WO2021009840A1 - 水中情報表示装置 - Google Patents

水中情報表示装置 Download PDF

Info

Publication number
WO2021009840A1
WO2021009840A1 PCT/JP2019/027904 JP2019027904W WO2021009840A1 WO 2021009840 A1 WO2021009840 A1 WO 2021009840A1 JP 2019027904 W JP2019027904 W JP 2019027904W WO 2021009840 A1 WO2021009840 A1 WO 2021009840A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
signals
ghost
reception
Prior art date
Application number
PCT/JP2019/027904
Other languages
English (en)
French (fr)
Inventor
笹倉 豊喜
行雄 松尾
潤 堀江
Original Assignee
株式会社AquaFusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社AquaFusion filed Critical 株式会社AquaFusion
Priority to JP2019560405A priority Critical patent/JP6664731B1/ja
Priority to US17/625,135 priority patent/US20220206143A1/en
Priority to EP19937749.0A priority patent/EP4001963A4/en
Priority to PCT/JP2019/027904 priority patent/WO2021009840A1/ja
Publication of WO2021009840A1 publication Critical patent/WO2021009840A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/104Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/105Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. of phase-shift keyed [PSK] signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • G01S7/60Display arrangements for providing a permanent recording
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • G01S7/62Cathode-ray tube displays
    • G01S7/6263Cathode-ray tube displays in which different colours are used

Definitions

  • the present invention relates to an underwater information display device that visualizes and displays information such as underwater fish and the seabed using ultrasonic waves.
  • a fish finder is known as one of the underwater information display devices. As shown in FIG. 1, a fish finder emits ultrasonic waves into water and receives reflected ultrasonic waves from an underwater object (for example, a fish or a floating substance in water) existing in the water or the seabed to receive a color liquid crystal display device. Etc. are displayed.
  • an underwater object for example, a fish or a floating substance in water
  • the display method of the fish finder is to color the signal currently transmitted at the upper right corner of the liquid crystal screen as shown in Fig. 2 in proportion to the intensity, and to match the speed of ultrasonic waves in water downward.
  • the echo returned is colored and displayed.
  • the previous transmission / reception signal is drawn on the left side of the current signal.
  • Past transmission / reception signals are drawn on the left side of the sequence, and information on the underwater that the ship has passed is displayed on one screen.
  • the straight line at the top shows the sea surface (transmission line), the one lying at the bottom is the seabed, and the fish school (diagonal area) is displayed between the seabeds. ).
  • This screen is sent to the left for each transmission, and the oldest display disappears from the screen.
  • a conventional fishfinder transmits a short pulse, and the pulse signal propagates in the sea, and a weak reflection echo from an object (target) called a scatterer in the sea such as a school of fish or a relatively large one from the seabed.
  • the reflected echo was displayed on the screen as one line for each transmission with a color proportional to the magnitude of the reflected signal.
  • the transmission cycle could not be shorter than the time obtained by dividing the round-trip distance to the seabed by the underwater sound velocity because the next transmission was performed after the reflected echo from the seabed was returned after the transmission. For example, at a depth of 150 m on the seabed, the round-trip distance of 300 m could not be shorter than the value of 0.2 seconds divided by the underwater speed of sound of 1500 m / s.
  • the transmission cycle can be set to a fast transmission cycle assuming that there is no reflected echo from the seabed.
  • the transmission cycle is 0.1 seconds, but the distance between the first transmission and the next transmission (0.1 seconds), that is, the underwater sound velocity of 1500 m.
  • the screen was displayed as an effective display range of 75 m, which is half of the distance of 150 m obtained by multiplying / s by 0.1 seconds.
  • the transmission cycle was 0.1 seconds, there was no display range of 75 m or more as shown in FIG. Even if it existed, it only repeatedly displayed the range from 0 m to 75 m as shown in FIG.
  • the conventional fish finder With an underwater information display device such as a conventional fish finder, there was no other way but to reduce the speed of the ship in order to increase the resolution of measurement. Therefore, the conventional fish finder has a problem that the time required for measurement becomes long when the measurement resolution is increased.
  • the period of the transmission pulse is (2D / Vu) or less when the velocity of the sound wave in water is Vu and the distance to the measurement target is D.
  • An apparatus has been proposed (see Patent Document 1).
  • the horizontal resolution ⁇ H 0.05 m
  • the horizontal resolution ⁇ H is determined only from the transmission cycle T and the ship speed V. In this way, the transmission cycle T can be shortened, sounding can be performed regardless of the depth, and high horizontal measurement resolution can be obtained.
  • a reflected wave (hereinafter, appropriately referred to as a ghost) different from the original echo is received by the time an echo generated by reflecting a certain transmitted ultrasonic wave by the target object is received.
  • a ghost a reflected wave (hereinafter, appropriately referred to as a ghost) different from the original echo is received by the time an echo generated by reflecting a certain transmitted ultrasonic wave by the target object is received.
  • an object of the present invention is to provide an underwater information display device capable of solving such a problem.
  • the present invention is an underwater information display device that transmits an ultrasonic transmission wave, receives an echo reflected by an underwater target, and displays the echo.
  • a transmission signal generator that converts at least two transmission signals that are adjacent in time so that they can be identified at the time of reception and forms a transmission signal sequence having different intervals.
  • a transmitter that sends out transmission signals as ultrasonic waves into the water
  • the receiver that receives the echo and outputs the received signal
  • a storage unit that stores a plurality of received signals corresponding to temporally continuous transmission signals
  • An interpolation unit in which the received signal stored in the storage unit is supplied and the ghost component contained in the received signal is replaced by echoes of other transmitted signals in the vicinity in time.
  • It is an underwater information display device including a display unit that draws a received signal including a signal interpolated by the interpolation unit.
  • the ghost of the transmission signal and the ghost of the echo can be removed. Therefore, the display can be made easy to see, and the underwater object hidden in the ghost can be displayed.
  • the effects described here are not necessarily limited, and any of the effects described in the present invention may be used.
  • the contents of the present invention are not limitedly interpreted by the effects exemplified in the following description.
  • FIG. 1 is a schematic diagram showing an outline of a fish finder.
  • FIG. 2 is a schematic diagram showing a display method of a conventional fish finder.
  • FIG. 3 is a schematic diagram showing a display method of a conventional fish finder.
  • FIG. 4 is a schematic diagram showing a display method of a conventional fish finder.
  • FIG. 5 is a schematic diagram showing an outline of the operation of a conventional fish finder.
  • FIG. 6 is a schematic diagram showing an outline of the operation of a conventional fish finder.
  • FIG. 7 is a block diagram of an embodiment of the present invention.
  • FIG. 8 is a schematic diagram for explaining a display method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining a display method according to an embodiment of the present invention.
  • FIG. 10A, 10B and 10C are schematic diagrams for explaining the problems of the conventional fish finder having a constant transmission cycle.
  • 11A and 11B are schematic diagrams used for explaining an embodiment of the present invention in which the interval between transmitted signals changes.
  • 12A and 12B are schematic diagrams used for explaining the processing of one embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of an example of the interpolation unit.
  • 14A, 14B, 14C and 14D are schematic diagrams used for explaining an example of the interpolation unit.
  • FIG. 15 is a schematic diagram used for explaining another example of the interpolation unit.
  • FIG. 16 is a block diagram showing the configuration of another example of the interpolation unit.
  • FIG. 17 is a schematic diagram showing the effect of ghost removal according to the present invention.
  • FIG. 18A and 18B are schematic diagrams for explaining chirp signals used in other embodiments of the present invention.
  • FIG. 19A is a waveform diagram showing a transmission signal sequence of another embodiment of the present invention
  • FIG. 19B is a waveform diagram showing a waveform after correlation processing of another embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing the effect of ghost removal according to another embodiment of the present invention.
  • the seabed is assumed as an example of an underwater target, but the present invention can be similarly applied to a target other than the seabed.
  • the echo from the seabed has a higher echo level than other objects such as fish
  • the ghost on the seabed becomes conspicuous as a receiving ghost, and the removal of the ghost on the seabed becomes an issue. That is, the ghost with a particularly large level among the received ghosts is removed.
  • a ghost is also one of the echoes, but in the present specification, the original reflected wave that arrives after being reflected by the target object is referred to as an echo, and the reflected wave that is not the original reflected wave is referred to as a ghost.
  • the pulse generator 1 generates a transmission trigger pulse whose interval changes, as will be described later.
  • the transmission trigger pulse is supplied to the transmission signal generation unit 2.
  • the transmission signal generation unit 2 converts at least two transmission signals that are adjacent in time so that they can be identified at the time of reception, and forms a transmission signal sequence having different intervals.
  • a pseudo noise sequence signal such as Gold Code is generated as a transmission pulse
  • the transmission pulse is digitally modulated by pulse modulation such as BPSK (Binary Phase Shift Keying).
  • the frequency of the carrier wave is several kHz to several hundred kHz.
  • a transmission trigger pulse is supplied to the display 8.
  • the display 8 is a display device such as a color liquid crystal display.
  • the transmission signal generated by the transmission signal generation unit 2 whose interval changes is supplied to the transmitter 3, and the transmitter 3 performs processing such as amplification.
  • the output signal of the transmitter 3 is supplied to the transmitter / receiver 4.
  • Ultrasonic waves are transmitted from the transmitter / receiver 4 into the water.
  • the echo of the emitted underwater ultrasonic wave is received by the transmitter / receiver 4.
  • a transmission signal sequence in which the interval between transmission signals changes alternately with T and T + ⁇ T is formed.
  • the received data from the transmitter / receiver 4 is supplied to the receiving amplifier 5, undergoes processing such as amplification, and then supplied to the received signal processing unit 6.
  • the reception signal processing unit 6 performs correlation processing on the received signal by the pseudo noise series signal. When the pseudo-noise series signal of the transmission signal and the reception signal match, a signal having a large value is generated, and the transmission signal and the corresponding reception signal can be identified. Further, the signal after the correlation processing is sent to the memory 7.
  • the output of the received signal processing unit 6 is supplied to the memory 7 having the memory area corresponding to the display area of the display 8.
  • the output of the memory 7 is supplied to the display 8.
  • a trigger pulse indicating the timing of the transmission pulse from the pulse generator 1 is supplied to the memory 7 and the display 8, and the display 8 displays the echo received for the transmission pulse.
  • an interpolation unit 9 is provided in connection with the memory 7.
  • the interpolation unit 9 performs an interpolation process using the received data read from the memory 7, and performs a process of writing the interpolation value to the memory 7.
  • the confirmed signal is a signal including the signal after the interpolation processing.
  • a transmission trigger pulse is supplied to the display 8, and the timing of the transmission trigger pulse is displayed as a transmission line (0 m) on the upper side of the screen.
  • the output signal from the memory 7 with respect to the transmission pulse is colored and displayed so as to extend from the transmission line.
  • the interval of the transmission pulse changes, but even at the maximum interval, when the velocity of the sound wave in water is Vu and the distance to the target is D, it is (2D / Vu) or less. It is said that.
  • the horizontal resolution ⁇ H 0.05 m
  • the horizontal resolution (measurement interval) is independent of the sounding depth. ) Can be decided. Regardless of the depth, the horizontal resolution ⁇ H is determined only from the transmission cycle T and the ship speed V. In this way, the transmission cycle T can be shortened, sounding can be performed regardless of the depth, and high horizontal measurement resolution can be obtained.
  • the resolution of the display in the horizontal direction (time direction) on the display 8 can be increased. Therefore, even a relatively small object in the sea can display its shape on the screen.
  • FIG. 8 shows a display method when the memory 7 is provided as in one embodiment of the present invention.
  • a plurality of transmitted / received signals that are continuous in time are sequentially accumulated in the memory, and only the confirmed signal is drawn (displayed).
  • the undetermined signal is stored in the memory 7. Since the memory 7 corresponds to the display screen of the display 8, the display 8 can simultaneously display the received signals corresponding to the plurality of transmission signals.
  • FIG. 9 shows an example of the memory 7.
  • the memory 7 has a capacity capable of accumulating data for 1000 transmissions. Data for every 0.01 m can be stored in one transmission. When displaying underwater at a depth of 100 m, data of 10,000 pixels is stored.
  • the information obtained from the transmission is also 10 times or more, which has not been seen so far. You will be able to obtain information under the sea.
  • FIG. 10A shows transmission signals P0, P1, P2, ... Transmitted with a constant transmission cycle T.
  • FIG. 10B shows the received signal received by the receiver.
  • FIG. 10C schematically shows a display image based on the received signal.
  • the transmission line corresponding to the transmission signals P0, P1, P2, ... Is the leftmost vertical line in FIG. 10C.
  • it is assumed that the echo of the target object is received after the time X with respect to the transmission signal.
  • a reception ghost for example, a seafloor ghost
  • a transmission ghost P2'for the next transmission signal P2 for the transmission signal P1
  • a shaded echo R1 are sequentially generated.
  • the transmission ghost P1'by the transmission signal P1 itself occurs at the same timing and can be ignored.
  • the transmission ghost P2'by the transmission signal P2 cannot be ignored.
  • the received ghost, the transmitted ghost, and the echo are generated in order for each transmitted signal, the received ghost and the transmitted ghost are displayed on the display screen in addition to the display corresponding to the echo, and the target object by the echo is displayed. It becomes a cognitive impairment.
  • FIG. 11A is used for explaining a transmission signal according to an embodiment of the present invention. For example, two intervals of T and T + ⁇ appear alternately. Assuming that the echo from the target object is received after the time X, the received signals corresponding to the transmission signals P1, P2, and P3 are as shown in FIG. 11B. For the sake of simplicity, assume a target of a certain depth, such as the seabed.
  • a reception signal including the reception ghost R0'corresponding to the previous transmission signal P0, the transmission ghost P2'by the transmission signal P2, and the echo R1 can be obtained. Further, for the next transmission signal P2, a reception signal including the reception ghost R1'corresponding to the previous transmission signal P1, the transmission ghost P3'by the transmission signal P3, and the echo R2 can be obtained. Further, for the transmission signal P3, a reception signal including a reception ghost R2'corresponding to the previous transmission signal P2, a transmission ghost P4'by the transmission signal P4, and an echo R3 can be obtained. Further, for the transmission signal P4, a reception signal including the reception ghost R3'corresponding to the previous transmission signal P3, the transmission ghost P5'by the transmission signal P5, and the echo R4 can be obtained.
  • the interpolation unit 9 performs the interpolation processing of the pre-value (or post-value) hold.
  • the interpolation process is a replacement process that removes ghosts and adds echoes in the vicinity in time.
  • the time when the transmission ghost occurs is known if the transmission interval is known, and the time when the reception ghost occurs can also be known from the time when the echo occurs. Therefore, a ghost removal method that forcibly sets the received signal of the ghost portion to zero data is also conceivable. This method is not preferable because it also removes echoes of targets such as fish existing at the ghost position.
  • one embodiment of the present invention performs interpolation processing, it is possible to perform high-precision detection and display without removing information on the target object existing at the ghost position. Further, the range in which the interpolation process is performed is made to match the range in which the ghost exists, which is determined by the known information. Further, the level of the received signal may be monitored, and the interpolation process may be performed within the range where it is detected that a ghost of a predetermined level or higher is present.
  • FIGS. 12A and 12B show a part of the display of the embodiment of the present invention
  • FIG. 12A shows the display before the interpolation
  • FIG. 12B shows the display after the interpolation.
  • the display of the display 8 is vertically and horizontally interchanged
  • the transmission line is the leftmost vertical line in the figure
  • the horizontal direction is the depth direction.
  • the received ghost R0', the transmitted ghost P2', and the echo R1 are arranged in this order with respect to the transmitted signal P1, and the received ghost R1', the transmitted ghost P3', and the echo R2 are arranged with respect to the transmitted signal P2. They are arranged in order.
  • the reception signal (no signal or echo) Y11 exists for the transmission signal P1.
  • the reception signal Y12 exists with respect to the transmission signal P1 at the same time as the transmission ghost P3'.
  • the received ghost R1' is replaced by the received signal Y11, and the same signal (Y11) as the received signal Y11 is inserted instead of the ghost.
  • the transmission ghost P3' is replaced by the reception signal Y12, and the same signal (Y12) as the reception signal Y12 is inserted in place of the ghost. Since the other received ghosts and transmitted ghosts are interpolated in the same manner, the image from which the ghosts have been removed (FIG. 12B) can be displayed. Further, when the target is present at the same position as each ghost, the predicted value of the echo of the target can be displayed.
  • FIG. 13 shows an example of the interpolation unit 9 that holds the previous value as described above.
  • the received signal read from the memory 7 is supplied to the input terminals a and b of the switch circuit 11.
  • the received signal for the transmission signal to be processed is supplied to one input terminal a of the switch circuit 11, and the received signal after processing (after confirmation) is supplied to the other input terminal b.
  • the received signal after interpolation is taken out to the output terminal c of the switch circuit 11, and this received signal is written in the memory 7 as the received signal after processing.
  • the switch circuit 11 is controlled by a switching signal from the terminal 12.
  • FIG. 14A shows the received signal after processing (for the transmission signal P1) stored in the memory 7, and FIG. 14B shows the received signal (for the transmission signal P2) to be processed.
  • a switching signal as shown in FIG. 14C is supplied to the switch circuit 11 at the timing of the reception ghost R1'and the timing of the transmission ghost P3'.
  • An interpolated received signal as shown in FIG. 14D is obtained from the switch circuit 11, and the interpolated received signal is written to the memory 7.
  • an example of pre-hold is given as an interpolation process.
  • the interpolation process is not limited to the pre-hold, and the mean value interpolation may be adopted.
  • the received signal Y11 with respect to the other (temporally earlier) transmission signal P1 at the same position as the received ghost R1'and the other (temporally later) transmitted signal Y11 at the same position as the received ghost R1'.
  • the received ghost R1' may be replaced with the average value (Y11 + Y31) / 2 of the transmitted signal P2 and the received signal Y31.
  • the transmission ghost is also average value interpolated.
  • FIG. 16 shows an example of the interpolation unit 9 that performs mean value interpolation.
  • Received signals for three temporally continuous transmission signals are synchronously read out from the memory 7.
  • the received signal for the transmitted signal to be processed is supplied to one input terminal a of the switch circuit 13.
  • the received signals for the transmission signals before and after the transmission signal to be processed are read from the memory 7 and supplied to the addition circuit 14, and the addition output of the addition circuit 14 is supplied to the (1/2) times circuit 13.
  • (1/2) An average value signal of the received signals before and after is obtained from the double circuit 13, and this average value signal is supplied to the other input terminal b of the switch circuit 13.
  • the switch circuit 13 is controlled by a switching signal from the terminal 16.
  • the input terminal a is selected and the received signal is taken out to the output terminal c.
  • the input terminal b is selected and the mean value signal is taken out to the output terminal c.
  • the received signal taken out to the output terminal c of the switch circuit 13 is returned to the memory 7 as a received signal after the determination. In this way, the ghost is replaced by the mean value signal, and the ghost can be removed.
  • interpolation may be performed using four received signals in front, back, left, and right.
  • the interpolation unit 9 is not limited to the circuit (hardware) configuration as shown in the block diagram described above, and may be realized by software processing by a microprocessor.
  • transmission signals having three types of intervals of T, T + ⁇ , and T + 2 ⁇ may be used, and four or more types of transmission signals may be used. Transmission signals with intervals may be used. The reception signal with respect to another transmission signal temporally adjacent to the position (phase) of the transmission ghost is made to exist.
  • a received image as shown in FIG. 17A is displayed before the ghost removal processing. Will be done.
  • the transmission ghost of four lines and the reception ghost of three lines are displayed.
  • the ghost component is removed by the present invention, and only the seafloor echo can be displayed. Therefore, the displayed image becomes easy to see, and the target object such as a fish or a school of fish can be clearly displayed.
  • two transmission signals that are adjacent in time are converted by different pseudo-noise signals, so that they are converted so as to be identifiable at the time of reception and have different intervals.
  • a chirp signal is used instead of the pseudo-noise signal.
  • a linear FM signal called is transmitted alternately.
  • ghost By correlating the received signal on the receiving side, ghost can be removed as in one embodiment.
  • a correlation result similar to that of the pseudo noise signal can be obtained. That is, the up-chirp has a sharp peak obtained by correlating with the replica signal of the up-chirp, but the peak does not appear in the down-chirp signal.
  • the down chirp appears as a ghost between the transmission line and the seafloor signal when the up chirp is transmitted.
  • the transmission interval is T seconds between the up chirp and the down chirp, and T + ⁇ T between the down chirp and the up chirp.
  • the image is as shown in FIG. 19B, which is similar to that in FIG. 12 when the pseudo noise signal is used. Therefore, the ghost removal process can be performed by using the same interpolation process as in one embodiment.
  • FIG. 20 is an example of receiving and imaging an up-char, a signal and a down-chirp signal that are alternately transmitted.
  • the down chirp reception signal for example, the seabed
  • the down chirp transmission signal that appear in the middle of the up chirp transmission are more than the original echo. Appears on the image, albeit at a small signal level.
  • the method of interpolation is the same as that of the embodiment using the pseudo noise signal.
  • ghost removal can be performed using a chirp signal as shown in FIG. 18 instead of the pseudo-noise signal.
  • a chirp signal there are only two types, an up chirp and a down chirp, and it is not possible to prepare three or more types of transmission signals such as a pseudo noise signal. Therefore, it is not possible to prepare three types of transmission cycles for pseudo-noise signals and perform interpolation processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

超音波の送信波を送出し、水中の目標物で反射されたエコーを受信し、エコーを表示する水中情報表示装置において、時間的に隣り合う少なくとも二つの送信信号が受信時に識別可能なように変換されると共に、異なる間隔を有する送信信号系列を形成する送信信号生成部と、送信信号を超音波として水中に送出する送信部と、エコーを受信して受信信号を出力する受信部と、時間的に連続する送信信号に対応する複数の受信信号を記憶する記憶部と、記憶部に記憶されている受信信号が供給され、受信信号に含まれるゴースト成分を時間的に近傍の他の送信信号のエコーによって置換する補間部と、補間部により補間された信号を含む受信信号を描画する表示部とを備える水中情報表示装置である。 図7

Description

水中情報表示装置
 本発明は、超音波を使用して水中の魚や海底などの情報を可視化して表示する水中情報表示装置に関する。
 水中情報表示装置の一つとして魚群探知機が知られている。図1に示すように、魚群探知機は超音波を水中に向けて発射し、水中に存在する水中物体(例えば魚や水中の浮遊物)や海底から反射超音波を受波してカラー液晶表示装置等に表示するものである。
 魚群探知機の表示の方法は、図2に示すような液晶画面の一番右上にいま現在の発信した信号に強度に比例した色を付け、下の方向に水中での超音波の速度に合わせて返ってきたエコーに色を付け表示する。現在の信号の1つ左側には1つ前の送受信信号が描かれている。順次左側は過去の送受信信号が描かれており、1つの画面で船が通過してきた海中の情報が表示されている。図2の例では、一番上の直線は海面(発信線)を示し、下の方に横たわっているのは海底で、海面と海底の間に表示されているのは魚群(斜線領域で示す)である。この画面は1送信毎に左に画像送りされ最も過去の表示は画面から消失する。
 従来の魚群探知機は、短いパルスを送信し、そのパルス信号が海中を伝搬し、魚群などの海中の散乱体と言われる物体(目標物)からの微弱な反射エコーや海底からの比較的大きな反射エコーを1送信毎に1本の線として、反射信号の大きさに比例した色をつけて画面上に表示していた。その送信周期は、送信してから海底からの反射エコーが返ってきてから次の送信を行っていたので、海底までの距離の往復距離を水中音速で割った時間より短くできなかった。例えば、150mの深さの海底のあるところでは、その往復距離300mを水中音速1500m/sで割った値0.2秒よりも短くできなかった。
 海底が十分深いところで、海中の魚群などのエコーを表示しようとする場合、送信周期は海底からの反射エコーが存在しないとして速い送信周期にすることはできる。例えば1秒に10回送信した場合、その送信周期は0.1秒になるが、最初の送信と次の送信までの時間(0.1秒間)に超音波が往復する距離、すなわち水中音速1500m/sにこの0.1秒をかけた距離150mの半分75mが有効な表示範囲として画面を表示していた。送信周期0.1秒の時は図3に示すように75m以上の表示レンジは存在しなかった。存在しても、それは図4に示すように0mから75mの範囲を繰り返し表示していただけであった。
 海底深度をD、送信パルスの送信間隔をTとし、(2D/1500)<Tの場合では、図5Aに示すように、送信パルスと受信エコーの時間差が(2D/1500)に対応したものとなり、この時間差から深度を測定できる。しかしながら、(2D/1500)≧Tの場合では、図5Bに示すように、次の送信パルスの送出後に受信エコーが到来するので、受信エコーがどちらの送信パルスに対応したものかが分からなくなり、時間差FDに基づいて誤った深度を計測することになる。したがって、従来では(2D/1500)<Tの条件が必要であった。
 送信周期を短くできないことは、測深の水平方向分解能を小さくできないことになる。図6を参照して船の進行方向(水平方向)の計測の分解能について説明する。船速V(m/s)で深度D(m)の測深を行う場合の水平方向の分解能ΔH(m)は次式で表される。
  ΔH=VT>2DV/1500
 例えば船が10kt(時速10×1.852km)で航行し、送信の周期が1秒の場合、約5m毎にしか測深データは得られない。深度1,000mの海底を計測するには、送信周期Tを(1,000×2)/1,500=1.33秒以上にしないと計測できないが、船が10ktで航行すれば1.33秒後には6.7m進んでいるので、計測の分解能ΔHは6.67mということになる。
 従来の魚群探知機のような水中情報表示装置では、計測の分解能を高くするためには船の速度を低下させる以外に方法がなかった。したがって、従来の魚群探知機は、計測の分解能を高くする場合に計測に要する時間が長くなる問題があった。
 かかる問題点を解決することができる水中情報表示装置として、送信パルスの周期は、水中の音波の速度をVuとし、測定対象までの距離をDとする場合に、(2D/Vu)以下とする装置が提案されている(特許文献1参照)。かかる水中情報表示装置は、従来のような送信周期Tに関する制限((2D/1500)<T)をなくすことができる。すなわち、水平方向の分解能が次式に示すものとなる。
  ΔH=VT
 例えば船が10kt(時速10×1.852km)で航行し、送信の周期が0.01秒の場合、ΔH=0.05mとなり、測深深度とは無関係に水平方向の分解能(計測間隔)を決めることができる。深度にかかわらず、送信周期Tと船速Vのみから水平方向の分解能ΔHが決められる。このように、送信周期Tを短いものとでき、深度とは関係なく測深が可能となり、高い水平の計測分解能を得ることができる。
特許第6402224号公報
 かかる送信周期Tを短くした場合、ある送信超音波が目標物によって反射されて発生するエコーが受信されるまでに本来のエコーとは相違する反射波(以下、ゴーストと適宜称する)が受信され、表示画像が見にくいものとなり、目標物を捉えるうえの障害となる問題があった。
 したがって、本発明の目的は、かかる問題を解決することができる水中情報表示装置を提供することにある。
 本発明は、超音波の送信波を送出し、水中の目標物で反射されたエコーを受信し、エコーを表示する水中情報表示装置において、
 時間的に隣り合う少なくとも二つの送信信号が受信時に識別可能なように変換されると共に、異なる間隔を有する送信信号系列を形成する送信信号生成部と、
 送信信号を超音波として水中に送出する送信部と、
 エコーを受信して受信信号を出力する受信部と、
 時間的に連続する送信信号に対応する複数の受信信号を記憶する記憶部と、
 記憶部に記憶されている受信信号が供給され、受信信号に含まれるゴースト成分を時間的に近傍の他の送信信号のエコーによって置換する補間部と、
 補間部により補間された信号を含む受信信号を描画する表示部と
 を備える水中情報表示装置である。
 本発明によれば、送信信号のゴースト及びエコーのゴーストを除去することができる。したがって、表示を見やすいものとでき、また、ゴーストに隠れていた水中物体を表示することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本発明中に記載されたいずれの効果であってもよい。また、以下の説明における例示された効果により本発明の内容が限定して解釈されるものではない。
図1は魚群探知機の概略を示す略線図である。 図2は従来の魚群探知機の表示方法を示す略線図である。 図3は従来の魚群探知機の表示方法を示す略線図である。 図4は従来の魚群探知機の表示方法を示す略線図である。 図5は従来の魚群探知機の動作の概略を示す略線図である。 図6は従来の魚群探知機の動作の概略を示す略線図である。 図7は本発明の一実施形態のブロック図である。 図8は本発明の一実施形態の表示方法を説明するための略線図である。 図9は本発明の一実施形態の表示方法を説明するための略線図である。 図10A、図10B及び図10Cは送信周期を一定とした従来の魚群探知機の問題点を説明するための略線図である。 図11A及び図11Bは送信信号の間隔が変化する本発明の一実施形態の説明に用いる略線図である。 図12A及び図12Bは本発明の一実施形態の処理の説明に用いる略線図である。 図13は補間部の一例の構成を示すブロック図である。 図14A、図14B、図14C及び図14Dは補間部の一例の説明に用いる略線図である。 図15は補間部の他の例の説明に用いる略線図である。 図16は補間部の他の例の構成を示すブロック図である。 図17は本発明によるゴースト除去の効果を示す略線図である。 図18A及び図18Bは本発明の他の実施形態で使用するチャープ信号を説明するための略線図である。 図19Aは本発明の他の実施形態の送信信号系列を示す波形図であり、図19Bは本発明の他の実施形態の相関処理後の波形を示す波形図である。 図20は本発明の他の実施形態によるゴースト除去の効果を示す略線図である。
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、本発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において、特に本発明を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。なお、以下の説明では、水中の目標物の一例として海底を想定しているが、海底以外の目標物に対しても同様に本発明を適用できる。実際には、海底からのエコーが他の魚等の物体に比してエコーのレベルが大きいので、受信ゴーストとしては海底のゴーストが目立つものとなり、海底ゴーストの除去が課題となる。すなわち、受信ゴーストの中でも特にレベルの大きなゴーストを除去するようになされる。また、ゴーストもエコーの一つであるが、本明細書では、目標物で反射されて到来する本来の反射波をエコーと称し、本来の反射波でない反射波をゴーストと称する。
 本発明の一実施形態について図7を参照して説明する。パルス発生器1は、後述するように、間隔が変化する送信トリガパルスを発生する。送信トリガパルスが送信信号生成部2に供給される。送信信号生成部2は、時間的に隣り合う少なくとも二つの送信信号が受信時に識別可能なように変換されると共に、異なる間隔を有する送信信号系列を形成する。例えば送信パルスとして疑似雑音系列信号例えばゴールドコードを発生し、送信パルスをパルス変調例えばBPSK(Binary Phase Shift Keying)によってデジタル変調する。搬送波の周波数は数kHz~数百kHzとされる。さらに、送信トリガパルスが表示器8に供給される。表示器8は、カラー液晶等の表示装置である。
 送信信号生成部2によって生成された間隔が変化する送信信号が送信機3に供給され、送信機3において増幅等の処理がなされる。送信機3の出力信号が送受波器4に供給される。送受波器4から水中に対して超音波が送出される。発射された水中超音波のエコーが送受波器4によって受波される。例えば送信信号の間隔がTと、T+ΔTと交互に変化する送信信号系列が形成される。
 送受波器4からの受波データが受信アンプ5に供給され、増幅等の処理を受けて後、受信信号処理部6に供給される。受信信号処理部6は、受信信号を疑似雑音系列信号によって相関処理を行う。送信信号と受信信号の疑似雑音系列信号が一致する場合に大きな値となる信号が発生し、送信信号と対応する受信信号を識別できる。また、相関処理後の信号がメモリ7に対して送出される。
 一例として、パルス変調において1ビットが4周期で構成されており、各周期が8サンプルでデジタル化される。したがって、ゴールドコードのコードが127ビットの場合、一つの受信エコー信号は、(127×4×8=4064ビット)となる。この受信信号と127個のゴールドコードのコードのレプリカ(レプリカは4064ビット)との一致検出によって相関が検出される。
 受信信号処理部6の出力が表示器8の表示エリアと対応するメモリエリアを有するメモリ7に供給される。メモリ7の出力が表示器8に供給される。メモリ7及び表示器8に対しては、パルス発生器1からの送信パルスのタイミングを示すトリガパルスが供給され、表示器8によって、送信パルスに対して受信されたエコーが表示される。
 さらに、メモリ7と関連して補間部9が設けられている。補間部9は、メモリ7から読み出された受信データを使用して補間処理を行い、補間値をメモリ7に対して書き込む処理を行なう。確定した信号は、補間処理後の信号を含む信号である。
 表示器8に対しては送信トリガパルスが供給されており、送信トリガパルスのタイミングが画面の上側の発信線(0m)として表示される。送信パルスに対するメモリ7からの出力信号に色を付けて発信線から延びるように表示する。ここで、送信パルスの間隔は、変化するものであるが、最大の間隔であっても水中の音波の速度をVuとし、目標物までの距離をDとする場合に、(2D/Vu)以下とされる。
 上述した水中情報表示装置は、従来のような一定の送信周期Tに関する制限((2D/1500)<T)をなくすことができる。すなわち、水平方向の分解能が次式に示すものとなる。
  ΔH=VT
 例えば船が10kt(時速10×1.852km)で航行し、送信の周期(一定)が0.01秒の場合、ΔH=0.05mとなり、測深深度とは無関係に水平方向の分解能(計測間隔)を決めることができる。深度にかかわらず、送信周期Tと船速Vのみから水平方向の分解能ΔHが決められる。このように、送信周期Tを短いものとでき、深度とは関係なく測深が可能となり、高い水平の計測分解能を得ることができる。表示器8における水平方向(時間方向)の表示の解像度を高くすることができる。したがって、海中の比較的小型な対象物であっても、その形状を画面上に表示することが可能となる。
 表示器8における表示について説明する。本発明の一実施形態のようにメモリ7を有する場合の表示方式を図8に示す。時間的に連続する複数の送受信信号をメモリに順次蓄積し、確定した信号のみを描画(表示)するようになされる。未確定の信号はメモリ7に蓄積しておく。メモリ7が表示器8の表示画面に対応しているので、表示器8には、複数の送信信号に対応する受信信号の表示を同時に行うことができる。
 図9は、メモリ7の一例を示す。一例として、1000回の送信分のデータを蓄積可能な容量をメモリ7が有する。1回の送信では、0.01m毎のデータが記憶可能とされている。100mの深さの水中を表示する場合では、10000画素のデータを記憶するようになされる。
 メモリ7に対して例えば現在送信に対する受信データ、1送信過去に対する受信データ及び2送信過去に対する受信データが書き込まれている状態が図9に示されている。さらに、前の受信データは、補間処理を受けて確定済であり、メモリ7に蓄積されている。このメモリ7に蓄えられている書き込み済の受信データの部分(図9の例では1000-3=997個の受信データ)であって補間処理後の確定したデータが表示器8に表示される。
 上述した本発明の一実施形態は、送信回数が従来の魚群探知機の10倍以上で送信を行うことができるので、そこから得られる情報も10倍以上となり、これまで見ることができなかった海中の情報を得ることができるようになる。
 上述した水中情報表示装置において、本発明と異なり、送信間隔を一定とした場合のゴーストの問題について、図10A~図10Cを参照して説明する。図10Aが一定の送信周期Tでもって送信される送信信号P0,P1,P2,・・・を示す。図10Bが受波器によって受信された受信信号を示す。さらに、図10Cは、受信信号に基づいた表示画像を模式的に示す。図10Cでは、送信信号P0,P1,P2,・・・と対応する発信線が図10Cにおける最も左側の縦方向の線とされている。さらに、目標物のエコーが送信信号に対して時間X後に受信されるものとしている。
 例えば送信信号P1に対しては、ひとつ前の送信信号P0に対する受信ゴースト(例えば海底ゴースト)R0' と、次の送信信号P2の送信ゴーストP2' と、斜線を付したエコーR1が順次発生する。' は、ゴーストを表すために使用している。送信信号P1自身による送信ゴーストP1' は、同じタイミングで発生するので無視できる。しかしながら、送信信号P2による送信ゴーストP2' は、無視することができない。このように、各送信信号に対して、受信ゴースト、送信ゴースト及びエコーが順に発生するので、表示画面上では、エコーに対応する表示以外に受信ゴースト及び送信ゴーストが表示され、エコーによる目標物の認知の障害となる。
 図11Aは、本発明の一実施形態の送信信号の説明に使用するもので、例えばTとT+Δの二つの間隔が交互に現れる。目標物からのエコーが時間X後に受信されるとした場合に、送信信号P1,P2,P3のそれぞれに対応する受信信号は、図11Bに示すようになる。説明を簡単とするために、一定の深さの目標物例えば海底を想定する。
 すなわち、送信信号P1に対しては、前の送信信号P0に対応する受信ゴーストR0' と、送信信号P2による送信ゴーストP2' と、エコーR1を含む受信信号が得られる。また、次の送信信号P2に対しては、前の送信信号P1に対応する受信ゴーストR1' と、送信信号P3による送信ゴーストP3' と、エコーR2を含む受信信号が得られる。さらに、送信信号P3に対しては、前の送信信号P2に対応する受信ゴーストR2' と、送信信号P4による送信ゴーストP4' と、エコーR3を含む受信信号が得られる。さらに、送信信号P4に対しては、前の送信信号P3に対応する受信ゴーストR3' と、送信信号P5による送信ゴーストP5' と、エコーR4を含む受信信号が得られる。
 送信信号の間隔を交互に変化させるこの例では、送信信号P1,P3,P5,・・・に対する受信信号のエコー及びゴーストの時間方向の配列が一致し、送信信号P2,P4,P6,・・・に対する受信信号のエコー及びゴーストの時間方向の配列が一致する。したがって、送信ゴースト及び受信ゴーストは、前(又は後)の送信信号の時間的に対応する位置の受信データで置換することによって除去することができる。補間部9(図7参照)は、かかる前値(又は後値)ホールドの補間処理を行なう。補間処理は、ゴーストを除去し、時間的に近傍のエコーを付加する置換処理である。
 送信ゴーストの発生する時刻は、送信間隔が既知であれば、既知であり、また、受信ゴーストの発生する時刻もエコーの発生する時刻から分かる。したがって、ゴーストの部分の受信信号を強制的にゼロデータとするゴースト除去の方法も考えられる。この方法では、ゴーストの位置に存在している魚などの目標物のエコーをも除去してしまうことなり、好ましくない。これに対して、本発明の一実施形態は、補間処理を行なうので、ゴーストの位置に存在している目標物の情報を除去しないで、高精度の探知及び表示を行なうことができる。さらに、補間処理を行なう範囲は、既知の情報により求められたゴーストの存在する範囲と一致するようになされる。さらに、受信信号のレベルを監視し、所定以上のレベルのゴーストが存在すると検知された範囲で、補間処理を行なうようにしてもよい。
 図12A及び図12Bは、本発明の一実施形態の表示の一部を示すもので、図12Aが補間を行なう前の表示を示し、図12Bが補間を行なった後の表示を示す。図12A及び図12Bでは、表示器8の表示とは、縦横が入れ替わっており、発信線が図の最も左側の縦方向の線とされており、横方向が深さ方向とされている。
 補間前では、送信信号P1に対して、受信ゴーストR0' 、送信ゴーストP2' 及びエコーR1が順に配列されており、送信信号P2に対して、受信ゴーストR1' 、送信ゴーストP3' 及びエコーR2が順に配列されている。送信信号P2に対する受信ゴーストR1' と同じ時刻に、送信信号P1に対して受信信号(無信号又はエコー)Y11が存在している。同様に、送信ゴーストP3' と同じ時刻に、送信信号P1に対して受信信号Y12が存在している。
 したがって、図12Bに示すように、受信ゴーストR1' が受信信号Y11によって置換され、ゴーストの代わりに受信信号Y11と同じ信号(Y11)が挿入される。送信ゴーストP3'が受信信号Y12によって置換され、ゴーストの代わりに受信信号Y12と同じ信号(Y12)が挿入される。他の受信ゴースト及び送信ゴーストも同様に補間されるので、ゴーストが除去された画像(図12B)を表示することができる。また、各ゴーストと同じ位置に目標物が存在している場合には、目標物のエコーの予測値を表示することができる。
 上述したような前値ホールドを行なう補間部9の一例を図13に示す。メモリ7から読み出された受信信号がスイッチ回路11の入力端子a及びbに対して供給される。例えばスイッチ回路11の一方の入力端子aに対して処理対象の送信信号に対する受信信号が供給され、他方の入力端子bに対して処理後(確定後)の受信信号が供給される。スイッチ回路11の出力端子cに補間後の受信信号が取り出され、この受信信号が処理後の受信信号としてメモリ7に書き込まれる。スイッチ回路11は、端子12からの切替信号によって制御される。
 図14Aがメモリ7に記憶されている処理後の受信信号(送信信号P1に対する)を示し、図14Bが処理対象の受信信号(送信信号P2に対する)を示す。受信ゴーストR1' のタイミングと、送信ゴーストP3' のタイミングで、図14Cに示すような切替信号がスイッチ回路11に供給される。スイッチ回路11からは、図14Dに示すような補間後の受信信号が得られ、この補間後の受信信号がメモリ7に書き込まれる。
 上述した説明では、補間処理として前置ホールドの例をあげて説明した。補間処理は、前置ホールドに限らず、平均値補間を採用してもよい。図15に示すように、例えば受信ゴーストR1' と同じ位置の他の(時間的に前の)送信信号P1に対する受信信号Y11と、受信ゴーストR1' と同じ位置の他の(時間的に後の)送信信号P2に対する受信信号Y31との平均値(Y11+Y31)/2の値でもって、受信ゴーストR1' を置換するようにしてもよい。送信ゴーストも同様に平均値補間される。
 図16は、平均値補間を行なう補間部9の一例を示す。メモリ7からは、時間的に連続する3個の送信信号に対する受信信号が同期して読み出される。処理対象の送信信号に対する受信信号がスイッチ回路13の一方の入力端子aに対して供給される。処理対象の送信信号の前後の送信信号に対する受信信号がメモリ7から読み出され、加算回路14に対して供給され、加算回路14の加算出力が(1/2)倍回路13に供給される。(1/2)倍回路13から前後の受信信号の平均値信号が得られ、この平均値信号がスイッチ回路13の他方の入力端子bに対して供給される。
 スイッチ回路13は、端子16からの切替信号によって制御される。通常の区間では、入力端子aが選択され、受信信号が出力端子cに取り出される。補間対象のゴーストの区間では、入力端子bが選択され、平均値信号が出力端子cに取り出される。スイッチ回路13の出力端子cに取り出された受信信号が確定後の受信信号としてメモリ7に戻される。このようにしてゴーストが平均値信号によって置換され、ゴースト除去を行なうことができる。
 本発明においては、補間処理として前置ホールド及び平均値補間以外の処理を使用してもよい。例えば前後左右の4個の受信信号を使用した補間を行なうようにしてもよい。また、補間部9は、上述したブロック図で示すような回路(ハードウェア)の構成に限らず、マイクロプロセッサによるソフトウェア処理によって実現するようにしてもよい。さらに、送信信号の間隔を変化させる方法としては、T及びT+Δの2種類を切り替える方法以外に、T,T+Δ,T+2Δの3種類の間隔の送信信号を使用してもよいし、4種類以上の間隔を有する送信信号を使用してもよい。送信ゴーストの位置(位相)に時間的に隣接する他の送信信号に対する受信信号が存在しているようになされる。
 例えば10%程度の差を有する3種類の間隔(1T,1.1T,1.2T)を有する送信信号系列を使用した場合、ゴースト除去処理の前では、図17Aに示すような受信画像が表示される。例えば40m付近の海底エコー以外に4本の線の送信ゴーストと3本の線の受信ゴーストが表示されている。図17Bに示すように、本発明によってゴースト成分が除去され、海底エコーのみを表示することができる。したがって、表示画像が見やすいものとなり、また、魚、魚群などの目標物を明確に表示することができる。
 次に、本発明の他の実施形態について説明する。上述した一実施形態は、時間的に隣り合う二つの送信信号が異なる疑似雑音信号で変換されていることによって、受信時に識別可能なように変換されると共に、異なる間隔を有するようにしていた。しかしながら、他の実施形態は、疑似雑音信号に代えてチャープ信号を使用するようにしたものである。
 図18Aに示すようなアップチャープと呼ばれる周波数が低い方から高い方へ掃引されるリニアーFM(Frequency Modulation)信号と、図18Bに示すような逆に高い方から低い方へ掃引されるダウンチャープと呼ばれるリニアーFM信号とを交互に送信する。受信側において、受信信号を相関処理することにより一実施形態と同様に、ゴースト除去ができる。チャープ信号も相関処理することにより、疑似雑音信号と同様の相関結果が得られる。すなわち、アップチャープはアップチャープのレプリカ信号と相関処理することにより鋭いピークが得られるが、ダウンチャープ信号にはピークは現れない。
 図19にその模式図を示すが、アップチャープとダウンチャープとを交互に送信するので、アップチャープ送信時にはダウンチャープがゴーストとして発信線と海底信号の間に現れる。図19Aに示すように、送信の間隔はアップチャープからダウンチャープ間をT秒、ダウンチャープからアップチャープ間をT+ΔTとする。この場合、画像は図19Bのようになり、疑似雑音信号を用いた場合の図12と同様になる。したがって、一実施形態と同様な補間処理を用いてゴースト除去の処理を行うことができる。
 図20は交互に送信されるアップチャーと信号とダウンチャープ信号を受信して画像化した例である。1送信ごとに深度0mから深い深度に受信信号のレベルに色をつけて表示すると、アップチャープの送信時には途中に現れるダウンチャープの受信信号(例えば海底)とダウンチャープの送信信号が本来のエコーよりも小さな信号レベルではあるが画像上に出現する。しかし、送信周期を交互に変えることにより、海底ゴーストと送信ゴーストの現れる位置が異なるので、補間処理により除去することができる。補間の方法は疑似雑音信号を用いた一実施形態の場合と同様である。
 他の実施形態のように、疑似雑音信号の代わりに図18に示すようなチャープ信号を用いてゴースト除去を行なうことができる。但し、チャープ信号の場合はアップチャープとダウンチャープの2種類しかなく、疑似雑音信号のように3種類以上の送信信号を準備することができない。そのため、疑似雑音信号で行なっている3種類の送信周期を用意して補間処理を行うことはできない。
1・・・パルス発生器、2・・・送信信号生成部、4・・・送受波器、
6・・・受信信号処理部、7・・・メモリ、8・・・表示器、9・・・補間部

Claims (3)

  1.  超音波の送信波を送出し、水中の目標物で反射されたエコーを受信し、エコーを表示する水中情報表示装置において、
     時間的に隣り合う少なくとも二つの送信信号が受信時に識別可能なように変換されると共に、異なる間隔を有する送信信号系列を形成する送信信号生成部と、
     前記送信信号を超音波として水中に送出する送信部と、
     前記エコーを受信して受信信号を出力する受信部と、
     時間的に連続する送信信号に対応する複数の前記受信信号を記憶する記憶部と、
     前記記憶部に記憶されている前記受信信号が供給され、前記受信信号に含まれるゴースト成分を時間的に近傍の他の送信信号のエコーによって置換する補間部と、
     前記補間部により補間された信号を含む受信信号を描画する表示部と
     を備える水中情報表示装置。
  2.  前記送信信号が疑似雑音信号またはチャープ信号に変換された信号である請求項1に記載の水中情報可視化装置。
  3.  前記送信信号系列において、時間的に連続する3以上の前記送信信号の間隔が異なるようにされた請求項1又は2に記載の水中情報表示装置。
PCT/JP2019/027904 2019-07-16 2019-07-16 水中情報表示装置 WO2021009840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019560405A JP6664731B1 (ja) 2019-07-16 2019-07-16 水中情報表示装置
US17/625,135 US20220206143A1 (en) 2019-07-16 2019-07-16 Underwater information display device
EP19937749.0A EP4001963A4 (en) 2019-07-16 2019-07-16 UNDERWATER INFORMATION DISPLAY DEVICE
PCT/JP2019/027904 WO2021009840A1 (ja) 2019-07-16 2019-07-16 水中情報表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027904 WO2021009840A1 (ja) 2019-07-16 2019-07-16 水中情報表示装置

Publications (1)

Publication Number Publication Date
WO2021009840A1 true WO2021009840A1 (ja) 2021-01-21

Family

ID=70000364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027904 WO2021009840A1 (ja) 2019-07-16 2019-07-16 水中情報表示装置

Country Status (4)

Country Link
US (1) US20220206143A1 (ja)
EP (1) EP4001963A4 (ja)
JP (1) JP6664731B1 (ja)
WO (1) WO2021009840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220206143A1 (en) * 2019-07-16 2022-06-30 AquaFusion, Ltd. Underwater information display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149475U (ja) * 1982-02-24 1982-09-20
JPS58117473A (ja) * 1982-09-27 1983-07-13 Aloka Co Ltd 超音波装置
JPS58150878A (ja) * 1982-03-03 1983-09-07 Mitsubishi Electric Corp 物体検出装置
JPS642224B2 (ja) 1982-01-21 1989-01-17 Toshihiro Tsumura
US20180011190A1 (en) * 2016-07-05 2018-01-11 Navico Holding As High Ping Rate Sonar

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855961A (en) * 1986-07-31 1989-08-08 Woods Hole Oceanographic Institute Imaging apparatus
JP5383374B2 (ja) * 2009-08-05 2014-01-08 古野電気株式会社 水中探知装置
JP6700054B2 (ja) * 2016-02-04 2020-05-27 学校法人桐蔭学園 非接触音響探査システム
JP6402224B1 (ja) * 2017-07-26 2018-10-10 株式会社AquaFusion 音響測深装置及び音響測深方法
WO2020110190A1 (ja) * 2018-11-27 2020-06-04 株式会社AquaFusion 水中情報可視化装置
WO2021009840A1 (ja) * 2019-07-16 2021-01-21 株式会社AquaFusion 水中情報表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642224B2 (ja) 1982-01-21 1989-01-17 Toshihiro Tsumura
JPS57149475U (ja) * 1982-02-24 1982-09-20
JPS58150878A (ja) * 1982-03-03 1983-09-07 Mitsubishi Electric Corp 物体検出装置
JPS58117473A (ja) * 1982-09-27 1983-07-13 Aloka Co Ltd 超音波装置
US20180011190A1 (en) * 2016-07-05 2018-01-11 Navico Holding As High Ping Rate Sonar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4001963A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220206143A1 (en) * 2019-07-16 2022-06-30 AquaFusion, Ltd. Underwater information display device

Also Published As

Publication number Publication date
EP4001963A4 (en) 2023-03-22
EP4001963A1 (en) 2022-05-25
JPWO2021009840A1 (ja) 2021-09-13
JP6664731B1 (ja) 2020-03-13
US20220206143A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP5415145B2 (ja) レーダ装置
JP5383374B2 (ja) 水中探知装置
JP5993441B2 (ja) レーダ装置及びレーダ信号処理方法
US20110187579A1 (en) Method and device for transmission, method and device for reception, and method and device for detecting target object
JP2007333482A (ja) レーダ装置及びレーダ画像表示方法
JP5628590B2 (ja) 干渉除去装置、信号処理装置、レーダ装置、干渉除去方法およびプログラム
US9310483B2 (en) Device and method for transceiving ultrasonic wave
US20180217243A1 (en) Echo measuring apparatus, echo sounding apparatus, multibeam echo measuring apparatus, multibeam echo sounding apparatus and aperture synthetic sonar
JP6255449B1 (ja) 音響測深装置、音響測深方法及びマルチビーム音響測深装置
JP2007064768A (ja) 水中探知装置
EP3605144A1 (en) Echo sounding device and echo sounding method
WO2021009840A1 (ja) 水中情報表示装置
JP4828120B2 (ja) 水中探知装置
JP6402224B1 (ja) 音響測深装置及び音響測深方法
JP7163555B2 (ja) 水中情報可視化装置
JP6339446B2 (ja) 探知装置、探知方法、およびプログラム
JP2006284257A (ja) 音波伝搬距離推定方法及び音波伝搬距離推定装置
JP2018010006A (ja) 音響測深装置、音響測深方法及びマルチビーム音響測深装置
JPH03269284A (ja) 三次元的表示レーダ
JP6385278B2 (ja) レーダ装置、及びレーダ映像表示方法
JP3695807B2 (ja) 2次元ドプラ超音波診断装置
JP2000321349A (ja) マリンレーダ装置
US6940449B2 (en) Method for eliminating dummy objects short-range pulse radar sensors
JP2599009B2 (ja) 超音波送受信方式
JPH07244152A (ja) クラッタ抑圧方法及びクラッタ抑圧装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560405

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937749

Country of ref document: EP

Effective date: 20220216