireless sensor system and bearing assembly equipped with the same
US7688216B2 (en) 2003-08-29 2010-03-30 Ntn Corporation Wireless sensor system and wheel support bearing assembly utilizing the same
US7612665B2 (en) 2003-09-19 2009-11-03 Ntn Corporation Wireless sensor system and bearing assembly having built-in wireless sensor
CN100428285C (en) * 2003-09-19 2008-10-22 Ntn株式会社 Wireless sensor system and wireless sensor-equipped bearing device
WO2005029436A1 (en) * 2003-09-19 2005-03-31 Ntn Corporation Wireless sensor system and wireless sensor-equipped bearing device
DE102005042776A1 (en) * 2005-09-08 2007-03-15 Walter Dittel Gmbh sensor arrangement
JP2009068533A (en) * 2007-09-11 2009-04-02 Ntn Corp Bearing device
JP2009195983A (en) * 2008-01-23 2009-09-03 Nippon Steel Corp Rolling mill equipped with rolling bearing, and method for controlling thickness of sheet
JP2010101491A (en) * 2008-10-21 2010-05-06 Metso Lindemann Gmbh Device for supporting shaft of working equipment in axial direction
CN111670311A (en) * 2018-02-13 2020-09-15 Ntn株式会社 Bearing device and spindle device
CN111670311B (en) * 2018-02-13 2022-10-28 Ntn株式会社 Bearing device and spindle device
EP3835749A4 (en) * 2018-08-06 2022-04-27 Zhejiang Ute Bearing Co., Ltd Integrated bearing seat capable of accurately detecting operating condition of bearing
CN114207305A (en) * 2019-07-12 2022-03-18 Ntn株式会社 Bearing device and spindle device

Similar Documents

Publication Publication Date Title
JP4965074B2 (en) Rolling bearing with measuring function and electric motor provided with the same
JP2002364661A (en) Measuring method of bearing preload and spindle unit
US10272280B2 (en) Braking system for gymnastic machines and operating method thereof
JP3551033B2 (en) Apparatus and method for evaluating bearing stiffness
EP0217640B1 (en) A torque sensor of the non-contact type
US10024742B2 (en) System and method for torque transducer and temperature sensor
US20070051188A1 (en) Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
US20090308285A1 (en) Rotary table mounting and drive device
US11171588B2 (en) Method for monitoring the operation of an electrical rotating machine
KR20150004851A (en) Module for determining an operating characteristic of a bearing
EP2577247A1 (en) Load sensing on a bearing
Tlalolini et al. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle
US6779409B1 (en) Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
CN106644224B (en) Magnetic suspension bearing dynamic torque sensor
JPH0261700B2 (en)
KR20060072581A (en) Apparatus for measuring torque, torque monitoring system, and torque monitoring method
JP2003307228A (en) Bearing device with sensor
US11953348B2 (en) Non-contact sensor assembly and method of sensing using the same
JP2019007580A (en) Bearing with wireless sensor
CN107246945A (en) A kind of measuring system of dynamic twisting vibration transmission function
US4912834A (en) Method of adjusting thermal balance of rotor
EP3388806A1 (en) Circumferential force measuring device
JP5030744B2 (en) Bearing device
JPH0587821A (en) Rotational speed detecting device for rolling bearing
KR100355760B1 (en) Method and apparatus for controlling state of ball bearing using exciter