WO2021010149A1 - 異種金属接合体の製造方法及び異種金属接合体 - Google Patents

異種金属接合体の製造方法及び異種金属接合体 Download PDF

Info

Publication number
WO2021010149A1
WO2021010149A1 PCT/JP2020/025509 JP2020025509W WO2021010149A1 WO 2021010149 A1 WO2021010149 A1 WO 2021010149A1 JP 2020025509 W JP2020025509 W JP 2020025509W WO 2021010149 A1 WO2021010149 A1 WO 2021010149A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
welding
steel
dissimilar metal
plate
Prior art date
Application number
PCT/JP2020/025509
Other languages
English (en)
French (fr)
Inventor
励一 鈴木
恭兵 前田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP20840728.8A priority Critical patent/EP3978177A4/en
Priority to US17/627,583 priority patent/US20220274199A1/en
Priority to CN202080045934.0A priority patent/CN114007795B/zh
Publication of WO2021010149A1 publication Critical patent/WO2021010149A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • B23K9/0035Arc welding or cutting specially adapted for particular articles or work of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/28Beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to a method for producing a dissimilar metal joint and a dissimilar metal joint.
  • HTSS high-strength steel sheets
  • dissimilar metal bonding materials obtained by bonding steel materials with non-ferrous metals such as lightweight aluminum or aluminum alloy materials.
  • a method of joining dissimilar metals generally, there are a method of joining with nails or screws, and a method of joining using SPR (Self-Pierce Riveting) or FDS (Flow Drilling Screw; registered trademark).
  • Patent Document 1 as a method of joining a flange portion of an aluminum roof panel and a flange portion of a steel body side panel, an adhesive is continuously applied with a circular closed loop-shaped locus near the edge of the flange portion.
  • a bonding structure of dissimilar metal panels in which an adhesive layer applied to is formed in advance and bonded by SPR.
  • Patent Document 2 As a method of joining dissimilar metals by welding, for example, in Patent Document 2, for example, in Patent Document 2, aluminum or an aluminum alloy is adhered to a steel base material by thermal spraying to form a thermal spray coating, and then the thermal spray coating and the steel base material are attached. A method of welding both by facing each other and forming an aluminum alloy weld bead by welding is disclosed. Further, in Patent Document 3, an aluminum or aluminum alloy film is formed on the surface of the first base material made of steel by a cold spray method, and the film and the second base material made of aluminum or an aluminum alloy are opposed to each other. A joining method for welding is disclosed.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to suppress an increase in manufacturing cost without the need for new equipment, and even in the case of fillet welding, a member made of non-ferrous metal. It is an object of the present invention to provide a method for producing a dissimilar metal joint and a dissimilar metal joint capable of joining a steel member and a steel member with high joining strength.
  • the above object of the present invention is achieved by the configuration of the following (1) relating to the method for producing a dissimilar metal joint.
  • a method for producing a dissimilar metal joint in which a first member made of non-ferrous metal and having an end face and a first surface adjacent to the end face and a second member made of steel are joined.
  • a method for producing a dissimilar metal joint having a step of performing galvanic welding between the film and the second member.
  • a preferred embodiment of the present invention relating to a method for producing a dissimilar metal joint relates to the following configurations (2) to (10).
  • the film is formed so as to extend from the end surface of the upper plate to the upper surface to be the first surface of the upper plate.
  • the method for producing a dissimilar metal joint according to (4) which welds the film and the lower material.
  • the plate-shaped first member is used as a standing plate and the second member is used as a lower material.
  • One-sided corner where the coating is formed from the end surface of the standing plate facing the upper surface of the lower material so as to straddle the first surface adjacent to the end surface, and the coating and the lower material are welded from the first surface side.
  • the method for producing a dissimilar metal joint according to (4) which is galvanic welding.
  • the plate-shaped first member is used as a standing plate and the second member is used as a lower material.
  • the film is formed from the end surface of the standing plate facing the upper surface of the lower material so as to be adjacent to the end surface and straddle the first surface and the second surface facing each other, and the first surface side and the first surface are formed.
  • the method for producing a dissimilar metal joint according to (4) which is double-sided fillet welding in which the coating film and the lower material are welded from each of the two side surfaces.
  • the metal powder was selected from ferritic stainless steel, austenitic stainless steel, two-phase stainless steel of ferritic and austenitic, pure iron, carbon steel, nickel, nickel alloy, cobalt and cobalt alloy.
  • the above object of the present invention is achieved by the following configuration (11) relating to the dissimilar metal joint.
  • (11) A first member made of a non-ferrous metal and having an end face and a first face adjacent to the end face, A film formed on the end face and the first surface of the first member by injecting a metal powder capable of joining the second member at a low temperature and at high speed in a region straddling the end face and the first surface.
  • a second member made of steel arranged so that the coatings are close to each other, A dissimilar metal joint having a fillet welded portion formed between the film and the second member.
  • the method for manufacturing a dissimilar metal joint of the present invention it is possible to suppress an increase in manufacturing cost without the need for new equipment, and even in the case of fillet welding, a member made of non-ferrous metal and steel. It is possible to provide a method for producing a dissimilar metal bonded body capable of bonding a member made of the same material with a high bonding strength. Further, the dissimilar metal joint of the present invention can obtain high joint strength.
  • FIG. 1A is a top view showing a dissimilar metal joint according to the first embodiment of the present invention.
  • FIG. 1B is a sectional view taken along line LL in FIG. 1A showing a dissimilar metal joint according to the first embodiment of the present invention.
  • FIG. 2A is a top view showing a dissimilar metal joint according to a second embodiment of the present invention.
  • FIG. 2B is a sectional view taken along line MM in FIG. 2A showing a dissimilar metal joint according to a second embodiment of the present invention.
  • FIG. 3A is a top view showing a dissimilar metal joint according to a third embodiment of the present invention.
  • FIG. 3B is a sectional view taken along line NN in FIG.
  • FIG. 4 is a perspective view showing a dissimilar metal joint according to a fourth embodiment of the present invention.
  • FIG. 5 is a perspective view showing a dissimilar metal joint according to a fifth embodiment of the present invention.
  • the present inventors can use conventional equipment for joining dissimilar metals between a member made of non-ferrous metal and a member made of steel, and obtain high joining strength even in the case of fillet welding.
  • a metal powder that can be bonded to the steel member is injected at a low temperature and at high speed onto at least a part of the surface of the member made of non-ferrous metal to form a film, and the film and the steel member are filleted. It has been found that a dissimilar metal joint having high joint strength can be obtained by welding.
  • the method for producing a dissimilar metal joint according to the present invention is a dissimilar method for joining a first member made of a non-ferrous metal and having an end face and a first surface adjacent to the end face and a second member made of steel.
  • a method for manufacturing a metal joint in which a metal powder that can be bonded to a second member is sprayed onto the end face and the first surface of the first member at a low temperature and at high speed so that a film is applied over the end face and the first face. It includes a step of forming, a step of arranging the first member and the second member so that the film and the second member are close to each other, and a step of performing fillet welding between the film and the second member.
  • the dissimilar metal joint according to the present invention is made of a non-ferrous metal, and has a first member having an end face and a first surface adjacent to the end face, and an end face and a first surface of the first member having a second member.
  • a coating formed on an end face and a region straddling one surface by injecting a metal powder that can be joined at a low temperature and at a high speed, a second member made of steel arranged so that the coatings are close to each other, and a coating and a second member. It has a fillet welded portion formed between and.
  • FIG. 1A is a top view showing a dissimilar metal joint according to the first embodiment of the present invention
  • FIG. 1B is a sectional view taken along line LL in FIG. 1A.
  • a metal powder made of pure iron extends from the end surface 1a of the aluminum alloy plate (first member) 1 to the surface adjacent to the end surface 1a, that is, the upper surface (first surface) 1b.
  • a pure iron film 2 is formed, which is obtained by injecting the powder at a low temperature and at a high speed.
  • An aluminum alloy plate 1 is arranged on the steel plate (second member) 3 so that the upper surface 3a and the coating 2 are adjacent to each other, and a steel weld metal is provided at a corner formed by the coating 2 and the steel plate 3. (Fillet welded portion) 4 is formed.
  • a metal powder made of pure iron is injected at a low temperature and at high speed into a continuous region of an end surface 1a and an upper surface (first surface) 1b of an aluminum alloy plate (first member) 1 to form a film 2.
  • the aluminum alloy plate 1 is placed on top of the steel plate (second member) 3.
  • the end surface 1a of the aluminum alloy plate 1 is substantially perpendicular to the upper surface 3a of the steel plate 3, and the film 2 and the steel plate 3 are arranged so as to be adjacent to each other.
  • the cold spray method is suitable as a method for forming the film 2 by injecting a metal powder made of pure iron at a low temperature and at high speed.
  • the cold spray method is a method of forming a film 2 by spraying a gas and a metal powder onto an object at a high speed equal to or higher than the speed of sound.
  • the working gas has a relatively low temperature (for example, 900 ° C. or lower, which is lower than the melting point of iron particles)
  • the metal powder having a relatively high melting point such as pure iron and the aluminum alloy plate 1 may melt each other. Instead, the metal powder made of pure iron bites into the aluminum alloy plate 1 due to its velocity energy, resulting in a micromechanical fastening state.
  • the cold spray method can be carried out by appropriately selecting the gas type, pressure, temperature, particle size of the metal powder, and the like to be used.
  • a method of forming a film 2 made of a material that can be bonded to a steel material on the surface of an aluminum alloy plate 1 other than the above cold spraying method, other thermal spraying methods such as plasma spraying and arc spraying can be considered.
  • plasma spraying and arc spraying have a high working gas temperature (for example, 2000 ° C. or higher, which is higher than the melting point of iron particles) and become liquid beyond the melting point of the iron particles and the aluminum alloy plate 1, an intermetal compound is generated by a chemical reaction. Since only a brittle film can be formed, it is preferable to use the cold spray method.
  • the film 2 does not have to be formed over the entire area of the end face 1a and the upper surface 1b of the aluminum alloy plate 1, and may be formed in at least a part of the end face 1a and the upper surface 1b forming the steel weld metal 4. ..
  • the aluminum alloy plate 1 is formed. Fine irregularities are formed on the surface. Therefore, the film 2 made of pure iron and the aluminum alloy plate 1 are firmly bonded by being mechanically fastened by the anchor effect. Further, since the film 2 and the steel plate 3 are firmly bonded by general arc welding, dissimilar metals of the steel plate 3 and the aluminum alloy plate 1 can be indirectly bonded to each other with high bonding strength.
  • the dissimilar metal joints are not joined to each other, but the steel plate 3 and the film 2 made of pure iron are formed. It is a bond between similar metals.
  • the pure iron powder is harder than the surface of the aluminum alloy plate 1, when the pure iron powder is injected onto the surface of the aluminum alloy plate 1 at high speed, the shape of the powder is not crushed and the sphere is formed. While keeping it, dig into the aluminum alloy plate 1.
  • pure iron has a higher density and is heavier than an aluminum alloy, the movement when the powder collides with the base material is compared with the case where aluminum or an aluminum alloy powder is sprayed onto a steel material to form a film. The energy becomes large, and it digs deeper into the aluminum alloy plate 1. Therefore, a strong anchor effect can be obtained.
  • the strength of the joint can be increased and the cost related to the welding material can be reduced.
  • the film 2 is formed so as to extend from the end surface 1a of the aluminum alloy plate 1 to the upper surface 1b, the aluminum alloy is compared with the case where the film 2 is formed only on the end surface 1a.
  • the mechanical fastening force between the plate 1 and the film 2 can be increased, and as a result, the bonding strength between the aluminum alloy plate 1 and the film 2 can be significantly improved. Therefore, even in the case of galvanic welding where it is difficult to secure a large joint surface as in the present embodiment, high joint strength can be obtained between dissimilar metals.
  • FIG. 2A is a top view showing a dissimilar metal joint according to a second embodiment of the present invention
  • FIG. 2B is a sectional view taken along line MM in FIG. 2A.
  • the aluminum alloy plate (first member) 11 is used as a standing plate and the steel plate (second member) 13 is used as a lower plate (lower material), and the joint body is arranged and welded in a T shape. Is. As shown in FIGS.
  • pure iron metal powder is injected at a low temperature and at high speed from the end surface 11a of the aluminum alloy plate 11 so as to straddle one surface (first surface) 11b adjacent to the end surface 11a.
  • a film 12 made of pure iron is formed by this.
  • the end surface 11a of the aluminum alloy plate 11 is arranged so as to face the upper surface 13a of the steel plate 13. That is, the aluminum alloy plate 11 is arranged on the steel plate 13 so that the upper surface 13a and the coating 12 are close to each other, and the steel weld metal (fillet welded portion) is arranged at the corner formed by the coating 12 and the steel plate 13. ) 14 is formed.
  • a metal powder made of pure iron is injected at a low temperature and at high speed into a continuous region between the end surface 11a of the aluminum alloy plate (first member) 11 and one surface (first surface) 11b adjacent to the end surface 11a.
  • the film 12 is formed.
  • the aluminum alloy plate 11 is arranged so that the end surface 11a of the aluminum alloy plate 11 faces the upper surface 13a of the steel plate 13.
  • one surface 11b of the aluminum alloy plate 11 is substantially perpendicular to the upper surface 13a of the steel plate 13, and the film 12 and the steel plate 13 are arranged so as to be close to each other.
  • the method of forming the film 12 by injecting a metal powder made of pure iron onto the surface of the aluminum alloy plate 11 at low temperature and at high speed is the same as that of the first embodiment, and the metal powder made of pure iron has its velocity energy. It is possible to bite into the aluminum alloy plate 11 and obtain a strong micromechanical fastening state. Therefore, an intermetallic compound is not formed and a brittle phase cannot be formed. As a result, a strong pure iron film 12 is formed on a part of the aluminum alloy plate 11. Further, since the film 12 and the steel plate 13 are firmly bonded by general arc welding to form a high-strength steel welding material 14, dissimilar metals of the steel plate 13 and the aluminum alloy plate 11 are bonded with high bonding strength. can do.
  • the film 12 is formed so as to extend from the end surface 11a of the aluminum alloy plate 11 to one surface 11b, the film 12 is formed only on the end surface 11a or one surface 11b.
  • the mechanical fastening force between the aluminum alloy plate 11 and the film 12 can be increased, and as a result, the bonding strength between the aluminum alloy plate 11 and the film 12 can be significantly improved. Therefore, even in the case of galvanic welding where it is difficult to secure a large joint surface as in the present embodiment, high joint strength can be obtained between dissimilar metals.
  • the film 12 does not need to be formed over the entire area of the end surface 11a and one surface 11b of the aluminum alloy plate 11, but is formed on one side with the end surface 11a forming the steel weld metal 14. It may be formed in at least a part of the region of the surface 11b.
  • FIG. 3A is a top view showing a dissimilar metal joint according to a third embodiment of the present invention
  • FIG. 3B is a sectional view taken along line NN in FIG. 3A.
  • the third embodiment also has an aluminum alloy plate (first member) 21 as a standing plate and a steel plate (second member) 23 as a lower plate (lower material) so as to form a T shape. It is a welded joint.
  • the third embodiment is an example in which steel weld metals 24a and 24b are formed on both side surfaces of the aluminum alloy plate 21.
  • steel weld metals 24a and 24b are formed on both side surfaces of the aluminum alloy plate 21.
  • FIGS. 3A and 3B from the end surface 21a of the aluminum alloy plate 21, to both surfaces adjacent to the end surface 21a and facing each other (that is, one surface (first surface) 21b and one surface).
  • a pure iron film 22 obtained by injecting a pure iron metal powder at a low temperature and at a high speed is formed so as to straddle the other facing surface (second surface) 21c).
  • the aluminum alloy plate 21 is arranged so that its end surface 21a faces the upper surface 23a of the steel plate 23.
  • the aluminum alloy plate 21 is arranged on the steel plate 23 so that the upper surface 23a and the film 22 are close to each other. Further, on one surface 21b side of the aluminum alloy plate 21, a steel weld metal (fillet welded portion) 24a is formed at a corner portion composed of the film 22 and the steel plate 23, and on the other surface 21c side. A steel weld metal (fillet welded portion) 24b is formed at a corner portion of the film 22 and the steel plate 23.
  • the end surface 21a of the aluminum alloy plate (first member) 21, one surface (first surface) 21b adjacent to the end surface 21a, and the other surface (second surface) 21c adjacent to the end surface 21a are continuous.
  • a metal powder made of pure iron is sprayed at a low temperature and at high speed into the region to be formed to form a film 22.
  • the aluminum alloy plate 21 is arranged so that the end surface 21a of the aluminum alloy plate 21 faces the upper surface 23a of the steel plate 23.
  • one surface 21b and the other surface 21c of the aluminum alloy plate 21 are substantially perpendicular to the upper surface 23a of the steel sheet 23, and the film 22 and the steel sheet 23 are arranged so as to be close to each other.
  • arc welding using a steel welding material was performed on the corner portion between the film 22 and the steel plate 23 from one surface 21b side, and the film 22, the steel plate 23 and the steel welding material were melted.
  • a steel weld metal 24a is formed.
  • arc welding using the steel welding material is performed on the corner portion between the film 22 and the steel plate 23 from the other surface 21c side to form the steel weld metal 24b.
  • the method of forming the film 22 by injecting a metal powder made of pure iron onto the surface of the aluminum alloy plate 21 at low temperature and at high speed is the same as that of the first embodiment, and the metal powder made of pure iron is the same as that of the first embodiment. It is possible to obtain a strong micromechanical fastening state by biting into the aluminum alloy plate 21 by the velocity energy. Therefore, no intermetallic compound is formed and no brittle phase is formed. As a result, a strong pure iron film 22 is formed on a part of the aluminum alloy plate 21.
  • the film 22 is formed so as to extend from the end surface 21a of the aluminum alloy plate 21 to one surface 21b and the other surface 21c, the end surface 21a, one surface 21b, and the other surface are formed.
  • the mechanical fastening force between the aluminum alloy plate 21 and the film 22 can be increased, and as a result, the aluminum alloy plate 21 and the film 22 are joined.
  • the strength can be significantly improved. Therefore, even in the case of galvanic welding where it is difficult to secure a large joint surface as in the present embodiment, high joint strength can be obtained between dissimilar metals.
  • the film 22 does not need to be formed over the entire area of the end surface 21a, one surface 21b, and the other surface 21c of the aluminum alloy plate 21, and forms the steel weld metal 24. It may be formed in at least a part of the end surface 21a, one surface 21b, and the other surface 21c.
  • FIG. 4 is a perspective view showing a dissimilar metal joint according to a fourth embodiment of the present invention.
  • the fourth embodiment is a modification of the fillet weld shown in FIGS. 1A and 1B.
  • the fourth embodiment shows a dissimilar metal joint of a square pipe (first member) 31 made of an aluminum alloy and a square pipe (second member) 33 made of steel. That is, a film 32 is formed so as to straddle the end surface 31a of the square pipe 31 and the first surface 31b adjacent to the end surface 31a, and the film 32 and the square pipe 33 are galvanically welded to form a steel weld metal 34. Thereby, a dissimilar metal joint can be obtained.
  • the method of forming the film 32 and the fillet welding method of the film 32 and the square pipe 33 are the same as those of the first embodiment shown in FIGS. 1A and 1B, and the same effect can be obtained.
  • FIG. 5 is a perspective view showing a dissimilar metal joint according to a fifth embodiment of the present invention.
  • a fifth embodiment like the fourth embodiment, is another modification of the fillet weld shown in FIGS. 1A and 1B.
  • the fifth embodiment has two plate-shaped portions facing each other and a connecting portion that connects the centers of the two plate-shaped portions in the longitudinal direction, and has an H-shaped cross section.
  • the dissimilar metal joint between the aluminum alloy H-shaped member (first member) 41 and the steel H-shaped member (second member) 43 having the same H-shaped cross-sectional shape is shown. That is, a film 42 is formed so as to extend from the end surface 41a of the plate-shaped portion of the aluminum alloy H-shaped member 41 to the first surface 41b adjacent to the end surface 41a, and above the plate-shaped portion of the steel H-shaped member 43.
  • the film 42 and the plate-shaped portion of the steel H-shaped member 43 are fillet-welded to form the steel weld metal 44.
  • a dissimilar metal joint can be obtained.
  • the method of forming the film 42 and the fillet welding method of the film 42 and the steel H-shaped member 43 are the same as those of the first embodiment shown in FIGS. 1A and 1B, and the same effect can be obtained. ..
  • Metal type of metal powder In order to join the film and the steel sheet by arc welding, a metal material that can be welded to the steel sheet with a desired bonding strength and has good characteristics of the weld metal obtained by welding is selected as the material of the film. This is very important.
  • Stainless steel (SUS) that can be easily welded can be selected.
  • ferritic stainless steels, austenitic stainless steels, and two-phase stainless steels of ferritic and austenitic stainless steels are exposed to a corrosive environment because they are superior in corrosion resistance to martensitic stainless steels. Suitable as a material for automobiles. Therefore, as the metal powder used for cold spray, it is possible to use a powder made of at least one metal selected from ferritic stainless steel, austenitic stainless steel, and two-phase stainless steel of ferrite and austenitic. it can.
  • the metal powder when stainless steel to which a large amount of quenching elements such as Cr and Ni are added is used as the metal powder, all the weld metals that have undergone base metal dilution when the steel plate is a high-strength steel plate or hot stamping material. Or, a part of it may be transformed into martensitic transformation, and the hardness may become too high, resulting in a decrease in joint strength (joint strength) or cracking.
  • a powder containing at least one metal selected from pure iron, carbon steel, nickel, nickel alloy, cobalt and cobalt alloy can be used as the metal powder used for cold spray.
  • pure iron means iron which is easily available for industrial use and has a purity of 99.9% by mass or more.
  • carbon steel represents a steel material containing iron and carbon as main components and a small amount of silicon, manganese, impurity phosphorus, sulfur, copper and the like.
  • nickel alloy an alloy containing Ni as a main component, which is commonly called an inconel alloy, an incoloy alloy, or a hasteroy alloy, and an appropriate amount of Mo, Fe, Co, Cr, Mn, or the like can be used.
  • the particle size of the metal powder used as the material of the film is not particularly limited, but when the gas pressure of the cold spray is set to a low pressure condition of 1 MPa or less, it is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. preferable. On the other hand, when the gas pressure is set to a high pressure condition of 1 MPa to 5 MPa, for example, it is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the particle shape of the metal powder is also not particularly limited, but is preferably spherical from the viewpoint of fluidity.
  • the gas used in the cold spray is not particularly limited, but is generally carried out using air, nitrogen, helium or a mixed gas thereof. On the other hand, if the film is oxidized, it may adversely affect the weldability, so it is preferable to use nitrogen or helium as the gas type.
  • the temperature of the working gas is preferably lower than the melting point of the metal powder used for cold spraying. In order to obtain the dissimilar metal joint according to the present embodiment, it is preferable that the temperature is, for example, room temperature (20 ° C.) to 500 ° C.
  • the film thickness of the film formed by cold spray is less than 0.5 mm, even if the welding conditions that melt only the film and the steel sheet are appropriately selected, the film 2 and the steel sheet are affected by the variation in the target position of the arc. Since it may be difficult to melt only No. 3, the robustness is lowered. Therefore, by setting the film thickness of the film 2 to 0.5 mm or more, it is possible to flexibly deal with variations in the target position of the arc, so that strict condition setting becomes unnecessary. Therefore, the film thickness of the film 2 is preferably 0.5 mm or more, and more preferably 0.9 mm or more. On the other hand, if the film thickness of the film 2 exceeds 3 mm, the film thickness time becomes long, which may increase the manufacturing cost. Therefore, the film thickness of the film 2 is preferably 3 mm or less, and more preferably 2 mm or less.
  • an aluminum alloy material is used as the first member, but the present invention is not particularly limited as long as it is a member made of a non-ferrous metal, and for example, magnesium or magnesium alloy material, copper or copper alloy material or the like is used. be able to.
  • aluminum alloy materials such as 2000 series, 5000 series, 6000 series and 7000 series from the viewpoint of strength.
  • not only plate materials but also extruded materials, casting materials, and forged materials that are frequently used in fields such as automobiles can be used without any problem. can do.
  • the second member made of steel is not particularly limited as long as it is a member made of a metal generally called steel.
  • high-strength steel materials high-tensile steel materials
  • the present invention is particularly effective for high-strength steel sheets having a tensile strength of 980 MPa or more.
  • the film and the steel material are joined by arc welding, but in the present invention, the welding method is not limited to arc welding, and laser welding or the like may be used.
  • the arc welding MAG welding or MIG welding using a welding material
  • TIG welding, plasma welding, or the like can be appropriately used.
  • TIG welding and plasma welding there are a welding method using a welding material and a welding method not using a welding material, but in the present embodiment, any welding method can be applied.
  • a welding material is used in TIG welding, plasma arc welding, and laser welding, even if a gap is inevitably generated between the first member and the second member, the gap can be filled with the welding material.
  • the first member and the second member are arranged so that the coating film and the second member are adjacent to each other (that is, these members are in contact with each other).
  • arc welding is the most popular metal welding joining method, new equipment or the like is not required when arc welding is used, and an increase in manufacturing cost can be suppressed.
  • the first member made of non-ferrous metal for example, aluminum or aluminum alloy material
  • melt only the film and the steel material (second member) second member.
  • the conditions As a result, the melting of aluminum or the aluminum alloy material can be suppressed, so that a decrease in joint strength can be prevented and a good dissimilar metal joint can be obtained.
  • the laser welding conditions the heat source, the output, the welding speed, the diameter of the welded portion, the distance between the film and the steel material, and the like can be appropriately selected.
  • Steel alloys or nickel alloys are applied as the welding materials used for arc welding and laser welding.
  • Examples of welding materials for steel alloys include JIS Z3312 and AWS E7.18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Abstract

新規設備が不要であって製造コストの上昇を抑制することができるとともに、すみ肉溶接の場合であっても、非鉄金属からなる部材と鋼製の部材とを高い接合強度で接合することができる異種金属接合体の製造方法及び異種金属接合体を提供する。非鉄金属からなり、端面と前記端面に隣接する第1面とを有する第1部材と、鋼製の第2部材と、を接合する異種金属接合体の製造方法は、第1部材における端面及び第1面に、第2部材と接合可能な金属粉末を低温かつ高速噴射することにより、端面及び第1面にまたがるように皮膜を形成する工程と、皮膜と第2部材とが近接するように第1部材と第2部材とを配置する工程と、皮膜及び第2部材間ですみ肉溶接を行う工程と、を有する。

Description

異種金属接合体の製造方法及び異種金属接合体
 本発明は、異種金属接合体の製造方法及び異種金属接合体に関する。
 近年、自動車等の分野においては、CO排出量の削減を目的とした車体軽量化や衝突安全性強化を実現するため、ボディ骨格等に高張力鋼板(High Tensile Strength Steel:HTSS)が適用されている。
 また、更なる車体軽量化を目的として、軽量なアルミニウム又はアルミニウム合金材のような非鉄金属と、鋼材とを接合した異種金属接合材についても需要が高くなっている。異種金属を接合する方法として、一般的には、釘又はネジ等で接合する方法、及びSPR(Self-Pierce Riveting)又はFDS(Flow Drilling Screw;登録商標)を利用して接合する方法がある。
 例えば、特許文献1には、アルミニウム製のルーフパネルのフランジ部とスチール製のボデーサイドパネルのフランジ部との接合方法として、フランジ部の端縁近傍に円形閉ループ状の軌跡をもって接着剤を連続的に塗布した接着剤層をあらかじめ形成し、SPRで接合する異種金属パネルの接合構造が開示されている。
 しかしながら、釘、ネジ又はリベットを用いる方法では、釘及びネジが比較的高価であるか、又はリベットを作成するための工程が必要となるため、接合材の製造コストが高くなるとともに、釘、ネジ及びリベットの重量分だけ、得られる接合材が重くなるという問題がある。また、上記特許文献1に記載の接合方法を採用しようとすると、接合に用いる装置等を完全に入れ替えて新規設備とする必要があり、製造コストが大幅に上昇する。
 一方、アルミニウム又はアルミニウム合金材と鋼材とを一般的な方法で直接溶接すると、接合界面に脆弱な金属間化合物が形成され、良好な強度を得ることができない。例えば、溶接材料(フィラー)としてフッ化物が含有されたフラックス入りワイヤを用いてMIG(Metal Inert Gas)溶接する方法についても検討されているが、溶接材料に種々の工夫を施しても、接合安定性が欠如するか、又は、接合されたとしても接合強度が極めて低いものとなる。
 また、溶接によって異種金属を接合する方法として、例えば特許文献2には、鋼母材に、アルミニウムあるいはアルミニウム合金を溶射により付着させて溶射皮膜を形成したのちに、溶射皮膜と鋼母材とを対置し、溶接によりアルミニウム合金溶接ビードを形成することで両者を溶接する方法が開示されている。さらに、特許文献3には、鋼からなる第1基材の表面に、コールドスプレー法によりアルミニウム又はアルミニウム合金皮膜を形成し、この皮膜とアルミニウム又はアルミニウム合金からなる第2基材とを対向させて溶接する接合方法が開示されている。
日本国特開2007-321880号公報 日本国特開昭54-28744号公報 日本国特開2013-188780号公報
 しかしながら、特許文献2や特許文献3に記載の接合方法では、アルミニウム又はアルミニウム合金からなる皮膜と鋼からなる母材との接合強度が十分ではなく、その結果、溶接により接合された継手についても、所望の強度を得ることができないという問題点がある。
 特に、異種金属同士をすみ肉溶接により溶接する場合にあっては、接合面を大きく確保するのが困難であることから、より高い接合強度を得ることが求められる。そこで、鋼材と、非鉄金属からなる部材との接合において、すみ肉溶接の場合であっても高い強度を得ることができる接合技術が求められている。
 本発明は、前述した課題に鑑みてなされたものであり、新規設備が不要であって製造コストの上昇を抑制することができるとともに、すみ肉溶接の場合であっても、非鉄金属からなる部材と鋼製の部材とを高い接合強度で接合することができる異種金属接合体の製造方法及び異種金属接合体を提供することを目的とする。
 したがって、本発明の上記目的は、異種金属接合体の製造方法に係る下記(1)の構成により達成される。
(1) 非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、鋼製の第2部材と、を接合する異種金属接合体の製造方法であって、
 前記第1部材における前記端面及び前記第1面に、前記第2部材と接合可能な金属粉末を低温かつ高速噴射することにより、前記端面及び前記第1面にまたがるように皮膜を形成する工程と、
 前記皮膜と前記第2部材とが近接するように前記第1部材と前記第2部材とを配置する工程と、
 前記皮膜及び前記第2部材間ですみ肉溶接を行う工程と、を有する異種金属接合体の製造方法。
 また、異種金属接合体の製造方法に係る本発明の好ましい実施形態は、下記(2)~(10)の構成に関する。
(2) 前記すみ肉溶接は、前記皮膜と前記第2部材のみを溶融させる、(1)に記載の異種金属接合体の製造方法。
(3) 前記すみ肉溶接は、溶接材料を用いたMAG溶接若しくはMIG溶接、又はTIG溶接、プラズマ溶接若しくはレーザ溶接である、(1)又は(2)に記載の異種金属接合体の製造方法。
(4) 前記すみ肉溶接は、重ねすみ肉溶接、T字すみ肉溶接、又は円周すみ肉溶接のいずれかである、(1)~(3)のいずれか1つに記載の異種金属接合体の製造方法。
(5) 前記重ねすみ肉溶接は、板状の前記第1部材を上板、前記第2部材を下材とし、
 前記上板の端面から前記上板の第1面となる上面にまたがるように前記皮膜を形成し、
前記皮膜と前記下材とを溶接するものである、(4)に記載の異種金属接合体の製造方法。
(6) 前記T字すみ肉溶接は、板状の前記第1部材を立板、前記第2部材を下材とし、
 前記立板における前記下材上面に対向する端面から、前記端面に隣接する第1面にまたがるように前記皮膜を形成し、前記第1面側から前記皮膜と前記下材とを溶接する片側すみ肉溶接である、(4)に記載の異種金属接合体の製造方法。
(7) 前記T字すみ肉溶接は、板状の前記第1部材を立板、前記第2部材を下材とし、
 前記立板における前記下材上面に対向する端面から、前記端面にそれぞれ隣接し、互いに対向する前記第1面及び第2面にまたがるように前記皮膜を形成し、前記第1面側及び前記第2面側のそれぞれから前記皮膜と前記下材とを溶接する両側すみ肉溶接である、(4)に記載の異種金属接合体の製造方法。
(8) 前記溶接材料は、鋼合金又はニッケル合金のいずれかである、(3)に記載の異種金属接合体の製造方法。
(9) 前記金属粉末は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、及びフェライト系とオーステナイト系との2相ステンレス鋼、純鉄、炭素鋼、ニッケル、ニッケル合金、コバルト及びコバルト合金から選択された少なくとも1種を含む、(1)~(8)のいずれか1つに記載の異種金属接合体の製造方法。
(10) 前記皮膜の膜厚が0.5mm以上である、(1)~(9)のいずれか1つに記載の異種金属接合体の製造方法。
 また、本発明の上記目的は、異種金属接合体に係る下記(11)の構成により達成される。
(11) 非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、
 前記第1部材における前記端面及び前記第1面に、前記第2部材と接合可能な金属粉末が低温かつ高速噴射されることにより前記端面及び前記第1面にまたがる領域に形成された皮膜と、
 前記皮膜が近接するように配置された鋼製の第2部材と、
 前記皮膜と前記第2部材との間に形成されたすみ肉溶接部と、を有する異種金属接合体。
 本発明の異種金属接合体の製造方法によれば、新規設備が不要であって製造コストの上昇を抑制することができるとともに、すみ肉溶接の場合であっても、非鉄金属からなる部材と鋼からなる部材とを高い接合強度で接合可能な異種金属接合体の製造方法を提供することができる。また、本発明の異種金属接合体は、高い接合強度を得ることができる。
図1Aは、本発明の第1の実施形態に係る異種金属接合体を示す上面図である。 図1Bは、本発明の第1の実施形態に係る異種金属接合体を示す図1AにおけるL-L断面図である。 図2Aは、本発明の第2の実施形態に係る異種金属接合体を示す上面図である。 図2Bは、本発明の第2の実施形態に係る異種金属接合体を示す図2AにおけるM-M断面図である。 図3Aは、本発明の第3の実施形態に係る異種金属接合体を示す上面図である。 図3Bは、本発明の第3の実施形態に係る異種金属接合体を示す図3AにおけるN-N断面図である。 図4は、本発明の第4の実施形態に係る異種金属接合体を示す斜視図である。 図5は、本発明の第5の実施形態に係る異種金属接合体を示す斜視図である。
 以下、本発明に係る異種金属接合体及びその製造方法の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 本発明者らは、非鉄金属からなる部材と、鋼製の部材との異種金属を接合するにあたり、従来の設備を用いることができ、すみ肉溶接の場合であっても、高い接合強度を得ることが可能な異種金属接合体を得る方法について鋭意検討を重ねた。その結果、非鉄金属からなる部材の表面の少なくとも一部に、鋼製の部材と接合可能な金属粉末を低温かつ高速で噴射して皮膜を形成し、この皮膜と鋼製の部材とをすみ肉溶接することにより、高い接合強度を有する異種金属接合体が得られることを見出した。
 例えば、アルミニウム又はアルミニウム合金板の表面に、純鉄等の粉末を低温かつ高速噴射して金属皮膜を形成すると、アルミニウム又はアルミニウム合金板と、純鉄製の皮膜とは、高強度の機械的な結合が得られるため、その後の鋼材との溶接により、接合強度の高い異種金属接合体が得られることが分かった。
 すなわち、本発明に係る異種金属接合体の製造方法は、非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、鋼製の第2部材と、を接合する異種金属接合体の製造方法であって、第1部材における端面及び第1面に、第2部材と接合可能な金属粉末を低温かつ高速噴射することにより、端面及び第1面にまたがるように皮膜を形成する工程と、皮膜と第2部材とが近接するように第1部材と第2部材とを配置する工程と、皮膜及び第2部材間ですみ肉溶接を行う工程と、を有する。
 また、本発明に係る異種金属接合体は、非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、第1部材における端面及び第1面に、第2部材と接合可能な金属粉末が低温かつ高速噴射されることにより端面及び1面にまたがる領域に形成された皮膜と、皮膜が近接するように配置された鋼製の第2部材と、皮膜と第2部材との間に形成されたすみ肉溶接部と、を有する。
 以下、本発明に係る異種金属接合体の製造方法及び異種金属接合体について、具体的な実施形態を挙げて、より詳細に説明する。
<第1の実施形態:重ねすみ肉溶接>
 本発明の第1の実施形態について説明する。第1の実施形態は、重ねすみ肉溶接の場合である。図1Aは、本発明の第1の実施形態に係る異種金属接合体を示す上面図であり、図1Bは、図1AにおけるL-L断面図である。図1A及び図1Bに示すように、アルミニウム合金板(第1部材)1の端面1aから、この端面1aに隣り合う面、すなわち上面(第1面)1bにまたがるように、純鉄製の金属粉末が低温かつ高速噴射されることにより得られる、純鉄製の皮膜2が形成されている。
 そして、鋼板(第2部材)3上には、その上面3aと皮膜2とが隣接するようにアルミニウム合金板1が配置されており、皮膜2と鋼板3とからなる隅部に鋼製溶接金属(すみ肉溶接部)4が形成されている。
 第1の実施形態に係る異種金属接合体の製造方法について、詳細に説明する。まず、アルミニウム合金板(第1部材)1の端面1aと上面(第1面)1bとの連続する領域に、純鉄からなる金属粉末を低温かつ高速で噴射して、皮膜2を形成する。次いで、鋼板(第2部材)3上にアルミニウム合金板1を重ねて配置する。このとき、鋼板3の上面3aに対してアルミニウム合金板1の端面1aが略垂直となり、皮膜2と鋼板3とが隣接するように配置される。その後、皮膜2と鋼板3との間の隅部に対して、鋼製の溶接材料を用いたアーク溶接を実施し、皮膜2、鋼板3及び溶接材料が溶融した鋼製溶接金属4を形成することにより、鋼板3とアルミニウム合金板1とが接合された異種金属接合体を製造することができる。
 純鉄からなる金属粉末を低温かつ高速噴射して皮膜2を形成する方法としては、コールドスプレー法が好適である。コールドスプレー法とは、ガスと金属粉末とを音速以上の高速で対象物に吹きつけることにより皮膜2を形成する方法である。この方法は、作動ガスが比較的低温であるため(例えば、鉄粒子融点以下である900℃以下)、純鉄等の相対的に高融点な金属粉末とアルミニウム合金板1は溶融し合うことがなく、純鉄からなる金属粉末は、その速度エネルギーによってアルミニウム合金板1に食い込み、ミクロ的な機械的締結状態となる。
 したがって、金属間化合物が生成せず、また、脆い相ができないことから、結果として、アルミニウム合金板1の一部に強固な純鉄の皮膜2が形成される。なお、後述するように、コールドスプレー法では、使用するガス種、圧力、温度、金属粉末の粒子径等を適宜選択して実施することができる。
 アルミニウム合金板1の表面に鋼材と接合可能な材料からなる皮膜2を形成する方法としては、上記コールドスプレー法以外に、プラズマ溶射やアーク溶射などその他の溶射方法が考えられる。しかし、これらは作動ガス温度が高く(例えば、鉄粒子の融点以上である2000℃以上)、鉄粒子及びアルミニウム合金板1の融点を超えて液状となるため、化学反応によって金属間化合物が生成し、脆い皮膜しか形成できないことから、コールドスプレー法を用いることが好ましい。また、皮膜2は、アルミニウム合金板1における端面1aと上面1bとの全域にわたって形成する必要はなく、鋼製溶接金属4を形成する端面1aと上面1bにおける少なくとも一部の領域に形成すればよい。
 このように製造された第1の実施形態に係る異種金属接合体においては、アルミニウム合金板1の表面に、純鉄の粉末を高速で噴射して皮膜2を形成するため、アルミニウム合金板1の表面には微細な凹凸が形成される。したがって、純鉄からなる皮膜2とアルミニウム合金板1とは、アンカー効果によって機械的に締結されることにより、強固に結合される。また、皮膜2と鋼板3とは一般的なアーク溶接により強固に接合されるため、鋼板3とアルミニウム合金板1との異種金属同士を、間接的に高い接合強度で接合することができる。
 すなわち、上記第1の実施形態に係る異種金属接合体の製造方法は、鋼製溶接金属4だけに着目すれば、異種金属接合同士の接合ではなく、鋼板3と純鉄からなる皮膜2との同種金属同士の接合となる。
 なお、純鉄の粉末はアルミニウム合金板1の表面と比較して硬質であるため、アルミニウム合金板1の表面に純鉄の粉末を高速で噴射した場合に、粉末の形状が潰れず、球状を保ったままアルミニウム合金板1にめり込む。また、純鉄はアルミニウム合金と比較して高密度であって重いため、鋼材にアルミニウム又はアルミニウム合金粉末を噴射して皮膜を形成する場合と比較して、粉末が母材に衝突したときの運動エネルギーが大きいものとなり、アルミニウム合金板1により深くめり込む。従って、強いアンカー効果を得ることができる。
 また、第1の実施形態では、鋼製の溶接材料を用いたアーク溶接を実施し、鋼製溶接金属4を形成しているため、アルミニウム合金の溶接ビードを形成する従来の溶接方法と比較して、継ぎ手の強度を高めることができるとともに、溶接材料に関するコストを低減することができる。
 また、第1の実施形態においては、アルミニウム合金板1の端面1aから上面1bにまたがるように皮膜2を形成しているため、端面1aのみに皮膜2を形成する場合と比較して、アルミニウム合金板1と皮膜2との機械的な締結力を高めることができ、結果として、アルミニウム合金板1と皮膜2との接合強度を著しく向上させることができる。よって、本実施形態のような、接合面を大きく確保するのが困難なすみ肉溶接の場合であっても、異種金属間で高い接合強度を得ることができる。
<第2の実施形態:T字すみ肉溶接(片面)>
 本発明の第2の実施形態について説明する。第2の実施形態は、T字すみ肉溶接(片面)の場合である。図2Aは、本発明の第2の実施形態に係る異種金属接合体を示す上面図であり、図2Bは、図2AにおけるM-M断面図である。第2の実施形態は、アルミニウム合金板(第1部材)11を立板、鋼板(第2部材)13を下板(下材)として、T字となるように配置されて溶接された接合体である。
 図2A及び図2Bに示すように、アルミニウム合金板11の端面11aから、この端面11aに隣接する一方の面(第1面)11bにまたがるように、純鉄製の金属粉末が低温かつ高速噴射されることにより得られる、純鉄製の皮膜12が形成されている。
 また、アルミニウム合金板11の端面11aが鋼板13の上面13aに対向するように配置されている。すなわち、鋼板13上には、その上面13aと皮膜12とが近接するようにアルミニウム合金板11が配置されており、皮膜12と鋼板13とからなる隅部に鋼製溶接金属(すみ肉溶接部)14が形成されている。
 第2の実施形態に係る異種金属接合体の製造方法について、詳細に説明する。まず、アルミニウム合金板(第1部材)11の端面11aと、この端面11aに隣接する一方の面(第1面)11bとの連続する領域に、純鉄からなる金属粉末を低温かつ高速で噴射して、皮膜12を形成する。次いで、アルミニウム合金板11の端面11aが鋼板13の上面13aに対向するように、アルミニウム合金板11を配置する。このとき、鋼板13の上面13aに対してアルミニウム合金板11の一方の面11bが略垂直となり、皮膜12と鋼板13とが近接するように配置される。その後、一方の面11b側から、皮膜12と鋼板13との間の隅部に対して、鋼製溶接材料を用いたアーク溶接を実施し、皮膜12、鋼板13及び溶接材料が溶融した鋼製溶接金属14を形成することにより、鋼板13とアルミニウム合金板11とが接合された異種金属接合体を製造することができる。
 アルミニウム合金板11の表面に純鉄からなる金属粉末を低温かつ高速噴射して、皮膜12を形成する方法は、第1の実施形態と同様であり、純鉄からなる金属粉末は、その速度エネルギーによってアルミニウム合金板11に食い込み、強いミクロ的な機械的締結状態を得ることができる。したがって、金属間化合物が生成せず、また、脆い相ができないことから、結果として、アルミニウム合金板11の一部に強固な純鉄の皮膜12が形成される。
 また、皮膜12と鋼板13とは一般的なアーク溶接により強固に接合され、高強度の鋼製溶接材料14を形成するので、鋼板13とアルミニウム合金板11との異種金属を高い接合強度で接合することができる。
 また、第2の実施形態においても、アルミニウム合金板11の端面11aから一方の面11bにまたがるように皮膜12を形成しているため、端面11a又は一方の面11bのみに皮膜12を形成する場合と比較して、アルミニウム合金板11と皮膜12との機械的な締結力を高めることができ、結果として、アルミニウム合金板11と皮膜12との接合強度を著しく向上させることができる。よって、本実施形態のような、接合面を大きく確保するのが困難なすみ肉溶接の場合であっても、異種金属間で高い接合強度を得ることができる。
 なお、第1の実施形態と同様に、上記皮膜12は、アルミニウム合金板11における端面11aと一方の面11bとの全域にわたって形成する必要はなく、鋼製溶接金属14を形成する端面11aと一方の面11bにおける少なくとも一部の領域に形成すればよい。
<第3の実施形態:T字すみ肉溶接(両面)>
 本発明の第3の実施形態について説明する。第3の実施形態は、T字すみ肉溶接(両面)の場合である。図3Aは、本発明の第3の実施形態に係る異種金属接合体を示す上面図であり、図3Bは、図3AにおけるN-N断面図である。第3の実施形態も第2の実施形態と同様に、アルミニウム合金板(第1部材)21を立板、鋼板(第2部材)23を下板(下材)として、T字となるように溶接された接合体である。ただし、第3の実施形態は、アルミニウム合金板21の両面側に鋼製溶接金属24a及び24bが形成されている例である。
 図3A及び図3Bに示すように、アルミニウム合金板21の端面21aから、この端面21aにそれぞれ隣接し、互いに対向する両方の面(すなわち、一方の面(第1面)21b及び一方の面に対向する他方の面(第2面)21c)にまたがるように、純鉄製の金属粉末が低温かつ高速噴射されることにより得られる、純鉄製の皮膜22が形成されている。
 そして、アルミニウム合金板21は、その端面21aが鋼板23の上面23aに対向するように配置されている。すなわち、鋼板23上には、その上面23aと皮膜22とが近接するようにアルミニウム合金板21が配置されている。また、アルミニウム合金板21の一方の面21b側において、皮膜22と鋼板23とからなる隅部に鋼製溶接金属(すみ肉溶接部)24aが形成されているとともに、他方の面21c側において、皮膜22と鋼板23とからなる隅部に鋼製溶接金属(すみ肉溶接部)24bが形成されている。
 第3の実施形態に係る異種金属接合体の製造方法について、詳細に説明する。まず、アルミニウム合金板(第1部材)21の端面21aと、この端面21aに隣り合う一方の面(第1面)21bと、端面21aに隣り合う他方の面(第2面)21cとの連続する領域に、純鉄からなる金属粉末を低温かつ高速で噴射して、皮膜22を形成する。次いで、アルミニウム合金板21の端面21aが鋼板23の上面23aに対向するように、アルミニウム合金板21を配置する。このとき、鋼板23の上面23aに対してアルミニウム合金板21の一方の面21b及び他方の面21cが略垂直となり、皮膜22と鋼板23とが近接するように配置される。その後、皮膜22と鋼板23との間の隅部に対して、一方の面21b側から、鋼製溶接材料を用いたアーク溶接を実施し、皮膜22、鋼板23及び鋼製溶接材料が溶融した鋼製溶接金属24aを形成する。その後同様にして、皮膜22と鋼板23との間の隅部に対して、他方の面21c側から、鋼製溶接材料を用いたアーク溶接を実施し、鋼製溶接金属24bを形成する。これにより、鋼板23とアルミニウム合金板21とが接合された異種金属接合体を製造することができる。
 なお、アルミニウム合金板21の表面に純鉄からなる金属粉末を低温かつ高速噴射して、皮膜22を形成する方法は、第1の実施形態と同様であり、純鉄からなる金属粉末は、その速度エネルギーによってアルミニウム合金板21に食い込み、強いミクロ的な機械的締結状態を得ることができる。したがって、金属間化合物が生成せず、また、脆い相ができないことから、結果として、アルミニウム合金板21の一部に強固な純鉄の皮膜22が形成される。
 また、皮膜22と鋼板23とは一般的なアーク溶接により強固に接合され、高強度の鋼製溶接材料24a及び24bを形成するので、鋼板23とアルミニウム合金板21との異種金属を高い接合強度で接合することができる。
 また、第3の実施形態においても、アルミニウム合金板21の端面21aから一方の面21b及び他方の面21cにまたがるように皮膜22を形成しているため、端面21a、一方の面21b、他方の面21cに部分的に皮膜22を形成する場合と比較して、アルミニウム合金板21と皮膜22との機械的な締結力を高めることができ、結果として、アルミニウム合金板21と皮膜22との接合強度を著しく向上させることができる。よって、本実施形態のような、接合面を大きく確保するのが困難なすみ肉溶接の場合であっても、異種金属間で高い接合強度を得ることができる。
 なお、第1の実施形態と同様に、上記皮膜22は、アルミニウム合金板21における端面21aと一方の面21b及び他方の面21cとの全域にわたって形成する必要はなく、鋼製溶接金属24を形成する端面21aと一方の面21b及び他方の面21cにおける少なくとも一部の領域に形成すればよい。
<第4の実施形態:重ねすみ肉溶接の変形例>
 なお、本発明においては、板材だけでなく、自動車等の分野で多用される押出材や鋳造材、鍛造材であっても問題なく使用することができる。図4は、本発明の第4の実施形態に係る異種金属接合体を示す斜視図である。第4の実施形態は、図1A及び図1Bに示す重ねすみ肉溶接の変形例である。
 図4に示すように、第4の実施形態は、アルミニウム合金製の角パイプ(第1部材)31と鋼製の角パイプ(第2部材)33との異種金属接合体を示している。すなわち、角パイプ31の端面31a及びこの端面31aに隣接する第1面31bにまたがるように皮膜32を形成し、皮膜32と角パイプ33とをすみ肉溶接して鋼製溶接金属34を形成することにより、異種金属接合体を得ることができる。なお、皮膜32の形成方法及び皮膜32と角パイプ33とのすみ肉溶接方法は、図1A及び図1Bに示す第1の実施形態と同様であり、同様の効果を得ることができる。
<第5の実施形態:重ねすみ肉溶接の他の変形例>
 図5は、本発明の第5の実施形態に係る異種金属接合体を示す斜視図である。第5の実施形態は、第4の実施形態と同様、図1A及び図1Bに示す重ねすみ肉溶接の他の変形例である。
 図5に示すように、第5の実施形態は、対向する2枚の板状部と、これら2枚の板状部の中央を長手方向に連結する連結部とを有し、断面がH型のアルミニウム合金製H型部材(第1部材)41と、これと同様のH型断面形状を有する鋼製H型部材(第2部材)43との異種金属接合体を示している。すなわち、アルミニウム合金製H型部材41の板状部の端面41aから、この端面41aに隣接する第1面41bにまたがるように皮膜42を形成し、鋼製H型部材43の板状部の上にアルミニウム合金製H型部材41の板状部を重ねて配置した後、皮膜42と鋼製H型部材43の板状部とをすみ肉溶接して鋼製溶接金属44を形成することにより、異種金属接合体を得ることができる。なお、皮膜42の形成方法及び皮膜42と鋼製H型部材43とのすみ肉溶接方法は、図1A及び図1Bに示す第1の実施形態と同様であり、同様の効果を得ることができる。
 以上、第1~第5の各実施形態について詳細に説明したが、これらの実施形態に係る異種金属接合体の製造方法では、アルミニウム合金板への熱影響をより最小限に抑えるためには、皮膜及び鋼板(第2部材)のみを溶融させるように、適切な溶接条件を選択することが好ましい。
<各構成要素の説明>
 続いて、上述の第1~第5の実施形態に係る製造方法において、皮膜、その材料となる金属粉末、非鉄金属からなる第1部材、鋼製の第2部材、及び溶接方法について、以下に詳細に説明する。
 (金属粉末の金属種)
 皮膜と鋼板とをアーク溶接により接合するためには、皮膜の材料として、鋼板と所望の接合強度で溶接することができるとともに、溶接により得られる溶接金属の特性が良好となる金属材料を選択することが重要である。
 上述の実施形態では、純鉄からなる金属粉末を使用して皮膜を形成した例を記載したが、金属粉末の種類は純鉄に限定されず、例えば、鋼板との間で良好な接合継手を容易に溶接することができるステンレス鋼(SUS)を選択することができる。
 特に、種々のステンレス鋼のうち、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、及びフェライト系とオーステナイト系との2相ステンレス鋼は、マルテンサイト系ステンレス鋼に比べ耐食性に優れるため、腐食環境に晒される自動車の材料として適している。よって、コールドスプレーに用いる金属粉末としては、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、及びフェライト系とオーステナイト系との2相ステンレス鋼から選択された少なくとも1種の金属からなる粉末を使用することができる。
 一方、金属粉末として、例えば、CrやNiなど焼入れ元素が多量に添加されたステンレス鋼を使用すると、鋼板が高張力鋼板やホットスタンプ材である場合に、母材希釈を受けた溶接金属の全て、もしくは一部がマルテンサイト変態し、硬度が高くなりすぎて、接合強度(継手強度)が低下したり、割れが発生したりするおそれがある。このような場合には、コールドスプレーに用いる金属粉末として、純鉄、炭素鋼、ニッケル、ニッケル合金、コバルト及びコバルト合金から選択された少なくとも1種の金属を含む粉末を使用することができる。
 なお、本明細書において、純鉄とは、工業用として容易に入手が可能であり、純度が99.9質量%以上のものを表す。また、炭素鋼とは、鉄と炭素を主成分とし、ケイ素、マンガン、不純物リン、硫黄及び銅等を微量に含む鉄鋼材料を表す。なお、ニッケル合金としては、通称インコネル合金、インコロイ合金、ハステロイ合金と呼ばれるNiを主成分として、Mo、Fe、Co、Cr及びMn等を適当量添加した合金を用いることができる。
 (金属粉末の粒子径及び形状)
 皮膜の材料となる金属粉末の粒子径については特に限定されないが、コールドスプレーのガス圧を1MPa以下の低圧条件とした場合には、例えば20μm以下であることが好ましく、10μm以下であることがより好ましい。
 一方、ガス圧を1MPa~5MPaの高圧条件とした場合には、例えば50μm以下であることが好ましく、30μm以下であることがより好ましい。
 金属粉末の粒子形状についても特に限定されないが、流動性の観点から球状であることが好ましい。
 (作動ガスの種類)
 コールドスプレーにおいて使用するガスについては特に限定されないが、一般的には、空気、窒素、ヘリウム又はそれらの混合ガスを用いて行われる。一方、皮膜が酸化すると、溶接性に悪影響を及ぼすおそれがあるため、ガス種として窒素やヘリウムを用いるのが好ましい。
 (作動ガスの温度)
 上述の通り、皮膜の基材としてアルミニウム又はアルミニウム合金材を用いた場合、コールドスプレーにおいて使用するガスの温度が高いと、金属粉末が溶融し、アルミニウム又はアルミニウム合金材と化学反応を起こして金属間化合物を生成するおそれがある。よって、作動ガスの温度は、コールドスプレーに用いられる金属粉末の融点よりも低い温度とすることが好ましい。なお、本実施形態に係る異種金属接合体を得るにあたっては、例えば、室温(20℃)~500℃とすることが好ましい。
 (皮膜の膜厚)
 コールドスプレーにより形成する皮膜の膜厚が0.5mm未満であると、皮膜及び鋼板のみを溶融させるような溶接条件を適宜選択したとしても、アークの狙い位置のバラつきの影響により、皮膜2及び鋼板3のみを溶融させることが困難となる場合があるため、ロバスト性が低くなる。
 そこで、皮膜2の膜厚を0.5mm以上とすることにより、アークの狙い位置のバラつきに柔軟に対応することができるため、厳しい条件設定が不要となる。よって、皮膜2の膜厚は0.5mm以上であることが好ましく、0.9mm以上であることがより好ましい。
 一方、皮膜2の膜厚が3mmを超えると、成膜時間が長くなり、製造コストアップとなるおそれがある。したがって、皮膜2の膜厚は3mm以下であることが好ましく、2mm以下であることがより好ましい。
 (非鉄金属からなる第1部材)
 上記実施形態では、第1部材としてアルミニウム合金材を使用したが、本発明は非鉄金属からなる部材であれば特に限定されず、例えば、マグネシウム又はマグネシウム合金材、銅または銅合金材等を使用することができる。例えば、本発明を自動車等に用いる部材に適用する場合には、強度の観点から、2000系、5000系、6000系及び7000系等のアルミニウム合金材を用いることが好ましい。なお、上述の第4及び第5の実施形態に示すように、本発明においては、板材だけでなく、自動車等の分野で多用される押出材や鋳造材、鍛造材であっても問題なく使用することができる。
 (鋼製の第2部材)
 鋼製の第2部材としては、一般的に鉄鋼と呼ばれる金属からなる部材であれば、特に限定されない。ただし、近年、自動車のボディ骨格等に用いられる鋼板としては、車体軽量化や衝突安全性強化を目的として高張力鋼材(ハイテン材)等が多用されている。鋼-アルミの異種金属接合法として普及している機械的接合法では、引張強度が980MPa以上の鋼板に適用することが困難である。よって、引張強度が980MPa以上の高張力鋼板において、本発明は特に有効である。
 (溶接方法)
 上記実施形態では、アーク溶接により皮膜と鋼材とを接合したが、本発明では、溶接方法はアーク溶接に限定されず、レーザ溶接などを用いてもよい。なお、アーク溶接としても、溶接材料を用いたMAG溶接若しくはMIG溶接、又はTIG溶接若しくはプラズマ溶接などを適宜用いることができる。なお、TIG溶接及びプラズマ溶接については、溶接材料を用いる溶接方法と、溶接材料を用いない溶接方法があるが、本実施形態においては、いずれの溶接方法も適用することができる。
 TIG溶接、プラズマアーク溶接及びレーザ溶接において溶接材料を用いると、第1部材と第2部材との間に不可避的にギャップが生じた場合であっても、溶接材料によりギャップを埋めることができる。したがって、上述の第1~第5の実施形態においては、皮膜と第2部材とが隣接する(すなわち、これら部材が接触している状態)ように第1部材と第2部材とを配置したが、本実施形態では両者を必ずしも隣接する位置となるように配置する必要はない。すなわち、皮膜と第2部材とは近接(すなわち、これら部材が接触している状態、又は僅かに離間している状態)していればよく、溶接材料で埋めることができるような間隔であれば、ギャップを有していてもよい。
 また、アーク溶接は、最も普及している金属溶接接合方法であるため、アーク溶接を利用する場合は新規設備等が不要であり、製造コストの上昇を抑制することができる。
 更に、レーザ溶接を用いる際は、非鉄金属からなる第1部材、例えばアルミニウム又はアルミニウム合金材への熱影響を最小限に抑え、皮膜及び鋼材(第2部材)のみを溶融させるよう、適切な溶接条件を選択することが好ましい。これにより、アルミニウム又はアルミニウム合金材の溶融を抑制することができるため、接合強度の低下を防止して良好な異種金属接合体を得ることができる。なお、レーザ溶接条件としては、熱源、出力、溶接速度、溶接部の直径、及び皮膜と鋼材との間隔等を適宜選択することができる。
 アーク溶接及びレーザ溶接に用いられる溶接材料としては、鋼合金又はニッケル合金が適用される。鋼合金の溶接材料としては、例えば、JIS Z3312,AWS E7.18がある。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年7月18日出願の日本特許出願(特願2019-133128)に基づくものであり、その内容は本出願の中に参照として援用される。
1、11、21  アルミニウム合金板
1a、11a、21a、31a、41a  端面
1b、3a、13a、23a  上面
2、12、22、32、42  皮膜
3、13、23  鋼板
4、14、24a、24b、34、44 鋼製溶接金属
11b、21b  一方の面
21c  他方の面(第2面)
31、33  角パイプ
31b、41b  第1面
41、43  H型部材

Claims (11)

  1.  非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、鋼製の第2部材と、を接合する異種金属接合体の製造方法であって、
     前記第1部材における前記端面及び前記第1面に、前記第2部材と接合可能な金属粉末を低温かつ高速噴射することにより、前記端面及び前記第1面にまたがるように皮膜を形成する工程と、
     前記皮膜と前記第2部材とが近接するように前記第1部材と前記第2部材とを配置する工程と、
     前記皮膜及び前記第2部材間ですみ肉溶接を行う工程と、を有する異種金属接合体の製造方法。
  2.  前記すみ肉溶接は、前記皮膜と前記第2部材のみを溶融させる、請求項1に記載の異種金属接合体の製造方法。
  3.  前記すみ肉溶接は、溶接材料を用いたMAG溶接若しくはMIG溶接、又はTIG溶接、プラズマ溶接若しくはレーザ溶接である、請求項1又は2に記載の異種金属接合体の製造方法。
  4.  前記すみ肉溶接は、重ねすみ肉溶接、T字すみ肉溶接、又は円周すみ肉溶接のいずれかである、請求項1又は2に記載の異種金属接合体の製造方法。
  5.  前記重ねすみ肉溶接は、板状の前記第1部材を上板、前記第2部材を下材とし、
     前記上板の端面から前記上板の第1面となる上面にまたがるように前記皮膜を形成し、前記皮膜と前記下材とを溶接するものである、請求項4に記載の異種金属接合体の製造方法。
  6.  前記T字すみ肉溶接は、板状の前記第1部材を立板、前記第2部材を下材とし、
     前記立板における前記下材上面に対向する端面から、前記端面に隣接する第1面にまたがるように前記皮膜を形成し、前記第1面側から前記皮膜と前記下材とを溶接する片側すみ肉溶接である、請求項4に記載の異種金属接合体の製造方法。
  7.  前記T字すみ肉溶接は、板状の前記第1部材を立板、前記第2部材を下材とし、
     前記立板における前記下材上面に対向する端面から、前記端面にそれぞれ隣接し、互いに対向する前記第1面及び第2面にまたがるように前記皮膜を形成し、前記第1面側及び前記第2面側のそれぞれから前記皮膜と前記下材とを溶接する両側すみ肉溶接である、請求項4に記載の異種金属接合体の製造方法。
  8.  前記溶接材料は、鋼合金又はニッケル合金のいずれかである、請求項3に記載の異種金属接合体の製造方法。
  9.  前記金属粉末は、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、及びフェライト系とオーステナイト系との2相ステンレス鋼、純鉄、炭素鋼、ニッケル、ニッケル合金、コバルト及びコバルト合金から選択された少なくとも1種を含む、請求項1又は2に記載の異種金属接合体の製造方法。
  10.  前記皮膜の膜厚が0.5mm以上である、請求項1又は2に記載の異種金属接合体の製造方法。
  11.  非鉄金属からなり、端面と該端面に隣接する第1面とを有する第1部材と、
     前記第1部材における前記端面及び前記第1面に、前記第2部材と接合可能な金属粉末が低温かつ高速噴射されることにより前記端面及び前記第1面にまたがる領域に形成された皮膜と、
     前記皮膜が近接するように配置された鋼製の第2部材と、
     前記皮膜と前記第2部材との間に形成されたすみ肉溶接部と、を有する異種金属接合体。
     
PCT/JP2020/025509 2019-07-18 2020-06-29 異種金属接合体の製造方法及び異種金属接合体 WO2021010149A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20840728.8A EP3978177A4 (en) 2019-07-18 2020-06-29 PROCESS FOR PREPARING HETEROMETALLIC COMPLEX AND HETEROMETALLIC COMPLEX
US17/627,583 US20220274199A1 (en) 2019-07-18 2020-06-29 Method for manufacturing heterometallic complex and heterometallic complex
CN202080045934.0A CN114007795B (zh) 2019-07-18 2020-06-29 异种金属接合体的制造方法和异种金属接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133128 2019-07-18
JP2019133128A JP7120970B2 (ja) 2019-07-18 2019-07-18 異種金属接合体の製造方法及び異種金属接合体

Publications (1)

Publication Number Publication Date
WO2021010149A1 true WO2021010149A1 (ja) 2021-01-21

Family

ID=74209837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025509 WO2021010149A1 (ja) 2019-07-18 2020-06-29 異種金属接合体の製造方法及び異種金属接合体

Country Status (5)

Country Link
US (1) US20220274199A1 (ja)
EP (1) EP3978177A4 (ja)
JP (1) JP7120970B2 (ja)
CN (1) CN114007795B (ja)
WO (1) WO2021010149A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428744A (en) 1977-08-06 1979-03-03 Hitachi Zosen Corp Process for joining aluminum, aluminum alloy and steel
JP2006116599A (ja) * 2004-09-21 2006-05-11 Kobe Steel Ltd 異材接合方法
JP2007321880A (ja) 2006-06-01 2007-12-13 Nissan Motor Co Ltd 異種金属パネルの接合構造および接合方法
JP2013188780A (ja) 2012-03-14 2013-09-26 Taiyo Nippon Sanso Corp 異種金属接合方法
WO2016103376A1 (ja) * 2014-12-25 2016-06-30 本田技研工業株式会社 異材接合構造及び異材接合方法
JP2019133128A (ja) 2018-01-29 2019-08-08 セイコーエプソン株式会社 プロジェクター

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790656A (en) * 1953-03-31 1957-04-30 Kaiser Aluminium Chem Corp Aluminum-dissimilar metal joint and method of making same
CA1227727A (en) * 1984-11-21 1987-10-06 Kaare Johnsen Method for finishing steel shapes with magnetite and product obtained therefrom
CA2254349C (en) * 1997-11-19 2003-11-04 Kabushiki Kaisha Toshiba Joined structure of dissimilar metallic materials
JP3445579B2 (ja) * 2001-02-02 2003-09-08 自動車部品工業株式会社 異種金属中空部材間の接合構造及びその接合方法
CN2768952Y (zh) * 2004-10-21 2006-04-05 严进年 铝-钛-钢搭接式结构过渡接头
EP2387481B1 (en) * 2008-12-10 2018-03-14 Boston Scientific Scimed, Inc. Method of forming a joint between a titanium alloy member and a steel alloy member and medical device comprising said joint
JP5496152B2 (ja) * 2011-06-27 2014-05-21 日立Geニュークリア・エナジー株式会社 T型継手のレーザ溶接とアーク溶接の複合溶接方法
JP2013072093A (ja) * 2011-09-26 2013-04-22 Toyota Motor Corp 異種の金属部材の接続構造
CN104014934B (zh) * 2014-06-19 2016-08-24 兰州理工大学 适用于异种材料对接的电弧辅助激光熔钎焊方法
JP5955370B2 (ja) * 2014-10-29 2016-07-20 株式会社神戸製鋼所 金属接合体の製造方法
US20170297137A1 (en) * 2016-04-19 2017-10-19 GM Global Technology Operations LLC Method of joining aluminum and steel workpieces
CN106378530B (zh) * 2016-10-18 2018-04-27 湖南大学 一种铝和钢表面同时添加粉末的铝钢激光焊接方法
CN107283058B (zh) * 2017-08-15 2019-04-12 扬州富沃特工程机械制造有限公司 一种提升铝、钢焊接件焊接效果的焊接方法
CN108994442A (zh) * 2018-09-17 2018-12-14 北京石油化工学院 一种铝/钢异种材料连接的搅拌摩擦焊接方法
CN109940260A (zh) * 2019-03-27 2019-06-28 四川大学 冷喷Ti涂层辅助铝-钢异种金属搭接的搅拌摩擦焊方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428744A (en) 1977-08-06 1979-03-03 Hitachi Zosen Corp Process for joining aluminum, aluminum alloy and steel
JP2006116599A (ja) * 2004-09-21 2006-05-11 Kobe Steel Ltd 異材接合方法
JP2007321880A (ja) 2006-06-01 2007-12-13 Nissan Motor Co Ltd 異種金属パネルの接合構造および接合方法
JP2013188780A (ja) 2012-03-14 2013-09-26 Taiyo Nippon Sanso Corp 異種金属接合方法
WO2016103376A1 (ja) * 2014-12-25 2016-06-30 本田技研工業株式会社 異材接合構造及び異材接合方法
JP2019133128A (ja) 2018-01-29 2019-08-08 セイコーエプソン株式会社 プロジェクター

Also Published As

Publication number Publication date
CN114007795A (zh) 2022-02-01
EP3978177A4 (en) 2022-09-07
EP3978177A1 (en) 2022-04-06
JP2021016876A (ja) 2021-02-15
JP7120970B2 (ja) 2022-08-17
CN114007795B (zh) 2023-09-12
US20220274199A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US20220168835A1 (en) Method for manufacturing heterometallic assembly and heterometallic assembly
JP6287083B2 (ja) 鋼板とアルミニウム合金板との異種金属接合方法
JP2008105087A (ja) 鉄部材とアルミニウム部材の接合方法及び鉄−アルミニウム接合体
WO2021039155A1 (ja) 異材接合構造体の製造方法及び異材接合構造体
CN112469529B (zh) 异种材料接合结构体的制造方法和异种材料接合结构体
CN110312589B (zh) 以热机械涂布的中间层电阻焊接不可焊金属的方法
JP7123674B2 (ja) 異材接合構造体の製造方法及び異材接合構造体
JP7231586B2 (ja) 異材接合構造体の製造方法
WO2021010149A1 (ja) 異種金属接合体の製造方法及び異種金属接合体
JP4640995B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP2006283110A (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP2007277717A (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP4256892B2 (ja) 異材接合方法
US20160207140A1 (en) Method for joining dissimilar metal parts for improved weldability, weld quality, mechanical performance
JP7028735B2 (ja) 異材接合構造体の製造方法及び異材接合構造体
Brezinova et al. Technologies for joining dissimilar materials in the automotive industry
JP6133286B2 (ja) アルミニウム材と鋼材のmig溶接継手構造
CN114473164B (zh) 对异种金属工件堆叠式总成电阻点焊的方法及电阻点焊的异种金属堆叠式总成
WO2024063010A1 (ja) 溶接部材およびその製造方法
JP2006283111A (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
Guzanová et al. Hybrid technologies for joining dissimilar materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840728

Country of ref document: EP

Effective date: 20220103