WO2021009591A1 - 半導体装置、無線通信装置 - Google Patents

半導体装置、無線通信装置 Download PDF

Info

Publication number
WO2021009591A1
WO2021009591A1 PCT/IB2020/056151 IB2020056151W WO2021009591A1 WO 2021009591 A1 WO2021009591 A1 WO 2021009591A1 IB 2020056151 W IB2020056151 W IB 2020056151W WO 2021009591 A1 WO2021009591 A1 WO 2021009591A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
insulator
oxide
conductor
function
Prior art date
Application number
PCT/IB2020/056151
Other languages
English (en)
French (fr)
Inventor
池田隆之
國武寛司
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/615,867 priority Critical patent/US11894040B2/en
Priority to JP2021532544A priority patent/JPWO2021009591A1/ja
Publication of WO2021009591A1 publication Critical patent/WO2021009591A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/16Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption

Definitions

  • One aspect of the present invention relates to a semiconductor device and a wireless communication device provided with the semiconductor device.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics.
  • Display devices liquid crystal display devices, light emission display devices, etc.
  • projection devices lighting devices
  • electro-optical devices power storage devices
  • storage devices storage devices
  • semiconductor circuits image pickup devices
  • sensor devices etc.
  • Electronic devices that comply with 5G communication standards have high-frequency circuits for transmitting and receiving high-frequency signals.
  • the high-frequency circuit is equipped with a digital-to-analog converter (hereinafter referred to as DAC) for converting a digital signal into an analog signal.
  • DAC digital-to-analog converter
  • the bias voltage setting can be changed in order to improve signal modulation and power efficiency.
  • DAC since DAC is required to have accuracy at the time of conversion, a configuration for increasing the accuracy is being studied (see, for example, Non-Patent Document 1).
  • the circuit provided on the analog front end side has a high withstand voltage against a high voltage, and the circuit is often composed of a unipolar transistor using a compound semiconductor such as GaN.
  • the DAC adopts a circuit configuration such as a decode type, a binary type, or a segment type.
  • the circuit area of a DAC such as a decode type, a binary type, or a segment type increases as the number of bits increases. Further, the DAC applied to the high frequency circuit is required to operate at high speed.
  • the bias voltage can be changed in the DAC that applies the bias voltage in the high frequency circuit, and to perform impedance correction.
  • the distance between the circuits becomes large.
  • the DAC that applies the bias voltage is near the analog front end.
  • One aspect of the present invention is to provide a semiconductor device having a novel configuration capable of operating without deteriorating accuracy.
  • One aspect of the present invention is to provide a semiconductor device having a novel configuration that can be miniaturized.
  • One aspect of the present invention is to provide a semiconductor device having a novel configuration capable of saving power.
  • one aspect of the present invention is to provide a novel semiconductor device or the like.
  • One aspect of the present invention has a plurality of constant current circuits to which a digital signal is given, the constant current circuit has a first transistor to a third transistor, and the first transistor has a set analog potential.
  • the second transistor has a function of flowing the corresponding first current, and the second transistor has a function of controlling the first current flowing between the source and the drain of the first transistor in response to the digital signal.
  • By turning off the third transistor it has a function of holding the analog potential given to the gate of the first transistor, and each of the first transistor to the third transistor is an oxide semiconductor in a channel forming region. It is a semiconductor device having a semiconductor layer having the above.
  • One aspect of the present invention is a plurality of constant current circuits to which a digital signal is given, a load having a function of generating a voltage corresponding to a current flowing through the constant current circuit, and a buffer circuit having a function of outputting the voltage as an output voltage.
  • the constant current circuit has a first transistor to a third transistor, the first transistor has a function of passing a first current according to a set analog potential, and the second transistor has a function of passing a first current. It has a function to control the first current flowing between the source and drain of the first transistor according to the digital signal, and by turning off the third transistor, the analog potential given to the gate of the first transistor is set.
  • Each of the first transistor to the third transistor is a semiconductor device having a function of holding and having a semiconductor layer having an oxide semiconductor in a channel forming region.
  • the constant current circuit is preferably a semiconductor device provided so as to be superposed on a circuit composed of transistors having a semiconductor layer having silicon in a channel forming region.
  • the load preferably has a semiconductor device having a fourth transistor and the fourth transistor having a semiconductor layer having an oxide semiconductor in a channel forming region.
  • One aspect of the present invention is a semiconductor device according to any one of claims 1 to 3, wherein the buffer circuit has a fifth transistor, and the fifth transistor has a semiconductor layer having an oxide semiconductor in a channel forming region. Is preferable.
  • the digital signal has an inverting signal and a non-inverting signal, and a plurality of first transistors are provided according to the inverting signal and the non-inverting signal.
  • Semiconductor devices are preferred.
  • One aspect of the present invention includes an integrated circuit including an antenna, a mixer, an oscillator, and a digital-analog conversion circuit, wherein the digital-analog conversion circuit includes a plurality of constant current circuits to which a digital signal is given and a constant current. It has a load having a function of generating a voltage corresponding to a current flowing through the circuit and a buffer circuit having a function of outputting the voltage as an output voltage, and the constant current circuit has a first transistor to a third transistor.
  • the first transistor has a function of passing a first current according to a set analog potential
  • the second transistor is a first current flowing between the source and drain of the first transistor according to a digital signal.
  • a wireless communication device having a semiconductor layer having an oxide semiconductor.
  • the constant current circuit is preferably a wireless communication device provided so as to be superposed on a circuit composed of transistors having a semiconductor layer having silicon in a channel forming region.
  • a wireless communication device in which the load has a fourth transistor, and the fourth transistor has a semiconductor layer having an oxide semiconductor in a channel forming region.
  • a wireless communication device in which the buffer circuit has a fifth transistor, and the fifth transistor has a semiconductor layer having an oxide semiconductor in a channel forming region.
  • a wireless communication device in which the digital signal has an inverting signal and a non-inverting signal, and a plurality of first transistors are provided according to the inverting signal and the non-inverting signal.
  • One aspect of the present invention can provide a semiconductor device having a novel configuration capable of operating without deteriorating accuracy.
  • One aspect of the present invention can provide a semiconductor device having a novel configuration capable of miniaturization.
  • One aspect of the present invention can provide a semiconductor device having a novel configuration capable of saving power.
  • one aspect of the present invention can provide a novel semiconductor device or the like.
  • FIG. 1A and 1B are diagrams for explaining the configuration of a semiconductor device.
  • 2A and 2B are diagrams for explaining the configuration of the semiconductor device.
  • 3A to 3C are diagrams for explaining the configuration of the semiconductor device.
  • 4A and 4B are diagrams for explaining the configuration of the semiconductor device.
  • 5A and 5B are circuit diagrams for explaining the configuration of the semiconductor device.
  • 6A to 6C are diagrams for explaining the configuration of the semiconductor device.
  • FIG. 7 is a block diagram for explaining the configuration of the wireless communication device.
  • FIG. 8 is a block diagram for explaining the configuration of the wireless communication device.
  • FIG. 9 is a diagram showing a configuration example of a semiconductor device.
  • FIG. 10 is a diagram showing a configuration example of a semiconductor device.
  • FIG. 11A to 11C are diagrams showing a configuration example of a transistor.
  • 12A to 12C are diagrams showing a configuration example of a transistor.
  • 13A to 13C are diagrams showing a configuration example of a transistor.
  • FIG. 14A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 14B is a diagram illustrating an XRD spectrum of the CAAC-IGZO film.
  • FIG. 14C is a diagram illustrating a microelectron diffraction pattern of the CAAC-IGZO film.
  • FIG. 15A is a top view of the semiconductor wafer.
  • FIG. 15B is an enlarged view of the chip.
  • FIG. 16A is a flowchart illustrating an example of a manufacturing process of electronic components.
  • FIG. 16A is a flowchart illustrating an example of a manufacturing process of electronic components.
  • FIG. 16B is a schematic perspective view of an electronic component.
  • FIG. 17 is a diagram showing an example of an electronic device.
  • 18A to 18F are diagrams showing an example of an electronic device.
  • FIG. 19 is a diagram showing the hierarchical structure of the IoT network and the tendency of the required specifications.
  • FIG. 20 is an image diagram of factory automation.
  • the ordinal numbers “1st”, “2nd”, and “3rd” are added to avoid confusion of the components. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. Further, for example, the component referred to in “first” in one of the embodiments of the present specification and the like is defined as a component referred to in “second” in another embodiment or in the claims. It is possible. Further, for example, the component mentioned in “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or in the claims.
  • the power supply potential VDD may be abbreviated as potentials VDD, VDD, etc. This also applies to other components (eg, signals, voltages, circuits, elements, electrodes, wiring, etc.).
  • the code is used for identification such as "_1”, “_2”, “[n]", “[m, n]”. May be added and described.
  • the second wiring GL is described as wiring GL [2].
  • the semiconductor device of one aspect of the present invention functions as a digital-to-analog converter for converting a digital signal into an analog signal, a so-called DAC (Digital to Analog Converter).
  • the present invention relates to a semiconductor device that functions as a DAC provided on the analog front end side for transmitting and receiving high-frequency signals via an antenna, and a wireless communication device provided with the semiconductor device.
  • FIG. 1A is a circuit diagram for explaining a configuration of a semiconductor device functioning as a DAC, which is applicable to a wireless communication device including the semiconductor device of one aspect of the present invention.
  • the semiconductor device 100 includes a plurality of constant current circuits 120 0 to 120 N-1 (N is a natural number of 2 or more), with a load 130 and a buffer circuit 140,.
  • N is a natural number of 2 or more
  • the load 130 and the buffer circuit 140 are shown in FIG. 1A, but they can be omitted when they are output as current values.
  • Each constant current circuit 120 0 to 120 N-1 includes a transistor and a capacitor. Constant current circuit 120 0 to 120 N-1 is, N bits (N is a natural number of 2 or more) digital signal B 0 through B N-1 and the analog potential W 0 through W N-1 of the given. The constant current circuits 120 0 to 120 N-1 have different weighted output currents OUT 0 to OUT 0 to 120 according to the digital signals B 0 to BN -1 and the analog potentials W 0 to W N-1. Outputs OUT N-1 .
  • the analog potentials W 0 to W N-1 are potentials whose settings can be individually controlled.
  • the analog potentials W 0 to W N-1 can be generated by a voltage generation circuit provided outside the semiconductor device 100.
  • the semiconductor device 100 in each of the plurality of constant current circuits 120 0 to 120 N-1, has a function of holding an analog voltage which is set.
  • the constant current circuits 120 0 to 120 N-1 are provided with selection signals S 0 to S N-1 for updating or holding the analog potentials W 0 to W N-1 , respectively. ..
  • the selection signals S 0 to S N-1 are signals for controlling the on / off of the transistor functioning as a switch.
  • the digital signals B 0 to BN -1 are for controlling whether or not to flow an output current OUT 0 to OUT N-1 according to the analog potential set in each constant current circuit 120 0 to 120 N-1 . It is a signal.
  • Load 130 has a function of generating a voltage corresponding to the current flowing through the constant current circuit 120 0 to 120 N-1.
  • Load 130, a digital signal B 0 through B N-1 to the output current OUT 0 is adjusted under the control of that flow sum of OUT N-1, generating a voltage corresponding to the digital signal B 0 through B N-1 To do.
  • the load 130 is given a voltage V REF and can be composed of a resistance element or a transistor.
  • the buffer circuit 140 has a function of outputting the voltage of the input terminal V IN as an output voltage to the output terminal V OUT .
  • the voltage of the input terminal VIN of the buffer circuit 140 can be set according to the current flowing through the load 130.
  • the buffer circuit 140 is given a voltage of the input terminal VIN , and generates a voltage in which the current supply capacity and the like are amplified.
  • the buffer circuit 140 can be composed of a resistance element or a transistor.
  • the semiconductor device 100 illustrated in Figure 1A can be held and rewrite analog potential W 0 through W N-1 was set to a constant current circuit 120 0 to 120 N-1. Therefore, since the circuits that generate a plurality of analog potentials can be operated intermittently, power saving can be performed. Further, by correcting and rewriting a plurality of analog potentials, it is possible to easily correct the analog voltage output by the semiconductor device.
  • Figure 1B is a diagram illustrating a configuration example of applicable constant current circuit 120 to the constant current circuit 120 0 to 120 N-1.
  • the constant current circuit 120 includes a transistor 121, a transistor 122, a transistor 123, and a capacitor 124.
  • any one of the analog potentials W 0 to W N-1 will be described as the analog potential W X.
  • any one of the selection signals S 0 to S N-1 as a selection signal S X.
  • a digital signal B 0 to any one of the B N-1 as a digital signal B X.
  • any one of the output currents OUT 0 to OUT N-1 will be described as the output current OUT X.
  • the transistor 121 has a function of passing an output current OUT X corresponding to the analog potential W X held by the gate.
  • Transistor 122 has a function according to the digital signal B X, to control the output current OUT X flowing between the source and the drain of the transistor 121.
  • the transistor 123 functions as a switch. Transistor 123, turning on, has a function of updating analog potential W X to the gate of the transistor 121. Transistor 123 by turning off, has a function of holding the analog potential W X supplied to the gate of the transistor 121.
  • the gate of the transistor 121 is connected to one of the sources or drains of the transistor 123 and one of the electrodes of the capacitor 124.
  • One of the source or drain of the transistor 121 is connected to one of the source or drain of the transistor 122.
  • the other of the source or drain of the transistor 121 is connected to a fixed potential, eg, a ground line.
  • the gate of the transistor 122 is connected to a wiring for transmitting a digital signal B X.
  • the other side of the source or drain of the transistor 122 is connected to the wiring side connected to the load 130, that is, the wiring for passing the output current OUT X.
  • the gate of the transistor 123 is connected to a wiring for transmitting a selection signal S X.
  • the other of the source and the drain of the transistor 123 is connected to a wiring for transmitting the analog potential W X.
  • the other electrode of capacitor 124 is connected to a fixed potential, eg ground wire.
  • the transistors 121 to 123 included in the constant current circuit 120 are composed of transistors having an oxide semiconductor in the channel forming region (hereinafter referred to as OS transistors).
  • OS transistors transistors having an oxide semiconductor in the channel forming region
  • the off current the leakage current flowing between the source and the drain at the time of off
  • the electric charge corresponding to the voltage of the above can be held in the capacitor. That is, the once applied analog potential can be held for a long time in the circuit functioning as a memory in the constant current circuit 120. Therefore, it is not necessary to continuously generate the analog potential given to the constant current circuit 120, so that power saving can be achieved.
  • the analog potential can be corrected by rewriting the analog potential by charging or discharging the electric charge, so that the analog potential can be corrected substantially unlimited times.
  • the constant current circuit 120 using an OS transistor is used as a memory, it does not undergo a structural change at the atomic level unlike a magnetic memory or a resistance change type memory, and therefore has excellent rewrite resistance. There is. Further, the constant current circuit 120 using the OS transistor does not show instability due to an increase in the electron capture center even in the repeated rewriting operation like the flash memory.
  • the constant current circuit 120 using the OS transistor can be freely arranged on a silicon substrate having a transistor having silicon in the channel forming region (hereinafter, Si transistor) or an element layer having an OS transistor, and thus integrated. It can be easily converted. Further, since the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost.
  • the OS transistor can be a 4-terminal semiconductor element if the back gate electrode is included in addition to the gate electrode, the source electrode and the drain electrode.
  • An electric network in which the input and output of signals flowing between the source and the drain can be independently controlled according to the voltage applied to the gate electrode or the back gate electrode can be configured. Therefore, the circuit design can be performed in the same manner as the LSI.
  • the OS transistor has better electrical characteristics than the Si transistor in a high temperature environment. Specifically, since the ratio of the on current to the off current is large even at a high temperature such as 125 ° C. or higher and 150 ° C. or lower, good switching operation can be performed. Further, the OS transistor operates well in the range of ⁇ 40 ° C. or higher and 190 ° C.
  • the OS transistor has very good heat resistance.
  • This is the heat resistance of phase change memory (PCM: Phase Change Memory) (-40 ° C or more and 150 ° C or less), and the heat resistance of resistance change memory (ReRAM: Resistance Random Access Memory) (-40 ° C or more and 125 ° C or less).
  • PCM Phase Change Memory
  • ReRAM Resistance Random Access Memory
  • the heat resistance is good even when compared with the heat resistance (-40 ° C or higher and 105 ° C or lower) of a magnetic resistance memory (MRAM: Magnetoresistive Random Access Memory).
  • FIG. 2A and 2B show a circuit diagram for explaining a modification of the constant current circuit 120 illustrated in FIG. 1B.
  • each transistor is shown as a transistor having a top gate structure or a bottom gate structure without a back gate electrode, but the structure of the transistor is not limited to this.
  • the configuration may have a back gate electrode connected to the gate electrode. With the configuration of FIG. 2A, the amount of current flowing through each transistor can be increased.
  • the configuration may have a back gate electrode connected to a terminal that applies the back gate voltage VBG .
  • VBG back gate voltage
  • FIG. 3A shows a digital signal output circuit 150 that supplies digital signals B 0 to BN -1 to the semiconductor device 100 described with reference to FIG. 1A, and a voltage generation circuit 151 that supplies analog potentials W 0 to W N-1 . It shows.
  • Constant current circuit 120 0 to 120 N-1 of one embodiment of the present invention as described above is composed of OS transistors, has a function of holding the analog voltage W 0 through W N-1. Therefore, the voltage generation circuit 151 can be stopped intermittently. Therefore, in an electronic device or the like equipped with the semiconductor device 100, it is possible to save power by stopping the voltage generation circuit 151.
  • FIG. 3B illustrates a part of a block diagram of a wireless communication device on which the semiconductor device 100 can be mounted.
  • the semiconductor device 100 is provided in the integrated circuit 13 on the analog baseband side in the wireless communication device.
  • the integrated circuit 13 is connected to the antenna ANT and the baseband processor 12 to transmit and receive analog signals or digital signals.
  • the baseband processor 12 is connected to the application processor 11 and transmits / receives digital signals.
  • the voltage generation circuit 151 is provided in an integrated circuit 13 (IC: Integrated Circuit).
  • the voltage generation circuit 151 can be provided in the baseband processor 12 composed of a CMOS circuit, but is preferably provided in the integrated circuit 13 in order to reduce the influence of noise and the like.
  • the digital signal output circuit 150 can be provided in the baseband processor 12.
  • the voltage generation circuit 151 can be composed of Si transistors.
  • the voltage generation circuit 151 is preferably close to the semiconductor device 100 in order to reduce the influence of noise, the influence of wiring resistance, and the like. Therefore, as shown in FIG. 3C, the semiconductor device 100 that can be configured by the OS transistor and the voltage generation circuit 151 that can be configured by the Si transistor are in the z direction in the integrated circuit 13, that is, the Si transistor. It is preferable that the components are arranged so as to be stacked in a direction substantially perpendicular to the surface of the substrate on which With this configuration, it is possible to reduce the size of the circuit area and reduce the influence of noise.
  • the voltage generation circuit 151 has been described as a Si transistor, in this case, the Si transistor can be provided on a silicon single crystal substrate. Not limited to silicon, other semiconductor materials such as compound semiconductors can be used. Materials having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide) and the like can be used.
  • the load 130 and the buffer circuit 140 are also composed of an OS transistor, a resistance element, or the like.
  • FIGS. 4A and 4B an example of a circuit configuration applicable to the load 130 is illustrated and described.
  • FIG. 4A illustrates a configuration in which the resistance element 131 is provided as the load 130.
  • FIG. 4B shows a diagram in which the load 130 is composed of an OS transistor and a capacitor.
  • the load 130 illustrated in FIG. 4B has a transistor 132, a transistor 133, and a capacitor 134.
  • the transistor 132 and the transistor 133 exemplify a configuration in which a back gate electrode is provided and a back gate voltage VBG is applied.
  • the selection signal SL is a signal for switching the transistor 133 on or off.
  • the analog potential VL is a potential for setting the potential of the gate of the transistor 132.
  • the transistor 132 has a function of passing a current corresponding to the voltage held in the capacitor 134.
  • the transistor 133 functions as a switch.
  • the transistor 133 has a function of updating the analog potential VL to the gate of the transistor 132 when it is turned on.
  • the transistor 133 has a function of holding the analog potential VL given to the gate of the transistor 132 by turning it off.
  • the gate of transistor 132 is connected to one of the source or drain of transistor 133 and one of the electrodes of capacitor 134.
  • One of the source and drain of the transistor 132 is connected to a wiring that provides a voltage V REF .
  • the other of the source and the drain of the transistor 132 is connected to the other electrode of the capacitor 134, and the constant current circuit 120 0 to 120 N-1.
  • the gate of the transistor 133 is connected to a wiring for transmitting a selection signal S L.
  • the other of the source or drain of the transistor 133 is connected to a wire that carries the analog potential VL .
  • the transistors 132 and 133 of the load 130 are composed of OS transistors.
  • the off current the leakage current flowing between the source and the drain at the time of off
  • the electric charge corresponding to the voltage of the above can be held in the capacitor 134. That is, the once applied analog potential can be held for a long time in the circuit functioning as the memory in the load 130. Therefore, it is not necessary to continuously generate the analog potential given to the load 130, so that power saving can be achieved.
  • FIG. 5A and 5B show and explain an example of a circuit configuration applicable to the buffer circuit 140.
  • FIG. 5A illustrates a configuration having a resistance element 141 and a transistor 142 as the buffer circuit 140.
  • One terminal of the resistance element 141 is connected to a wiring that gives a voltage VDD.
  • the other terminal of the resistor element 141 is connected to one of the source or drain of the transistor 142 and the output terminal V OUT .
  • the gate of the transistor 142 is connected to the input terminal VIN .
  • the other of the source or drain of the transistor 142 is connected to a fixed potential, eg, a ground line.
  • the transistor 142 has a back gate electrode and exemplifies a configuration in which a back gate voltage VBG is applied.
  • FIG. 5B shows a diagram in which the buffer circuit 140 is composed of an OS transistor and a capacitor.
  • the buffer circuit 140 illustrated in FIG. 5B includes transistors 143, transistors 144, transistors 145, and capacitors 146.
  • Transistors 143 to 145 exemplify a configuration in which a back gate electrode is provided and a back gate voltage VBG is applied.
  • the selection signal SBUF is a signal for switching on or off of the transistor 145.
  • the analog potential V BUF is a potential for setting the potential of the gate of the transistor 144.
  • the gate of transistor 144 is connected to one of the source or drain of transistor 145 and one of the electrodes of capacitor 146.
  • One of the source or drain of the transistor 144 is connected to one of the source or drain of the transistor 143 and the output terminal V OUT .
  • the other of the source or drain of transistor 144 is connected to a fixed potential, such as the ground line, and the other electrode of capacitor 146.
  • the other of the source or drain of transistor 143 is connected to a wire that provides voltage VDD.
  • the gate of the transistor 143 is connected to the input terminal VIN .
  • the other of the source or drain of the transistor 145 is connected to a wire that provides the analog potential V BUF .
  • the gate of the transistor 145 is connected to the wiring that transmits the selection signal SBUF .
  • the transistors 143 to 145 included in the buffer circuit 140 in FIG. 5B are composed of OS transistors.
  • the off current the leakage current flowing between the source and the drain at the time of off
  • the electric charge corresponding to the voltage of the above can be held in the capacitor 146. That is, the once applied analog potential can be held for a long time in the circuit functioning as the memory in the buffer circuit 140. Therefore, it is not necessary to continuously generate the analog potential given to the buffer circuit 140, so that power saving can be achieved.
  • 6A and 6B show circuit diagrams for explaining a modified example of the constant current circuit 120 illustrated in FIG. 1B.
  • a differential type constant current circuit can be used as a modification of the constant current circuit 120 applicable to FIG. 1A.
  • the configuration of the semiconductor device 100 to which the differential type constant current circuit is applied is illustrated in FIG. 6A.
  • the constant current circuit 120 0 to 120 N-1 different from the constant current circuit 160 0 to 160 N-1 in FIG. 1B differential is constant current circuit 160 0 to 160 N
  • the output currents corresponding to the analog potentials set to -1 are the output currents OUT 0 to OUT N-1 and the output currents OUT b 0 to OUT b N-1 .
  • the constant current circuit 160 0 to 160 N-1 the inverted signal of the digital signal B 0 through B N-1 is input.
  • the semiconductor device 100 shown in FIG. 6A includes loads 130 and 130b and a buffer circuit 140b according to the current path.
  • the load 130b can be configured in the same manner as the load 130.
  • 6B is a diagram illustrating a configuration example of applicable constant current circuit 160 to the constant current circuit 160 0 to 160 N-1.
  • the constant current circuit 160 includes a transistor 125 in addition to a transistor 121, a transistor 122, a transistor 123, and a capacitor 124. Further, in the constant current circuit 160, any one of the output currents OUTb 0 to OUTb N-1 will be described as the output current OUTb X. In the constant current circuit 160, any one of the inverted signals of the digital signals B 0 to BN -1 will be described as the digital signal Bb X.
  • the transistor 125 has a function of controlling the current flowing between the source and the drain of the transistor 121 as an output current OUTb X in response to the digital signal Bb X.
  • the gate of the transistor 125 is connected to the wiring that transmits the digital signal Bb X.
  • One of the source or drain of the transistor 125 is connected to one of the source or drain of the transistor 121.
  • the other side of the source or drain of the transistor 125 is connected to the wiring side connected to the load 130, that is, the wiring for passing the output current OUT X.
  • the transistors 121 to 123 and the transistors 125 included in the constant current circuit 160 are composed of OS transistors.
  • the capacitor 124 holds the electric charge corresponding to the desired voltage by utilizing the extremely low off current. Can be made to. That is, the once applied analog potential can be held for a long time in the circuit functioning as a memory in the constant current circuit 160. Therefore, it is not necessary to continuously generate the analog potential given to the constant current circuit 160, so that power saving can be achieved.
  • FIG. 6C is a diagram illustrating a configuration example of the buffer circuit 140b shown in FIG. 6A.
  • the buffer circuit 140b includes transistors 147, resistance elements 148 and resistance elements 149 in addition to transistors 143 to 145 and capacitors 146. Further, in the buffer circuit 140b, paired input terminals and output terminals will be described as input terminals V IN , Vb IN , and output terminals V OUT , Vb OUT .
  • the gate of the transistor 147 is connected to the input terminal Vb IN .
  • One of the source or drain of transistor 147 is connected to one of the source or drain of transistor 144.
  • the output terminal V OUT is connected to the other of the source or drain of the resistor element 148 and the transistor 143 connected to the wiring that provides the voltage VDD.
  • the output terminal Vb OUT is connected to the other of the source or drain of the resistance element 149 and the transistor 147 connected to the wiring that gives the voltage VDD.
  • the transistors 143 to 145 and the transistor 147 included in the buffer circuit 140b are composed of OS transistors.
  • the capacitor 146 retains the electric charge corresponding to the desired voltage by utilizing the extremely low off current. Can be made to. That is, the once applied analog potential can be held for a long time in the circuit functioning as the memory in the buffer circuit 140b. Therefore, it is not necessary to continuously generate the analog potential given to the buffer circuit 140b, so that power saving can be achieved.
  • the semiconductor device of one aspect of the present invention described above can be a semiconductor device in which an increase in circuit area is suppressed and power saving is achieved.
  • Embodiment 2 a configuration example of a wireless communication device having an integrated circuit including the semiconductor device 100 shown in the above embodiment will be described with reference to FIGS. 7 and 8.
  • a smartphone will be described as an example of the wireless communication device, but other wireless communication terminals such as a portable game terminal, a tablet PC (Personal Computer), and a notebook PC may be used.
  • the wireless communication device according to the present embodiment can be applied to a device capable of performing wireless communication.
  • an antenna ANT In the block diagram of the wireless communication device 10 illustrated in FIG. 7, an antenna ANT, an application processor 11, a baseband processor 12, an integrated circuit 13 (IC: Integrated Circuit), a memory 14, a battery 15, and a power management IC (PMIC: Power Management). It has an integrated circuit) 16, a display unit 17, a camera unit 18, an operation input unit 19, an audio IC 20, a microphone 21, and a speaker 22.
  • the integrated circuit 13 is also referred to as an RF (Radio Frequency) IC, a wireless chip, or the like.
  • Multiple antenna ANTs are provided according to a plurality of frequency bands in order to support 5G communication standards.
  • the application processor 11 has a function of reading a program stored in the memory 14 and performing processing for realizing various functions of the wireless communication device 10.
  • the application processor 11 has a function of executing an OS (Operating System) program from the memory 14 and executing an application program using the OS program as an operating board.
  • OS Operating System
  • the baseband processor 12 has a function of performing baseband processing including coding (for example, error correction coding) processing or decoding processing on the data transmitted and received by the wireless communication device 10. Specifically, the baseband processor 12 has a function of receiving transmission data from the application processor 11, performing coding processing on the received transmission data, and transmitting the transmitted data to the integrated circuit 13. Further, the baseband processor 12 has a function of receiving received data from the integrated circuit 13, performing decoding processing on the received received data, and transmitting the received data to the application processor 11.
  • coding for example, error correction coding
  • the integrated circuit 13 has a function of performing modulation processing or demodulation processing on the data transmitted and received by the wireless communication device 10. Specifically, the integrated circuit 13 has a function of modulating the transmission data received from the baseband processor 12 with a carrier wave to generate a transmission signal, and outputting the transmission signal via the antenna ANT. Further, the integrated circuit 13 has a function of receiving a received signal via the antenna ANT, demodulating the received signal by a carrier wave to generate received data, and transmitting the received data to the baseband processor 12.
  • the memory 14 has a function of storing programs and data used by the application processor 11.
  • the memory 14 includes a non-volatile memory that holds the stored data even when the power supply is cut off, and a volatile memory that clears the stored data when the power supply is cut off.
  • the battery 15 is a battery and is used when the wireless communication device 10 operates without relying on an external power source.
  • the wireless communication device 10 can use the power supply of the battery 15 even when an external power supply is connected. Further, as the battery 15, it is preferable to use a secondary battery that can be charged and discharged.
  • the power management IC 16 has a function of generating an internal power source from the battery 15 or an external power source. This internal power supply is provided to each block of the wireless communication device 10. At this time, the power management IC 16 has a function of controlling the voltage of the internal power supply for each block to be supplied with the internal power supply. The power management IC 16 controls the voltage of the internal power supply based on the instruction from the application processor 11. Further, the power management IC 16 can also control the supply and cutoff of the internal power supply for each block. The power management IC 16 also has a function of controlling charging of the battery 15 when an external power source is supplied.
  • the display unit 17 is a liquid crystal display device or a light emitting display device, and has a function of displaying various images according to processing in the application processor 11.
  • the image displayed on the display unit 17 includes a user interface image, a camera image, a moving image, and the like in which the user gives an operation instruction to the wireless communication device 10.
  • the camera unit 18 has a function of acquiring an image according to an instruction from the application processor 11.
  • the operation input unit 19 has a function as a user interface that the user operates and gives an operation instruction to the wireless communication device 10.
  • the audio IC 20 has a function of decoding the voice data transmitted from the application processor 11 and driving the speaker 22.
  • the audio IC 20 has a function of encoding the voice information obtained from the microphone 21 to generate voice data and outputting the voice data to the application processor 11.
  • FIG. 8 is a block diagram for explaining a configuration example of the integrated circuit 13.
  • the integrated circuit 13 shown in FIG. 8 includes a low noise amplifier 101, a mixer 102, a low pass filter 103, a variable gain amplifier 104, an analog-digital conversion circuit 105, an interface unit 106, a semiconductor device 100 functioning as a DAC, a variable gain amplifier 108, and a low pass filter. It has a 109, a mixer 110, a power amplifier 111, and an oscillation circuit 107. Further, in FIG. 8, the antenna ANT, the duplexer DUP, and the baseband processor 12 are also shown.
  • the low-noise amplifier 101, mixer 102, low-pass filter 103, variable gain amplifier 104, and analog-digital conversion circuit 105 are a receiving circuit block, a semiconductor device 100 that functions as a DAC, a variable gain amplifier 108, a low-pass filter 109, a mixer 110, and a power amplifier 111. Is sometimes called a transmission circuit block.
  • the baseband processor 12 and the integrated circuit 13 are each realized by individual semiconductor chips.
  • the duplexer DUP includes an antenna switch and the like.
  • the low noise amplifier 101 amplifies the signal received by the antenna ANT with low noise.
  • the mixer 102 demodulates and down-converts (frequency conversion) using the signal of the semiconductor device 100 that functions as a DAC.
  • the low-pass filter 103 removes unnecessary high-frequency components in the signal from the mixer 102.
  • the variable gain amplifier 104 amplifies the output signal of the low-pass filter 103 with a gain that takes into account the input range of the analog-to-digital conversion circuit 105.
  • the analog-to-digital conversion circuit 105 converts the analog signal from the variable gain amplifier 104 into a digital signal.
  • the digital signal is output to the baseband processor 12 via the interface unit 106 and the differential interface circuit.
  • the semiconductor device 100 that functions as a DAC converts the digital signal received by the interface unit 106 into an analog signal.
  • the variable gain amplifier 108 amplifies the output signal of the semiconductor device 100 that functions as a DAC.
  • the low-pass filter 109 removes unnecessary high-frequency components in the signal from the variable gain amplifier 108.
  • the mixer 110 modulates and up-converts (frequency conversion) the analog signal using the signal of the oscillation circuit 107.
  • the power amplifier 111 amplifies the output signal of the mixer 110 with a predetermined gain and outputs it.
  • FIG. 9 shows a part of the cross-sectional structure of the semiconductor device.
  • the semiconductor device shown in FIG. 9 has a transistor 550, a transistor 500, and a capacity of 600.
  • 11A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 11B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 11C is a cross-sectional view of the transistor 550 in the channel width direction.
  • the transistor 500 corresponds to an OS transistor such as the transistor 121 described in the above embodiment
  • the transistor 550 corresponds to a Si transistor such as a transistor constituting the voltage generation circuit 151.
  • Transistor 500 is an OS transistor.
  • the transistor 500 is provided above the transistor 550, and the capacitance 600 is provided above the transistor 550 and the transistor 500.
  • the transistor 550 is provided on the substrate 311 and has a semiconductor region 313 composed of a conductor 316, an insulator 315, and a part of the substrate 311, a low resistance region 314a functioning as a source region or a drain region, and a low resistance region 314b. ..
  • the transistor 550 As shown in FIG. 11C, in the transistor 550, the upper surface of the semiconductor region 313 and the side surface in the channel width direction are covered with the conductor 316 via the insulator 315.
  • the transistor 550 By making the transistor 550 a Fin type in this way, the on-characteristics of the transistor 550 can be improved by increasing the effective channel width. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristic of the transistor 550 can be improved.
  • the transistor 550 may be either a p-channel type or an n-channel type.
  • a semiconductor such as a silicon-based semiconductor is included in a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, a low resistance region 314a serving as a source region or a drain region, a low resistance region 314b, and the like. It preferably contains crystalline silicon. Alternatively, it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like. A configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used. Alternatively, the transistor 550 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • HEMT High Electron Mobility Transistor
  • an element that imparts n-type conductivity such as arsenic and phosphorus, or a p-type conductivity such as boron is imparted.
  • the conductor 316 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy that contains an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the transistor 550 may be formed by using an SOI (Silicon on Insulator) substrate or the like.
  • the SOI substrate is formed by injecting oxygen ions into a mirror-polished wafer and then heating it at a high temperature to form an oxide layer at a certain depth from the surface and to eliminate defects generated in the surface layer.
  • SIMOX Separatation by Implanted Oxygen
  • a transistor formed using a single crystal substrate has a single crystal semiconductor in a channel forming region.
  • the transistor 550 shown in FIG. 9 is an example, and the transistor is not limited to the configuration, and an appropriate transistor may be used according to the circuit configuration and the driving method.
  • the configuration of the transistor 550 is the same as that of the transistor 500, as shown in FIG.
  • the configuration may be as follows. The details of the transistor 500 will be described later.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are laminated in this order so as to cover the transistor 550.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxide, silicon nitride, silicon nitride, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, etc. are used. Just do it.
  • silicon oxide refers to a material whose composition has a higher oxygen content than nitrogen
  • silicon nitride refers to a material whose composition has a higher nitrogen content than oxygen. Is shown.
  • aluminum nitride refers to a material whose composition has a higher oxygen content than nitrogen
  • aluminum nitride refers to a material whose composition has a higher nitrogen content than oxygen. Is shown.
  • the insulator 322 may have a function as a flattening film for flattening a step generated by a transistor 550 or the like provided below the insulator 322.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property so that hydrogen and impurities do not diffuse in the region where the transistor 500 is provided from the substrate 311 or the transistor 550.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by the CVD method can be used.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 550.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis method (TDS).
  • TDS heated desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is such that the amount desorbed in terms of hydrogen atoms is converted per area of the insulator 324 when the surface temperature of the film is in the range of 50 ° C. to 500 ° C. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 has a lower dielectric constant than the insulator 324.
  • the relative permittivity of the insulator 326 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, the relative permittivity of the insulator 324.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a capacity of 600, a conductor 328 connected to the transistor 500, a conductor 330, and the like.
  • the conductor 328 and the conductor 330 have a function as a plug or a wiring.
  • a conductor having a function as a plug or a wiring may collectively give a plurality of configurations and give the same reference numeral.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or laminated. be able to. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or wiring for connecting to the transistor 550.
  • the conductor 356 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 550 while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen is in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • the insulator 360, the insulator 362, and the insulator 364 are laminated in this order.
  • a conductor 366 is formed on the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or wiring.
  • the conductor 366 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 360 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 366 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 360 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 364 and the conductor 366.
  • the insulator 370, the insulator 372, and the insulator 374 are laminated in this order.
  • a conductor 376 is formed on the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 has a function as a plug or wiring.
  • the conductor 376 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 370 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 376 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 374 and the conductor 376.
  • the insulator 380, the insulator 382, and the insulator 384 are laminated in this order.
  • a conductor 386 is formed on the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 has a function as a plug or wiring.
  • the conductor 386 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 380 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 386 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 380 having a barrier property against hydrogen.
  • the semiconductor device according to the present embodiment has been described. It is not limited to this.
  • the number of wiring layers similar to the wiring layer containing the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 are laminated in this order.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 it is preferable to use a substance having a barrier property against oxygen and hydrogen.
  • a film having a barrier property so that hydrogen and impurities do not diffuse from the region where the substrate 311 or the transistor 550 is provided to the region where the transistor 500 is provided is used. Is preferable. Therefore, the same material as the insulator 324 can be used.
  • Silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 550.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water, which are factors that change the electrical characteristics of transistors. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, the release of oxygen from the oxides constituting the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the same material as the insulator 320 can be used for the insulator 512 and the insulator 516. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 512 and the insulator 516.
  • a conductor 518 a conductor constituting the transistor 500 (for example, a conductor 503) and the like are embedded.
  • the conductor 518 has a capacity of 600, or a function as a plug or wiring for connecting to the transistor 550.
  • the conductor 518 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 510 and the conductor 518 in the region in contact with the insulator 514 are preferably conductors having a barrier property against oxygen, hydrogen, and water.
  • the transistor 550 and the transistor 500 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 516.
  • the transistor 500 includes a conductor 503 arranged so as to be embedded in the insulator 514 and the insulator 516, and an insulator 520 arranged on the insulator 516 and the insulator 503. And on the insulator 522 placed on the insulator 520, the insulator 524 placed on the insulator 522, the oxide 530a placed on the insulator 524, and the oxide 530a.
  • the arranged oxide 530b, the conductors 542a and 542b arranged apart from each other on the oxide 530b, and the conductors 542a and 542b are arranged between the conductors 542a and 542b. It has an insulator 580 on which an opening is formed by superimposing, an insulator 545 arranged on the bottom surface and side surfaces of the opening, and a conductor 560 arranged on the forming surface of the insulator 545.
  • the insulator 544 is arranged between the oxide 530a, the oxide 530b, the conductor 542a, and the conductor 542b, and the insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 545 and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have.
  • the insulator 574 is arranged on the insulator 580, the conductor 560, and the insulator 545.
  • oxide 530a and oxide 530b may be collectively referred to as oxide 530.
  • the transistor 500 shows a configuration in which two layers of oxide 530a and oxide 530b are laminated in a region where a channel is formed and in the vicinity thereof, but the present invention is not limited to this.
  • a single layer of the oxide 530b or a laminated structure of three or more layers may be provided.
  • the conductor 560 is shown as a two-layer laminated structure, but the present invention is not limited to this.
  • the conductor 560 may have a single-layer structure or a laminated structure of three or more layers.
  • the transistor 500 shown in FIGS. 9, 10 and 11A is an example, and the transistor 500 is not limited to the configuration, and an appropriate transistor may be used depending on the circuit configuration, the driving method, and the like.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductor 542a and the conductor 542b function as a source electrode or a drain electrode, respectively.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the arrangement of the conductor 560, the conductor 542a and the conductor 542b is self-aligned with respect to the opening of the insulator 580. That is, in the transistor 500, the gate electrode can be arranged in a self-aligned manner between the source electrode and the drain electrode. Therefore, since the conductor 560 can be formed without providing the alignment margin, the occupied area of the transistor 500 can be reduced. As a result, the semiconductor device can be miniaturized and highly integrated.
  • the conductor 560 is formed in a region between the conductor 542a and the conductor 542b in a self-aligned manner, the conductor 560 does not have a region that overlaps with the conductor 542a or the conductor 542b. Thereby, the parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and a high frequency characteristic can be provided.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode. Further, the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 without interlocking with it. In particular, by applying a negative potential to the conductor 503, the threshold voltage of the transistor 500 can be made larger than 0 V, and the off-current can be reduced. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when it is not applied.
  • the conductor 503 is arranged so as to overlap the oxide 530 and the conductor 560. As a result, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to cover the channel forming region formed in the oxide 530. Can be done.
  • the configuration of a transistor that electrically surrounds a channel forming region by an electric field of a pair of gate electrodes is called a slurried channel (S-channel) configuration. ..
  • S-channel slurried channel
  • the side surface and the periphery of the oxide 530 in contact with the conductor 542a and the conductor 542b functioning as the source electrode and the drain electrode are the same as the channel forming region. It has the characteristic of being a mold.
  • the side surface and the periphery of the oxide 530 in contact with the conductor 542a and the conductor 542b are in contact with the insulator 544, it can be type I as in the channel forming region.
  • type I can be treated as the same as high-purity authenticity described later.
  • the S-channel configuration disclosed in the present specification and the like is different from the Fin type configuration and the planar type configuration. By adopting the S-channel configuration, it is possible to increase the resistance to the short channel effect, in other words, to make a transistor in which the short channel effect is unlikely to occur.
  • the conductor 503 has the same structure as the conductor 518, and the conductor 503a is formed in contact with the inner wall of the opening of the insulator 514 and the insulator 516, and the conductor 503b is further formed inside.
  • the transistor 500 shows a configuration in which the conductor 503a and the conductor 503b are laminated, but the present invention is not limited to this.
  • the conductor 503 may be provided as a single layer or a laminated structure having three or more layers.
  • a conductive material for the conductor 503a which has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the above impurities are difficult to permeate).
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the function of suppressing the diffusion of impurities or oxygen is a function of suppressing the diffusion of any one or all of the above impurities or the above oxygen.
  • the conductor 503a since the conductor 503a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 503b from being oxidized and the conductivity from being lowered.
  • the conductor 503 When the conductor 503 also functions as a wiring, it is preferable to use a highly conductive conductive material containing tungsten, copper, or aluminum as a main component for the conductor 503b.
  • the conductor 503 is shown by laminating the conductor 503a and the conductor 503b, but the conductor 503 may have a single-layer structure.
  • the insulator 520, the insulator 522, and the insulator 524 have a function as a second gate insulating film.
  • the insulator 524 in contact with the oxide 530 it is preferable to use an insulator containing more oxygen than oxygen satisfying the stoichiometric composition.
  • the oxygen is easily released from the membrane by heating.
  • oxygen released by heating may be referred to as "excess oxygen”. That is, it is preferable that the insulator 524 is formed with a region containing excess oxygen (also referred to as “excess oxygen region”).
  • the defective Functions as a donor, sometimes electrons serving as carriers are generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen tends to have a normally-on characteristic. Further, since hydrogen in the oxide semiconductor easily moves due to stress such as heat and electric field, if the oxide semiconductor contains a large amount of hydrogen, the reliability of the transistor may deteriorate.
  • the V O H to obtain a sufficiently reduced oxide semiconductor (referred to as “dewatering” or “dehydrogenation process” also.) Water in the oxide semiconductor, to remove impurities such as hydrogen It is important to supply oxygen to the oxide semiconductor to compensate for the oxygen deficiency (also referred to as “dehydrogenation treatment”).
  • the V O H oxide semiconductor impurity is sufficiently reduced such by using a channel formation region of the transistor, it is possible to have stable electrical characteristics.
  • the insulator having an excess oxygen region it is preferable to use an oxide material in which a part of oxygen is desorbed by heating.
  • Oxides that desorb oxygen by heating are those in which the amount of oxygen desorbed in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desorption Spectroscopy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the insulator having the excess oxygen region and the oxide 530 may be brought into contact with each other to perform one or more of heat treatment, microwave treatment, or RF treatment.
  • heat treatment microwave treatment, or RF treatment.
  • water or hydrogen in the oxide 530 can be removed.
  • reactions occur which bonds VoH is disconnected, when other words happening reaction of "V O H ⁇ Vo + H", it can be dehydrogenated.
  • the hydrogen generated as oxygen combines with H 2 O, it may be removed from the oxide 530 or oxide 530 near the insulator.
  • a part of hydrogen may be gettered on the conductor 542a and the conductor 542b.
  • the microwave processing for example, it is preferable to use an apparatus having a power source for generating high-density plasma or an apparatus having a power source for applying RF to the substrate side.
  • an apparatus having a power source for generating high-density plasma for example, by using a gas containing oxygen and using a high-density plasma, high-density oxygen radicals can be generated, and by applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be generated.
  • the pressure may be 133 Pa or more, preferably 200 Pa or more, and more preferably 400 Pa or more.
  • oxygen and argon are used as the gas to be introduced into the apparatus for performing microwave treatment, and the oxygen flow rate ratio (O 2 / (O 2 + Ar)) is 50% or less, preferably 10% or more and 30. It is recommended to use less than%.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 450 ° C. or lower, more preferably 350 ° C. or higher and 400 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen can be supplied to the oxide 530 to reduce oxygen deficiency ( VO ).
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be carried out in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas in order to supplement the desorbed oxygen after the heat treatment in an atmosphere of nitrogen gas or an inert gas.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of the oxidizing gas, and then the heat treatment may be continuously performed in an atmosphere of nitrogen gas or an inert gas.
  • the oxygen deficiency in the oxide 530 can be repaired by the supplied oxygen, in other words, the reaction "Vo + O ⁇ null" can be promoted. Further, since the oxygen supplied to the hydrogen remaining in the oxide 530 is reacted to remove the hydrogen as H 2 O (to dehydration) can. Thus, the hydrogen remained in the oxide 530 can be prevented from recombine V O H is formed by oxygen vacancies.
  • the insulator 524 has an excess oxygen region, it is preferable that the insulator 522 has a function of suppressing the diffusion of oxygen (for example, oxygen atom, oxygen molecule, etc.) (the oxygen is difficult to permeate).
  • oxygen for example, oxygen atom, oxygen molecule, etc.
  • the insulator 522 has a function of suppressing the diffusion of oxygen and impurities, the oxygen contained in the oxide 530 does not diffuse to the insulator 520 side, which is preferable. Further, it is possible to suppress the conductor 503 from reacting with the oxygen contained in the insulator 524 and the oxide 530.
  • the insulator 522 may be, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconate oxide, lead zirconate titanate (PZT), strontium titanate (SrTIO 3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba, Sr) TiO 3 (BST) in a single layer or in a laminated manner. As the miniaturization and high integration of transistors progress, problems such as leakage current may occur due to the thinning of the gate insulating film. By using a high-k material for the insulator that functions as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a so-called high-k material such as (Ba, Sr) TiO 3 (BST)
  • an insulator containing oxides of one or both of aluminum and hafnium which are insulating materials having a function of suppressing diffusion of impurities and oxygen (the above oxygen is difficult to permeate).
  • an insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 522 is formed by using such a material, the insulator 522 suppresses the release of oxygen from the oxide 530 and the mixing of impurities such as hydrogen from the peripheral portion of the transistor 500 into the oxide 530. Acts as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxide nitride, or silicon nitride may be laminated on the above insulator.
  • the insulator 520 is thermally stable.
  • silicon oxide and silicon nitride nitride are suitable because they are thermally stable.
  • by combining the insulator of the high-k material with silicon oxide or silicon oxide nitride it is possible to obtain an insulator 520 having a laminated structure that is thermally stable and has a high relative permittivity.
  • the insulator 520, the insulator 522, and the insulator 524 are shown as the second gate insulating film having a three-layer laminated structure, but the second gate.
  • the insulating film may have a single layer, two layers, or a laminated structure of four or more layers. In that case, the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the transistor 500 uses a metal oxide that functions as an oxide semiconductor for the oxide 530 including the channel forming region.
  • oxide 530 In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium).
  • Hafnium, tantalum, tungsten, magnesium, etc. (one or more) and the like may be used.
  • a metal oxide having indium, zinc, and gallium In-Ga-Zn-based oxide
  • a metal oxide having indium, zinc, and tin In-Sn-Zn-based oxide
  • a metal oxide having indium, zinc, gallium, and tin (In-Ga-Zn-Sn-based oxide) and the like can be preferably used.
  • the formation of the metal oxide that functions as an oxide semiconductor may be carried out by a sputtering method or an ALD (Atomic Layer Deposition) method.
  • ALD Atomic Layer Deposition
  • the metal oxide that functions as an oxide semiconductor will be described in detail in another embodiment.
  • the oxide 530 can suppress the diffusion of impurities into the oxide 530b from the constituents formed below the oxide 530a.
  • the oxide 530 has a laminated structure of a plurality of oxides having different atomic number ratios of each metal atom.
  • the atomic number ratio of the element M in the constituent elements is larger than the atomic number ratio of the element M in the constituent elements in the metal oxide used in the oxide 530b.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the energy at the lower end of the conduction band of the oxide 530a is higher than the energy at the lower end of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a is smaller than the electron affinity of the oxide 530b.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the oxide 530a and the oxide 530b is continuously changed or continuously bonded. In order to do so, it is preferable to reduce the defect level density of the mixed layer formed at the interface between the oxide 530a and the oxide 530b.
  • the oxide 530a and the oxide 530b have a common element (main component) other than oxygen, so that a mixed layer having a low defect level density can be formed.
  • the oxide 530b is an In-Ga-Zn oxide
  • the main path of the carrier is oxide 530b.
  • the defect level density at the interface between the oxide 530a and the oxide 530b can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-current.
  • a conductor 542a and a conductor 542b that function as a source electrode and a drain electrode are provided on the oxide 530b.
  • Examples of the conductor 542a and the conductor 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium. , Iridium, strontium, lanthanum, or an alloy containing the above-mentioned metal element as a component, or an alloy in which the above-mentioned metal element is combined is preferably used.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen.
  • the conductor 542a and the conductor 542b are shown as a single-layer structure, but a laminated structure of two or more layers may be used.
  • a tantalum nitride film and a tungsten film may be laminated.
  • the titanium film and the aluminum film may be laminated.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, and a two-layer structure in which a copper film is laminated on a titanium film. It may have a two-layer structure in which copper films are laminated.
  • a molybdenum nitride film and an aluminum film or a copper film are laminated on the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film is further formed therein.
  • a transparent conductive material containing indium oxide, tin oxide or zinc oxide may be used.
  • a region 543a and a region 543b may be formed as a low resistance region at the interface of the oxide 530 with the conductor 542a (conductor 542b) and its vicinity.
  • the region 543a functions as one of the source region or the drain region
  • the region 543b functions as the other of the source region or the drain region.
  • a channel forming region is formed in a region sandwiched between the region 543a and the region 543b.
  • the oxygen concentration in the region 543a (region 543b) may be reduced. Further, in the region 543a (region 543b), a metal compound layer containing the metal contained in the conductor 542a (conductor 542b) and the component of the oxide 530 may be formed. In such a case, the carrier density of the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided so as to cover the conductor 542a and the conductor 542b, and suppresses the oxidation of the conductor 542a and the conductor 542b. At this time, the insulator 544 may be provided so as to cover the side surface of the oxide 530 and come into contact with the insulator 524.
  • insulator 544 a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lantern, magnesium, etc. Can be used. Further, as the insulator 544, silicon nitride oxide, silicon nitride or the like can also be used.
  • the insulator 544 it is preferable to use aluminum or an oxide containing one or both oxides of hafnium, such as aluminum oxide, hafnium oxide, aluminum, and an oxide containing hafnium (hafnium aluminate). ..
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat treatment in the subsequent step.
  • the conductors 542a and 542b are made of a material having oxidation resistance, or if the conductivity does not significantly decrease even if oxygen is absorbed, the insulator 544 is not an essential configuration. It may be appropriately designed according to the desired transistor characteristics.
  • the insulator 544 By having the insulator 544, it is possible to prevent impurities such as water and hydrogen contained in the insulator 580 from diffusing into the oxide 530b via the insulator 545. Further, it is possible to suppress the oxidation of the conductor 560 due to the excess oxygen contained in the insulator 580.
  • the insulator 545 functions as a first gate insulating film.
  • the insulator 545 is preferably formed by using an insulator that contains excess oxygen and releases oxygen by heating, similarly to the above-mentioned insulator 524.
  • silicon oxide with excess oxygen silicon oxide, silicon nitride, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon, and silicon oxide with nitrogen added, vacancies Silicon oxide having can be used.
  • silicon oxide and silicon nitride nitride are preferable because they are stable against heat.
  • the film thickness of the insulator 545 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 545 and the conductor 560.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 545 to the conductor 560.
  • the diffusion of excess oxygen from the insulator 545 to the conductor 560 is suppressed. That is, it is possible to suppress a decrease in the amount of excess oxygen supplied to the oxide 530.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 545 may have a laminated structure as in the case of the second gate insulating film.
  • an insulator that functions as a gate insulating film is made of a high-k material and heat.
  • the conductor 560 that functions as the first gate electrode is shown as a two-layer structure in FIGS. 11A and 11B, but may have a single-layer structure or a laminated structure of three or more layers.
  • Conductor 560a is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, etc. NO 2), conductive having a function of suppressing the diffusion of impurities such as copper atoms It is preferable to use a material. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). Since the conductor 560a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 560b from being oxidized by the oxygen contained in the insulator 545 and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • an oxide semiconductor applicable to the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b into a film by a sputtering method, the electric resistance value of the conductor 560a can be lowered to form a conductor. This can be called an OC (Oxide Controller) electrode.
  • OC Oxide Controller
  • the conductor 560b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, since the conductor 560b also functions as wiring, it is preferable to use a conductor having high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used. Further, the conductor 560b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the conductive material.
  • the insulator 580 is provided on the conductor 542a and the conductor 542b via the insulator 544.
  • the insulator 580 preferably has an excess oxygen region.
  • silicon, resin, or the like silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having pores are preferable because an excess oxygen region can be easily formed in a later step.
  • the insulator 580 preferably has an excess oxygen region. By providing the insulator 580 in which oxygen is released by heating, the oxygen in the insulator 580 can be efficiently supplied to the oxide 530. It is preferable that the concentration of impurities such as water and hydrogen in the insulator 580 is reduced.
  • the opening of the insulator 580 is formed so as to overlap the region between the conductor 542a and the conductor 542b.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the conductor 560 When miniaturizing a semiconductor device, it is required to shorten the gate length, but it is necessary to prevent the conductivity of the conductor 560 from decreasing. Therefore, if the film thickness of the conductor 560 is increased, the conductor 560 may have a shape having a high aspect ratio. In the present embodiment, since the conductor 560 is provided so as to be embedded in the opening of the insulator 580, even if the conductor 560 has a shape having a high aspect ratio, the conductor 560 is formed without collapsing during the process. Can be done.
  • the insulator 574 is preferably provided in contact with the upper surface of the insulator 580, the upper surface of the conductor 560, and the upper surface of the insulator 545.
  • an excess oxygen region can be provided in the insulator 545 and the insulator 580.
  • oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • the insulator 574 use one or more metal oxides selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like. Can be done.
  • aluminum oxide has a high barrier property and can suppress the diffusion of hydrogen and nitrogen even in a thin film of 0.5 nm or more and 3.0 nm or less. Therefore, the aluminum oxide film formed by the sputtering method can have a function as a barrier film for impurities such as hydrogen as well as an oxygen supply source.
  • the insulator 581 that functions as an interlayer film on the insulator 574.
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • the conductor 540a and the conductor 540b are arranged in the openings formed in the insulator 581, the insulator 574, the insulator 580, and the insulator 544.
  • the conductor 540a and the conductor 540b are provided so as to face each other with the conductor 560 interposed therebetween.
  • the conductor 540a and the conductor 540b have the same configuration as the conductor 546 and the conductor 548 described later.
  • An insulator 582 is provided on the insulator 581.
  • the insulator 582 it is preferable to use a substance having a barrier property against oxygen and hydrogen. Therefore, the same material as the insulator 514 can be used for the insulator 582.
  • a metal oxide such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 582.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water, which are factors that change the electrical characteristics of transistors. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, the release of oxygen from the oxides constituting the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500.
  • an insulator 586 is provided on the insulator 582.
  • the same material as the insulator 320 can be used. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 586.
  • the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546 and the conductor 548. Is embedded.
  • the conductor 546 and the conductor 548 have a capacity of 600, a transistor 500, or a function as a plug or wiring for connecting to the transistor 550.
  • the conductor 546 and the conductor 548 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • an opening may be formed so as to surround the transistor 500, and an insulator having a high barrier property against hydrogen or water may be formed so as to cover the opening.
  • an insulator having a high barrier property against hydrogen or water By wrapping the transistor 500 with the above-mentioned insulator having a high barrier property, it is possible to prevent water and hydrogen from entering from the outside.
  • a plurality of transistors 500 may be put together and wrapped with an insulator having a high barrier property against hydrogen or water.
  • the insulator having a high barrier property to hydrogen or water for example, the same material as the insulator 522 or the insulator 514 may be used.
  • the capacity 600 has a conductor 610, a conductor 620, and an insulator 630.
  • the conductor 612 may be provided on the conductor 546 and the conductor 548.
  • the conductor 612 has a function as a plug or wiring for connecting to the transistor 500.
  • the conductor 610 has a function as an electrode having a capacity of 600. The conductor 612 and the conductor 610 can be formed at the same time.
  • the conductor 612 and the conductor 610 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements as components.
  • a metal nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film and the like can be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. It is also possible to apply a conductive material such as indium tin oxide.
  • the conductor 612 and the conductor 610 are shown in a single-layer configuration, but the configuration is not limited to this, and a laminated configuration of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the conductor 620 is provided so as to overlap with the conductor 610 via the insulator 630.
  • a conductive material such as a metal material, an alloy material, or a metal oxide material can be used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten. When it is formed at the same time as other configurations such as a conductor, Cu (copper), Al (aluminum), or the like, which are low resistance metal materials, may be used.
  • An insulator 640 is provided on the conductor 620 and the insulator 630.
  • the insulator 640 can be provided by using the same material as the insulator 320. Further, the insulator 640 may function as a flattening film that covers the uneven shape below the insulator 640.
  • the substrates that can be used in the semiconductor device of one aspect of the present invention include glass substrates, quartz substrates, sapphire substrates, ceramic substrates, and metal substrates (for example, stainless steel substrates, substrates with stainless still foil, and tungsten substrates. , Substrates having tungsten foil, etc.), semiconductor substrates (for example, single crystal semiconductor substrates, polycrystalline semiconductor substrates, compound semiconductor substrates, etc.) SOI (Silicon on Insulator) substrates, and the like can be used. Further, a plastic substrate having heat resistance that can withstand the processing temperature of the present embodiment may be used. Examples of glass substrates include barium borosilicate glass, aluminosilicate glass, aluminosilicate glass, and soda lime glass. In addition, crystallized glass or the like can be used.
  • a flexible substrate a laminated film, paper containing a fibrous material, a base film, or the like
  • flexible substrates, laminated films, base films, etc. include the following.
  • plastics typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • acrylic examples include polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride.
  • examples include polyamide, polyimide, aramid resin, epoxy resin, inorganic vapor-deposited film, and papers.
  • a transistor using a semiconductor substrate, a single crystal substrate, an SOI substrate, or the like, it is possible to manufacture a transistor having a high current capacity and a small size with little variation in characteristics, size, or shape. ..
  • the circuit is composed of such transistors, the power consumption of the circuit can be reduced or the circuit can be highly integrated.
  • a flexible substrate may be used as the substrate, and a transistor, a resistor, and / or a capacitance may be formed directly on the flexible substrate.
  • a release layer may be provided between the substrate and the transistor, resistor, and / or capacitance. The release layer can be used to separate a part or all of the semiconductor device from the substrate and transfer it to another substrate. At that time, the transistor, resistor, and / or capacitance can be reprinted on a substrate having poor heat resistance or a flexible substrate.
  • release layer for example, a structure in which an inorganic film of a tungsten film and a silicon oxide film is laminated, a structure in which an organic resin film such as polyimide is formed on a substrate, a silicon film containing hydrogen, or the like is used. Can be used.
  • the semiconductor device may be formed on a certain substrate, and then the semiconductor device may be transposed on another substrate.
  • a substrate on which a semiconductor device is transferred in addition to the substrate capable of forming the above-mentioned transistor, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a stone substrate, a wood substrate, and a cloth substrate (natural).
  • fibers including silk, cotton, linen
  • synthetic fibers nylon, polyurethane, polyester
  • recycled fibers including acetate, cupra, rayon, recycled polyester
  • leather substrates or rubber substrates.
  • FIGS. 12A, 12B and 12C are a modification of the transistor 500 having the configuration shown in FIGS. 11A and 11B.
  • FIG. 12A is a top view of the transistor 500A.
  • 12B is a cross-sectional view of the transistor 500A shown by the alternate long and short dash line (L1-L2) in FIG. 12A in the channel length direction
  • FIG. 12C is a sectional view of the transistor 500A shown by the alternate long and short dash line (W1-W2) in FIG. 12B in the channel width direction. It is a figure.
  • the configurations shown in FIGS. 12A, 12B and 12C can also be applied to other transistors included in the semiconductor device of one aspect of the present invention, such as the transistor 550.
  • the transistor 500A having the configuration shown in FIGS. 12A, 12B and 12C is different from the transistor 500 having the configuration shown in FIGS. 11A and 11B in that it has an insulator 552, an insulator 513 and an insulator 404. Further, it is different from the transistor 500 having the configuration shown in FIGS. 11A and 11B in that the insulator 552 is provided in contact with the side surface of the conductor 540a and the insulator 552 is provided in contact with the side surface of the conductor 540b. Further, it is different from the transistor 500 having the configuration shown in FIGS. 11A and 11B in that it does not have the insulator 520.
  • the insulator 513 is provided on the insulator 512. Further, the insulator 404 is provided on the insulator 574 and the insulator 513.
  • the insulator 514, the insulator 516, the insulator 522, the insulator 524, the insulator 544, the insulator 580, and the insulator 574 are patterned.
  • Insulator 404 is configured to cover them. That is, the insulator 404 includes an upper surface of the insulator 574, a side surface of the insulator 574, a side surface of the insulator 580, a side surface of the insulator 544, a side surface of the insulator 524, a side surface of the insulator 522, a side surface of the insulator 516, and an insulator. It is in contact with the side surface of the body 514 and the upper surface of the insulator 513, respectively. As a result, the oxide 530 and the like are isolated from the outside by the insulator 404 and the insulator 513.
  • the insulator 513 and the insulator 404 have a high function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.) or water molecule.
  • hydrogen for example, at least one hydrogen atom, hydrogen molecule, etc.
  • the insulator 513 and the insulator 404 it is preferable to use silicon nitride or silicon nitride oxide, which is a material having a high hydrogen barrier property. As a result, it is possible to suppress the diffusion of hydrogen or the like into the oxide 530, so that the deterioration of the characteristics of the transistor 500A can be suppressed. Therefore, the reliability of the semiconductor device according to one aspect of the present invention can be improved.
  • the insulator 552 is provided in contact with the insulator 581, the insulator 404, the insulator 574, the insulator 580, and the insulator 544.
  • the insulator 552 preferably has a function of suppressing the diffusion of hydrogen or water molecules.
  • an insulator such as silicon nitride, aluminum oxide, or silicon nitride oxide, which is a material having a high hydrogen barrier property.
  • silicon nitride is a material having a high hydrogen barrier property, it is suitable to be used as an insulator 552.
  • the insulator 552 By using a material having a high hydrogen barrier property as the insulator 552, it is possible to prevent impurities such as water and hydrogen from diffusing from the insulator 580 and the like to the oxide 530 through the conductor 540a and the conductor 540b. Further, it is possible to suppress the oxygen contained in the insulator 580 from being absorbed by the conductor 540a and the conductor 540b. As described above, the reliability of the semiconductor device according to one aspect of the present invention can be enhanced.
  • FIG. 13A is a top view of the transistor 500B.
  • FIG. 13B is a cross-sectional view of the L1-L2 portion shown by the alternate long and short dash line in FIG. 13A.
  • FIG. 13C is a cross-sectional view of the W1-W2 portion shown by the alternate long and short dash line in FIG. 13A.
  • the description of some elements is omitted for the purpose of clarifying the figure.
  • Transistor 500B is a modification of transistor 500, and is a transistor that can be replaced with transistor 500. Therefore, in order to prevent repetition of the description, the points different from the transistor 500 of the transistor 500B will be mainly described.
  • the conductor 560 functioning as the first gate electrode has a conductor 560a and a conductor 560b on the conductor 560a.
  • the conductor 560a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.).
  • the conductor 560a has a function of suppressing the diffusion of oxygen, the material selectivity of the conductor 560b can be improved. That is, by having the conductor 560a, it is possible to suppress the oxidation of the conductor 560b and prevent the conductivity from being lowered.
  • the insulator 544 it is preferable to provide the insulator 544 so as to cover the upper surface and the side surface of the conductor 560 and the side surface of the insulator 545.
  • the insulator 544 it is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen.
  • impurities such as water and hydrogen and oxygen.
  • metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide or tantalum oxide, silicon nitride or silicon nitride can be used.
  • the insulator 544 By providing the insulator 544, the oxidation of the conductor 560 can be suppressed. Further, by having the insulator 544, it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the insulator 580 to the transistor 500B.
  • the conductor 560 overlaps a part of the conductor 542a and a part of the conductor 542b in the transistor 500B, the parasitic capacitance tends to be larger than that of the transistor 500. Therefore, the operating frequency tends to be lower than that of the transistor 500. However, since it is not necessary to provide an opening in the insulator 580 or the like to embed the conductor 560 or the insulator 545, the productivity is higher than that of the transistor 500.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • FIG. 14A is a diagram illustrating classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous (amorphous)”, “Crystalline (crystallinity)", and “Crystal (crystal)”.
  • Amorphous includes “completable amorphous”.
  • the "Crystalline” includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned crystal) (extracting single crystal crystal).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 14A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Evaluation) spectrum.
  • XRD X-ray diffraction
  • FIG. 14B the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 14B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 14B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 14B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron beam diffraction pattern) observed by a micro electron beam diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 14C.
  • FIG. 14C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron beam diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 14A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned.
  • CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. In addition, Zn may be contained in the In layer.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. Note that a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the replacement of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries can be confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures in the manufacturing process (so-called thermal budget). Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method.
  • a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to the CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS as a transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, and more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 15A shows a top view of the substrate 711 before the dicing process is performed.
  • a semiconductor substrate also referred to as a “semiconductor wafer”
  • a plurality of circuit regions 712 are provided on the substrate 711.
  • a semiconductor device according to one aspect of the present invention, a CPU, an RF tag, an image sensor, or the like can be provided in the circuit area 712.
  • Each of the plurality of circuit areas 712 is surrounded by a separation area 713.
  • a separation line (also referred to as a “dicing line”) 714 is set at a position overlapping the separation region 713. By cutting the substrate 711 along the separation line 714, the chip 715 including the circuit area 712 can be cut out from the substrate 711.
  • FIG. 15B shows an enlarged view of the chip 715.
  • a conductive layer or a semiconductor layer may be provided in the separation region 713.
  • ESD that may occur during the dicing step can be alleviated, and a decrease in the yield of the dicing step can be prevented.
  • the dicing step is performed while flowing pure water in which carbon dioxide gas or the like is dissolved to reduce the specific resistance for the purpose of cooling the substrate, removing shavings, preventing antistatic, and the like.
  • the amount of pure water used can be reduced. Therefore, the production cost of the semiconductor device can be reduced. Moreover, the productivity of the semiconductor device can be increased.
  • the semiconductor layer provided in the separation region 713 it is preferable to use a material having a bandgap of 2.5 eV or more and 4.2 eV or less, preferably 2.7 eV or more and 3.5 eV or less.
  • a material having a bandgap of 2.5 eV or more and 4.2 eV or less preferably 2.7 eV or more and 3.5 eV or less.
  • the electronic component is also referred to as a semiconductor package or an IC package.
  • the electronic component is completed by combining the semiconductor device shown in the above embodiment and a component other than the semiconductor device.
  • a "backside grinding step” for grinding the back surface (the surface on which the semiconductor device or the like is not formed) of the element substrate is performed (step S721). ).
  • a "backside grinding step” for grinding the back surface (the surface on which the semiconductor device or the like is not formed) of the element substrate is performed (step S721). ).
  • a "dicing step” for separating the element substrate into a plurality of chips (chip 715) is performed (step S722).
  • a "die bonding step” is performed in which the separated chips are individually picked up and bonded onto the lead frame (step S723).
  • a method suitable for the product is appropriately selected, such as bonding with resin or bonding with tape.
  • the chip may be bonded on the interposer substrate instead of the lead frame.
  • a "wire bonding step” is performed in which the leads of the lead frame and the electrodes on the chip are electrically connected by a thin metal wire (wire) (step S724).
  • a silver wire or a gold wire can be used as the thin metal wire.
  • ball bonding or wedge bonding can be used as the wire bonding.
  • the wire-bonded chips are subjected to a "sealing step (molding step)" in which they are sealed with an epoxy resin or the like (step S725).
  • a sealing step molding step
  • an epoxy resin or the like step S725.
  • a "lead plating step” for plating the leads of the lead frame is performed (step S726).
  • the plating process prevents reeds from rusting, and soldering can be performed more reliably when mounting on a printed circuit board later.
  • a "molding step” of cutting and molding the lead is performed (step S727).
  • a "marking step” is performed in which a printing process (marking) is performed on the surface of the package (step S728). Then, the electronic component is completed (step S729) through an “inspection step” (step S729) for checking whether the appearance shape is good or bad and whether or not there is a malfunction.
  • FIG. 16B shows a schematic perspective view of the completed electronic component as an example of an electronic component.
  • the electronic component 750 shown in FIG. 16B shows the lead 755 and the semiconductor device 753.
  • the semiconductor device 753 the semiconductor device shown in the above embodiment can be used.
  • the electronic component 750 shown in FIG. 16B is mounted on, for example, a printed circuit board 752.
  • a plurality of such electronic components 750 are combined and electrically connected to each other on the printed circuit board 752 to complete a substrate (mounting substrate 754) on which the electronic components are mounted.
  • the completed mounting board 754 is used for electronic devices and the like.
  • a display device such as a television or a monitor, a lighting device, a desktop or notebook personal computer, a word processor, a DVD (Digital Any Disc), or the like.
  • Image playback device portable CD player, radio, tape recorder, headphone stereo, stereo, table clock, wall clock, cordless telephone handset, transceiver, mobile phone, car phone, portable type that reproduces still images or videos stored in the medium
  • Large game machines such as game machines, tablet terminals, pachinko machines, calculators, portable information terminals (also called “portable information terminals"), electronic notebooks, electronic book terminals, electronic translators, voice input devices, video cameras , Digital still camera, electric shaver, high frequency heater such as refrigerator, electric rice cooker, electric washing machine, electric vacuum cleaner, water heater, fan, hair dryer, air conditioner, humidifier, dehumidifier and other air conditioning equipment, Dishwashers, dish dryers, clothes dryers, duvet dryers, electric refrigerators, electric freezers, electric refrigerators, freezers for storing DNA, flashlights, tools such as chainsaws, smoke detectors, medical equipment such as dialysis machines, etc. Can be mentioned. Further examples include industrial equipment such as guide lights, traffic lights, conveyor belts, elevators
  • mobile objects propelled by electric motors using electric power from power storage devices are also included in the category of electronic devices.
  • the moving body include an electric vehicle (EV), a hybrid vehicle (HEV) having an internal combustion engine and an electric motor, a plug-in hybrid vehicle (PHEV), a tracked vehicle in which these tire wheels are changed to an infinite track, and an electric assist.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • Examples include motorized bicycles including bicycles, motorcycles, electric wheelchairs, golf carts, small or large vessels, submarines, helicopters, aircraft, rockets, artificial satellites, space probes, planetary explorers, and spacecraft.
  • the semiconductor device or electronic component according to one aspect of the present invention can be used for a communication device or the like built in these electronic devices.
  • Electronic devices include sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, voice, time, hardness, electric field, current, voltage, power, radiation, It may have a function of measuring flow rate, humidity, inclination, vibration, odor or infrared rays).
  • Electronic devices can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • the display device 8000 is an example of an electronic device using the semiconductor device 8004 according to one aspect of the present invention.
  • the display device 8000 corresponds to a display device for receiving TV broadcasts, and includes a housing 8001, a display unit 8002, a speaker unit 8003, a semiconductor device 8004, a power storage device 8005, and the like.
  • the semiconductor device 8004 according to one aspect of the present invention is provided inside the housing 8001.
  • the semiconductor device 8004 can hold control information, control programs, and the like.
  • the semiconductor device 8004 has a communication function, and the display device 8000 can function as an IoT device.
  • the display device 8000 can be supplied with electric power from a commercial power source, or can use the electric power stored in the power storage device 8005.
  • the display unit 8002 includes a liquid crystal display device, a light emitting display device having a light emitting element such as an organic EL element in each pixel, an electrophoresis display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and a FED (Field Emission).
  • a display device such as a Display can be used.
  • the display device includes all information display devices such as those for receiving TV broadcasts, those for personal computers, and those for displaying advertisements.
  • the stationary lighting device 8100 is an example of an electronic device using the semiconductor device 8103 according to one aspect of the present invention.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a semiconductor device 8103, a power storage device 8105, and the like.
  • FIG. 17 illustrates a case where the semiconductor device 8103 is provided inside the ceiling 8104 in which the housing 8101 and the light source 8102 are installed, but the semiconductor device 8103 is provided inside the housing 8101. You may.
  • the semiconductor device 8103 can hold information such as the emission brightness of the light source 8102, a control program, and the like.
  • the semiconductor device 8103 has a communication function, and the lighting device 8100 can function as an IoT device.
  • the lighting device 8100 can be supplied with electric power from a commercial power source, or can use the electric power stored in the power storage device.
  • FIG. 17 illustrates the stationary lighting device 8100 provided on the ceiling 8104
  • the semiconductor device according to one aspect of the present invention is provided on a side wall 8405, a floor 8406, a window 8407, etc. other than the ceiling 8104. It can be used for a stationary lighting device provided, or it can be used for a desktop lighting device or the like.
  • the light source 8102 an artificial light source that artificially obtains light by using electric power can be used.
  • incandescent lamps, discharge lamps such as fluorescent lamps, and light emitting elements such as LEDs and organic EL elements are examples of the artificial light sources.
  • the air conditioner having the indoor unit 8200 and the outdoor unit 8204 is an example of an electronic device using the semiconductor device 8203 according to one aspect of the present invention.
  • the indoor unit 8200 includes a housing 8201, an air outlet 8202, a semiconductor device 8203, a power storage device 8205, and the like.
  • FIG. 17 illustrates the case where the semiconductor device 8203 is provided in the indoor unit 8200, the semiconductor device 8203 may be provided in the outdoor unit 8204. Alternatively, the semiconductor device 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the semiconductor device 8203 can hold control information of the air conditioner, a control program, and the like.
  • the semiconductor device 8203 has a communication function, and the air conditioner can function as an IoT device. Further, the air conditioner can be supplied with electric power from a commercial power source, or can use the electric power stored in the power storage device 8205.
  • FIG. 17 illustrates a separate type air conditioner composed of an indoor unit and an outdoor unit
  • the integrated air conditioner having the functions of the indoor unit and the outdoor unit in one housing may be used.
  • a semiconductor device according to one aspect of the present invention can also be used.
  • the electric refrigerator / freezer 8300 is an example of an electronic device using the semiconductor device 8304 according to one aspect of the present invention.
  • the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a freezer door 8303, a semiconductor device 8304, a power storage device 8305, and the like.
  • the power storage device 8305 is provided inside the housing 8301.
  • the semiconductor device 8304 can hold control information, a control program, and the like of the electric refrigerator / freezer 8300.
  • the semiconductor device 8304 has a communication function, and the electric refrigerator / freezer 8300 can function as an IoT device.
  • the electric refrigerator / freezer 8300 can be supplied with electric power from a commercial power source, or can use the electric power stored in the power storage device 8305.
  • FIG. 18A shows an example of a wristwatch-type mobile information terminal.
  • the mobile information terminal 6100 includes a housing 6101, a display unit 6102, a band 6103, an operation button 6105, and the like. Further, the portable information terminal 6100 includes a secondary battery and a semiconductor device or an electronic component according to one aspect of the present invention. By using the semiconductor device or electronic component according to one aspect of the present invention for the mobile information terminal 6100, the mobile information terminal 6100 can function as an IoT device.
  • FIG. 18B shows an example of a mobile phone.
  • the personal digital assistant 6200 includes an operation button 6203, a speaker 6204, a microphone 6205, and the like, in addition to the display unit 6202 incorporated in the housing 6201.
  • the mobile information terminal 6200 includes a fingerprint sensor 6209 in an area overlapping the display unit 6202.
  • the fingerprint sensor 6209 may be an organic light sensor. Since the fingerprint differs depending on the individual, the fingerprint sensor 6209 can acquire the fingerprint pattern and perform personal authentication.
  • the light emitted from the display unit 6202 can be used as a light source for acquiring the fingerprint pattern by the fingerprint sensor 6209.
  • the portable information terminal 6200 includes a secondary battery and a semiconductor device or an electronic component according to one aspect of the present invention.
  • the portable information terminal 6200 can function as an IoT device.
  • FIG. 18C shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the upper surface of the housing 6301, a plurality of cameras 6303 arranged on the side surface, a brush 6304, an operation button 6305, various sensors, and the like. Although not shown, the cleaning robot 6300 is provided with tires, suction ports, and the like. The cleaning robot 6300 is self-propelled, can detect dust 6310, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, and steps. Further, when an object that is likely to be entangled with the brush 6304 such as wiring is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery and a semiconductor device or electronic component according to one aspect of the present invention. By using the semiconductor device or electronic component according to one aspect of the present invention for the cleaning robot 6300, the cleaning robot 6300 can function as an IoT device.
  • FIG. 18D shows an example of a robot.
  • the robot 6400 shown in FIG. 18D includes an arithmetic unit 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406, an obstacle sensor 6407, and a moving mechanism 6408.
  • the microphone 6402 has a function of detecting the user's voice, environmental sound, and the like. Further, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with the user by using the microphone 6402 and the speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display the information desired by the user on the display unit 6405.
  • the display unit 6405 may be equipped with a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing the display unit 6405 at a fixed position of the robot 6400, charging and data transfer are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of photographing the surroundings of the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the traveling direction when the robot 6400 moves forward by using the moving mechanism 6408. The robot 6400 can recognize the surrounding environment and move safely by using the upper camera 6403, the lower camera 6406, and the obstacle sensor 6407.
  • the light emitting device of one aspect of the present invention can be used for the display unit 6405.
  • the robot 6400 includes a secondary battery and a semiconductor device or electronic component according to one aspect of the present invention inside the robot 6400.
  • the robot 6400 can function as an IoT device.
  • FIG. 18E shows an example of an air vehicle.
  • the flying object 6500 shown in FIG. 18E has a propeller 6501, a camera 6502, a battery 6503, and the like, and has a function of autonomously flying.
  • the image data taken by the camera 6502 is stored in the electronic component 6504.
  • the electronic component 6504 can analyze the image data and detect the presence or absence of an obstacle when moving.
  • the remaining battery level can be estimated from the change in the storage capacity of the battery 6503 by the electronic component 6504.
  • the flying object 6500 includes a semiconductor device or an electronic component according to an aspect of the present invention inside the flying object 6500. By using the semiconductor device or electronic component according to one aspect of the present invention for the flying object 6500, the flying object 6500 can function as an IoT device.
  • FIG. 18F shows an example of an automobile.
  • the automobile 7160 has an engine, tires, brakes, a steering device, a camera, and the like.
  • the automobile 7160 includes a semiconductor device or an electronic component according to one aspect of the present invention inside the automobile. By using the semiconductor device or the electronic component according to one aspect of the present invention in the automobile 7160, the automobile 7160 can function as an IoT device.
  • a normally-off CPU (also referred to as "Noff-CPU") can be realized by using the OS transistor shown in the present specification and the like.
  • the Nonf-CPU is an integrated circuit including a normally-off type transistor that is in a non-conducting state (also referred to as an off state) even when the gate voltage is 0V.
  • the Noff-CPU can stop the power supply to the unnecessary circuits in the Noff-CPU and put the circuits in the standby state. No power is consumed in the circuit where the power supply is stopped and the circuit is in the standby state. Therefore, the Nonf-CPU can minimize the amount of power used. Further, the Nonf-CPU can retain information necessary for operation such as setting conditions for a long period of time even if the power supply is stopped. To return from the standby state, it is only necessary to restart the power supply to the circuit, and it is not necessary to rewrite the setting conditions and the like. That is, it is possible to return from the standby state at high speed. In this way, the Nonf-CPU can reduce the power consumption without significantly reducing the operating speed.
  • the Noff-CPU can be suitably used for a small-scale system such as an IoT terminal device (also referred to as an "endpoint microcomputer") 803 in the field of IoT (Internet of Things).
  • IoT terminal device also referred to as an "endpoint microcomputer” 803 in the field of IoT (Internet of Things).
  • FIG. 19 shows the hierarchical structure of the IoT network and the tendency of required specifications.
  • power consumption 804 and processing performance 805 are shown as required specifications.
  • the hierarchical structure of the IoT network is roughly divided into a cloud field 801 which is an upper layer and an embedded field 802 which is a lower layer.
  • the cloud field 801 includes, for example, a server.
  • the embedded field 802 includes, for example, machines, industrial robots, in-vehicle devices, home appliances, and the like.
  • the semiconductor device according to one aspect of the present invention can be suitably used for a communication device of an IoT terminal device that requires low power consumption.
  • endpoint indicates the terminal region of the embedded field 802.
  • devices used for endpoints include microcomputers used in factories, home appliances, infrastructure, agriculture, and the like.
  • FIG. 20 shows an image diagram of factory automation as an application example of an endpoint microcomputer.
  • the factory 884 is connected to the cloud 883 via an internet line (Internet).
  • the cloud 883 is also connected to the home 881 and the office 882 via an internet line.
  • the Internet line may be a wired communication system or a wireless communication system.
  • the semiconductor device according to one aspect of the present invention is used as the communication device in accordance with communication standards such as the 4th generation mobile communication system (4G) and the 5th generation mobile communication system (5G). Wireless communication should be performed.
  • the factory 884 may be connected to the factory 885 and the factory 886 via an internet line.
  • the Factory 884 has a master device (control device) 831.
  • the master device 831 has a function of connecting to the cloud 883 and exchanging information. Further, the master device 831 is connected to a plurality of industrial robots 842 included in the IoT terminal device 841 via an M2M (Machine to Machine) interface 832.
  • M2M interface 832 for example, industrial Ethernet (“Ethernet” is a registered trademark) which is a kind of wired communication method, local 5G which is a kind of wireless communication method, or the like may be used.
  • the factory manager can connect to the factory 884 from the home 881 or the office 882 via the cloud 883 and know the operating status. In addition, it is possible to check for incorrect or missing items, indicate the location, and measure the tact time.
  • each embodiment can be appropriately combined with the configuration shown in other embodiments to form one aspect of the present invention. Further, when a plurality of configuration examples are shown in one embodiment, the configuration examples can be appropriately combined.
  • the content described in one embodiment is another content (may be a part of the content) described in the embodiment, and / or one or more. It is possible to apply, combine, or replace the contents described in another embodiment (some contents may be used).
  • figure (which may be a part) described in one embodiment is another part of the figure, another figure (which may be a part) described in the embodiment, and / or one or more.
  • figures (which may be a part) described in another embodiment of the above more figures can be constructed.
  • the components are classified by function and shown as blocks independent of each other.
  • it is difficult to separate the components for each function and there may be a case where a plurality of functions are involved in one circuit or a case where one function is involved in a plurality of circuits. Therefore, the blocks in the block diagram are not limited to the components described in the specification, and can be appropriately paraphrased according to the situation.
  • the size, the thickness of the layer, or the area is shown in an arbitrary size for convenience of explanation. Therefore, it is not necessarily limited to that scale. It should be noted that the drawings are schematically shown for the sake of clarity, and are not limited to the shapes or values shown in the drawings. For example, it is possible to include variations in signal, voltage, or current due to noise, or variations in signal, voltage, or current due to timing lag.
  • electrode and “wiring” in the present specification and the like do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include the case where a plurality of “electrodes” and “wiring” are integrally formed.
  • the voltage and the potential can be paraphrased as appropriate.
  • the voltage is a potential difference from a reference potential.
  • the reference potential is a ground voltage (ground voltage)
  • the voltage can be paraphrased as a potential.
  • the ground potential does not necessarily mean 0V.
  • the electric potential is relative, and the electric potential given to the wiring or the like may be changed depending on the reference electric potential.
  • a node can be paraphrased as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, etc., depending on a circuit configuration, a device structure, and the like.
  • terminals, wiring, etc. can be paraphrased as nodes.
  • a and B are connected means that A and B are electrically connected.
  • the term “A and B are electrically connected” refers to an object (an element such as a switch, a transistor element, or a diode, or a circuit including the element and wiring) between A and B. ) Is present, it means a connection capable of transmitting an electric signal between A and B.
  • the case where A and B are electrically connected includes the case where A and B are directly connected.
  • the fact that A and B are directly connected means that the electric signal between A and B is transmitted between A and B via wiring (or electrodes) or the like without going through the object.
  • a possible connection is a connection that can be regarded as the same circuit diagram when represented by an equivalent circuit.
  • the switch means a switch that is in a conductive state (on state) or a non-conducting state (off state) and has a function of controlling whether or not a current flows.
  • the switch means a switch having a function of selecting and switching a path through which a current flows.
  • the channel length is defined as, for example, in the top view of the transistor, a region or a channel where the semiconductor (or the portion where the current flows in the semiconductor when the transistor is on) and the gate overlap is formed. The distance between the source and drain in the region.
  • the channel width is a source in, for example, a region where a semiconductor (or a portion where a current flows in a semiconductor when a transistor is on) and a gate electrode overlap, or a region where a channel is formed.
  • membrane and layer can be interchanged with each other in some cases or depending on the situation.
  • conductive layer to the term “conductive layer”.
  • insulating film to the term “insulating layer”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

新規な構成の半導体装置を提供すること。 半導体装置は、デジタル信号が与えられる複数の定電流回路を有する。定電流回路は、第1トラン ジスタ乃至第3トランジスタを有する。第1トランジスタは、設定されるアナログ電位に応じた第 1電流を流す機能を有する。第2トランジスタは、デジタル信号に応じて、第1トランジスタのソ ースとドレインとの間を流れる第1電流を制御する機能を有する。第3トランジスタはオフにする ことで、第1トランジスタのゲートに与えられるアナログ電位を保持する機能を有する。第1トラ ンジスタ乃至第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を 有する。

Description

半導体装置、無線通信装置
 本発明の一態様は、半導体装置、および当該半導体装置を備えた無線通信装置に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、およびセンサ装置などは、半導体装置を有すると言える場合がある。
 IoT(Internet of Things)などの情報技術の発展により、送受信されるデータ量が増大している。このデータ量の増大に対応するため、第4世代移動通信システム(4G)よりも速い通信速度、多くの同時接続、短い遅延時間を実現する第5世代移動通信システム(5G)と呼ばれる新たな通信規格が検討されている。
 一方モバイル通信などでは通信速度の向上などの高性能化の実現に加え、省電力化および半導体集積回路(IC:Integrated circuit)の小型化が求められる。したがって5Gの通信規格に則った電子機器では、省電力化および回路の小型化が非常に重要となる。
 5Gの通信規格に則った電子機器では、高周波の信号を送受信するための高周波回路を有する。高周波回路では、デジタル信号をアナログ信号に変換するためのデジタルアナログ変換回路(Digital to Analog Converter:以下、DAC)が搭載される。DACでは、信号変調や電力効率を高めるためにバイアス電圧の設定変更をできることが望ましい。加えてDACでは、変換時の精度が求められるため、精度を高くするための構成等が検討されている(例えば、非特許文献1を参照)。
Hung−Yi Huang and Tai−Haur Kuo,"2019 Symposium on VLSI Technology Digest of Technical Papers",2019,p.C136−C137
 高周波回路においてアナログフロントエンド側に設けられる回路は、高電圧に対する耐圧が高いことが望ましく、GaNなどの化合物半導体を用いた単極性のトランジスタで回路が構成されることが多い。高速動作のためにDACは、デコード型、バイナリ型、あるいはセグメント型などの回路構成が採用される。しかしながらデコード型、バイナリ型、あるいはセグメント型などのDACは、ビット数の増加に伴って回路面積が大きくなる。また、高周波回路に応用されるDACは、高速動作が求められる。
 また高周波回路では省電力化も重要である。効率的に動作させるためには、高周波回路内のバイアス電圧を与えるDACにおいてバイアス電圧を変更可能な構成とし、インピーダンス補正を行うことが望ましい。しかしながら、デジタルベースバンド回路からアナログフロントエンド側の高周波回路にバイアス電圧を出力する場合、回路間の距離が大きくなる。省電力化のためには、バイアス電圧を与えるDACがアナログフロントエンドの近くにあることが好ましい。
 本発明の一態様は、精度を低下させることなく動作することができる、新規な構成の半導体装置を提供することを課題の一とする。本発明の一態様は、小型化を図ることができる、新規な構成の半導体装置を提供することを課題の一とする。本発明の一態様は、省電力化を図ることができる、新規な構成の半導体装置を提供することを課題の一とする。または、本発明の一態様は、新規な半導体装置等を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、デジタル信号が与えられる複数の定電流回路を有し、前記定電流回路は、第1トランジスタ乃至第3トランジスタを有し、前記第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、前記第2トランジスタは、前記デジタル信号に応じて、前記第1トランジスタのソースとドレインとの間を流れる前記第1電流を制御する機能を有し、前記第3トランジスタはオフにすることで、前記第1トランジスタのゲートに与えられる前記アナログ電位を保持する機能を有し、前記第1トランジスタ乃至前記第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置である。
 本発明の一態様は、デジタル信号が与えられる複数の定電流回路と、定電流回路を流れる電流に応じた電圧を生成する機能を有する負荷と、電圧を出力電圧として出力する機能を有するバッファ回路と、を有し、定電流回路は、第1トランジスタ乃至第3トランジスタを有し、第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、第2トランジスタは、デジタル信号に応じて、第1トランジスタのソースとドレインとの間を流れる第1電流を制御する機能を有し、第3トランジスタはオフにすることで、第1トランジスタのゲートに与えられるアナログ電位を保持する機能を有し、第1トランジスタ乃至第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置である。
 本発明の一態様において、定電流回路は、チャネル形成領域にシリコンを有する半導体層を有するトランジスタで構成される回路上に重ねて設けられる、半導体装置が好ましい。
 本発明の一態様において、負荷は、第4トランジスタを有し、第4トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置が好ましい。
 本発明の一態様は、請求項1乃至3のいずれか一において、バッファ回路は、第5トランジスタを有し、第5トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置が好ましい。
 本発明の一態様は、請求項1乃至4のいずれか一において、デジタル信号は、反転信号および非反転信号を有し、第1トランジスタは、反転信号および非反転信号に応じて複数設けられる、半導体装置が好ましい。
 本発明の一態様は、アンテナと、ミキサーと、発振器と、デジタルアナログ変換回路と、を有する集積回路を有し、デジタルアナログ変換回路は、デジタル信号が与えられる複数の定電流回路と、定電流回路を流れる電流に応じた電圧を生成する機能を有する負荷と、電圧を出力電圧として出力する機能を有するバッファ回路と、を有し、定電流回路は、第1トランジスタ乃至第3トランジスタを有し、第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、第2トランジスタは、デジタル信号に応じて、第1トランジスタのソースとドレインとの間を流れる第1電流を制御する機能を有し、第3トランジスタはオフにすることで、第1トランジスタのゲートに与えられるアナログ電位を保持する機能を有し、第1トランジスタ乃至第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置である。
 本発明の一態様において、定電流回路は、チャネル形成領域にシリコンを有する半導体層を有するトランジスタで構成される回路上に重ねて設けられる、無線通信装置が好ましい。
 本発明の一態様において、負荷は、第4トランジスタを有し、第4トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置が好ましい。
 本発明の一態様において、バッファ回路は、第5トランジスタを有し、第5トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置が好ましい。
 本発明の一態様において、デジタル信号は、反転信号および非反転信号を有し、第1トランジスタは、反転信号および非反転信号に応じて複数設けられる、無線通信装置が好ましい。
 本発明の一態様は、精度を低下させることなく動作することができる、新規な構成の半導体装置を提供することができる。本発明の一態様は、小型化を図ることができる、新規な構成の半導体装置を提供することができる。本発明の一態様は、省電力化を図ることができる、新規な構成の半導体装置を提供することができる。または、本発明の一態様は、新規な半導体装置等を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A、図1Bは、半導体装置の構成を説明するための図である。
図2A、図2Bは、半導体装置の構成を説明するための図である。
図3A乃至図3Cは、半導体装置の構成を説明するための図である。
図4A、図4Bは、半導体装置の構成を説明するための図である。
図5A、図5Bは、半導体装置の構成を説明するための回路図である。
図6A乃至図6Cは、半導体装置の構成を説明するための図である。
図7は、無線通信装置の構成を説明するためのブロック図である。
図8は、無線通信装置の構成を説明するためのブロック図である。
図9は、半導体装置の構成例を示す図である。
図10は、半導体装置の構成例を示す図である。
図11A乃至図11Cは、トランジスタの構成例を示す図である。
図12A乃至図12Cは、トランジスタの構成例を示す図である。
図13A乃至図13Cは、トランジスタの構成例を示す図である。
図14AはIGZOの結晶構造の分類を説明する図である。図14BはCAAC−IGZO膜のXRDスペクトルを説明する図である。図14CはCAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図15Aは、半導体ウエハの上面図である。図15Bは、チップの拡大図である。
図16Aは、電子部品の作製工程例を説明するフローチャートである。図16Bは、電子部品の斜視模式図である。
図17は電子機器の一例を示す図である。
図18A乃至図18Fは、電子機器の一例を示す図である。
図19は、IoTネットワークの階層構造と要求仕様の傾向を示す図である。
図20は、ファクトリーオートメーションのイメージ図である。
 以下に、本発明の実施の形態を説明する。ただし、本発明の一形態は、以下の説明に限定されず、本発明の主旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明の一形態は、以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
 本明細書において、例えば、電源電位VDDを、電位VDD、VDD等と省略して記載する場合がある。これは、他の構成要素(例えば、信号、電圧、回路、素子、電極、配線等)についても同様である。
 また、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、”_2”、”[n]”、”[m,n]”等の識別用の符号を付記して記載する場合がある。例えば、2番目の配線GLを配線GL[2]と記載する。
(実施の形態1)
 本発明の一態様の半導体装置の構成および動作について、図1乃至図6を用いて説明する。本発明の一態様の半導体装置は、デジタル信号をアナログ信号に変換するためのデジタルアナログ変換器、いわゆるDAC(Digital to Analog Converter)として機能する。特に、アンテナを介して高周波信号を送受信するためのアナログフロントエンド側に設けられるDACとして機能する半導体装置、および当該半導体装置を備えた無線通信装置に関する。
 図1Aは、本発明の一態様の半導体装置を備える無線通信装置に適用可能な、DACとして機能する半導体装置の構成を説明するための回路図である。
 半導体装置100は、複数の定電流回路120乃至120N−1(Nは2以上の自然数)、負荷130、およびバッファ回路140を有する。なお説明のため、図1Aでは、負荷130およびバッファ回路140を図示しているが、電流値として出力する場合、省略することが可能である。
 定電流回路120乃至120N−1はそれぞれ、トランジスタおよびキャパシタを有する。定電流回路120乃至120N−1は、Nビット(Nは2以上の自然数)のデジタル信号B乃至BN−1およびアナログ電位W乃至WN−1が与えられる。定電流回路120乃至120N−1は、デジタル信号B乃至BN−1およびアナログ電位W乃至WN−1に応じて、それぞれ異なる重みづけがなされた電流値の出力電流OUT乃至OUTN−1を出力する。
 アナログ電位W乃至WN−1は、個別に設定を制御可能な電位である。アナログ電位W乃至WN−1は、半導体装置100の外部に設けられる電圧生成回路で生成することができる。半導体装置100は、複数の定電流回路120乃至120N−1のそれぞれにおいて、設定したアナログ電位を保持する機能を有する。
 定電流回路120乃至120N−1はそれぞれ、図1Aでは図示を省略したが、アナログ電位W乃至WN−1を更新または保持するための選択信号S乃至SN−1が与えられる。選択信号S乃至SN−1は、スイッチとして機能するトランジスタのオンまたはオフを制御するための信号である。
 デジタル信号B乃至BN−1は、それぞれの定電流回路120乃至120N−1に設定したアナログ電位に応じた出力電流OUT乃至OUTN−1を流すか否かを制御するための信号である。
 負荷130は、定電流回路120乃至120N−1を流れる電流に応じた電圧を生成する機能を有する。負荷130は、デジタル信号B乃至BN−1の制御によって調整された出力電流OUT乃至OUTN−1の総和が流れることで、デジタル信号B乃至BN−1に応じた電圧を生成する。負荷130は、電圧VREFが与えられ、抵抗素子、またはトランジスタで構成することができる。
 バッファ回路140は、入力端子VINの電圧を出力電圧として出力端子VOUTに出力する機能を有する。バッファ回路140の入力端子VINの電圧は、負荷130に流れる電流に応じて設定することができる。バッファ回路140は、入力端子VINの電圧が与えられ、電流供給能力等が増幅された電圧を生成する。バッファ回路140は、抵抗素子、またはトランジスタで構成することができる。
 図1Aに図示する半導体装置100は、定電流回路120乃至120N−1に設定したアナログ電位W乃至WN−1の保持および書き換えを行うことができる。そのため、複数のアナログ電位を生成する回路を間欠的に動作させることができるため、省電力化を行うことができる。また、複数のアナログ電位を補正し、書き換えを行うことで、半導体装置が出力するアナログ電圧の補正を容易に行う構成とすることができる。
 図1Bは、定電流回路120乃至120N−1に適用可能な定電流回路120の構成例について説明する図である。
 定電流回路120は、トランジスタ121、トランジスタ122、トランジスタ123、およびキャパシタ124を有する。なお定電流回路120においては、アナログ電位W乃至WN−1のいずれか一をアナログ電位Wとして説明する。また定電流回路120においては、選択信号S乃至SN−1のいずれか一を選択信号Sとして説明する。また定電流回路120においては、デジタル信号B乃至BN−1のいずれか一をデジタル信号Bとして説明する。また定電流回路120においては、出力電流OUT乃至OUTN−1のいずれか一を出力電流OUTとして説明する。
 トランジスタ121は、ゲートに保持されるアナログ電位Wに応じた出力電流OUTを流す機能を有する。トランジスタ122は、デジタル信号Bに応じて、トランジスタ121のソースとドレインとの間を流れる出力電流OUTを制御する機能を有する。トランジスタ123は、スイッチとして機能する。トランジスタ123は、オンにすることで、トランジスタ121のゲートにアナログ電位Wを更新する機能を有する。トランジスタ123は、オフにすることで、トランジスタ121のゲートに与えられたアナログ電位Wを保持する機能を有する。
 トランジスタ121のゲートは、トランジスタ123のソースまたはドレインの一方、およびキャパシタ124の一方の電極に接続される。トランジスタ121のソースまたはドレインの一方は、トランジスタ122のソースまたはドレインの一方に接続される。トランジスタ121のソースまたはドレインの他方は、固定電位、例えばグラウンド線に接続される。トランジスタ122のゲートは、デジタル信号Bを伝える配線に接続される。トランジスタ122のソースまたはドレインの他方は、負荷130に接続される配線側、つまりに出力電流OUTを流すための配線に接続される。トランジスタ123のゲートは、選択信号Sを伝える配線に接続される。トランジスタ123のソースまたはドレインの他方は、アナログ電位Wを伝える配線に接続される。キャパシタ124の他方の電極は、固定電位、例えばグラウンド線に接続される。
 図1Bにおいて定電流回路120が有するトランジスタ121乃至123は、チャネル形成領域が酸化物半導体を有するトランジスタ(以下、OSトランジスタという)で構成される。本発明の一態様の構成では、OSトランジスタをトランジスタ121乃至123に用いる構成とすることで、オフ時にソースとドレイン間を流れるリーク電流(以下、オフ電流)が極めて低いことを利用して、所望の電圧に応じた電荷をキャパシタに保持させることができる。つまり、一旦与えたアナログ電位は、定電流回路120内のメモリとして機能する回路で長時間保持することができる。そのため、定電流回路120に与えるアナログ電位を継続して生成する必要がなくなるため、省電力化を図ることができる。
 定電流回路120を有する半導体装置100では、電荷の充電又は放電することによってアナログ電位の書き換えによる補正が可能となるため、実質的に無制限回のアナログ電位の補正が可能である。OSトランジスタを用いた定電流回路120は、電荷を保持する機能をメモリとして利用する場合、磁気メモリあるいは抵抗変化型メモリなどのように原子レベルでの構造変化を伴わないため、書き換え耐性に優れている。またOSトランジスタを用いた定電流回路120は、フラッシュメモリのように繰り返し書き換え動作でも電子捕獲中心の増加による不安定性が認められない。
 またOSトランジスタを用いた定電流回路120は、チャネル形成領域がシリコンを有するトランジスタ(以下、Siトランジスタ)を有するシリコン基板、あるいはOSトランジスタを有する素子層上などに自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。
 またOSトランジスタは、ゲート電極、ソース電極およびドレイン電極に加えて、バックゲート電極を含むと、4端子の半導体素子とすることができる。ゲート電極またはバックゲート電極に与える電圧に応じて、ソースとドレインとの間を流れる信号の入出力が独立制御可能な電気回路網で構成することができる。そのため、LSIと同様に回路設計を行うことができる。加えてOSトランジスタは、高温環境下において、Siトランジスタよりも優れた電気特性を有する。具体的には、125℃以上150℃以下といった高温下においてもオン電流とオフ電流の比が大きいため、良好なスイッチング動作を行うことができる。また、OSトランジスタは、−40℃以上190℃以下の範囲内にて良好に動作する。別言すると、OSトランジスタは、耐熱性が非常に良い。これは、相変化メモリ(PCM:Phase Change Memory)の耐熱性(−40℃以上150℃以下)、抵抗変化型メモリ(ReRAM:Resistance Random Access Memory)の耐熱性(−40℃以上125℃以下)、磁気抵抗メモリ(MRAM:Magnetoresistive Random Access Memory)の耐熱性(−40℃以上105℃以下)、などと比較しても、良好な耐熱性である。
 図2A、図2Bでは、図1Bで図示する定電流回路120の変形例を説明するための回路図を示す。
 図1Bにおいて、各トランジスタは、バックゲート電極がないトップゲート構造またはボトムゲート構造のトランジスタとして図示したが、トランジスタの構造はこれに限らない。例えば、図2Aに図示するように、ゲート電極に接続されたバックゲート電極を有する構成としてもよい。図2Aの構成とすることで、各トランジスタを流れる電流量を増やすことができる。
 あるいは図2Bに図示するようにバックゲート電圧VBGを与える端子に接続されたバックゲート電極を有する構成としてもよい。図2Bの構成とすることで、各トランジスタのしきい値電圧などの電気特性を外部より制御しやすくすることができる。
 図3Aは、図1Aで説明した半導体装置100にデジタル信号B乃至BN−1を供給するデジタル信号出力回路150、およびアナログ電位W乃至WN−1を供給する電圧生成回路151を図示している。
 上述したように本発明の一態様における定電流回路120乃至120N−1は、OSトランジスタで構成され、アナログ電位W乃至WN−1を保持する機能を有する。そのため、電圧生成回路151を間欠的に停止させることができる。そのため半導体装置100を備えた電子機器等においては、電圧生成回路151を停止した分の省電力化を図ることができる。
 図3Bには半導体装置100を搭載可能な無線通信装置のブロック図の一部を図示する。半導体装置100は、無線通信装置内のアナログベースバンド側の集積回路13に設けられる。集積回路13は、アンテナANTおよびベースバンドプロセッサ12に接続され、アナログ信号またはデジタル信号の送受信を行う。ベースバンドプロセッサ12は、アプリケーションプロセッサ11に接続され、デジタル信号の送受信を行う。
 図3Bに図示するように電圧生成回路151は、集積回路13(IC:Integrated Circuit)に設けられる。電圧生成回路151は、CMOS回路で構成されるベースバンドプロセッサ12に設けることも可能であるが、ノイズの影響等を低減するため、集積回路13内に設けることが好ましい。デジタル信号出力回路150は、ベースバンドプロセッサ12に設けることができる。
 電圧生成回路151は、Siトランジスタで構成することができる。電圧生成回路151は、ノイズの影響あるいは配線抵抗などの影響等を低減するため、半導体装置100との距離が近いことが好ましい。そのため、OSトランジスタで構成することができる半導体装置100と、Siトランジスタで構成することができる電圧生成回路151と、は、図3Cに図示するように、集積回路13内においてz方向、つまりSiトランジスタを設ける基板の表面に概略垂直な方向に重ねて配置する構成とすることが好ましい。当該構成とすることで、回路面積の小型化、ノイズの影響等を受けにくくすることができる。
 なお電圧生成回路151はSiトランジスタとして説明したが、この場合シリコンの単結晶基板にSiトランジスタを設ける構成とすることができる。なおシリコンに限らず、他の半導体材料、例えば化合物半導体などを用いることができる。Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料を用いることができる。
 半導体装置100を電圧生成回路151と積層する場合、負荷130およびバッファ回路140もOSトランジスタあるいは抵抗素子等で構成することが好ましい。
 図4A、図4Bでは、負荷130に適用可能な回路構成の一例について図示し、説明する。図4Aでは、負荷130として抵抗素子131を有する構成について図示している。
 また別の例として、図4Bでは、負荷130をOSトランジスタおよびキャパシタで構成する図を示している。図4Bに図示する負荷130は、トランジスタ132、トランジスタ133、およびキャパシタ134を有する。トランジスタ132、およびトランジスタ133は、バックゲート電極を有し、バックゲート電圧VBGを与える構成を例示している。
 図4Bに示す負荷130において、選択信号Sはトランジスタ133のオンまたはオフを切り替えるための信号である。またアナログ電位Vは、トランジスタ132のゲートの電位を設定するための電位である。
 トランジスタ132は、キャパシタ134に保持される電圧に応じた電流を流す機能を有する。トランジスタ133は、スイッチとして機能する。トランジスタ133は、オンにすることで、トランジスタ132のゲートにアナログ電位Vを更新する機能を有する。トランジスタ133は、オフにすることで、トランジスタ132のゲートに与えられたアナログ電位Vを保持する機能を有する。
 トランジスタ132のゲートは、トランジスタ133のソースまたはドレインの一方、およびキャパシタ134の一方の電極に接続される。トランジスタ132のソースまたはドレインの一方は、電圧VREFを与える配線に接続される。トランジスタ132のソースまたはドレインの他方は、キャパシタ134の他方の電極、および定電流回路120乃至120N−1に接続される。トランジスタ133のゲートは、選択信号Sを伝える配線に接続される。トランジスタ133のソースまたはドレインの他方は、アナログ電位Vを伝える配線に接続される。
 図4Bにおいて負荷130が有するトランジスタ132および133は、OSトランジスタで構成される。本発明の一態様の構成では、OSトランジスタをトランジスタ132および133に用いる構成とすることで、オフ時にソースとドレイン間を流れるリーク電流(以下、オフ電流)が極めて低いことを利用して、所望の電圧に応じた電荷をキャパシタ134に保持させることができる。つまり、一旦与えたアナログ電位は、負荷130内のメモリとして機能する回路で長時間保持することができる。そのため、負荷130に与えるアナログ電位を継続して生成する必要がなくなるため、省電力化を図ることができる。
 図5A、図5Bでは、バッファ回路140に適用可能な回路構成の一例について図示し、説明する。図5Aでは、バッファ回路140として抵抗素子141およびトランジスタ142を有する構成について図示している。
 抵抗素子141の一方の端子は、電圧VDDを与える配線に接続される。抵抗素子141の他方の端子は、トランジスタ142のソースまたはドレインの一方および出力端子VOUTに接続される。トランジスタ142のゲートは、入力端子VINに接続される。トランジスタ142のソースまたはドレインの他方は、固定電位、例えばグラウンド線に接続される。トランジスタ142は、バックゲート電極を有し、バックゲート電圧VBGを与える構成を例示している。
 また別の例として、図5Bでは、バッファ回路140をOSトランジスタおよびキャパシタで構成する図を示している。図5Bに図示するバッファ回路140は、トランジスタ143、トランジスタ144、トランジスタ145、およびキャパシタ146を有する。トランジスタ143乃至145は、バックゲート電極を有し、バックゲート電圧VBGを与える構成を例示している。
 図5Bに示すバッファ回路140において、選択信号SBUFはトランジスタ145のオンまたはオフを切り替えるための信号である。またアナログ電位VBUFは、トランジスタ144のゲートの電位を設定するための電位である。
 トランジスタ144のゲートは、トランジスタ145のソースまたはドレインの一方、およびキャパシタ146の一方の電極に接続される。トランジスタ144のソースまたはドレインの一方は、トランジスタ143のソースまたはドレインの一方および出力端子VOUTに接続される。トランジスタ144のソースまたはドレインの他方は、固定電位、例えばグラウンド線、およびキャパシタ146の他方の電極に接続される。トランジスタ143のソースまたはドレインの他方は、電圧VDDを与える配線に接続される。トランジスタ143のゲートは、入力端子VINに接続される。トランジスタ145のソースまたはドレインの他方は、アナログ電位VBUFを与える配線に接続される。トランジスタ145のゲートは、選択信号SBUFを伝える配線に接続される。
 図5Bにおけるバッファ回路140が有するトランジスタ143乃至145は、OSトランジスタで構成される。本発明の一態様の構成では、OSトランジスタをトランジスタ143乃至145に用いる構成とすることで、オフ時にソースとドレイン間を流れるリーク電流(以下、オフ電流)が極めて低いことを利用して、所望の電圧に応じた電荷をキャパシタ146に保持させることができる。つまり、一旦与えたアナログ電位は、バッファ回路140内のメモリとして機能する回路で長時間保持することができる。そのため、バッファ回路140に与えるアナログ電位を継続して生成する必要がなくなるため、省電力化を図ることができる。
 図6A、図6Bでは、図1Bで図示する定電流回路120の変形例を説明するための回路図を示す。
 図1Aに適用可能な定電流回路120の変形例として、差動型の定電流回路とすることができる。差動型の定電流回路を適用した半導体装置100の構成について図6Aに図示する。差動型を採用することによって、同相に生じるノイズを相殺して除去することができる。
 図6Aに示す半導体装置100において、差動型の定電流回路160乃至160N−1が図1Bの定電流回路120乃至120N−1と異なる点は、定電流回路160乃至160N−1に設定したアナログ電位に応じた出力電流が出力電流OUT乃至OUTN−1および出力電流OUTb乃至OUTbN−1である点にある。また定電流回路160乃至160N−1には、デジタル信号B乃至BN−1の反転信号が入力される。また図6Aに示す半導体装置100は、電流経路に応じた負荷130,130bおよびバッファ回路140bを備える。
 負荷130bは、負荷130と同様に構成することができる。
 図6Bは、定電流回路160乃至160N−1に適用可能な定電流回路160の構成例について説明する図である。
 定電流回路160は、トランジスタ121、トランジスタ122、トランジスタ123、およびキャパシタ124に加え、トランジスタ125を有する。また定電流回路160においては、出力電流OUTb乃至OUTbN−1のいずれか一を出力電流OUTbとして説明する。定電流回路160においては、デジタル信号B乃至BN−1の反転信号のいずれか一をデジタル信号Bbとして説明する。
 トランジスタ125は、デジタル信号Bbに応じて、トランジスタ121のソースとドレインとの間を流れる電流を出力電流OUTbとして制御する機能を有する。
 トランジスタ125のゲートは、デジタル信号Bbを伝える配線に接続される。トランジスタ125のソースまたはドレインの一方は、トランジスタ121のソースまたはドレインの一方に接続される。トランジスタ125のソースまたはドレインの他方は、負荷130に接続される配線側、つまりに出力電流OUTを流すための配線に接続される。
 図6Bにおいて定電流回路160が有するトランジスタ121乃至123およびトランジスタ125は、OSトランジスタで構成される。本発明の一態様の構成では、OSトランジスタをトランジスタ121乃至123およびトランジスタ125に用いる構成とすることで、オフ電流の極めて低いことを利用して、所望の電圧に応じた電荷をキャパシタ124に保持させることができる。つまり、一旦与えたアナログ電位は、定電流回路160内のメモリとして機能する回路で長時間保持することができる。そのため、定電流回路160に与えるアナログ電位を継続して生成する必要がなくなるため、省電力化を図ることができる。
 図6Cは、図6Aに示すバッファ回路140bの構成例について説明する図である。
 バッファ回路140bは、トランジスタ143乃至145、およびキャパシタ146に加え、トランジスタ147、抵抗素子148および抵抗素子149を有する。またバッファ回路140bにおいては、対になる入力端子および出力端子を、入力端子VIN、VbIN、および出力端子VOUT、VbOUTとして説明する。
 トランジスタ147のゲートは、入力端子VbINに接続される。トランジスタ147のソースまたはドレインの一方は、トランジスタ144のソースまたはドレインの一方に接続される。出力端子VOUTは、電圧VDDを与える配線に接続された抵抗素子148およびトランジスタ143のソースまたはドレインの他方に接続される。出力端子VbOUTは、電圧VDDを与える配線に接続された抵抗素子149およびトランジスタ147のソースまたはドレインの他方に接続される。
 図6Cにおいてバッファ回路140bが有するトランジスタ143乃至145およびトランジスタ147は、OSトランジスタで構成される。本発明の一態様の構成では、OSトランジスタをトランジスタ143乃至145およびトランジスタ147に用いる構成とすることで、オフ電流の極めて低いことを利用して、所望の電圧に応じた電荷をキャパシタ146に保持させることができる。つまり、一旦与えたアナログ電位は、バッファ回路140b内のメモリとして機能する回路で長時間保持することができる。そのため、バッファ回路140bに与えるアナログ電位を継続して生成する必要がなくなるため、省電力化を図ることができる。
 以上説明した本発明の一態様の半導体装置は、回路面積の増加を抑制するとともに、省電力化が図られた半導体装置とすることができる。
(実施の形態2)
 本実施の形態では、上記実施の形態に示した半導体装置100を備えた集積回路を有する無線通信装置の構成例について、図7および図8を用いて説明する。なお本実施の形態では、無線通信装置として、スマートフォンを一例として説明するが、携帯ゲーム端末、タブレットPC(Personal Computer)、ノート型PC等のその他の無線通信端末であってもよい。また、本実施の形態にかかる無線通信装置は、無線通信を行うことができる装置に適用することが可能である。
 図7に図示する無線通信装置10のブロック図では、アンテナANT、アプリケーションプロセッサ11、ベースバンドプロセッサ12、集積回路13(IC:Integrated Circuit)、メモリ14、バッテリ15、パワーマネジメントIC(PMIC:Power Management Integrated Circuit)16、表示部17、カメラ部18、操作入力部19、オーディオIC20、マイク21、及び、スピーカ22を有する。なお集積回路13は、RF(Radio Frequency)IC、無線チップなどともいう。
 アンテナANTは、5Gの通信規格に対応するため、複数の周波数帯に応じて複数設けられる。
 アプリケーションプロセッサ11は、メモリ14に格納されたプログラムを読み出して、無線通信装置10の各種機能を実現するための処理を行う機能を有する。例えば、アプリケーションプロセッサ11は、メモリ14からOS(Operating System)プログラムを実行すると共に、このOSプログラムを動作基板とするアプリケーションプログラムを実行する機能を有する。
 ベースバンドプロセッサ12は、無線通信装置10が送受信するデータに対して符号化(例えば、誤り訂正符号化)処理又は復号化処理等を含むベースバンド処理を行う機能を有する。具体的には、ベースバンドプロセッサ12は、送信データをアプリケーションプロセッサ11から受け取り、受け取った送信データに対して符号化処理を施して、集積回路13に送信する機能を有する。また、ベースバンドプロセッサ12は、集積回路13から受信データを受け取り、受け取った受信データに対して復号化処理を施してアプリケーションプロセッサ11に送信する機能を有する。
 集積回路13は、無線通信装置10が送受信するデータに対する変調処理又は復調処理を行う機能を有する。具体的には、集積回路13は、ベースバンドプロセッサ12から受け取った送信データを搬送波により変調処理して送信信号を生成し、アンテナANTを介して送信信号を出力する機能を有する。また、集積回路13は、アンテナANTを介して受信信号を受信し、受信信号を搬送波により復調処理して受信データを生成し、当該受信データをベースバンドプロセッサ12に送信する機能を有する。
 メモリ14は、アプリケーションプロセッサ11により利用されるプログラム及びデータを格納する機能を有する。なおメモリ14としては、電源が遮断されても記憶したデータを保持する不揮発性メモリと、電源が遮断された場合に記憶したデータがクリアされる揮発性メモリを含む。
 バッテリ15は、電池であり、無線通信装置10が外部電源によらずに動作する場合に利用される。なお、無線通信装置10は、外部電源が接続されている場合においてもバッテリ15の電源を利用することができる。また、バッテリ15としては、充電及び放電ができる二次電池を利用することが好ましい。
 パワーマネジメントIC16は、バッテリ15又は外部電源から内部電源を生成する機能を有する。この内部電源は、無線通信装置10の各ブロックに与えられる。このとき、パワーマネジメントIC16は、内部電源の供給を受けるブロック毎に内部電源の電圧を制御する機能を有する。パワーマネジメントIC16は、アプリケーションプロセッサ11からの指示に基づいて、内部電源の電圧制御を行う。さらに、パワーマネジメントIC16は、ブロック毎に内部電源の供給と遮断とを制御することもできる。また、パワーマネジメントIC16は、外部電源の供給がある場合、バッテリ15への充電制御も行う機能を有する。
 表示部17は、液晶表示装置または発光表示装置であって、アプリケーションプロセッサ11における処理に従い様々な画像を表示する機能を有する。表示部17において表示される画像には、ユーザーが無線通信装置10に動作指示を与えるユーザーインタフェース画像、カメラ画像、動画等が含まれる。
 カメラ部18は、アプリケーションプロセッサ11からの指示に従い、画像を取得する機能を有する。操作入力部19は、ユーザーが操作して無線通信装置10に操作指示を与えるユーザーインタフェースとしての機能を有する。オーディオIC20は、アプリケーションプロセッサ11から送信される音声データをデコードしてスピーカ22を駆動する機能を有する。加えてオーディオIC20は、マイク21から得た音声情報をエンコードして音声データを生成し、当該音声データをアプリケーションプロセッサ11に出力する機能を有する。
 図8は、集積回路13の構成例を説明するためのブロック図である。図8に示す集積回路13は、ローノイズアンプ101、ミキサー102、ローパスフィルタ103、可変ゲインアンプ104、アナログデジタル変換回路105、インターフェイス部106、DACとして機能する半導体装置100、可変ゲインアンプ108、ローパスフィルタ109、ミキサー110、パワーアンプ111、および発振回路107を有する。また図8では、アンテナANT、デュプレクサDUP、ベースバンドプロセッサ12を併せて図示している。なおローノイズアンプ101、ミキサー102、ローパスフィルタ103、可変ゲインアンプ104、アナログデジタル変換回路105は受信回路ブロック、DACとして機能する半導体装置100、可変ゲインアンプ108、ローパスフィルタ109、ミキサー110、パワーアンプ111は送信回路ブロックという場合がある。
 なおベースバンドプロセッサ12及び集積回路13は、それぞれ個別の半導体チップによって実現される。なおデュプレクサDUPは、アンテナスイッチなどを含んでいる。
 ローノイズアンプ101は、アンテナANTで受信した信号を低雑音で増幅する。ミキサー102は、DACとして機能する半導体装置100の信号を用いて復調ならびにダウンコンバート(周波数変換)する。ローパスフィルタ103は、ミキサー102からの信号における不要な高周波成分を除去する。可変ゲインアンプ104は、ローパスフィルタ103の出力信号をアナログデジタル変換回路105の入力レンジを加味したゲインで増幅する。アナログデジタル変換回路105は、可変ゲインアンプ104からのアナログ信号をデジタル信号に変換する。デジタル信号は、インターフェイス部106、差動インターフェイス回路を介してベースバンドプロセッサ12に出力される。
 DACとして機能する半導体装置100は、インターフェイス部106で受信したデジタル信号をアナログ信号に変換する。可変ゲインアンプ108は、DACとして機能する半導体装置100の出力信号を増幅する。ローパスフィルタ109は、可変ゲインアンプ108からの信号における不要な高周波成分を除去する。ミキサー110は、アナログ信号を発振回路107の信号を用いて変調ならびにアップコンバート(周波数変換)する。パワーアンプ111は、ミキサー110の出力信号を所定のゲインで増幅し、出力する。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で説明した半導体装置に適用可能なトランジスタの構成について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
 半導体装置の断面構造の一部を図9に示す。図9に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量600と、を有している。図11Aはトランジスタ500のチャネル長方向の断面図であり、図11Bはトランジスタ500のチャネル幅方向の断面図であり、図11Cはトランジスタ550のチャネル幅方向の断面図である。例えば、トランジスタ500は上記実施の形態で説明したトランジスタ121等のOSトランジスタに相当し、トランジスタ550は電圧生成回路151を構成するトランジスタ等のSiトランジスタに相当する。
 トランジスタ500は、OSトランジスタである。
 図9では、トランジスタ500はトランジスタ550の上方に設けられ、容量600はトランジスタ550、およびトランジスタ500の上方に設けられている。
 トランジスタ550は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
 図11Cに示すように、トランジスタ550は、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
 なお、トランジスタ550は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 トランジスタ550は、SOI(Silicon on Insulator)基板などを用いて形成してもよい。
 また、SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板や、水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
 なお、図9に示すトランジスタ550は一例であり、その構成に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、図10に示すように、トランジスタ550の構成を、トランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
 トランジスタ550を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図9では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
 絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図9では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図9では、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図9では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図11Aおよび図11Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
 また、図11Aおよび図11Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図11Aおよび図11Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図11Aおよび図11Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
 なお、本明細書などにおいて、酸化物530a、および酸化物530bをまとめて酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、または3層以上の積層構成を設ける構成にしてもよい。
 また、トランジスタ500では、導電体560を2層の積層構成として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構成であってもよい。また、図9、図10、および図11Aに示すトランジスタ500は一例であり、その構成に限定されず、回路構成や駆動方法などに応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
 本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構成を、surroundedchannel(S−channel)構成とよぶ。また、本明細書等において、surrounded channel(S−channel)構成は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面および周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面および周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS−channel構成は、Fin型構成およびプレーナ型構成とは異なる。S−channel構成を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構成として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
 絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう。)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(「加酸素化処理」ともいう。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542aおよび導電体542bにゲッタリングされる場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構成の絶縁体520を得ることができる。
 なお、図11Aおよび図11Bのトランジスタ500では、3層の積層構成からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構成を有していてもよい。その場合、同じ材料からなる積層構成に限定されず、異なる材料からなる積層構成でもよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いる。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。例えば、インジウムと、亜鉛と、ガリウムと、を有する金属酸化物(In−Ga−Zn系酸化物)、インジウムと、亜鉛と、スズと、を有する金属酸化物(In−Sn−Zn系酸化物)、またはインジウムと、亜鉛と、ガリウムと、スズとを有する金属酸化物(In−Ga−Zn−Sn系酸化物)などを好適に用いることができる。
 酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行なってもよいし、ALD(Atomic Layer Deposition)法で行なってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
 また、酸化物530においてチャネル形成領域にとして機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構成物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物の積層構成を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物530aの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
 ここで、酸化物530aおよび酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530aおよび酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530aを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
 また、図11では、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構成としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
 また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図11Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が絶縁体545を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
 絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体545が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構成としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構成とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構成とすることができる。
 第1のゲート電極として機能する導電体560は、図11Aおよび図11Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構成であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構成としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構成としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
 導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
 続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
 また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
 導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構成でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
 導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
 本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
 または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構成の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
 つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
 可撓性を有する基板上に半導体装置を設けることで、重量の増加を抑え、且つ破損しにくい半導体装置を提供することができる。
<トランジスタの変形例1>
 図12A、図12Bおよび図12Cに示すトランジスタ500Aは、図11A、図11Bに示す構成のトランジスタ500の変形例である。図12Aはトランジスタ500Aの上面図である。図12Bは図12Aに一点鎖線(L1−L2)で示すトランジスタ500Aのチャネル長方向の断面図であり、図12Cは図12Bに一点鎖線(W1−W2)で示すトランジスタ500Aのチャネル幅方向の断面図である。なお、図12A、図12Bおよび図12Cに示す構成は、トランジスタ550等、本発明の一態様の半導体装置が有する他のトランジスタにも適用することができる。
 図12A、図12Bおよび図12Cに示す構成のトランジスタ500Aは、絶縁体552、絶縁体513および絶縁体404を有する点が、図11A、図11Bに示す構成のトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体552が設けられ、導電体540bの側面に接して絶縁体552が設けられる点が、図11A、図11Bに示す構成のトランジスタ500と異なる。さらに、絶縁体520を有さない点が、図11A、図11Bに示す構成のトランジスタ500と異なる。
 図12A、図12Bおよび図12Cに示す構成のトランジスタ500Aは、絶縁体512上に絶縁体513が設けられる。また、絶縁体574上、および絶縁体513上に絶縁体404が設けられる。
 図12A、図12Bおよび図12Cに示す構成のトランジスタ500Aでは、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、および絶縁体574がパターニングされており、絶縁体404がこれらを覆う構成になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体513の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体513によって外部から隔離される。
 絶縁体513および絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一)または水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体513および絶縁体404として、水素バリア性が高い材料である、窒化シリコンまたは窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ500Aの特性低下を抑制できる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
 絶縁体552は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、および絶縁体544に接して設けられる。絶縁体552は、水素または水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体552として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、または窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体552として用いると好適である。絶縁体552として水素バリア性が高い材料を用いることにより、水または水素等の不純物が、絶縁体580等から導電体540aおよび導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540aおよび導電体540bに吸収されることを抑制することができる。以上により、本発明の一態様の半導体装置の信頼性を高めることができる。
<トランジスタの変形例2>
 図13A、図13Bおよび図13Cを用いて、トランジスタ500Bの構成例を説明する。図13Aはトランジスタ500Bの上面図である。図13Bは、図13Aに一点鎖線で示すL1−L2部位の断面図である。図13Cは、図13Aに一点鎖線で示すW1−W2部位の断面図である。なお、図13Aの上面図では、図の明瞭化のために一部の要素の記載を省略している。
 トランジスタ500Bはトランジスタ500の変形例であり、トランジスタ500に置き換え可能なトランジスタである。よって、説明の繰り返しを防ぐため、主にトランジスタ500Bのトランジスタ500と異なる点について説明する。
 第1のゲート電極として機能する導電体560は、導電体560a、および導電体560a上の導電体560bを有する。導電体560aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体560aが酸素の拡散を抑制する機能を持つことにより、導電体560bの材料選択性を向上することができる。つまり、導電体560aを有することで、導電体560bの酸化が抑制され、導電率が低下することを防止することができる。
 また、導電体560の上面および側面と絶縁体545の側面を覆うように、絶縁体544を設けることが好ましい。なお、絶縁体544は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 絶縁体544を設けることで、導電体560の酸化を抑制することができる。また、絶縁体544を有することで、絶縁体580が有する水、および水素などの不純物がトランジスタ500Bへ拡散することを抑制することができる。
 トランジスタ500Bは、導電体542aの一部と導電体542bの一部に導電体560が重なるため、トランジスタ500よりも寄生容量が大きくなりやすい。よって、トランジスタ500に比べて動作周波数が低くなる傾向がある。しかしながら、絶縁体580などに開口を設けて導電体560や絶縁体545などを埋めこむ工程が不要であるため、トランジスタ500と比較して生産性が高い。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、金属酸化物の一種である酸化物半導体について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図14Aを用いて説明を行う。図14Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図14Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる(excluding single crystal and poly crystal)。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図14Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図14Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図14Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図14Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図14Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図14Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図14Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図14Cに示す。図14Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図14Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図14Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、結晶構造に着目した場合、図14Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では上述した半導体装置の応用例について説明する。
〔半導体ウエハ、チップ〕
 図15Aは、ダイシング処理が行なわれる前の基板711の上面図を示している。基板711としては、例えば、半導体基板(「半導体ウエハ」ともいう。)を用いることができる。基板711上には、複数の回路領域712が設けられている。回路領域712には、本発明の一態様に係る半導体装置や、CPU、RFタグ、またはイメージセンサなどを設けることができる。
 複数の回路領域712は、それぞれが分離領域713に囲まれている。分離領域713と重なる位置に分離線(「ダイシングライン」ともいう。)714が設定される。分離線714に沿って基板711を切断することで、回路領域712を含むチップ715を基板711から切り出すことができる。図15Bにチップ715の拡大図を示す。
 また、分離領域713に導電層や半導体層を設けてもよい。分離領域713に導電層や半導体層を設けることで、ダイシング工程時に生じうるESDを緩和し、ダイシング工程の歩留まり低下を防ぐことができる。また、一般にダイシング工程は、基板の冷却、削りくずの除去、帯電防止などを目的として、炭酸ガスなどを溶解させて比抵抗を下げた純水を切削部に流しながら行なわれる。分離領域713に導電層や半導体層を設けることで、当該純水の使用量を削減することができる。よって、半導体装置の生産コストを低減することができる。また、半導体装置の生産性を高めることができる。
 分離領域713に設ける半導体層としては、バンドギャップが2.5eV以上4.2eV以下、好ましくは2.7eV以上3.5eV以下の材料を用いることが好ましい。このような材料を用いると、蓄積された電荷をゆっくりと放電することができるため、ESDによる電荷の急激な移動が抑えられ、静電破壊を生じにくくすることができる。
〔電子部品〕
 チップ715を電子部品に適用する例について、図16を用いて説明する。なお、電子部品は、半導体パッケージ、またはIC用パッケージともいう。電子部品は、端子取り出し方向や、端子の形状に応じて、複数の規格や名称が存在する。
 電子部品は、組み立て工程(後工程)において、上記実施の形態に示した半導体装置と該半導体装置以外の部品が組み合わされて完成する。
 図16Aに示すフローチャートを用いて、後工程について説明する。前工程において上記実施の形態に示した半導体装置を有する素子基板が完成した後、該素子基板の裏面(半導体装置などが形成されていない面)を研削する「裏面研削工程」を行なう(ステップS721)。研削により素子基板を薄くすることで、素子基板の反りなどを低減し、電子部品の小型化を図ることができる。
 次に、素子基板を複数のチップ(チップ715)に分離する「ダイシング工程」を行う(ステップS722)。そして、分離したチップを個々ピックアップしてリードフレーム上に接合する「ダイボンディング工程」を行う(ステップS723)。ダイボンディング工程におけるチップとリードフレームとの接合は、樹脂による接合や、テープによる接合など、適宜製品に応じて適した方法を選択する。なお、リードフレームに代えてインターポーザ基板上にチップを接合してもよい。
 次いで、リードフレームのリードとチップ上の電極とを、金属の細線(ワイヤー)で電気的に接続する「ワイヤーボンディング工程」を行う(ステップS724)。金属の細線には、銀線や金線を用いることができる。また、ワイヤーボンディングは、ボールボンディングや、ウェッジボンディングを用いることができる。
 ワイヤーボンディングされたチップは、エポキシ樹脂などで封止される「封止工程(モールド工程)」が施される(ステップS725)。封止工程を行うことで電子部品の内部が樹脂で充填され、チップに内蔵される回路部やチップとリードを接続するワイヤーを機械的な外力から保護することができ、また水分や埃による特性の劣化(信頼性の低下)を低減することができる。
 次いで、リードフレームのリードをめっき処理する「リードめっき工程」を行なう(ステップS726)。めっき処理によりリードの錆を防止し、後にプリント基板に実装する際のはんだ付けをより確実に行うことができる。次いで、リードを切断および成形加工する「成形工程」を行なう(ステップS727)。
 次いで、パッケージの表面に印字処理(マーキング)を施す「マーキング工程」を行なう(ステップS728)。そして外観形状の良否や動作不良の有無などを調べる「検査工程」(ステップS729)を経て、電子部品が完成する(ステップS729)。
 また、完成した電子部品の斜視模式図を図16Bに示す。図16Bでは、電子部品の一例として、QFP(Quad Flat Package)の斜視模式図を示している。図16Bに示す電子部品750は、リード755および半導体装置753を示している。半導体装置753としては、上記実施の形態に示した半導体装置などを用いることができる。
 図16Bに示す電子部品750は、例えばプリント基板752に実装される。このような電子部品750が複数組み合わされて、それぞれがプリント基板752上で電気的に接続されることで電子部品が実装された基板(実装基板754)が完成する。完成した実装基板754は、電子機器などに用いられる。
〔電子機器〕
 次に、本発明の一態様に係る半導体装置または上記電子部品を備えた電子機器の例について図17を用いて説明を行う。
 本発明の一態様に係る半導体装置または電子部品を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、携帯電話、自動車電話、携帯型ゲーム機、タブレット型端末、パチンコ機などの大型ゲーム機、電卓、携帯可能な情報端末(「携帯情報端末」ともいう。)、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソーなどの工具、煙感知器、透析装置などの医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置などの産業機器が挙げられる。
 また、蓄電装置からの電力を用いて電動機により推進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
 本発明の一態様に係る半導体装置または電子部品は、これらの電子機器に内蔵される通信装置などに用いることができる。
 電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)などを有していてもよい。
 電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図17および図18A乃至図18Fに、電子機器の一例を示す。図17において、表示装置8000は、本発明の一態様に係る半導体装置8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、半導体装置8004、蓄電装置8005などを有する。本発明の一態様に係る半導体装置8004は、筐体8001の内部に設けられている。半導体装置8004により、制御情報や、制御プログラムなどを保持することができる。また、半導体装置8004は通信機能を有し、表示装置8000をIoT機器として機能させることができる。また、表示装置8000は、商用電源から電力の供給を受けることもできるし、蓄電装置8005に蓄積された電力を用いることもできる。
 表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光表示装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの表示装置を用いることができる。
 なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
 図17において、据え付け型の照明装置8100は、本発明の一態様に係る半導体装置8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、半導体装置8103、蓄電装置8105などを有する。図17では、半導体装置8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、半導体装置8103は、筐体8101の内部に設けられていても良い。半導体装置8103により、光源8102の発光輝度などの情報や、制御プログラムなどを保持することができる。また、半導体装置8103は通信機能を有し、照明装置8100を、IoT機器として機能させることができる。また、照明装置8100は、商用電源から電力の供給を受けることもできるし、蓄電装置に蓄積された電力を用いることもできる。
 なお、図17では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る半導体装置は、天井8104以外、例えば側壁8405、床8406、窓8407などに設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
 また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
 図17において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る半導体装置8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、半導体装置8203、蓄電装置8205などを有する。図17では、半導体装置8203が、室内機8200に設けられている場合を例示しているが、半導体装置8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、半導体装置8203が設けられていても良い。半導体装置8203により、エアコンディショナーの制御情報や、制御プログラムなどを保持することができる。また、半導体装置8203は通信機能を有し、エアコンディショナーを、IoT機器として機能させることができる。また、エアコンディショナーは、商用電源から電力の供給を受けることもできるし、蓄電装置8205に蓄積された電力を用いることもできる。
 なお、図17では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る半導体装置を用いることもできる。
 図17において、電気冷凍冷蔵庫8300は、本発明の一態様に係る半導体装置8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、半導体装置8304、蓄電装置8305などを有する。図17では、蓄電装置8305が、筐体8301の内部に設けられている。半導体装置8304により、電気冷凍冷蔵庫8300の制御情報や、制御プログラムなどを保持することができる。また、半導体装置8304は通信機能を有し、電気冷凍冷蔵庫8300を、IoT機器として機能させることができる。また、電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、蓄電装置8305に蓄積された電力を用いることもできる。
 図18Aに、腕時計型の携帯情報端末の一例を示す。携帯情報端末6100は、筐体6101、表示部6102、バンド6103、操作ボタン6105などを備える。また、携帯情報端末6100は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を携帯情報端末6100に用いることで、携帯情報端末6100を、IoT機器として機能させることができる。
 図18Bは、携帯電話機の一例を示している。携帯情報端末6200は、筐体6201に組み込まれた表示部6202の他、操作ボタン6203、スピーカ6204、マイクロフォン6205などを備えている。
 また、携帯情報端末6200は、表示部6202と重なる領域に指紋センサ6209を備える。指紋センサ6209は有機光センサであってもよい。指紋は個人によって異なるため、指紋センサ6209で指紋パターンを取得して、個人認証を行うことができる。指紋センサ6209で指紋パターンを取得するための光源として、表示部6202から発せられた光を用いることができる。
 また、携帯情報端末6200は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を携帯情報端末6200に用いることで、携帯情報端末6200を、IoT機器として機能させることができる。
 図18Cは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を掃除ロボット6300に用いることで、掃除ロボット6300を、IoT機器として機能させることができる。
 図18Dは、ロボットの一例を示している。図18Dに示すロボット6400は、演算装置6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408を備える。
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
 上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置は表示部6405に用いることができる。
 ロボット6400は、その内部に二次電池と、本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品をロボット6400に用いることで、ロボット6400を、IoT機器として機能させることができる。
 図18Eは、飛行体の一例を示している。図18Eに示す飛行体6500は、プロペラ6501、カメラ6502、およびバッテリ6503などを有し、自律して飛行する機能を有する。
 例えば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によってバッテリ6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を飛行体6500に用いることで、飛行体6500を、IoT機器として機能させることができる。
 図18Fは、自動車の一例を示している。自動車7160は、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。自動車7160は、その内部に本発明の一態様に係る半導体装置または電子部品を備える。本発明の一態様に係る半導体装置または電子部品を自動車7160に用いることで、自動車7160を、IoT機器として機能させることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
 本明細書などに示したOSトランジスタを用いて、ノーマリーオフCPU(「Noff−CPU」ともいう。)を実現することができる。なお、Noff−CPUとは、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタを含む集積回路である。
 Noff−CPUは、Noff−CPU内の動作不要な回路への電力供給を停止し、当該回路を待機状態にすることができる。電力供給が停止され、待機状態になった回路では電力が消費されない。よって、Noff−CPUは、電力使用量を最小限にすることができる。また、Noff−CPUは、電力供給が停止されても設定条件などの動作に必要な情報を長期間保持することができる。待機状態からの復帰は当該回路への電力供給を再開するだけでよく、設定条件などの再書き込みが不要である。すなわち、待機状態からの高速復帰が可能である。このように、Noff−CPUは、動作速度を大きく落とすことなく消費電力を低減できる。
 Noff−CPUは、例えば、IoT(Internet of Things)分野のIoT末端機器(「エンドポイントマイコン」ともいう。)803などの小規模システムに好適に用いることができる。
 図19にIoTネットワークの階層構造と要求仕様の傾向を示す。図19では、要求仕様として消費電力804と処理性能805を示している。IoTネットワークの階層構造は、上層部であるクラウド分野801と下層部である組み込み分野802に大別される。クラウド分野801には例えばサーバーが含まれる。組み込み分野802には例えば機械、産業用ロボット、車載機器、家電などが含まれる。
 上層ほど、消費電力の少なさよりも高い処理性能が求められる。よって、クラウド分野801では高性能CPU、高性能GPU、大規模SoC(System on a Chip)などが用いられる。また、下層ほど処理性能よりも消費電力の少なさが求められ、デバイス個数も爆発的に多くなる。本発明の一態様に係る半導体装置は、低消費電力が求められるIoT末端機器の通信装置に好適に用いることができる。
 なお、「エンドポイント」とは、組み込み分野802の末端領域を示す。エンドポイントに用いられるデバイスとしては、例えば、工場、家電、インフラ、農業などで使用されるマイコンが該当する。
 図20にエンドポイントマイコンの応用例として、ファクトリーオートメーションのイメージ図を示す。工場884はインターネット回線(Internet)を介してクラウド883と接続される。また、クラウド883は、インターネット回線を介してホーム881およびオフィス882と接続される。インターネット回線は有線通信方式であってもよいし、無線通信方式であってもよい。例えば、無線通信方式の場合は、通信装置に本発明の一態様に係る半導体装置を用いて、第4世代移動通信システム(4G)や第5世代移動通信システム(5G)などの通信規格に沿った無線通信を行なえばよい。また、工場884は、インターネット回線を介して工場885および工場886と接続してもよい。
 工場884はマスタデバイス(制御機器)831を有する。マスタデバイス831は、クラウド883と接続し、情報の授受を行う機能を有する。また、マスタデバイス831は、IoT末端機器841に含まれる複数の産業用ロボット842と、M2M(Machine to Machine)インターフェイス832を介して接続される。M2Mインターフェイス832としては、例えば、有線通信方式の一種である産業イーサネット(「イーサネット」は登録商標)や、無線通信方式の一種であるローカル5Gなどを用いてもよい。
 工場の管理者は、ホーム881またはオフィス882から、クラウド883を介して工場884に接続し、稼働状況などを知ることができる。また、誤品・欠品チェック、置き場所指示、タクトタイムの計測などを行うことができる。
 近年「スマート工場」と銘打って、世界的にIoTの工場への導入が進められている。スマート工場の事例では、エンドポイントマイコンによる単なる検査、監査だけでなく、故障検知や異常予測なども行う事例が報告されている。
 エンドポイントマイコンなどの小規模システムは、稼働時のシステム全体の消費電力が小さい場合が多いため、Noff−CPUによる待機動作時の電力削減効果が大きくなる。一方で、IoTの組み込み分野では即応性が求められる場合があるが、Noff−CPUを用いることで待機動作時からの高速復帰が実現できる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(本明細書等の記載に関する付記)
 以上の実施の形態、および実施の形態における各構成の説明について、以下に付記する。
 各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、および/または、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、または置き換えなどを行うことが出来る。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、または明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、および/または、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
 また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合や、複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
 また、図面において、大きさ、層の厚さ、または領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、または、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 また、図面等において図示する構成要素の位置関係は、相対的である。従って、図面を参照して構成要素を説明する場合、位置関係を示す「上に」、「下に」等の語句は便宜的に用いられる場合がある。構成要素の位置関係は、本明細書の記載内容に限定されず、状況に応じて適切に言い換えることができる。
 本明細書等において、トランジスタの接続関係を説明する際、「ソースまたはドレインの一方」(または第1電極、または第1端子)、ソースとドレインとの他方を「ソースまたはドレインの他方」(または第2電極、または第2端子)という表記を用いる。これは、トランジスタのソースとドレインは、トランジスタの構造または動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子や、ソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
 また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 また本明細書等において、ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 本明細書等において、AとBとが接続されている、とは、AとBとが電気的に接続されているものをいう。ここで、AとBとが電気的に接続されているとは、AとBとの間で対象物(スイッチ、トランジスタ素子、またはダイオード等の素子、あるいは当該素子および配線を含む回路等を指す)が存在する場合にAとBとの電気信号の伝達が可能である接続をいう。なおAとBとが電気的に接続されている場合には、AとBとが直接接続されている場合を含む。ここで、AとBとが直接接続されているとは、上記対象物を介することなく、AとBとの間で配線(または電極)等を介してAとBとの電気信号の伝達が可能である接続をいう。換言すれば、直接接続とは、等価回路で表した際に同じ回路図として見なせる接続をいう。
 本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
 本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。
 本明細書等において、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
 なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
:10:無線通信装置、11:アプリケーションプロセッサ、12:ベースバンドプロセッサ、13:集積回路、14:メモリ、15:バッテリ、16:パワーマネジメントIC、17:表示部、18:カメラ部、19:操作入力部、20:オーディオIC、21:マイク、22:スピーカ、100:半導体装置、101:ローノイズアンプ、102:ミキサー、103:ローパスフィルタ、104:可変ゲインアンプ、105:アナログデジタル変換回路、106:インターフェイス部、107:発振回路、108:可変ゲインアンプ、109:ローパスフィルタ、110:ミキサー、111:パワーアンプ、120:定電流回路、121:トランジスタ、122:トランジスタ、123:トランジスタ、124:キャパシタ、125:トランジスタ、130:負荷、130b:負荷、131:抵抗素子、132:トランジスタ、133:トランジスタ、134:キャパシタ、140:バッファ回路、140b:バッファ回路、141:抵抗素子、142:トランジスタ、143:トランジスタ、144:トランジスタ、145:トランジスタ、146:キャパシタ、147:トランジスタ、148:抵抗素子、149:抵抗素子、150:デジタル信号出力回路、151:電圧生成回路、160:定電流回路、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、404:絶縁体、500:トランジスタ、500A:トランジスタ、500B:トランジスタ、503:導電体、503a:導電体、503b:導電体、510:絶縁体、512:絶縁体、513:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、522:絶縁体、524:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、540a:導電体、540b:導電体、542a:導電体、542b:導電体、543a:領域、543b:領域、544:絶縁体、545:絶縁体、546:導電体、548:導電体、550:トランジスタ、552:絶縁体、560:導電体、560a:導電体、560b:導電体、574:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、600:容量、610:導電体、612:導電体、620:導電体、630:絶縁体、640:絶縁体、711:基板、712:回路領域、713:分離領域、714:分離線、715:チップ、750:電子部品、752:プリント基板、753:半導体装置、754:実装基板、755:リード、801:クラウド分野、802:分野、804:消費電力、805:処理性能、831:マスタデバイス、832:インターフェイス、841:IoT末端機器、842:産業用ロボット、881:ホーム、882:オフィス、883:クラウド、884:工場、885:工場、886:工場、6100:携帯情報端末、6101:筐体、6102:表示部、6103:バンド、6105:操作ボタン、6200:携帯情報端末、6201:筐体、6202:表示部、6203:操作ボタン、6204:スピーカ、6205:マイクロフォン、6209:指紋センサ、6300:掃除ロボット、6301:筐体、6302:表示部、6303:カメラ、6304:ブラシ、6305:操作ボタン、6310:ゴミ、6400:ロボット、6401:照度センサ、6402:マイクロフォン、6403:上部カメラ、6404:スピーカ、6405:表示部、6406:下部カメラ、6407:障害物センサ、6408:移動機構、6409:演算装置、6500:飛行体、6501:プロペラ、6502:カメラ、6503:バッテリ、6504:電子部品、7160:自動車、8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:半導体装置、8005:蓄電装置、8100:照明装置、8101:筐体、8102:光源、8103:半導体装置、8104:天井、8105:蓄電装置、8200:室内機、8201:筐体、8202:送風口、8203:半導体装置、8204:室外機、8205:蓄電装置、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:半導体装置、8305:蓄電装置、8405:側壁、8406:床、8407:窓、

Claims (11)

  1.  デジタル信号が与えられる複数の定電流回路を有し、
     前記複数の定電流回路はそれぞれ、
     第1トランジスタ乃至第3トランジスタを有し、
     前記第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、
     前記第2トランジスタは、前記デジタル信号に応じて、前記第1トランジスタのソースとドレインとの間を流れる前記第1電流を制御する機能を有し、
     前記第3トランジスタはオフにすることで、前記第1トランジスタのゲートに与えられる前記アナログ電位を保持する機能を有し、
     前記第1トランジスタ乃至前記第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置。
  2.  デジタル信号が与えられる複数の定電流回路と、
     前記複数の定電流回路のそれぞれを流れる電流に応じた電圧を生成する機能を有する負荷と、
     前記電圧を出力電圧として出力する機能を有するバッファ回路と、を有し、
     前記複数の定電流回路はそれぞれ、
     第1トランジスタ乃至第3トランジスタを有し、
     前記第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、
     前記第2トランジスタは、前記デジタル信号に応じて、前記第1トランジスタのソースとドレインとの間を流れる前記第1電流を制御する機能を有し、
     前記第3トランジスタはオフにすることで、前記第1トランジスタのゲートに与えられる前記アナログ電位を保持する機能を有し、
     前記第1トランジスタ乃至前記第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置。
  3.  請求項1または2において、
     前記複数の定電流回路はそれぞれ、チャネル形成領域にシリコンを有する半導体層を有するトランジスタで構成される回路上に重ねて設けられる、半導体装置。
  4.  請求項2または3において、
     前記負荷は、第4トランジスタを有し、
     前記第4トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置。
  5.  請求項2乃至4のいずれか一において、
     前記バッファ回路は、第5トランジスタを有し、
     前記第5トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、半導体装置。
  6.  請求項2乃至5のいずれか一において、
     前記デジタル信号は、反転信号および非反転信号を有し、
     前記第1トランジスタは、前記反転信号および前記非反転信号に応じて複数設けられる、半導体装置。
  7.  アンテナと、ミキサーと、発振器と、デジタルアナログ変換回路と、を有する集積回路を有し、
     前記デジタルアナログ変換回路は、
     デジタル信号が与えられる複数の定電流回路と、
     前記複数の定電流回路のそれぞれを流れる電流に応じた電圧を生成する機能を有する負荷と、
     前記電圧を出力電圧として出力する機能を有するバッファ回路と、を有し、
     前記複数の定電流回路はそれぞれ、
     第1トランジスタ乃至第3トランジスタを有し、
     前記第1トランジスタは、設定されるアナログ電位に応じた第1電流を流す機能を有し、
     前記第2トランジスタは、前記デジタル信号に応じて、前記第1トランジスタのソースとドレインとの間を流れる前記第1電流を制御する機能を有し、
     前記第3トランジスタはオフにすることで、前記第1トランジスタのゲートに与えられる前記アナログ電位を保持する機能を有し、
     前記第1トランジスタ乃至前記第3トランジスタはそれぞれ、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置。
  8.  請求項7において、
     前記複数の定電流回路はそれぞれ、チャネル形成領域にシリコンを有する半導体層を有するトランジスタで構成される回路上に重ねて設けられる、無線通信装置。
  9.  請求項7または8において、
     前記負荷は、第4トランジスタを有し、
     前記第4トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置。
  10.  請求項7乃至9のいずれか一において、
     前記バッファ回路は、第5トランジスタを有し、
     前記第5トランジスタは、チャネル形成領域に酸化物半導体を有する半導体層を有する、無線通信装置。
  11.  請求項7乃至10のいずれか一において、
     前記デジタル信号は、反転信号および非反転信号を有し、
     前記第1トランジスタは、前記反転信号および前記非反転信号に応じて複数設けられる、無線通信装置。
PCT/IB2020/056151 2019-07-12 2020-06-30 半導体装置、無線通信装置 WO2021009591A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/615,867 US11894040B2 (en) 2019-07-12 2020-06-30 Semiconductor device and wireless communication device
JP2021532544A JPWO2021009591A1 (ja) 2019-07-12 2020-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129925 2019-07-12
JP2019-129925 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021009591A1 true WO2021009591A1 (ja) 2021-01-21

Family

ID=74210222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056151 WO2021009591A1 (ja) 2019-07-12 2020-06-30 半導体装置、無線通信装置

Country Status (3)

Country Link
US (1) US11894040B2 (ja)
JP (1) JPWO2021009591A1 (ja)
WO (1) WO2021009591A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744165B (zh) * 2021-01-06 2021-10-21 華邦電子股份有限公司 電阻式隨機存取記憶體及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066248A1 (ja) * 2003-01-17 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. 電流源回路、信号線駆動回路及びその駆動方法並びに発光装置
JP2016039634A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975907B2 (ja) 2012-04-11 2016-08-23 株式会社半導体エネルギー研究所 半導体装置
US11594176B2 (en) * 2021-03-11 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display apparatus, electronic device, and operation method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066248A1 (ja) * 2003-01-17 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. 電流源回路、信号線駆動回路及びその駆動方法並びに発光装置
JP2016039634A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
US20220310148A1 (en) 2022-09-29
US11894040B2 (en) 2024-02-06
JPWO2021009591A1 (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020240311A1 (ja) 半導体装置および電子機器
WO2021009591A1 (ja) 半導体装置、無線通信装置
WO2020240341A1 (ja) 半導体装置、または発振器
WO2020245695A1 (ja) 半導体装置
WO2020245692A1 (ja) 半導体装置
WO2020245728A1 (ja) 通信装置および電子機器
WO2020240340A1 (ja) 半導体装置
WO2020240331A1 (ja) 半導体装置、および当該半導体装置を備えた無線通信装置
WO2021038393A1 (ja) 半導体装置および制御システム
WO2020245693A1 (ja) 半導体装置
WO2021214583A1 (ja) 半導体装置
WO2021229385A1 (ja) 半導体装置
WO2021181192A1 (ja) 半導体装置、及び電子機器
WO2020240339A1 (ja) 通信装置
WO2020261039A1 (ja) 高周波増幅回路を有する半導体装置、電子部品、および電子機器
WO2021074737A1 (ja) 半導体装置
WO2020254914A1 (ja) 酸化物半導体を用いる記憶回路
US20220246596A1 (en) Display Device
JP2021082775A (ja) 撮像装置およびその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839922

Country of ref document: EP

Kind code of ref document: A1