WO2021008502A1 - 多链路通信方法和装置 - Google Patents

多链路通信方法和装置 Download PDF

Info

Publication number
WO2021008502A1
WO2021008502A1 PCT/CN2020/101730 CN2020101730W WO2021008502A1 WO 2021008502 A1 WO2021008502 A1 WO 2021008502A1 CN 2020101730 W CN2020101730 W CN 2020101730W WO 2021008502 A1 WO2021008502 A1 WO 2021008502A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
link
end time
duration
transmission
Prior art date
Application number
PCT/CN2020/101730
Other languages
English (en)
French (fr)
Inventor
淦明
周逸凡
梁丹丹
黄国刚
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227003669A priority Critical patent/KR20220030278A/ko
Priority to EP20840050.7A priority patent/EP3993491B1/en
Priority to BR112022000491A priority patent/BR112022000491A2/pt
Priority to JP2022501243A priority patent/JP7309030B2/ja
Priority to EP24155392.4A priority patent/EP4387380A3/en
Priority to AU2020314490A priority patent/AU2020314490B2/en
Publication of WO2021008502A1 publication Critical patent/WO2021008502A1/zh
Priority to US17/573,768 priority patent/US20220141785A1/en
Priority to US18/333,563 priority patent/US20230328666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to multi-link communication methods, devices and systems.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Multi-link devices can support multi-link communications, such as supporting simultaneous operation on 2.4GHz, 5GHz and 6GHz frequency bands.
  • the multi-link device can switch between different frequency bands to select the best frequency band to ensure its communication quality.
  • how to ensure the fairness of the communication of multi-link devices working on multiple links, reduce the idle rate of the links, and improve communication efficiency is of vital importance in systems supporting multi-link communication.
  • the embodiments of the present application provide a multi-link communication method, device, and system to ensure the fairness of communication of multi-link devices working on multiple links, reduce link idle rates, and improve communication efficiency.
  • the first aspect provides a multi-link communication method, which is applied to a multi-link device.
  • the multi-link device works on multiple links.
  • the multiple links include a first link and a second link.
  • the road device does not support sending and receiving PPDUs on the first link and the second link at the same time.
  • the method includes: the multi-link device sends the first physical layer protocol data unit PPDU on the first link;
  • the second PPDU is sent on the link through the contention channel, where the end time of the second PPDU is no later than the end time of the first PPDU, for example, the end time of the second PPDU is the same as the end time of the first PPDU.
  • the start time of the second PPDU is not earlier than the start time of the first PPDU, including being later than or equal to.
  • the multi-link device sends PPDUs on the first link first, and then sends PPDUs after channel competition on the second link alone.
  • the multi-link devices compete for channels independently on multiple links, and compete for the chain of channels first.
  • the channel sends the message packet first, and then competes for the link of the channel to send the message packet, which can not only guarantee the fairness of multi-link access, but also reduce the idle rate of the multi-link and improve the frequency efficiency.
  • the multi-link device does not support simultaneous transmission and reception on the first link and the second link, including: the multi-link device does not support the simultaneous transmission of physical layer protocol data units of the first bandwidth on the first link and The physical layer protocol data unit of the second bandwidth is received on the second link, and/or the multi-link device does not support receiving the physical layer protocol data unit of the first bandwidth on the first link and the The physical layer protocol data unit of the second bandwidth is sent on the second link.
  • the "simultaneous" means that there is a non-empty intersection in time between the PPDU of the first bandwidth and the PPDU of the second bandwidth.
  • the first PPDU includes uplink and downlink indications, which are used to indicate the transmission direction of the first PPDU, and the transmission direction includes uplink or downlink. Based on the uplink and downlink instructions, other devices can determine the type of the multilink device sending the first PPDU.
  • the multilink device sending the first PPDU is a multilink station; if it is downlink, send The multilink device of the first PPDU is a multilink access point.
  • the first PPDU includes first TXOP duration information
  • the first TXOP duration information indicates the duration of the first TXOP
  • the second PPDU includes second TXOP duration information
  • the second TXOP duration information indicates The duration of the second TXOP
  • the duration of the first TXOP is the same as the duration of the second TXOP. That is, the second TXOP indicated in the second PPDU may be set according to the first TXOP indicated in the first PPDU.
  • the first TXOP duration information is carried in the physical layer preamble of the first PPDU or the duration field of the MAC header of the first PPDU; the second TXOP duration information is carried in the physical layer preamble of the second PPDU or the MAC of the second PPDU In the duration field of the header.
  • the second aspect provides another multi-link communication method, which is applied to a multi-link device.
  • the multi-link device works on multiple links.
  • the multiple links include a first link and a second link.
  • the link device does not support sending and receiving PPDUs on the first link and the second link at the same time, including: the first multi-link device sends the first physical layer protocol data unit PPDU on the first link; at a preset time After the interval, the first multi-link device receives the second PPDU from the second device in response to the first PPDU on the first link; the first multi-link device receives the second PPDU from the third multi-link device on the second link
  • the end time of the third PPDU is no later than the end time of the second PPDU, "not later than” includes earlier than or equal to; optionally, the start time of the third PPDU Not earlier than the end time of the first PPDU, "not earlier than” includes later than or equal to.
  • the first multilink device and the third multilink device belong to the same basic service set BSS.
  • the first multilink device and the third multilink device belong to the same basic service set BSS.
  • the multi-link device does not support simultaneous transmission and reception on the first link and the second link, including: the multi-link device does not support the simultaneous transmission of physical layer protocol data units of the first bandwidth on the first link and The physical layer protocol data unit of the second bandwidth is received on the second link, and/or the multi-link device does not support receiving the physical layer protocol data unit of the first bandwidth on the first link and the The physical layer protocol data unit of the second bandwidth is sent on the second link.
  • the "simultaneous" means that there is a non-empty intersection in time between the PPDU of the first bandwidth and the PPDU of the second bandwidth.
  • the first PPDU includes transmission duration information
  • the transmission duration information is used to indicate the transmission duration of the second PPDU; or, the physical layer preamble of the second PPDU includes the transmission duration information ,
  • the transmission duration information is used to indicate the transmission duration of the second PPDU.
  • the third multilink device can obtain the transmission duration of the second PPDU, so that the transmission duration and end time of the third PPDU can be determined according to the transmission duration of the second PPDU, so as to prevent the first multilink device from being Simultaneous transmission and reception on the first link and the second link.
  • the third PPDU includes third TXOP duration information indicating the third TXOP duration, and the third TXOP duration does not exceed the sum of the first TXOP duration indicated by the first TXOP duration information in the first PPDU The minimum value or the earliest end value in the second duration; where the second duration is the transmission duration of the second PPDU, or the transmission duration of the second PPDU + SIFS + the transmission duration of the confirmation information in response to the second PPDU.
  • the first PPDU includes data information, and the second PPDU includes confirmation information; or, the first PPDU includes trigger information, and the second PPDU includes uplink data.
  • the first PPDU may also include other information.
  • the third aspect provides another multi-link communication method, which is applied to a multi-link device.
  • the multi-link device works on multiple links.
  • the multiple links include a first link and a second link.
  • the method includes: the third multilink device acquires the first PPDU transmitted by the first multilink device on the first link; after the end time or end time of the first PPDU, the third multilink device is in the second link On the road, send the third PPDU, the end time of the third PPDU is no later than the end time of the second PPDU, and the second PPDU is sent on the first link in response to the first PPDU. "Not later than” includes earlier than or equal to.
  • the second PPDU responds to the first PPDU sent by the first multilink device on the first link.
  • the start time of the third PPDU is not earlier than the end time of the first PPDU, and "not earlier than” includes later than or equal to.
  • the third multilink device may send the third PPDU through the contention channel.
  • the first multilink device and the third multilink device belong to the same basic service set BSS.
  • sending the third PPDU through the contention channel includes: the third multi-link device passes on the second link at or after the end time of the first PPDU The contention channel sends the third PPDU.
  • the first PPDU includes transmission duration information, and the transmission duration information is used to indicate the transmission duration of the second PPDU; or, the physical layer preamble of the second PPDU includes the transmission duration information, and the transmission duration information Used to indicate the transmission duration of the second PPDU.
  • the third multilink device can obtain the transmission duration of the second PPDU, so that the transmission duration and end time of the third PPDU can be determined according to the transmission duration of the second PPDU, so as to prevent the first multilink device from being Simultaneous transmission and reception on the first link and the second link.
  • the third PPDU includes third TXOP duration information indicating the third TXOP duration, and the third TXOP duration does not exceed the sum of the first TXOP duration indicated by the first TXOP duration information in the first PPDU The minimum value or the earliest end value in the second duration; where the second duration is the transmission duration of the second PPDU, or the transmission duration of the second PPDU + SIFS + the transmission duration of the confirmation information in response to the second PPDU.
  • the first PPDU includes data information, and the second PPDU includes confirmation information; or, the first PPDU includes trigger information, and the second PPDU includes uplink data.
  • the first PPDU may also include other information.
  • a multi-link communication device which works on multiple links, and the multiple links include a first link and a second link.
  • the device includes: a first sending module, configured to send a first physical layer protocol data unit PPDU on a first link; a second sending module, configured to send a second PPDU through a contention channel on a second link, wherein,
  • the end time of the second PPDU is no later than the end time of the first PPDU.
  • the end time of the second PPDU is the same as the end time of the first PPDU.
  • the start time of the second PPDU is not earlier than the start time of the first PPDU, including being later than or equal to.
  • the multi-link device sends PPDUs on the first link first, and then sends PPDUs after channel competition on the second link alone.
  • the multi-link devices compete for channels independently on multiple links, and compete for the chain of channels first.
  • the channel sends the message packet first, and then competes for the link of the channel to send the message packet, which can not only guarantee the fairness of multi-link access, but also reduce the idle rate of the multi-link and improve the frequency efficiency.
  • the device further includes a first processing module and a second processing module.
  • the first processing module is used to generate the first PPDU
  • the second processing module is used to generate the second PPDU.
  • the first processing module and the second processing module may also be one processing module.
  • a multi-link communication device which works on multiple links.
  • the multiple links include: a first link and a second link, including:
  • the first transceiver module is configured to send the first physical layer protocol data unit PPDU on the first link;
  • the first transceiving module is configured to, after a preset time interval, the first multilink device receives a second PPDU that a second device responds to the first PPDU on the first link;
  • the second transceiver module is configured to receive, on the second link, a third PPDU sent by a third multilink device on the second link, and the end time of the third PPDU is no later than the first link Second, the end time of the PPDU.
  • the first transceiver module further includes a first sending module and a first receiving module.
  • the second transceiver module also includes a second sending module and a second receiving module.
  • One transceiver module can support multi-link communication devices working on one link.
  • a multi-link communication device is characterized in that the device includes:
  • the first transceiver module obtains the first PPDU transmitted by the first multi-link device on the first link;
  • the second transceiver module is configured to send a third PPDU on the second link, the end time of the third PPDU is no later than the end time of the second PPDU, and the second PPDU is on the first link In response to the first PPDU.
  • the first transceiver module further includes a first sending module and a first receiving module.
  • the second transceiver module also includes a second sending module and a second receiving module.
  • One transceiver module can support multi-link communication devices working on one link.
  • the end time of the third PPDU is no later than the end time of the second PPDU, and "not later than” includes earlier than or equal to; optionally, the first The start time of the three PPDUs is not earlier than the end time of the first PPDU, and "not earlier than” includes later than or equal to.
  • the first multilink device and the third multilink device belong to the same basic service set BSS.
  • the end time can also be called the end time
  • the start time can also be called the start time.
  • a multi-link communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device can execute any of the foregoing method.
  • the communication apparatus may be the multi-link device in the first aspect or the chip in the multi-link device in the first aspect, or may be the first multi-link device in the second aspect or the chip in it; or The communication device may be the multi-link device in the third aspect described above or a chip therein.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication apparatus may be the multi-link device in the first aspect or the chip in the multi-link device in the first aspect, or may be the first multi-link device in the second aspect or the chip in it; or The communication device may be the multi-link device in the third aspect described above or a chip therein.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • Figure 1 is a schematic diagram of a multi-link communication scenario
  • FIG. 2 is a schematic diagram of a sequence of multi-link communication for simultaneous access to multiple links according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of a time sequence of a single link communication for accessing a single link according to an embodiment of the application
  • FIG. 4 is a first schematic diagram of a sequence of multi-link communication provided by an embodiment of the application.
  • FIG. 5 is a second schematic diagram of a sequence of another multi-link communication provided by an embodiment of this application.
  • FIG. 6 is a third schematic diagram of a sequence of yet another multi-link communication provided by an embodiment of this application.
  • FIG. 7 is a fourth schematic diagram of a sequence of yet another multi-link communication provided by an embodiment of this application.
  • FIG. 8 is a fifth schematic diagram of a sequence of yet another multi-link communication provided by an embodiment of this application.
  • FIG. 9 is a first structural diagram of a multi-link communication device provided by an embodiment of this application.
  • FIG. 10 is a second schematic structural diagram of another multi-link communication device provided by an embodiment of this application.
  • FIG. 11 is a third structural schematic diagram of another multi-link communication device provided by an embodiment of this application.
  • Multi-link devices are devices that can work on multiple links.
  • the multiple links are multiple links that are different in the frequency domain.
  • the multiple links may be multiple different frequency bands, and the multiple links may also be different channels on the same frequency band.
  • frequency bands may include 2.4 GHz, 5 GHz, 6 GHz, etc.
  • the bandwidth of a channel on a frequency band may be 20 MHz, 40 MHz, 80 MHz, 160 MHz, 320 MHz, etc.
  • the basic unit is 20 MHz.
  • the channel bandwidth may be further expanded, and the basic unit may also be 40MHz or greater.
  • a multi-link device includes multiple stations (stations, STAs).
  • a station corresponds to a link and works on the corresponding link.
  • the station can be a non-AP station or Access point station (AP station).
  • Fig. 1 shows an exemplary communication scenario of an embodiment of the present application.
  • the communication system includes a first link device and a second multi-link device.
  • a multi-link device includes multiple stations (for example, STA1, STA2,...STAn), and multiple STAs work on multiple links (for example, link 1, link 2,...link n), of which one station Working on one link, multiple sites can also belong to a multi-link entity, and the link entity shares a media access control MAC (media access control) service access point SAP (service access point).
  • MAC media access control
  • SAP service access point
  • the multi-link device is a multi-link access point, including multiple access point (access point, AP) sites, where one access point corresponds to a link and works on the corresponding link on.
  • the multi-link device is a multi-link site, including multiple non-access point sites, where one non-access point site corresponds to a link and works on the corresponding link.
  • the multi-link device may include both access point sites and non-access point sites. Therefore, the solution of the embodiment of the present application can be applied to the communication between one multi-link access point and one multi-link site, and can also be applied to the communication between at least two multi-link access points. It can be applied to communication between at least two multi-link sites, and of course, it can also be applied to communication between multi-link devices that include both access point sites and non-access point sites.
  • the access point AP included in the multi-link device can be a communication device with wireless communication function, a communication device that provides services for non-access point sites, supports mobile users to access wired networks, and can be deployed in homes, buildings, and campuses , The typical coverage radius is tens of meters to hundreds of meters, of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless stations together, and then connect the wireless network to the Ethernet.
  • the AP can support multiple communication protocols, such as cellular communication protocols and WLAN communication protocols.
  • the AP may be a device with a wireless fidelity (wireless-fidelity, WiFi) chip, and may support a WLAN communication protocol.
  • the AP can support the next generation of 802.11ax.
  • the multi-link AP can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the stations included in the multi-link device may be communication devices with wireless communication functions, and may support multiple communication protocols, for example, cellular communication protocols and WLAN communication protocols.
  • the STA may be a device with a wreless-fidelity (WiFi) chip and can support WLAN communication protocols.
  • WiFi wireless-fidelity
  • a multi-link STA can support the next generation of 802.11ax.
  • the STA can also support Multiple WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • STA can also be a terminal device, such as a mobile phone that supports WiFi communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, a smart wearable device that supports WiFi communication, and Vehicle-mounted communication equipment with WiFi communication function and computers supporting WiFi communication function, etc.
  • a terminal device such as a mobile phone that supports WiFi communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, a smart wearable device that supports WiFi communication, and Vehicle-mounted communication equipment with WiFi communication function and computers supporting WiFi communication function, etc.
  • Multi-link devices working on multiple links are usually unable to support simultaneous transmission and reception on multiple links due to energy leakage between the links and insufficient processing capabilities of multi-link devices for simultaneous transmission and reception. Even if multi-link devices allow simultaneous transmission and reception on multiple links, data packets sent on one link will interfere with data packets received on another link, resulting in poor communication quality. Therefore, a variety of solutions have been proposed for situations where two or more links of a multi-link device cannot perform simultaneous transmission and reception.
  • One solution is the synchronous transmission method.
  • the main principle is to simultaneously access the channel through multiple links independently competing for channels.
  • data packets sent on multiple links occupy the same length of time (if necessary, this can be achieved by filling spam bits).
  • An implementation of simultaneous access to the channel includes: when a multi-link device passes through a competing channel on one link, for example, using enhanced distributed channel access (EDCA), back off to 0, preempt to send If there is a chance, the multi-link device checks whether the point coordination function interframe space (PIFS) time is free on other links. If it is idle, multiple links are sent at the same time. If it is busy, you can choose to send on a single link or choose not to send.
  • PIFS point coordination function interframe space
  • the AP competes for the channel through EDCA on link 1, and the backoff count drops to 0, and then looks back at the PIFS time on link 2. If it is idle, the physical layer is sent on both links together. Protocol data unit (physical protocol data unit, PPDU), the transmission time of the PPDU sent on the two links is the same, and then at a fixed interval, such as SIFS (Short interframe space, short interframe space) defined by 802.11, multi-link
  • SIFS Short interframe space, short interframe space
  • the device receives the acknowledgement frame in response to the station on the two links.
  • Block Ack (BA) is taken as an example. Of course, it can also be an acknowledgement (Ack) frame.
  • the synchronous transmission method can avoid the problem of multiple links receiving and sending at the same time, but in this solution, multi-link devices compete for the channel on one link first, and then send data packets on other links that are idle during the lookback PIFS time
  • conventional listening and backoff are not performed on other links, but to look back to see if the PIFS is busy, which results in the stations in the multi-link device having priority access to channels on other links, which is unfair to other stations.
  • Another solution is to prohibit simultaneous sending and receiving.
  • the stations in the multi-link device only send data packets on one of the links.
  • the multi-link device needs to prohibit the receiving end of the data packet and the basic service set on the other link. , BSS) other stations in the competition channel to send data, that is, stop its back-off.
  • BSS basic service set on the other link.
  • the AP in the multi-link device competes for the channel on link 1, and sends a physical protocol data unit (PPDU) to site A.
  • site A is a multi-link site
  • the site When A receives a data packet sent by AP, it needs to stop the backoff of other links until the end of the data unit or the transmission time of the data unit plus the longest transmission time of the SIFS and confirmation message frame.
  • the multi-link device in this BSS detects that the AP sends data packets on link 1, it also needs to stop its backoff on other links.
  • it is necessary to stop the backoff of the multi-link station in the BSS on the link that does not receive the data packet. Although it solves the problem of avoiding the simultaneous transmission and reception of the station, it wastes idle link spectrum resources.
  • the embodiment of the present application provides a multi-link communication method, which can not only guarantee the fairness of multi-link access, but also reduce the idle rate of the multi-link and increase the frequency when the simultaneous multi-link transmission and reception is not supported. effectiveness.
  • the channel link is preempted to send PPDUs, and then the channel link is preempted to send PPDUs, but then
  • the end time of the PPDU needs to be no later than the end time of the PPDU sent first.
  • the end time of the PPDU sent later is the same as the end time of the PPDU sent first, that is, the start time does not need to be the same, but the end time is the same.
  • the end time can also be referred to as the end time or the end time point
  • the start time can also be referred to as the start time or the start time point.
  • An embodiment of the present application provides a multi-link communication method, which can be applied to a multi-link device, and the method includes:
  • the multilink device sends a first physical layer protocol data unit PPDU on the first link.
  • the multi-link device can work on at least two links.
  • the at least two links include a first link and a second link.
  • the multi-link device does not support simultaneous connection between the first link and the second link.
  • the first PPDU may be sent by a station working on the first link in the multi-link device.
  • the multilink device does not support sending and receiving PPDUs on the first link and the second link at the same time, including: the multilink device does not support sending the first bandwidth on the first link at the same time
  • the physical layer protocol data unit and the physical layer protocol data unit receiving the second bandwidth on the second link, and/or the multi-link device does not support simultaneous reception of the first bandwidth on the first link
  • the "simultaneous" means that there is a non-empty intersection in time between the PPDU of the first bandwidth and the PPDU of the second bandwidth.
  • the first bandwidth and the second bandwidth include but are not limited to one of 20MHz, 40MHz, 80MHz, 160MHz and 320MHz.
  • “simultaneous transmission and reception” in this application does not mean that there is no difference in time.
  • “simultaneous transmission and reception” can refer to the transmission time of the PPDU of the first bandwidth sent on the first link and the transmission time on the second link.
  • the transmission time of the transmitted PPDU of the second bandwidth has a non-empty intersection in time.
  • the start and end time is [S1, E1]
  • the start and end time is [S2, E2]
  • [ S1,E1] and [S2,E2] have a non-empty intersection.
  • the multi-link device may send the first PPDU through a contention channel on the first link, and the mode of the contention channel may be EDCA or multi-user EDCA (multi-user EDCA, MU EDCA) specified in the 802.11 protocol, or, Traditional competitive channel methods, etc.
  • the EDCA competition method includes: the multi-link device first listens for a period of AIFS, and then starts to back off, back off to 0 before starting to send data, if the channel is busy during the back off process, suspend or stop back off, and wait until the next channel Idle, then re-compete for the channel based on the number of backoffs suspended last time, including processes such as AIFS time listening and backoff.
  • the multilink device may also have preempted the channel on the first link, and within the preempted transmission opportunity (TXOP), send the first PPDU on the first link.
  • a PPDU is a data packet in the TXOP.
  • the first PPDU may include a data frame, a management frame, or a control frame, etc., or an aggregation packet of multiple frames.
  • the multilink device sends a second PPDU through a contention channel on the second link, where the end time of the second PPDU is no later than the end time of the first PPDU;
  • Multi-link devices compete for channels on the second link, and after competing for the channel, send the second PPDU on the second link.
  • the second PPDU transmission time is no earlier than (equal to or later than) the first PPDU, and the second PPDU It can be sent by the station working on the second link in the multi-link device.
  • the channel competition mode of the multi-link device on the second link may also be EDCA or multi-user EDCA (multi-user EDCA, MU EDCA) specified in the 802.11 protocol, or a traditional channel competition mode.
  • the second PPDU may include a data frame, a management frame, or a control frame, etc., or an aggregation packet of multiple frames.
  • the multilink device may not compete for the channel, but send the second PPDU within one TXOP.
  • the end time of the second PPDU is no later than the end time of the first PPDU, including: the end time of the second PPDU is the same as the end time of the first PPDU. Since the first PPDU is aligned with the second PPDU, the situation where multiple link devices may transmit and receive at the same time is avoided. It should be noted that since the multi-link device knows the duration of the first PPDU, when sending the second PPDU, the duration of the second PPDU can be accurately determined according to the duration of the first PPDU, so that the end time of the second PPDU is different. Later than the end time of the first PPDU. In another manner, the multilink device can also learn the transmission duration of the first PPDU by listening to the length field in the L-SIG field of the traditional preamble of the first PPDU sent first.
  • the length of the TXOP indicated by the second PPDU may be set to be the same as the length of the TXOP indicated by the first PPDU, where the information indicating the length of the TXOP may be located in the physical layer preamble of the PPDU or in the MAC header of the PPDU In the duration field. Therefore, in an implementation manner, the first PPDU includes the first TXOP duration information, the first TXOP length duration information indicates the duration of the first TXOP, the second PPDU includes the second TXOP duration information, and the second TXOP duration information indicates the second TXOP. The duration of the first TXOP is the same as the duration of the second TXOP.
  • the first TXOP duration information is carried in the physical layer preamble of the first PPDU or the duration field of the MAC header of the first PPDU; the second TXOP duration information is carried in the physical layer preamble of the second PPDU or the duration field of the MAC header of the second PPDU in.
  • the station Before performing step S101 and step S102, when the station associates with the AP, or listens to the beacon frame sent by the AP, it can obtain the capability information of the multi-link AP to learn which links the multi-link AP cannot support simultaneously. Transceiving, which links can support simultaneous transmission and reception, furthermore, know which links between multi-link APs cannot simultaneously transmit and receive PPDUs of the first bandwidth and PPDUs of the second bandwidth, where the bandwidth of the PPDU determines the self-interference of the multiple links the elements of.
  • the ability information can be hermit indication information or display indication information.
  • the specific indication method is not specifically limited in the embodiment of this application.
  • the method further includes:
  • the multilink device receives first confirmation information in response to the first PPDU on the first link.
  • the multilink device receives second confirmation information in response to the second PPDU on the second link.
  • the first confirmation information is sent by the destination receiving end of the first PPDU
  • the second confirmation information is sent by the destination receiving end of the second PPDU.
  • the destination receiving ends of the first PPDU and the second PPDU may be multi-link devices or not.
  • Multi-link devices are devices that work on the link, such as AP or non-AP STA.
  • the destination receiving end of the first PPDU and the first multilink device may be located in the same basic service set (basic service set, BSS), and the destination receiving end of the second PPDU and the first multilink device are located in the same BSS.
  • BSS basic service set
  • the destination receiving end of the second PPDU and the first multilink device are located in the same BSS.
  • the destination receiving end of the first PPDU and the destination receiving end of the second PPDU may be the same destination receiving end or different destination receiving ends.
  • the destination receiving end of the first PPDU and the second PPDU are the same.
  • the receiving end is a multi-link device, which is not limited in this application.
  • the confirmation information is sent after a preset time interval of the PPDU, and the preset time interval may be SIFS.
  • the first confirmation information and the second block confirmation information may be block confirmation BA or ACK.
  • the duration of the first confirmation message and the second confirmation message are the same.
  • the multi-link device that sends the first PPDU may be a multi-link station, and the destination receiving end of the first PPDU may be an access point; in another embodiment, the multi-link device that sends the first PPDU may be As a multi-link access point, the destination receiver of the first PPDU may be a station.
  • the physical layer preamble of the first PPDU includes uplink and downlink indications (which can also be recorded as uplink/downlink indications). To indicate the transmission direction of the first PPDU, the transmission direction includes uplink or downlink.
  • the PPDU sent by the AP in the multilink device to the station belongs to downlink, and the PPDU sent by the station in the multilink device to the AP belongs to uplink. It is worth noting that if the sender of the first PPDU is a multi-link AP, when the multi-link AP first sends the first PPDU on the first link, other multi-link stations in this BSS cannot be on other links. (For example, the second link) competes for the channel, and cannot send PPDUs to the multi-link AP on the second link, thereby avoiding simultaneous transmission and reception at the multi-link AP.
  • the sender is a multi-link station
  • the multi-link station when the multi-link station first sends the first PPDU on the first link, other multi-link stations in this BSS can perform on other links (for example, the second link) Contend for the channel, and then send the second PPDU to the access point in the BSS.
  • the second PPDU transmission time is equal to or later than the first PPDU transmission time, but the end time of the second PPDU is not later than the end time of the first PPDU. In an implementation manner, the end time of the second PPDU is the same as the end time of the first PPDU.
  • the first PPDU in the case of downlink transmission, can also be sent by the access point in the multi-link device, and the destination receiver of the first PPDU is the station; in the case of uplink transmission, the first PPDU can also be It is sent by a station in a multi-link device, and the destination receiving end of the first PPDU is the access point.
  • Figure 4 shows a situation of downlink transmission.
  • Multi-link AP sends PPDU1 to station A on link 1 through the contention channel, then competes for the channel on link 2, and sends PPDU2 to station B.
  • the start time is not earlier (equal to or later than) the start time of PPDU1.
  • the case of equal is shown in FIG. 4, and the end time of PPDU2 is aligned with the end time of PPDU1.
  • the station A and the station B replies with confirmation information, such as BA, on the channels on the link 1 and link 2, respectively.
  • This embodiment can also be extended to the AP sending multi-user data packets to multiple stations on link 1 and link 2, for example, through 802.11ax HE MU PPDU, which can be in the form of OFDMA or MU-MIMO. Or a mixture of them.
  • Figure 5 shows an uplink transmission situation.
  • Multilink STAs send PPDU1 to AP1 on link 1, then compete for the channel on link 2, and send PPDU2 to AP2 and PPDU2.
  • the start time of PPDU1 is not earlier than the start time of PPDU1, including equals and later.
  • Figure 5 shows the case of equals.
  • the end time of PPDU2 is aligned with the end time of PPDU1.
  • AP1 and AP2 reply confirmation messages on the channels on link 1 and link 2, respectively.
  • AP1 and AP2 can also be access points working on different links in the same multi-link access point, or access points in different multi-link devices, etc. .
  • the multi-link device in steps S101 and S102 is the first multi-link device.
  • Other multi-link sites (non-AP STA) belonging to the same BSS as the first multi-link device can perform tunneled direct link setup (TDLS) transmission, for example, other multi-link sites
  • TDLS tunneled direct link setup
  • the station (non-AP STA) in can send other message packets to another station (non-AP STA) within the transmission time when the first multilink device sends the first PPDU.
  • the specific implementation method is as follows:
  • the first implementation method If the first multi-link device is a multi-link AP, that is, the first PPDU is a downlink transmission, when the multi-link AP first sends the first PPDU on the first link, this At this time, other multi-link stations in this BSS can perform TDLS message packet transmission through channel contention on other links (second link), where the sending time of the TDLS message packet is equal to or later than the sending time of the first PPDU.
  • the end time of the TDLS message packet mentioned in this embodiment should be no later than the end time of the first PPDU sent by the AP, including the end of the TDLS message packet The time is earlier than the end time of the first PPDU, or the end time of the TDLS message packet is the same as the end time of the first PPDU. In other cases, there can be no restrictions.
  • Second implementation mode if the first multilink device is a multilink station, that is, the first PPDU is uplink transmission, when the multilink station first sends the first PPDU on the first link, at this time Other multi-link sites in this BSS can transmit TDLS message packets through channel competition on other links (second link), but the receiving object of TDLS message packets cannot be the first multi-link that sends the first PPDU Equipment, that is, multi-link sites. In other cases, there are no restrictions.
  • the multi-link device conducts independent competition for channels on multiple links.
  • the link that competes for the channel first sends the PPDU, and then the link that competes for the channel sends the PPDU, which can guarantee the multi-chain
  • the fairness of channel access can also reduce the idle rate of multiple links and improve frequency efficiency.
  • the second embodiment provides another multi-link communication method, which can be applied to a multi-link device, and the method includes:
  • the first multilink device sends a first physical layer protocol data unit PPDU on the first link.
  • the first multi-link device does not support simultaneous transmission and reception on the first link and the second link.
  • S202 The second device sends a second PPDU in response to the first PPDU after a preset time interval during which the first link receives the first PPDU.
  • the preset time interval may be SIFS.
  • the first multilink device After a preset time interval, the first multilink device receives a second PPDU in response to the first PPDU on the first link.
  • the intended recipient of the first PPDU is the second device, and the second device receives the first PPDU, and after a preset time interval, sends a second PPDU in response to the first PPDU on the first link.
  • the second device may only be a device working on a single link (that is, the first link), may also support multi-link communication, and belong to the same BSS as the first multi-link device.
  • the preset time interval is agreed upon by the agreement, and may be SIFS.
  • the first PPDU may include a data frame, a management frame or a control frame, or may include an aggregation of multiple frames.
  • the first multilink device may be a multilink AP and a multilink STA.
  • the first PPDU includes data information
  • the second PPDU includes confirmation information in response to the data information. If the first PPDU is downlink, the first multilink device is a multilink AP; if the first PPDU If it is uplink, the first multilink device is a multilink STA.
  • the first PPDU includes trigger information for triggering the second device to send data information
  • the second PPDU includes data information scheduled by the trigger information
  • the first multilink device is a multilink AP.
  • the physical layer preamble of the PPDU here includes uplink/downlink indications. For the explanation of the uplink/downlink indications, please refer to the foregoing embodiment 1, which is not repeated here.
  • the third multilink device obtains the first PPDU sent by the first multilink device on the first link.
  • the order of S203 and S204 is not limited. "Acquisition" can be receiving or identifying.
  • the third multi-link device may also obtain a second PPDU that is sent by the second device on the first link in response to the first PPDU.
  • the third multi-link device can determine the end time or transmission duration of the second PPDU based on the information carried in the first PPDU and/or the second PPDU, and thereby determine the end time or the transmission duration of the second PPDU according to the end of the second PPDU
  • the time or transmission duration determines the transmission duration or end time of the third PPDU to be sent. For details on how to obtain it, see the description below.
  • the third multilink device sends a third PPDU on the second link, and the end time of the third PPDU is no later than the end time of the second PPDU.
  • the third multilink device may also send the third PPDU through the contention channel.
  • the third multi-link device belonging to the same basic service set as the first multi-link device may identify or receive the first PPDU, and after the end time or end time of the first PPDU, the second The third PPDU is transmitted on the link through channel competition, the transmission time of the third PPDU is later than or equal to the end time of the first PPDU, and the end time of the third PPDU is earlier than or equal to the end time of the second PPDU.
  • the end time of the third PPDU is the same as the end time of the second PPDU.
  • the sending time of the third PPDU need not be earlier than the end time of the first PPDU sent by the first multilink device, that is, the second device starts at or after the end time of the first PPDU.
  • the third PPDU is sent on the second link through the contention channel, so as to prevent the first multi-link device from simultaneously transmitting and receiving on the first link and the second link.
  • the third bandwidth of the third PPDU and the first bandwidth of the first PPDU need to meet a certain relationship, it is necessary to prevent the first link device from sending the first PPDU on the first link and the second link receiving the third PPDU There is overlapping time (simultaneous transmission and reception); otherwise, the solution in the embodiment of the application may not be used.
  • the foregoing relationship may be that the first bandwidth and the third bandwidth are greater than a certain bandwidth threshold, and the principle is that the frequency interval between the first PPDU of the first bandwidth and the third PPDU of the third bandwidth is smaller than a certain threshold.
  • the third multi-link device may include a third-party multi-link station that is a non-target receiving end of the first PPDU and a target receiving end of the first PPDU, that is, the second device.
  • the third multi-link device After identifying or receiving the first PPDU, the third multi-link device will independently compete for channels on other links (second links), and send the third PPDU after competing for the channel.
  • the third-party multi-link device in the BSS starts to compete for the channel after the end time or the end time of the first PPDU, and after obtaining the channel transmission right, starts to send the third PPDU.
  • the method of identifying or receiving the first PPDU includes identifying the indication information of the preamble of the first PPDU, including but not limited to downlink/uplink indication information, and the indication information of the MAC header in the first PPDU, such as the MAC address of the sender Wait.
  • the PPDU sent by the multi-link device in this embodiment can be a single-user message packet sent to a single site, or a multi-user message packet sent to multiple sites (including OFDMA or MU-MIMO, or a mixed message packet) .
  • the first multilink device is on the second link and receives the third PPDU sent by the third multilink device on the second link, and the end time of the third PPDU is no later than the second link. End time of the PPDU. In an implementation manner, the end time of the third PPDU is equal to the end time of the second PPDU.
  • the third multilink device may determine the end time of the third PPDU, which may include the following implementation manners:
  • the first PPDU sent by the first multilink device carries a length or time indication (or called transmission duration information), which is used to indicate the transmission duration of the second PPDU; the third multilink device is based on the first
  • the transmission duration information in the PPDU can determine the transmission duration of the second PPDU, so as to determine the transmission duration and/or end time of the third PPDU according to the transmission duration of the second PPDU.
  • the physical layer preamble of the second PPDU sent by the second device includes the transmission duration information, and the transmission duration information is used to indicate the transmission duration of the second PPDU, for example, the transmission duration information is a traditional preamble The length field in the L-SIG field.
  • the third multilink device can determine the transmission duration of the second PPDU based on the transmission duration information included in the physical layer preamble of the second PPDU, and thereby determine the transmission duration and/or the transmission duration of the third PPDU according to the transmission duration of the second PPDU End Time.
  • the transmission duration information carried in the first PPDU sent by the first multilink device may also be used to indicate that the second PPDU is sent at a fixed interval after the end of the first PPDU, such as SIFS time.
  • the third multi-link device is the destination receiver of the first PPDU, that is, the second device, the second device itself knows the duration of the second PPDU sent, so the first type mentioned above may not be used.
  • the embodiment and the second embodiment determine the transmission duration and/or end time of the third PPDU.
  • the second device is a multi-link device. If the third multi-link device is a multi-link device other than the first multi-link device and the second device, the first and second embodiments described above can be used to determine the transmission of the third PPDU Duration and/or end time.
  • the second device may only be a device that works on a single link (that is, the first link), or may be a device that supports multiple links.
  • the second PPDU responded by the second device includes confirmation information. Since the transmission time of the confirmation information is relatively short, the transmission time obtained by other multi-link devices in this BSS on other links through the above-mentioned method is also relatively short.
  • the other multi-link devices include the first in the BSS except the first one. Devices other than the link device, for example, the third multi-link device.
  • the message packet sent by the multi-link AP may carry the transmission time information of the confirmation information in the MAC header.
  • the transmission duration information can be a length field, in bytes, and its function is similar to the length field in the L-SIG of the traditional preamble.
  • the length field can be carried in the length subfield included in the triggered response schedule (TRS) field in 802.11ax.
  • TRS triggered response schedule
  • Other subfields can be set to special values or reserved values.
  • the protocol since the transmission time of the confirmation information is short, and the transmission opportunities available to other devices are short, the protocol may prohibit transmission during the transmission time, or may allow transmission during the transmission time.
  • the second PPDU responded by the second device may further include other frames. It also needs to carry transmission duration information in the first PPDU. For example, length indication information is carried in the MAC header to indicate the second The duration of PPDU transmission.
  • the first PPDU sent by a multi-link AP when the first PPDU sent by a multi-link AP includes a trigger frame that carries trigger information, it may also include other aggregated frames.
  • the trigger frame is used to schedule multiple users for uplink OFDMA transmission, MU-MIMO transmission or OFDMA and MU-MIMO hybrid transmission.
  • the second PPDU of the multi-site response based on the trigger frame, including uplink data, such as data frame at this time, the multi-link site in the BSS has a higher transmission opportunity on other links through the above method. long.
  • the trigger information included in the first PPDU may not be carried in a separate trigger frame, and the trigger information may also be carried in the MAC header of the MAC frame in the first PPDU.
  • the trigger frame sent by the multi-link AP includes a length indication for indicating the transmission time of the second PPDU, and the length indication may be in a unit of time length or bytes.
  • the length indication may be in a unit of time length or bytes.
  • the third TXOP duration of the third PPDU sent by the third multilink device in this BSS can be set according to the first TXOP duration of the first PPDU or the transmission duration of the second PPDU.
  • the duration of the third TXOP of the third PPDU can be set to the minimum value or the earliest end value of the following two.
  • the third PPDU includes third TXOP duration information indicating the third TXOP duration, and the third TXOP duration does not exceed: the first TXOP duration and the first TXOP duration indicated by the first TXOP duration information in the first PPDU The minimum value or the earliest end value of the two durations; wherein the second duration is the transmission duration of the second PPDU, or the transmission duration of the second PPDU + SIFS + response to the confirmation information of the second PPDU Transmission time.
  • the first TXOP duration information is carried in the physical layer preamble of the first PPDU or the duration field of the MAC header of the first PPDU
  • the third TXOP duration information is carried in the physical layer of the third PPDU.
  • the earliest end value refers to the earliest end time among the end times of each duration.
  • the duration of the third TXOP does not exceed the earliest end value, which means that the end time value of the duration of the third TXOP does not exceed the earliest end value, and the duration of the third TXOP does not exceed the minimum value, which means that the duration of the third TXOP does not exceed the minimum duration.
  • the multi-link AP successfully competes for the channel of link 1, sends PPDU1 containing the trigger frame, and schedules stations A1, A2, and A3 to send uplink multi-user data packets (PPDU2).
  • the length field in the trigger frame indicates the transmission duration of the uplink multi-user data packet (PPDU2).
  • the third-party multi-link station STAB in this BSS After receiving the PPDU1 sent by the multi-link AP1 on link 1, the third-party multi-link station STAB in this BSS starts to compete for the channel of link 2 at the end of PPDU1, and then sends PPDU3, as shown in Figure 6
  • the two possible times for STAB to send PPDU3 on link 2 may be earlier or later than the start time of dispatching stations A1, A2 and A3 to send uplink multi-user data packets (PPDU2), and of course it may be equal to (not shown in Figure 6) ).
  • PPDU3 is earlier or later than, or equal to the start time of stations A1, A2 and A3 sending uplink multi-user data packets (PPDU2), depending on the time that STAB seizes the channel on link 2.
  • the end time for STAB to send PPDU3 on link 2 is the same as the end time for scheduling stations A1, A2, and A3 to send uplink multi-user data packets.
  • sites A1, A2, and A3 may not be multi-link sites, and site B is a multi-link site.
  • channel contention can also be performed on link 2 to send PPDU3.
  • the multi-link AP successfully competes for the channel of link 1 and sends a PPDU1 containing downlink data.
  • the receiving ends of the downlink data are stations A1, A2, and A3.
  • the stations A1, A2, and A3 send PPDU2 containing confirmation information after the SIFS time.
  • the third-party multi-link station STAB in the BSS After receiving the PPDU1 sent by the multilink AP1 on the link 1, the third-party multi-link station STAB in the BSS starts to compete for the channel of the link 2 at the end of the PPDU1, and then sends the PPDU3.
  • sites A1, A2, and A3 may not be multi-link sites, and site B is a multi-link site.
  • channel contention can also be performed on link 2 to send PPDU3.
  • the multi-link STA successfully competes for the channel of link 1, and sends a PPDU1 containing uplink data, and the receiving end of the uplink data is the AP.
  • the AP sends a PPDU2 containing confirmation information after the SIFS time.
  • PPDU2 may also include other frames.
  • the AP starts to compete for the channel on the channel on link 2, and after seizing the channel, it sends PPDU3 on link 2 to site A or other sites.
  • the end time of the PPDU3 is the same as the method mentioned above, and will not be repeated here.
  • other multi-link sites in the same BSS as the first multi-link device can perform channel direct link Tunneled Direct Link Setup (TDLS) transmission.
  • TDLS Tunneled Direct Link Setup
  • a station (non-AP STA) in another multi-link station can be on the second link within the transmission time of the second device sending the second PPDU Send other message packets to another station (non-AP STA) through channel competition.
  • the specific implementation method is as follows:
  • the first implementation method if the first multi-link device is a multi-link AP and the second device is a multi-link station, when the multi-link AP first sends the first PPDU on the first link, that is to say, the first
  • the multi-link AP first sends the first PPDU on the first link, that is to say, the first
  • other multi-link stations in this BSS can transmit TDLS message packets through the contention channel after the end time of the first PPDU on other links (second link) at this time, but TDLS messages
  • the receiving object of the packet cannot be the receiving end of the first PPDU, that is, the second device. In other cases, there are no restrictions.
  • the second implementation mode If the first multi-link device is a multi-link station, when the multi-link station first sends the first PPDU on the first link, at this time, other multi-link stations in the BSS are in other chains. It is possible to transmit TDLS message packets through the contention channel on the second link. When the receiving object of the TDLS message packet is the first multi-link station, it is necessary to use the early end time of the TDLS message packet mentioned in this embodiment. Is equal to or equal to the end time of the second PPDU sent by the second device, including earlier than or equal to. In other cases, there are no restrictions.
  • the multi-link device can send another message when the PPDU ends.
  • a link starts to preempt the channel (including actions such as listening and backoff) to send PPDUs, which can not only ensure the fairness of multi-link access, but also reduce the idle rate of multi-links and improve frequency efficiency.
  • Embodiment 1 and Embodiment 2 of the present application can not only be used in scenarios where multi-link devices do not support simultaneous transmission and reception on the first link and on the second link, but also apply to multi-link scenarios.
  • the device supports the scenario of sending and receiving simultaneously on the first link and on the second link.
  • the multi-link device For multi-links that do not support simultaneous transmission and reception, the multi-link device sends a message packet on one link first, because the energy of the message packet will leak to other links, resulting in channels on other links even if they are idle At this time, the channel idle assessment (clear channel assessment, CCA) detection result is also busy.
  • CCA channel idle assessment
  • the multi-link device sends message packets on one link first, and performs CCA on other links to detect whether the channel on the link is idle or busy.
  • the detection threshold for CCA detection on the link requires a backoff (XC) dB, where C is a fixed safety value, which is specified by the agreement and can be 0 or other values.
  • the detection threshold fallback method can be applied to energy detection and signal detection. For example, when using signal detection, the usual 20M signal detection threshold is -82dBm, that is to say, if the energy detected by CCA is greater than or equal to -82dBm, It means the channel is busy, otherwise it means the channel is idle.
  • the detection threshold for CCA detection on the other links on the channel can be (-82+X1+-C1)dBm, where C1 is the estimated safety
  • the value can be agreed by the agreement, which can be 0 or other values.
  • X1 is leaked self-interference.
  • the power detected by CCA is greater than or equal to (-82+X1+-C1)dBm, the channel is judged to be busy; , The channel is judged to be idle.
  • the energy detection threshold of the main 20MHz is usually -62dBm, (-62+X2-C2), where C2 is the estimated safe value, which can be agreed by the agreement, and it can be 0 or other values.
  • C2 is the estimated safe value, which can be agreed by the agreement, and it can be 0 or other values.
  • X2 is leaked self-interference.
  • the power detected by CCA is greater than or equal to (-62+X1+-C1) dBm, the channel is judged to be busy; otherwise, the channel is judged to be idle.
  • X1 and X2 may be the same or different, and C1 and C2 may also be the same or different.
  • the detection method of the embodiment of the present application can improve the accuracy of CCA detection, so that the multi-link device can more accurately determine the idle and busy state of the channel. It should be noted that the method for setting the detection threshold proposed in the third embodiment is not limited to the solution that can be applied to any of the foregoing embodiments, and can also be applied to other scenarios of multi-link communication.
  • the multi-link communication device 900 may include a transceiver module 902.
  • the transceiver module 902 includes a first transceiver module 902a and a second transceiver module 902b.
  • the multi-link communication device includes a processing module 901.
  • a transceiver module can correspond to a station in a multi-link device, and can include a baseband circuit and a radio frequency circuit.
  • a transceiver module may include a radio frequency circuit, and multiple radio frequency circuits are coupled to a baseband circuit. Therefore, the baseband circuit may be included in the processing module. It should be noted that the number of modules in the communication device 900 is only exemplary.
  • the multi-link communication apparatus 900 can implement any method and function of the multi-link device in the first embodiment.
  • the processing module 901 is used to generate the first PPDU and the second PPDU.
  • the processing module may also include a first processing module and a second processing module. The first processing module is used to generate the first PPDU and the second processing module. The module is used to generate the second PPDU.
  • the first transceiver module 902a is configured to send a first PPDU on the first link, for example, to implement step S101
  • the second transceiver module 902b is configured to send a second PPDU on the second link through a contention channel, where the The end time of the second PPDU is no later than the end time of the first PPDU, for example, used to implement step S102.
  • the first transceiver module 902a is further configured to receive first confirmation information on the first link
  • the second transceiver module 902b is further configured to receive second confirmation information on the second link.
  • the multi-link communication apparatus 900 can implement any method and function of the first multi-link device in the second embodiment.
  • the processing module 901 is configured to generate the first PPDU; the first transceiver module 902a is configured to transmit the first PPDU on the first link, for example, to implement step S201, and the first transceiver module 902a is also configured to On one link, receiving the second PPDU in response to the first PPDU, for example, is used to implement step S203; the second transceiver module 902b is used to receive the second PPDU on the second link by the third multi-link device.
  • the multi-link communication apparatus 900 can implement any method and function of the third multi-link device in the second embodiment.
  • the processing module 901 is used to generate the third PPDU;
  • the first transceiving module 902a is used to obtain or receive the first PPDU on the first link, for example, to implement step S204;
  • the second transceiving module 902b is used to The third PPDU is sent on the link, and the end time of the third PPDU is not later than the end time of the second PPDU, for example, used to implement step S205.
  • the multi-link communication device can implement the CCA detection in the third embodiment.
  • the transceiver module is used to perform CCA detection; the processing module is used to determine whether the channel is busy or idle according to the detection result of the transceiver module.
  • the processing module is used to determine that the channel on the second link is busy when the power detected by the transceiver module on the channel on the second link is greater than or equal to (-82+X1+-C1) dBm;
  • the module is used to determine that the channel on the second link is idle when the power detected by the transceiver module on the channel on the second link is less than (-82+X1+-C1) dBm.
  • the multi-link communication device may be used to implement any method and function related to the multi-link communication device in any of the foregoing embodiments.
  • the multi-link communication device may include a processor 1001, a bus 1002, a radio frequency circuit 1004a, and a radio frequency circuit 1004b.
  • the multi-link communication device may further include a memory 1003.
  • a site in a multi-link device includes a separate radio frequency circuit and baseband circuit, which can independently realize the transceiver function on the working link; in another possible design, the multi-link A site in the equipment includes a common baseband circuit part and an independent radio frequency circuit part.
  • the data sent by the station on the working link can be generated by the common baseband circuit.
  • the baseband circuit can be included in the The processor 1001.
  • the processor 1001 is used to execute instructions to implement control and management of the multi-link communication device, and also includes signaling or data processing.
  • the bus 1002 is used for coupling and connecting various devices, so that each device can complete data or information interaction.
  • the memory 1003 may include computer programs or instructions, and the processor 1001 may run the instructions to implement the functions in the foregoing method embodiments.
  • the multi-link communication device can implement any method and function of the multi-link device in the first embodiment.
  • the processor 1001 is configured to generate the first PPDU and the second PPDU.
  • the processor may also be a baseband circuit to generate the first PPDU and the second PPDU.
  • the radio frequency circuit 1004a is used to send the first PPDU on the first link, for example, to implement step S101
  • the radio frequency circuit 1004b is used to send the second PPDU on the second link through the contention channel, wherein the second PPDU is The end time is not later than the end time of the first PPDU, for example, used to implement step S102.
  • the radio frequency circuit 1004a is further configured to receive first confirmation information on the first link
  • the radio frequency circuit 1004b is further configured to receive second confirmation information on the second link.
  • the multi-link communication apparatus can implement any method and function of the first multi-link device in the second embodiment.
  • the processor 1001 is configured to generate a first PPDU;
  • the radio frequency circuit 1004a is configured to send the first PPDU on the first link, for example, to implement step S201, and the radio frequency circuit 1004a is also configured to transmit the first PPDU on the first link.
  • the radio frequency circuit 1004b is used to receive, on the second link, the second PPDU sent by the third multilink device on the second link Three PPDUs, wherein the end time of the third PPDU is not later than the end time of the second PPDU, for example, used to implement step S206.
  • the multi-link communication apparatus can implement any method and function of the third multi-link device in the second embodiment.
  • the processor 1001 is used to generate the third PPDU; the radio frequency circuit 1004a is used to acquire or receive the first PPDU on the first link, for example, to implement step S204; the radio frequency circuit 1004b is used to transmit on the second link
  • the third PPDU, the end time of the third PPDU is not later than the end time of the second PPDU, for example, used to implement step S205.
  • the processor 1001 may be further configured to obtain the transmission duration of the second PPDU according to the transmission duration information carried in the first PPDU and/or the second PPDU, so as to determine the transmission duration or end time of the third PPDU.
  • the multi-link communication device can implement the CCA detection in the third embodiment.
  • the radio frequency circuit is used for CCA detection; the processor 1001 is used for judging the channel idle or busy state according to the detection result of the radio frequency circuit.
  • the processor 1001 is configured to determine that the channel on the second link is busy when the power detected by the radio frequency circuit 1004b on the channel on the second link is greater than or equal to (-82+X1+-C1) dBm.
  • the processor 1001 is configured to determine that the channel on the second link is idle when the power detected by the radio frequency circuit 1004b on the channel on the second link is less than (-82+X1+-C1) dBm.
  • FIG. 1 is a schematic structural diagram of a multi-link communication device provided by an embodiment of the present application.
  • the multi-link communication device can be used to implement any method and function related to the multi-link communication device in any of the foregoing embodiments.
  • the multi-link communication device 1100 may be a chip system for supporting multi-link devices to implement the functions involved in any of the above embodiments.
  • the chip system may include a processor, and optionally a memory, for Store programs or instructions.
  • the processor is used to execute programs or instructions, so that the multi-link communication device implements any method and function in the first embodiment.
  • the processor is used to execute programs or instructions, so that the multi-link communication device implements any method and function in the second embodiment.
  • the processor is used to execute programs or instructions, so that the multi-link communication device implements any method and function in the third embodiment.
  • the memory may be included in the processor, or may be a storage unit externally coupled to the processor.
  • the embodiments of the present application also provide a processor, which is configured to be coupled with a memory and used to execute any method and function related to the first multi-link device or the third multi-link device in any of the foregoing embodiments. .
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on a computer, causes the computer to execute any one of the above embodiments involving the first multi-link device or the third multi-link device Any method and function of.
  • the embodiment of the present application also provides a device for executing any method and function related to the first multi-link device or the third multi-link device in any of the foregoing embodiments.
  • An embodiment of the present application also provides a wireless communication system, which includes at least one first multi-link device and one third multi-link device involved in any of the second embodiments above.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例公开了一种多链路通信方法及相关装置。在不支持同时多链路收发场景下,多链路设备先在第一链路上发送第一物理层协议数据单元PPDU;再在第二链路上通过竞争信道发送第二PPDU,第二PPDU的结束时间不晚于第一PPDU的结束时间。该方法既保障多链路接入的公平性,又可以降低多链路的空闲率。

Description

多链路通信方法和装置
本申请要求于2019年07月12日提交中国专利局、申请号为201910629773.9、申请名称为“多链路通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及多链路通信方法、装置及系统。
背景技术
为了大幅提升无线局域网(Wireless Local Area Networks,WLAN)系统的业务传输速率,电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11ax标准在现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术的基础上,进一步采用正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)技术。OFDMA技术支持多个节点同时发送和接收数据,从而实现多站点分集增益。并且随着新的免费频段5925-7125MHz(称该段频段为6GHz)进一步被开发,WLAN系统的工作频段从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。
可以工作在多个频段上的设备称为多链路设备或多频段设备,多链路设备(multi-link device)可以支持多链路通信,例如支持同时在2.4GHz、5GHz以及6GHz频段上进行通信,即使在天线数受限的情况下,多链路设备也可以在不同的频段上进行切换,从而选择最佳的频段,保证其通信质量。然而,如何保证工作在多条链路上的多链路设备通信的公平性,并降低链路的空闲率,提升通信效率,在支持多链路通信的系统中至关重要。
发明内容
本申请实施例提供多链路通信方法、装置及系统,以保证工作在多条链路上的多链路设备通信的公平性,并降低链路的空闲率,提升通信效率。
第一方面提供一种多链路通信方法,应用于多链路设备中,该多链路设备工作多条链路上,多条链路包括第一链路和第二链路,该多链路设备不支持在第一链路和第二链路上同时收发PPDU,该方法包括:多链路设备在第一链路上发送第一物理层协议数据单元PPDU;多链路设备在第二链路上通过竞争信道发送第二PPDU,其中,第二PPDU的结束时间不晚于第一PPDU的结束时间,例如,第二PPDU的结束时间与第一PPDU的结束时间相同。可选的,第二PPDU的开始时刻不早于第一PPDU的开始时刻,包括晚于或等于。多链路设备先在第一链路上发送PPDU,再单独在第二链路上进行信道竞争后发送PPDU,多链路设备在多条链路上进行独立的竞争信道,先竞争信道的链路先发送消息包,后竞争到信道的链路后发送消息包,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
多链路设备不支持在第一链路和所述第二链路上同时收发,包括:多链路设备不支持同时在所述第一链路上发送第一带宽的物理层协议数据单元和在所述第二链路上接收第二带宽的物理层协议数据单元,和/或,多链路设备不支持同时在所述第一链路上接收第一带宽的物理层协议数据单元和在所述第二链路上发送第二带宽的物理层协议数据单 元。该“同时”指的是第一带宽的PPDU和第二带宽的PPDU在时间上存在不为空的交集。
在一种可能的设计中,第一PPDU包括上下行指示,上下行指示用于指示第一PPDU的传输方向,传输方向包括上行或下行。基于上下行指示,其他设备可以判断发送第一PPDU的多链路设备属于什么类型,可选的,如果为上行,发送第一PPDU的多链路设备为多链路站点;如果为下行,发送第一PPDU的多链路设备为多链路接入点。
在一种可能的设计中,第一PPDU包括第一TXOP时长信息,第一TXOP时长信息指示第一TXOP的时长,所述第二PPDU包括第二TXOP时长信息,所述第二TXOP时长信息指示第二TXOP的时长,第一TXOP的时长与第二TXOP的时长相同。也就是说,第二PPDU中指示的第二TXOP可以根据第一PPDU中所指示的第一TXOP来设置。第一TXOP时长信息携带于第一PPDU的物理层前导或第一PPDU的MAC头的时长字段中;第二TXOP时长信息携带于所述第二PPDU的物理层前导或所述第二PPDU的MAC头的时长字段中。
第二方面提供另一种多链路通信方法,应用于多链路设备中,该多链路设备工作多条链路上,多条链路包括第一链路和第二链路,该多链路设备不支持在第一链路和第二链路上同时收发PPDU,包括:第一多链路设备在所述第一链路上发送第一物理层协议数据单元PPDU;在预设时间间隔后,第一多链路设备在第一链路上接收第二设备响应于第一PPDU的第二PPDU;第一多链路设备在第二链路上,接收由第三多链路设备在第二链路上发送的第三PPDU,第三PPDU的结束时间不晚于第二PPDU的结束时间,“不晚于”包括早于或等于;可选的,第三PPDU的起始时刻不早于第一PPDU的结束时间,“不早于”包括晚于或等于。可选的,第一多链路设备与第三多链路设备属于同一个基本服务集BSS。采用上述方法,其他多链路设备收到第一多链路设备在第一链路上发送的PPDU时,可以在该PPDU结束时在另一条链路上开始抢占信道(包括侦听和退避等动作)从而发送PPDU,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
多链路设备不支持在第一链路和所述第二链路上同时收发,包括:多链路设备不支持同时在所述第一链路上发送第一带宽的物理层协议数据单元和在所述第二链路上接收第二带宽的物理层协议数据单元,和/或,多链路设备不支持同时在所述第一链路上接收第一带宽的物理层协议数据单元和在所述第二链路上发送第二带宽的物理层协议数据单元。该“同时”指的是第一带宽的PPDU和第二带宽的PPDU在时间上存在不为空的交集。
在一种可能的设计中,所述第一PPDU包括传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长;或,第二PPDU的物理层前导包括所述传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长。根据传输时长信息,第三多链路设备可以获取到第二PPDU的传输时长,从而可以根据第二PPDU的传输时长确定第三PPDU的传输时长和结束时间,以避免第一多链路设备在第一链路和第二链路上同时收发。
在一种可能的设计中,第三PPDU包括指示第三TXOP时长的第三TXOP时长信息,第三TXOP时长不超过所述第一PPDU中的第一TXOP时长信息所指示的第一TXOP时长和第二时长中的最小值或最早结束值;其中,第二时长为第二PPDU的传输时长,或,第二PPDU的传输时长+SIFS+响应于第二PPDU的确认信息的传输时长。
在一种可能的设计中,所述第一PPDU包括数据信息,所述第二PPDU包括确认信息;或,所述第一PPDU包括触发信息,所述第二PPDU包括上行数据。当然第一PPDU还可以包括其他信息。
第三方面提供另一种多链路通信方法,应用于多链路设备中,该多链路设备工作在多条链路上,多条链路包括第一链路和第二链路,该方法包括:第三多链路设备获取第一多链路 设备在第一链路上传输的第一PPDU;在第一PPDU的结束时间或结束时间之后,第三多链路设备在第二链路上,发送第三PPDU,第三PPDU的结束时间不晚于第二PPDU的结束时间,第二PPDU是在第一链路上发送的响应于第一PPDU。“不晚于”包括早于或等于。第二PPDU响应于第一链路上第一多链路设备发送的第一PPDU。第三PPDU的起始时刻不早于第一PPDU的结束时间,“不早于”包括晚于或等于。可选的,第三多链路设备可以通过竞争信道发送第三PPDU。第一多链路设备与第三多链路设备属于同一个基本服务集BSS。
采用上述方法,其他多链路设备收到第一多链路设备在第一链路上发送的PPDU时,可以在该PPDU结束时在另一条链路上开始抢占信道(包括侦听和退避等动作)从而发送PPDU,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
在一种可能的设计中,在所述第二链路上,通过竞争信道发送第三PPDU,包括:第三多链路设备在第一PPDU的结束时间或之后,在第二链路上通过竞争信道发送第三PPDU。
在一种可能的设计中,所述第一PPDU包括传输时长信息,传输时长信息用于指示第二PPDU的传输时长;或,第二PPDU的物理层前导包括所述传输时长信息,传输时长信息用于指示第二PPDU的传输时长。根据传输时长信息,第三多链路设备可以获取到第二PPDU的传输时长,从而可以根据第二PPDU的传输时长确定第三PPDU的传输时长和结束时间,以避免第一多链路设备在第一链路和第二链路上同时收发。
在一种可能的设计中,第三PPDU包括指示第三TXOP时长的第三TXOP时长信息,第三TXOP时长不超过所述第一PPDU中的第一TXOP时长信息所指示的第一TXOP时长和第二时长中的最小值或最早结束值;其中,第二时长为第二PPDU的传输时长,或,第二PPDU的传输时长+SIFS+响应于第二PPDU的确认信息的传输时长。
在一种可能的设计中,第一PPDU包括数据信息,第二PPDU包括确认信息;或,第一PPDU包括触发信息,第二PPDU包括上行数据。当然第一PPDU还可以包括其他信息。
第四方面,提供一种多链路通信装置,工作于多条链路,多条链路包括第一链路和第二链路。该装置包括:第一发送模块,用于在第一链路上发送第一物理层协议数据单元PPDU;第二发送模块,用于在第二链路上通过竞争信道发送第二PPDU,其中,所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间。例如,第二PPDU的结束时间与第一PPDU的结束时间相同。可选的,第二PPDU的开始时刻不早于第一PPDU的开始时刻,包括晚于或等于。多链路设备先在第一链路上发送PPDU,再单独在第二链路上进行信道竞争后发送PPDU,多链路设备在多条链路上进行独立的竞争信道,先竞争信道的链路先发送消息包,后竞争到信道的链路后发送消息包,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
一个可能的设计中,该装置还包括第一处理模块和第二处理模块,第一处理模块用于生成第一PPDU,第二处理模块用于生成第二PPDU。第一处理模块与第二处理模块也可以为一个处理模块。
第五方面,提供一种多链路通信装置,工作于多条链路,多条链路包括:第一链路和第二链路,包括:
第一收发模块,用于在第一链路上发送第一物理层协议数据单元PPDU;
所述第一收发模块,用于在预设时间间隔后,所述第一多链路设备在所述第一链路上接收第二设备响应于所述第一PPDU的第二PPDU;
第二收发模块,用于在第二链路上,接收由第三多链路设备在所述第二链路上发送的第三PPDU,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间。
一个可能的设计中,第一收发模块还包括第一发送模块和第一接收模块。第二收发模块还包括第二发送模块和第二接收模块。一个收发模块可以支持多链路通信装置工作在一条链路上。
第六方面,提供一种多链路通信装置一种多链路通信装置,其特征在于,所述装置包括:
第一收发模块,获取第一多链路设备在第一链路上传输的第一PPDU;
第二收发模块,用于在第二链路上,发送第三PPDU,所述第三PPDU的结束时间不晚于第二PPDU的结束时间,所述第二PPDU是在所述第一链路上发送的且响应于所述第一PPDU。
一个可能的设计中,第一收发模块还包括第一发送模块和第一接收模块。第二收发模块还包括第二发送模块和第二接收模块。一个收发模块可以支持多链路通信装置工作在一条链路上。
结合第五方面或第六方面,在一种可能的实现方式中,第三PPDU的结束时间不晚于第二PPDU的结束时间,“不晚于”包括早于或等于;可选的,第三PPDU的起始时间不早于第一PPDU的结束时间,“不早于”包括晚于或等于。可选的,第一多链路设备与第三多链路设备属于同一个基本服务集BSS。结束时间又可以称作结束时刻,起始时间又可以称为起始时刻。
第七方面,提供一种多链路通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中多链路设备或第一方面中多链路设备中的芯片,或者可以为上述第二方面中的第一多链路设备或其中的芯片;或者,该通信装置可以为上述第三方面中的多链路设备或其中的芯片。
第八方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中多链路设备或第一方面中多链路设备中的芯片,或者可以为上述第二方面中的第一多链路设备或其中的芯片;或者,该通信装置可以为上述第三方面中的多链路设备或其中的芯片。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
附图说明
图1为一种多链路通信场景的示意图;
图2为本申请实施例提供的一种同步接入多链路的多链路通信的时序示意图;
图3为本申请实施例提供的一种接入单链路的单链路通信的时序示意图;
图4为本申请实施例提供的一种多链路通信的时序示意图一;
图5为本申请实施例提供的另一种多链路通信的时序示意图二;
图6为本申请实施例提供的又一种多链路通信的时序示意图三;
图7为本申请实施例提供的又一种多链路通信的时序示意图四;
图8为本申请实施例提供的又一种多链路通信的时序示意图五;
图9为本申请实施例提供的一种多链路通信装置的结构示意图一;
图10为本申请实施例提供的另一种多链路通信装置的结构示意图二;
图11为本申请实施例提供的又一种多链路通信装置的结构示意图三。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的方案适用于至少两个多链路设备之间的通信。多链路设备为可以工作在多条链路上的设备。多条链路为频域上不相同的多个链路。多条链路可以分别是多个不同的频段,多条链路还可以是同一个频段上的不同的信道。可选的,在WLAN系统中,频段可以包括2.4GHz,5GHz,6GHz等,一个频段上的信道的带宽可以为20MHz,40MHz,80MHz,160MHz,320MHz等,基本单元为20MHz。后续,信道带宽可能进一步拓展,基本单元也可能为40MHz或者更大。
多链路设备包括多个站点(station,STA),一个站点与一条链路相对应,工作在所对应的链路上,其中,站点可以为非接入点的站点(non-AP station)或接入点站点(AP station)。图1示出了本申请实施例的一种示例性的通信场景。如图1所示,该通信系统包括第一链路设备和第二多链路设备。多链路设备包括多个站点(例如,STA1,STA2,…STAn),多个STA工作在多条链路(例如,链路1,链路2,…链路n)上,其中,一个站点工作在一条链路上,其中,多个站点还可以属于一个多链路实体,该链路实体共享一个媒体接入控制MAC(media access control)服务接入点SAP(service access point)。可以理解的,图1所示的通信场景中包括的多链路设备的数量、多链路设备中的站点数量,以及链路的数量仅是示例性的,并不构成对本申请的限定。
一种示例中,多链路设备为多链路接入点,包括多个接入点(access point,AP)站点,其中一个接入点与一条链路相对应,工作在所对应的链路上。另一种示例中,多链路设备为多链路站点,包括多个非接入点的站点,其中一个非接入点的站点与一条链路相对应,工作在所对应的链路上。另一种示例中,多链路设备可以既包括接入点站点又包括非接入点站点。因此,本申请实施例的方案,既可以适用于一个多链路接入点与一个多链路站点之间的通信,还可以适用于至少两个多链路接入点之间的通信,还可以适用于至少两个多链路站点之间的通信,当然还可以适用于既包括接入点站点和非接入点站点的多链路设备之间的通信。
多链路设备中包括的接入点AP可以为具有无线通信功能的通信装置,为非接入点站点提供服务的通信装置,支持移动用户进入有线网络,可部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线站点连接到一起,然后将无线网络接入以太网。AP可以支持多种通信协议,例如,蜂窝通信协议和WLAN通信协议等。可选的,AP可以是带有无线保真(wireless-fidelity,WiFi)芯片的设备,可以支持WLAN通信协议。例如,AP可以支持802.11ax下一代,可选的,多链路AP还可以支持802.11ax,802.11ac、802.11n、802.11g、802.11b及802.11a等。
多链路设备中包括的站点可以为具有无线通信功能的通信装置,可以支持多种通信协议,例如,蜂窝通信协议和WLAN通信协议等。可选的,STA可以是带有无线保真(wreless-fidelity,WiFi)芯片的设备,可以支持WLAN通信协议,例如,多链路STA可以支持802.11ax下一 代,可选的,STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。STA还可以是终端设备,例如支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等。
工作在多条链路上的多链路设备,通常由于链路之间存在能量泄露以及多链路设备同时收发的处理能力不足,使得多链路设备无法支持多条链路上的同时收发,即使多链路设备允许多条链路上的同时收发,也会导致在一条链路上发送的数据包对在另一条链路上接收的数据包造成干扰,从而导致通信的质量较差。因此,针对多链路设备的2条或者多条链路不能进行同时收发的情况下,提出了多种解决方案。
一种方案是同步发送方法。主要原理是通过多条链路独立竞争信道同时接入信道,另外,多链路上发送的数据包占用的相同的时长(如有必要,可以通过填充垃圾信息比特实现)。同时接入信道的一种实施方式包括:当多链路设备在一条链路上通过竞争信道,比如采用增强的分布式信道接入(enhanced distributed channel access,EDCA),退避到0,抢占到发送机会,则多链路设备在其他链路上通过回看点协调功能帧间间隔(point coordination function interframe space,PIFS)时间是否空闲。如果空闲,则多条链路同时发送,如果忙,则可以选择单条链路发送,或者选择不发送。如图2所示,AP在链路1上通过EDCA竞争信道,退避数退到0,然后在链路2上回看PIFS时间,若是空闲,则此时一起在两条链路上发送物理层协议数据单元(physical protocol data Unit,PPDU),该这两条链路上发送的PPDU传输时长相同,然后隔固定间隔,比如802.11定义的SIFS(Short interframe space,短帧间间隔),多链路设备在两条链路上接收到站点响应的确认帧,图2中以块确认(Block Ack,BA)为例,当然还可以是确认(acknowledge,Ack)帧。采用同步发送方法,可以避免多条链路同时收发的问题,但是该方案中,多链路设备在一个链路先竞争信道,然后在回看PIFS时间内为闲的其他链路上发送数据包,然而其他链路上并未进行常规的侦听和退避,而是回看PIFS是否繁忙,导致多链路设备中的站点在其他链路可优先接入信道,对于其他站点是不公平的。
另一种方案是禁止同时收发。多链路设备中的站点只在其中一条链路上发送数据包,为了避免同时收发,即多链路设备在另一链路上需要禁止数据包的接收端以及本基本服务集(basic service set,BSS)内的其他站点进行竞争信道发送数据,即停止其退避。多链路设备在一条链路上发送有多种场景,比如多链路设备在只在其中一条链路上有数据发送,再比如,多链路设备在其中一条链路上先竞争信道,但是此时其他链路是忙的。如图3所示,多链路设备中的AP在链路1上竞争到信道,发送物理层协议数据单元(physical protocol data unit,PPDU)给站点A,站点A若是多链路站点,则站点A在收到AP发送的数据包时,需停止其它链路的退避,直到数据单元结束或者数据单元传输时间加上SIFS和确认消息帧的最长传输时间之后,才开始退避。同样,本BSS内的多链路设备若侦听到AP在链路1发送数据包,也需要停止其在他链路上的退避。采用禁止同时收发的方法,需停止本BSS中多链路站点在非接收到数据包的链路上的退避,虽然解决了避免站点不发生同时收发,但是浪费了空闲链路频谱资源。
因此,本申请实施例提供一种多链路通信方法,在不支持同时多链路收发场景下,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
实施例一
在不支持同时多链路收发场景下,提出多链路站点多条链路独立竞争信道,先抢占到信道链路先发送PPDU,后抢占到信道链路后发送PPDU,但此时后发送的PPDU的结束时间需不晚于先发送的PPDU的结束时间,例如,后发送的PPDU的结束时间与先发送的PPDU的结束时间相同,也就是说开始时间不需相同,但结束时间相同。在本申请中,结束时间还可称作结束时刻或结束时间点,起始时间还可称作起始时刻或起始时间点。
本申请实施例提供的一种多链路通信方法,该方法可以应用于多链路设备中,该方法包括:
S101,多链路设备在第一链路上发送第一物理层协议数据单元PPDU;
该多链路设备可以工作在至少两条链路上,该至少两条链路包括第一链路和第二链路,其中,多链路设备不支持同时在第一链路和第二链路上收发PPDU。第一PPDU可以由多链路设备中工作在第一链路上的站点发送。一个示例中,多链路设备不支持同时在所述第一链路和所述第二链路上收发PPDU,包括:多链路设备不支持同时在所述第一链路上发送第一带宽的物理层协议数据单元和在所述第二链路上接收第二带宽的物理层协议数据单元,和/或,多链路设备不支持同时在所述第一链路上接收第一带宽的物理层协议数据单元和在所述第二链路上发送第二带宽的物理层协议数据单元。该“同时”指的是第一带宽的PPDU和第二带宽的PPDU在时间上存在不为空的交集。可选的,第一带宽和第二带宽包括但不限于是20MHz,40MHz,80MHz,160MHz和320MHz中的一种。
另外,本申请中的“同时收发”并不意味着时间上没有任何差异,“同时收发”可以指的是在第一链路上发送的第一带宽的PPDU的传输时间和第二链路上发送的第二带宽的PPDU的传输时间在时间上存在不为空的交集。例如,第一带宽的PPDU的时长为T1=E1-S1,起止时间为[S1,E1],第二带宽的PPDU的时长为T2=E2-S2,起止时间为[S2,E2],则[S1,E1]与[S2,E2]存在不为空的交集。
可选的,多链路设备在第一链路上可以通过竞争信道发送第一PPDU,竞争信道的方式可以是802.11协议规定的EDCA或多用户EDCA(multi-user EDCA,MU EDCA),或,传统的竞争信道方式等。一个示例中,EDCA的竞争方式包括:多链路设备先侦听一段AIFS时间,然后开始退避,退避到0才开始发送数据,退避过程如果信道忙,则挂起或停止退避,等到下一次信道空闲,再基于上次挂起的退避数重新竞争信道,包括AIFS时间侦听和退避等过程。可选的,多链路设备也可以是在第一链路上已经抢占到信道,在已经抢占的传输机会(transmission opportunity,TXOP)内,在第一链路上发送第一PPDU,其中,第一PPDU是该TXOP内的一个数据包。可选的,第一PPDU可以包括数据帧、管理帧或控制帧等,或者是多种帧的聚合包。
S102,多链路设备在第二链路上通过竞争信道发送第二PPDU,其中,第二PPDU的结束时间不晚于所述第一PPDU的结束时间;
多链路设备在第二链路上进行信道竞争,竞争到信道后在第二链路上发送第二PPDU,第二PPDU发送时间不早于(等于或晚于)第一PPDU,第二PPDU可以由多链路设备中工作在第二链路上的站点发送。多链路设备在第二链路上的信道竞争方式也可以是802.11协议规定的EDCA或多用户EDCA(multi-user EDCA,MU EDCA),或,传统的竞争信道方式等。可选的,第二PPDU可以包括数据帧、管理帧或控制帧等,或者是多种帧的聚合包。可选的,多链路设备也可以不竞争信道,而是在一个TXOP内发送第二PPDU。
一种实现方式中,第二PPDU的结束时间不晚于第一PPDU的结束时间,包括:第二PPDU的结束时间与第一PPDU的结束时间相同。由于第一PPDU与第二PPDU对齐,避免了多链 路设备可能出现同时收发的情形。需要说明的是,由于多链路设备知晓第一PPDU的时长,因此在发送第二PPDU时,可以准确的根据第一PPDU的时长确定第二PPDU的时长,从而使得第二PPDU的结束时间不晚于第一PPDU的结束时间。另一种方式,多链路设备也可以通过侦听先发送的第一PPDU的传统前导码的L-SIG字段中长度字段得知第一PPDU的传输时长。
可选的,第二PPDU所指示的TXOP的长度可以与第一PPDU所指示的TXOP时长设置成一样,其中,指示TXOP时长的信息可以位于PPDU的物理层前导中,也可以位于PPDU的MAC头的时长字段中。因此,一种实现方式中,第一PPDU包括第一TXOP时长信息,第一TXOP长度时长信息指示第一TXOP的时长,第二PPDU包括第二TXOP时长信息,第二TXOP时长信息指示第二TXOP的时长,第一TXOP的时长与第二TXOP的时长相同。第一TXOP时长信息携带于第一PPDU的物理层前导或第一PPDU的MAC头的时长字段中;第二TXOP时长信息携带于第二PPDU的物理层前导或第二PPDU的MAC头的时长字段中。
在执行步骤S101和步骤S102之前,站点在跟AP关联时,或者侦听AP发送的信标帧,可以获得多链路AP的能力信息,以获知多链路AP不能支持哪些链路之间同时收发,可以支持哪些链路同时收发,进一步讲,获知多链路AP哪些链路之间不能同时收发第一带宽的PPDU和第二带宽的PPDU,其中PPDU的带宽是决定多链路的自干扰的因素。该能力信息可以隐士指示信息,也可以是显示指示信息。其具体的指示方法本申请实施例并不具体限定。
可选的,该方法还包括:
S103,多链路设备在第一链路上接收响应于第一PPDU的第一确认信息;
S104,多链路设备在第二链路上接收响应于第二PPDU的第二确认信息。
第一确认信息由第一PPDU的目的接收端发送,第二确认信息由第二PPDU的目的接收端发送,第一PPDU和第二PPDU的目的接收端可以为多链路设备,也可以不为多链路设备,而是工作在该链路上的设备,例如AP或non-AP STA。第一PPDU的目的接收端可以与第一多链路设备位于同一个基本服务集(basic service set,BSS)中,第二PPDU的目的接收端与第一多链路设备位于同一个BSS。可选的,第一PPDU的目的接收端与第二PPDU的目的接收端可以为同一个目的接收端,也可以为不同的目的接收端,对于第一PPDU和第二PPDU的目的接收端为同一个目的接收端的情形,则该接收端为多链路设备,本申请不限定。可选的,确认信息在PPDU的预设时间间隔后发送,预设时间间隔可以为SIFS。可选的,第一确认信息和第二块确认信息可以为块确认BA或ACK。可选的,第一确认信息和第二确认信息的时长相同。
一种实施方式,发送第一PPDU的多链路设备可以为多链路站点,第一PPDU的目的接收端可以为接入点;另一种实施方式,发送第一PPDU的多链路设备可以为多链路接入点,第一PPDU的目的接收端可以为站点。为了让目的接收端知道第一PPDU是什么角色的设备发送,可选的,第一PPDU的物理层前导码中包括上下行指示(还可记为上行/下行指示),所述上下行指示用于指示第一PPDU的传输方向,传输方向包括上行或下行,其中多链路设备中的AP发给站点的PPDU属于下行,多链路设备中的站点发给AP的PPDU属于上行。值得注意的是,如果第一PPDU的发送端是多链路AP,当多链路AP首先在第一链路上发送第一PPDU时,本BSS内其他多链路站点是不能在其他链路(例如第二链路)进行竞争信道,且不能在第二链路上发送PPDU给所述多链路AP,从而避免在多链路AP端发生同时收发的情况。如果是发送端是多链路站点,当多链路站点首先在第一链路上发送第一PPDU时,本BSS内其他多链路站点是可以在其他链路(例如第二链路)进行竞争信道,然后发送第二PPDU 给本BSS内的接入点,第二PPDU发送时间等于或晚于第一PPDU发送时间,但第二PPDU的结束时间不晚于第一PPDU的结束时间,一种实施方式,第二PPDU的结束时间与第一PPDU的结束时间相同。可以理解的,当然对于下行传输的情形,第一PPDU也可以是由多链路设备中的接入点发送,第一PPDU的目的接收端是站点;对于上行传输的情形,第一PPDU也可以是由多链路设备中的站点发送,第一PPDU的目的接收端为接入点。
例如,图4示出了一种下行传输的情形,多链路AP通过竞争信道在链路1上发送PPDU1给站点A,然后在链路2上竞争到信道,发送PPDU2给站点B,PPDU2的开始时间不早于(等于或晚于)PPDU1的开始时间。图4中示出了等于的情况,PPDU2的结束时间与PPDU1的结束时间对齐。站点A和站点B分别在链路1和链路2上的信道上回复确认信息,例如BA。本实施例还可以拓展到AP在链路1和链路2上给多个站点发送多用户数据包,比如通过802.11ax HE MU PPDU,可以是通过OFDMA的形式,也可以是提供MU-MIMO形式或者是他们的混合。
例如,图5示出了一种上行传输的情形,多链路STA在链路1上发送PPDU1给接入点AP1,然后在链路2上竞争到信道,发送PPDU2给接入点AP2,PPDU2的开始时间不早于PPDU1的开始时间,包括等于和晚于,图5中示出了等于的情况。PPDU2的结束时间与PPDU1的结束时间对齐。AP1和AP2分别在链路1和链路2上的信道上回复确认信息。当然在图5所示的场景中,AP1和AP2还可以是同一个多链路接入点中工作在不同链路上的接入点,也可以是不同多链路设备中的接入点等。
为描述方便,记步骤S101和S102中的多链路设备为第一多链路设备。与第一多链路设备属于同一个BSS内的其他多链路站点(为non-AP STA),可以进行通道直接链路建立(Tunneled Direct Link Setup,TDLS)传输,例如,其他多链路站点中的站点(为non-AP STA)可以在第一多链路设备发送第一PPDU的传输时间内,可以发送其他消息包给另一个站点(non-AP STA)具体实施方法如下:
第一种实施方法:如果第一多链路设备是多链路AP,也就是说,第一PPDU为下行传输,当该多链路AP首先在第一链路上发送第一PPDU时,此时本BSS内的其他多链路站点在其他链路(第二链路)上可以通过信道竞争进行TDLS消息包传输,其中TDLS消息包的发送时间等于或晚于第一PPDU的发送时间。当TDLS消息包的接收对象是第一PPDU的接收对象时,则需要采用本实施例提到的TDLS消息包的结束时间不晚于AP发送的第一PPDU的结束时间,包括TDLS消息包的结束时间早于第一PPDU的结束时间,或,TDLS消息包的结束时间与第一PPDU的结束时间相同。其他情况,则可以没有任何限制。
第二种实施方式:如果第一多链路设备是多链路站点,也就是说,第一PPDU为上行传输,当多链路站点首先在第一链路上发送第一PPDU时,此时本BSS内的其他多链路站点在其他链路(第二链路)上可以通过信道竞争进行TDLS消息包的传输,但TDLS消息包的接收对象不能是发送第一PPDU的第一多链路设备,即多链路站点。其他情况,没有任何限制。
采用本申请实施例的方案,多链路设备在多条链路上进行独立的竞争信道,先竞争信道的链路先发送PPDU,后竞争到信道的链路后发送PPDU,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
实施例二提供另一种多链路通信方法,该方法可以应用于多链路设备中,该方法包括:
S201,第一多链路设备在第一链路上发送第一物理层协议数据单元PPDU;
参考前述步骤S101中的描述,此处不再赘述。可选的,第一多链路设备不支持在第一 链路和所述第二链路上同时收发。
S202,第二设备在第一链路接收第一PPDU的预设时间间隔后,发送响应于第一PPDU的第二PPDU;
可选的,预设时间间隔可以为SIFS。
S203,在预设时间间隔后,第一多链路设备在所述第一链路上接收响应于所述第一PPDU的第二PPDU;
相对应的,第一PPDU的目的接收方为第二设备,第二设备接收到第一PPDU,在预设时间间隔后,会在第一链路上发送响应于第一PPDU的第二PPDU,第二设备可以仅是工作在单链路(即第一链路)上的设备,还可以支持多链路通信,与第一多链路设备属于同一个BSS。该预设时间间隔由协议约定,可以为SIFS。第一PPDU可以包括数据帧,管理帧或者控制帧,也可以包括多种帧的聚合。
第一多链路设备可以为多链路AP和多链路STA。一种实现方式中,第一PPDU包括数据信息,则第二PPDU包括响应于数据信息的确认信息,若第一PPDU为下行,则第一多链路设备为多链路AP;若第一PPDU为上行,则第一多链路设备为多链路STA。另一种实现方式中,第一PPDU包括触发信息,用于触发第二设备发送数据信息,则第二PPDU包括被所述触发信息调度的数据信息,则第一多链路设备为多链路AP。这里的PPDU的物理层前导码包括上行/下行指示,其上行/下行指示的解释参见前述实施例一,此处不赘述。
可选的,S204,第三多链路设备获取第一多链路设备在第一链路上发送的第一PPDU。S203和S204的先后顺序不限。“获取”可以为接收或识别。可选的,第三多链路设备还可以获取第二设备在第一链路上发送的响应于第一PPDU的第二PPDU。获取到第一PPDU或第二PPDU,第三多链路设备可以基于第一PPDU和/或第二PPDU中携带的信息,确定第二PPDU的结束时间或传输时长,从而根据第二PPDU的结束时间或传输时长来确定发送的第三PPDU的传输时长或结束时间。具体如何获取,详见下文的描述。
S205,第三多链路设备在第二链路上发送第三PPDU,第三PPDU的结束时间不晚于第二PPDU的结束时间。
可选的,第三多链路设备还可以通过竞争信道发送第三PPDU。具体的,与第一多链路设备属于同一个基本服务集的第三多链路设备,在识别或接收到第一PPDU,且在第一PPDU的结束时间或结束时间后,可以在第二链路上通过信道竞争发送第三PPDU,第三PPDU的发送时间晚于或等于第一PPDU的结束时间,第三PPDU的结束时间早于或等于第二PPDU的结束时间。一种可能的实现方式中,第三PPDU的结束时间与第二PPDU的结束时间相同。但该第三PPDU的发送时间需不早于第一多链路设备发送的第一PPDU的结束时间,也就是说,所述第二设备在所述第一PPDU的结束时间起或之后,在第二链路上通过竞争信道发送所述第三PPDU,从而避免第一多链路设备在第一链路和第二链路上同时收发。此外,第三PPDU的第三带宽和第一PPDU的第一带宽需要满足一定关系时,才需要避免第一链路设备在第一链路上发送第一PPDU,第二链路接收第三PPDU有交叠的时间(同时收发);否则可以不需要采用本申请实施例的方案。上述关系可以为第一带宽和第三带宽大于某个带宽门限,原则是第一带宽的第一PPDU与第三带宽的第三PPDU的频率间隔小于某个门限值。
可选的,第三多链路设备可以包括第一PPDU的非目的接收端的第三方多链路站点和第一PPDU的目的接收端,即第二设备。第三多链路设备会在识别或接收该第一PPDU后,在其他链路(第二链路)上独立进行信道竞争,竞争到信道后发送第三PPDU。一种实施方式,本BSS内的第三方多链路设备,在第一PPDU的结束时间或结束时间后再开始竞争信道,获 得信道发送权之后,开始发送第三PPDU。一个示例中,识别或接收第一PPDU的方法包括识别第一PPDU的前导码的指示信息,包括但不限于下行/上行指示信息,第一PPDU中的MAC头的指示信息,比如发送端MAC地址等。
本实施例中的多链路设备发送的PPDU可以是发给单站点的单用户消息包,也可以是给多站点的多用户消息包(包括OFDMA或MU-MIMO,或其混合的消息包)。
S206,相对应的,第一多链路设备在第二链路上,接收由第三多链路设备在第二链路上发送的第三PPDU,第三PPDU的结束时间不晚于第二PPDU的结束时间。一种实施方式,第三PPDU的结束时间等于第二PPDU的结束时间。
由于第三多链路设备发送的第三PPDU的结束时间不晚于第二PPDU的结束时间,因此,第三多链路设备需要获取第二PPDU的结束时间或传输时长。第三多链路设备确定第三PPDU的结束时间的可以包括以下几种实施方式:
第一种实施方式:第一多链路设备发送的第一PPDU携带长度或时间指示(或称为传输时长信息),用于指示第二PPDU的传输时长;第三多链路设备基于第一PPDU中的传输时长信息即可确定第二PPDU的传输时长,从而根据第二PPDU的传输时长确定第三PPDU的传输时长和/或结束时间。
第二种实施方式:第二设备发送的第二PPDU的物理层前导包括所述传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长,比如传输时长信息为传统前导码L-SIG字段中长度字段。第三多链路设备基于第二PPDU的物理层前导包括的所述传输时长信息,即可确定第二PPDU的传输时长,从而根据第二PPDU的传输时长确定第三PPDU的传输时长和/或结束时间。
可选的,第一多链路设备发送的第一PPDU携带的传输时长信息还可以用于指示第二PPDU是在第一PPDU结束后的隔固定间隔,比如SIFS时间,才开始发送的。
需要说明的是,如果第三多链路设备为第一PPDU的目的接收端,即为第二设备,则第二设备自身知晓发送的第二PPDU的时长,因此可以不采用上述的第一种实施方式和第二种实施方式确定第三PPDU的传输时长和/或结束时间,对于这种情形,第二设备则为一个多链路设备。如果第三多链路设备为除第一多链路设备和第二设备之外的其他多链路设备,则可以采用上述的第一种实施方式和第二种实施方式确定第三PPDU的传输时长和/或结束时间,对于这种情形,第二设备也可以仅是工作在单链路(即第一链路)上的设备,还可以是支持多链路设备。
例如,当第一多链路设备发送的第一PPDU包括数据帧或者管理帧,则第二设备响应的第二PPDU包括确认信息。由于确认信息的传输时间较短,因此本BSS内的其他多链路设备通过上述方式在其他链路上获得的传输时长也较短,其中,其他多链路设备包括本BSS内除第一多链路设备外的其他设备,例如,第三多链路设备。为了让本BSS内的其他多链路站点知道确认信息的传输时间长度,多链路AP发送的消息包可能会在MAC头中携带确认信息的传输时长信息。一个示例中,该传输时长信息可以是一个长度字段,以字节为单位,功能类似于传统前导码的中L-SIG中的长度字段,例如,其他多链路站点可以基于长度确定:传输时间=长度字段/6Mbps,从而获取第三PPDU的传输时长,可选的,长度字段可以承载于802.11ax中的触发响应调度(triggered response schedule,TRS)字段包括的长度子字段中,TRS字段中的其他子字段可以设置成特殊值或预留值。当然由于确认信息的传输时间较少,其他设备可获得的传输机会较短,协议可能会禁止在该传输时间内进行传输,也可能会允许在该传输时间内传输。另外,第二设备响应的第二PPDU除了包括确认信息,还可能进一步包括 其他帧,同样也需要第一PPDU中携带传输时长信息,例如,在MAC头中携带长度指示信息,用以指示第二PPDU传输的时长。
又例如,当多链路AP发送的第一PPDU包括承载触发信息的触发帧,可能还包括其他聚合的帧,其中触发帧是用来调度多用户进行上行OFDMA传输,MU-MIMO传输或者OFDMA与MU-MIMO混合传输,此时多站点基于触发帧响应的第二PPDU,包括上行数据,比如数据帧,此时本BSS内的多链路站点通过上述方式在其他链路上获得的传输机会较长。另一个示例中,第一PPDU中包括的触发信息也可以不承载在一个单独的触发帧中,触发信息也可以在第一PPDU中的MAC帧的MAC头中携带,比如触发信息携带在遵循802.11ax标准的PPDU的TRS字段。进一步讲,多链路AP发送的触发帧包含用于指示第二PPDU的传输时间的长度指示,该长度指示可以是以时长为单元,也可以字节为单位。以字节为单位时,接收端在利用长度指示计算第二PPDU的传输时间时,是通过长度字段携带的字节数除以6Mbps,而不是除以第二PPDU的真实速率来获得的。
另外,本BSS内的第三多链路设备发送的第三PPDU的第三TXOP时长,可以根据第一PPDU的第一TXOP时长或第二PPDU的传输时长进行设置。
可选的,第三PPDU的第三TXOP的时长可设置成下述2者中最小值或最早结束值。
1.第一PPDU的第一TXOP时长;
2.第一PPDU的长度字段指示的所述第二PPDU的传输时长,或,第一PPDU的长度字段指示的所述第二PPDU的传输时长加上SIFS和响应与第二PPDU的确认信息的传输时长。
因此,一个示例中,第三PPDU包括指示第三TXOP时长的第三TXOP时长信息,第三TXOP时长不超过:所述第一PPDU中的第一TXOP时长信息所指示的第一TXOP时长和第二时长中的最小值或最早结束值;其中,所述第二时长为所述第二PPDU的传输时长,或,所述第二PPDU的传输时长+SIFS+响应于所述第二PPDU的确认信息的传输时长。可选的,第一TXOP时长信息携带于所述第一PPDU的物理层前导或所述第一PPDU的MAC头的时长字段中,所述第三TXOP时长信息携带于所述第三PPDU的物理层前导或所述第三PPDU的MAC头的时长字段中。最早结束值指的是各个时长的结束时间中结束时间最早的。第三TXOP时长不超过最早结束值,指的是第三TXOP的时长的结束时间值不超过最早结束值,第三TXOP时长不超过最小值,指的是第三TXOP的时长不超过最小时长。
下面采用几个示例简要介绍本申请实施例的方案。
例如,图6所示,多链路AP在成功竞争到链路1的信道,发送包含触发帧的PPDU1,调度站点A1,A2和A3发送上行多用户数据包(PPDU2)。触发帧中的长度字段指示上行多用户数据包(PPDU2)的传输时长。本BSS内的第三方多链路站点STAB在接收到多链路AP1在链路1上发送的PPDU1后,在PPDU1的结束时开始竞争链路2的信道,然后发送PPDU3,图6列出了STAB在链路2上发送PPDU3的2种可能时间,可能早于或晚于调度站点A1,A2和A3发送上行多用户数据包(PPDU2)的开始时间,当然还可以等于(图6未示出)。当然PPDU3早于或晚于,或等于站点A1,A2和A3发送上行多用户数据包(PPDU2)的开始时间,取决于STAB在链路2上抢占到信道的时间。另外,STAB在链路2上发送PPDU3的结束时间与调度站点A1,A2和A3发送上行多用户数据包的结束时间相同。其中,站点A1,A2,A3可以不为多链路站点,站点B为多链路站点。当然站点A1,A2,A3也为多链路站点时,也可以在链路2上进行信道竞争,从而发送PPDU3。
例如,图7所示,多链路AP在成功竞争到链路1的信道,发送包含下行数据的PPDU1, 下行数据的接收端为站点A1,A2和A3。站点A1,A2,A3在SIFS时间后发送包含确认信息的PPDU2。本BSS内的第三方多链路站点STAB在接收到多链路AP1在链路1上发送的PPDU1后,在PPDU1的结束时开始竞争链路2的信道,然后发送PPDU3。其中,站点A1,A2,A3可以不为多链路站点,站点B为多链路站点。当然站点A1,A2,A3也为多链路站点时,也可以在链路2上进行信道竞争,从而发送PPDU3。
例如,图8所示,多链路STA在成功竞争到链路1的信道,发送包含上行数据的PPDU1,上行数据的接收端为AP。AP在SIFS时间后发送包含确认信息的PPDU2,PPDU2当然还可以包括其他帧。同时AP在STA A发送的PPDU1结束时开始在链路2上的信道进行竞争信道,抢占到信道之后,在链路2上发送PPDU3给站点A或者其他站点。该PPDU3的结束时间与上述提到的方法一直,不再赘述。
在实施例二的这种场景下,与第一多链路设备属于同一个BSS内的其他多链路站点(除第一多链路设备和第二设备之外的),可以进行通道直接链路建立(Tunneled Direct Link Setup,TDLS)传输,例如,其他多链路站点中的站点(为non-AP STA)可以在第二设备发送第二PPDU的传输时间内,可以在第二链路上通过信道竞争发送其他消息包给另一个站点(non-AP STA),具体实施方法如下:
第一种实施方法:如果第一多链路设备是多链路AP,第二设备是多链路站点,当多链路AP首先在第一链路上发送第一PPDU时,也就是说第一PPDU为下行传输时,此时本BSS内其他多链路站点在其他链路(第二链路)上可以在第一PPDU的结束时间之后,通过竞争信道进行TDLS消息包传输,但TDLS消息包的接收对象不能是第一PPDU的接收端,即第二设备。其他情况,没有任何限制。
第二种实施方式:如果第一多链路设备是多链路站点,当多链路站点首先在第一链路上发送第一PPDU时,此时本BSS内其他多链路站点在其他链路(第二链路)上可以,通过竞争信道进行TDLS消息包传输,当TDLS消息包接收对象是第一多链路站点时,则需要采用本实施例提到的TDLS消息包的结束时间早于或等于第二设备发送的第二PPDU的结束时间,包括早于或等于。其他情况,则没有任何限制。
采用本申请实施例的方案,在不支持同时多链路收发场景下,收到第一多链路设备在第一链路上发送的PPDU时,多链路设备可以在该PPDU结束时在另一条链路上开始抢占信道(包括侦听和退避等动作)从而发送PPDU,既可以保障多链路接入的公平性,又可以降低多链路的空闲率,提高频率效率。
需要说明的是,本申请实施例一和实施例二的方案不仅可以用于多链路设备不支持在第一链路上和在第二链路上同时收发的场景,还适用于多链路设备支持在第一链路上和在第二链路上同时收发的场景。
实施例三
对于不支持同时收发的多链路的情况,多链路设备在一条链路上先发送消息包,由于该消息包的能量会泄露到其他链路上,导致其他链路上的信道即使是空闲时,信道空闲评估(clear channel assessment,CCA)检测结果也是忙。本申请实施例提出多链路设备可以通过校准,在多条链路都空闲的条件下提前测试不同的功率数据包泄露到其他链路的功率,比如检测到泄露的自干扰为XdB。因此对于不支持同时收发的多链路的情况,多链路设备在一条链路上先发送消息包,在其他链路上做CCA检测该链路上的信道是空闲,还是繁忙,则在其他链路上进行CCA检测的检测门限需要回退(X-C)dB,其中C是固定的安全值,由协议规 定,可以为0,也可以为其他值。该检测门限回退的方式可以应用于能量检测和信号检测中,举例,采用信号检测时,通常的主20M的信号检测门限是-82dBm,也就是说如果CCA检测的能量是大于等于-82dBm,则表示信道忙,否则表示信道闲。对于在多链路站点在其中一条链路发送数据包的场景,则其他链路在信道上CCA检测时的检测门限则可以为(-82+X1+-C1)dBm,其中,C1为估计的安全值,可以由协议约定,可为0,还可以为其他值,X1为泄露的自干扰,当CCA检测到的功率大于或等于(-82+X1+-C1)dBm时,则判断信道忙;反之,则判断信道为闲。例如,采用能量检测是,通常主20MHz的能量检测门限是-62dBm,(-62+X2-C2),其中,C2为估计的安全值,可以由协议约定,可为0,还可以为其他值,X2为泄露的自干扰,当CCA检测到的功率大于或等于(-62+X1+-C1)dBm时,则判断信道忙;反之,则判断信道闲。可选的,X1和X2可能相同也可能不同,C1和C2也可能相同,也可能不同。
采用本申请实施例的检测方法,可提升CCA检测的准确度,从而使得多链路设备可更加准确地判断信道的闲忙状态。需要说明的是,实施例三提出检测门限的设置方法不限于可以应用于上述任一实施例的方案中,还可以应用于多链路通信的其他场景中。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图9,图9是本申请实施例提供的一种多链路通信装置的结构示意图,该多链路通信装置可以用于实现前述任意实施例中涉及多链路通信装置的任意方法和功能,多链路通信装置900可以包括收发模块902,收发模块902包括:第一收发模块902a和第二收发模块902b可选的,多链路通信装置包括处理模块901。一个可能的设计中,一个收发模块可以对应多链路设备中的一个站点,可以包括一个基带电路和一个射频电路。另一个可能的设计中,一个收发模块可以包括一个射频电路,多个射频电路耦合连接一个基带电路,因此,该基带电路可以包含于处理模块中。需要说明的是,通信装置900中的各模块的数量仅是示例性的。
在一种可能的设计中,多链路通信装置900可以实现上述实施例一中的多链路设备的任意方法和功能。例如,处理模块901,用于生成第一PPDU和第二PPDU,可选的,处理模块也可以包括第一处理模块和第二处理模块,第一处理模块用于生成第一PPDU,第二处理模块用于生成第二PPDU。第一收发模块902a用于在第一链路上发送第一PPDU,例如用于实现步骤S101,第二收发模块902b用于在第二链路上通过竞争信道发送第二PPDU,其中,所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间,例如用于实现步骤S102。可选的,第一收发模块902a还用于在第一链路上接收第一确认信息,第二收发模块902b还用于在第二链路上接收第二确认信息。
在另一种可能的设计中,多链路通信装置900可以实现上述实施例二中的第一多链路设备的任意方法和功能。例如,处理模块901,用于生成第一PPDU;第一收发模块902a用于在第一链路上发送第一PPDU,例如用于实现步骤S201,第一收发模块902a还用于在所述第一链路上接收响应于所述第一PPDU的第二PPDU,例如,用于实现步骤S203;第二收发模块902b用于在第二链路上,接收由第三多链路设备在第二链路上发送的第三PPDU,其中,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,例如用于实现步骤S206。
在又一种可能的设计中,多链路通信装置900可以实现上述实施例二中的第三多链路设备的任意方法和功能。例如,处理模块901,用于生成第三PPDU;第一收发模块902a用于在第一链路上获取或接收第一PPDU,例如用于实现步骤S204;第二收发模块902b用于在第二链路上发送第三PPDU,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,例如用于实现步骤S205。
在又一种可能的设计中,多链路通信装置可以实现上述实施例三中的CCA检测。例如,收发模块用于进行CCA检测;处理模块,用于根据收发模块的检测结果判断信道闲忙状态。处理模块,用于当收发模块在第二链路上的信道上检测到的功率大于或等于(-82+X1+-C1)dBm时,用于判断第二链路上的所述信道忙;处理模块,用于当收发模块在第二链路上的信道上检测到的功率小于(-82+X1+-C1)dBm时,则判断第二链路上的所述信道为闲。
参见图10,图10是本申请实施例提供的一种多链路通信装置的结构示意图,该多链路通信装置可以用于实现前述任意实施例中涉及多链路通信装置的任意方法和功能,多链路通信装置可以包括处理器1001、总线1002、射频电路1004a和的射频电路1004b,可选的,多链路通信装置还包括存储器1003。一个可能的设计中,多链路设备中的一个站点包括一个单独的射频电路和基带电路,可以独立的实现在所工作的链路上的收发功能;在另一个可能的设计中,多链路设备中的一个站点包括一个公共的基带电路部分和一个独立的射频电路部分,则站点在所工作的链路上发送的数据可以由公共的基带电路生成,这种情况下,基带电路可以包括于处理器1001中。处理器1001用于执行指令以实现对多链路通信装置的控制和管理,以及还包括信令或数据的处理等。总线1002用于耦合连接各器件,使得各器件可以完成数据或信息的交互。存储器1003可包括计算机程序或指令,处理器1001可运行指令以实现上述方法实施例中的功能。
在一种可能的设计中,多链路通信装置可以实现上述实施例一中的多链路设备的任意方法和功能。例如,处理器1001,用于生成第一PPDU和第二PPDU,可选的,处理器也可以基带电路,用于生成第一PPDU和第二PPDU。射频电路1004a用于在第一链路上发送第一PPDU,例如用于实现步骤S101,射频电路1004b用于在第二链路上通过竞争信道发送第二PPDU,其中,所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间,例如用于实现步骤S102。可选的,射频电路1004a还用于在第一链路上接收第一确认信息,射频电路1004b还用于在第二链路上接收第二确认信息。
在另一种可能的设计中,多链路通信装置可以实现上述实施例二中的第一多链路设备的任意方法和功能。例如,处理器1001,用于生成第一PPDU;射频电路1004a用于在第一链路上发送第一PPDU,例如用于实现步骤S201,射频电路1004a还用于在所述第一链路上接收响应于所述第一PPDU的第二PPDU,例如,用于实现步骤S203;射频电路1004b用于在第二链路上,接收由第三多链路设备在第二链路上发送的第三PPDU,其中,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,例如用于实现步骤S206。
在又一种可能的设计中,多链路通信装置可以实现上述实施例二中的第三多链路设备的任意方法和功能。例如,处理器1001,用于生成第三PPDU;射频电路1004a用于在第一链路上获取或接收第一PPDU,例如用于实现步骤S204;射频电路1004b用于在第二链路上发送第三PPDU,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,例如用于实现步骤S205。可选的,处理器1001还可以用于根据第一PPDU和/或第二PPDU中携带的传输时长信息获取第二PPDU的传输时长,从而确定第三PPDU的传输时长或结束时间。
在又一种可能的设计中,多链路通信装置可以实现上述实施例三中的CCA检测。例如,射频电路用于进行CCA检测;处理器1001,用于根据射频电路的检测结果判断信道闲忙状态。处理器1001,用于当射频电路1004b在第二链路上的信道上检测到的功率大于或等于(-82+X1+-C1)dBm时,用于判断第二链路上的所述信道忙;处理器1001,用于当射频电路1004b在第二链路上的信道上检测到的功率小于(-82+X1+-C1)dBm时,则判断第二链路上的所述 信道为闲。
参见图11,图1是本申请实施例提供的一种多链路通信装置的结构示意图,该多链路通信装置可以用于实现前述任意实施例中涉及多链路通信装置的任意方法和功能,多链路通信装置1100可以为一种芯片系统,用于支持多链路设备实现上述任一实施例中所涉及的功能,该芯片系统可以包括处理器,可选的还包括存储器,用于存储程序或指令。
在一个可能的设计中,处理器用于执行程序或指令,以使得多链路通信装置实现实施例一中任意的方法和功能。在另一种可能的设计中,处理器用于执行程序或指令,以使得多链路通信装置实现实施例二中任意的方法和功能。在又一个可能的设计中,处理器用于执行程序或指令,以使得多链路通信装置实现实施例三中任意的方法和功能。
需要说明的是,该存储器可以包含于处理器中,还可以为处理器外部与处理器耦合的存储单元。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第一多链路设备或第三多链路设备的任意方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及第一多链路设备或第三多链路设备的任意方法和功能。
本申请实施例还提供了一种装置,用于执行上述各实施例中任一实施例中涉及第一多链路设备或第三多链路设备的任意方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述任一实施例二中涉及的至少一个第一多链路设备和一个第三多链路设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (44)

  1. 一种多链路通信方法,其特征在于,包括:
    第一多链路设备在第一链路上通过竞争信道向第二多链路设备发送第一物理层协议数据单元PPDU;
    所述第一多链路设备在第二链路上通过竞争信道向所述第二多链路设备发送第二PPDU,其中,所述第二PPDU的结束时间与所述第一PPDU的结束时间对齐。
  2. 根据权利要求1所述的方法,其特征在于,所述第二多链路设备不支持同时收发。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二PPDU的结束时间与所述第一PPDU的结束时间对齐,包括:所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间。
  4. 根据权利要求3所述的方法,其特征在于,所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间,包括:所述第二PPDU的结束时间与所述第一PPDU的结束时间相同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二PPDU的发送时间不早于所述第一PPDU的发送时间。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一PPDU和/或所述第二PPDU是多用户PPDU。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备在所述第一链路上接收所述第二多链路设备发送的响应于所述第一PPDU的第一信息;
    所述第一多链路设备在所述第二链路上接收所述第二多链路设备发送的响应于所述第二PPDU的第二信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息与所述第一PPDU的时间间隔为预设时间间隔,所述第二信息与所述第二PPDU的时间间隔为所述预设时间间隔。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一信息与所述第二信息传输时间相同。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一PPDU包括上下行指示,所述上下行指示用于指示所述第一PPDU的传输方向,所述传输方向包括上行或下行。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一PPDU包括第一TXOP时长信息,所述第一TXOP时长信息指示第一TXOP的时长,所述第二PPDU包括第二TXOP时长信息,所述第二TXOP时长信息指示第二TXOP的时长,所述第一TXOP的时长与所述第二TXOP的时长相同。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一多链路设备为多链路AP,所述第二多链路设备为多链路STA。
  13. 一种多链路通信方法,其特征在于,所述方法包括:
    第一多链路设备在第一链路上发送第一物理层协议数据单元PPDU;
    在预设时间间隔后,所述第一多链路设备在所述第一链路上接收第二多链路设备响应于所述第一PPDU的第二PPDU;
    所述第一多链路设备在第二链路上,接收由所述第二多链路设备在所述第二链路上发送的第三PPDU,所述第三PPDU的结束时间与所述第二PPDU的结束时间对齐。
  14. 一种多链路通信方法,其特征在于,所述方法包括:
    第二多链路设备获取第一多链路设备在第一链路上传输的第一PPDU;
    所述第二多链路设备在所述第一链路上,发送响应于所述第一PPDU的第二PPDU;
    在第二链路上,所述第二多链路设备发送第三PPDU,所述第三PPDU的结束时间与第二PPDU的结束时间对齐。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二多链路设备不支持同时收发。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第三PPDU的结束时间与所述第二PPDU的结束时间对齐,包括:所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,包括:所述第三PPDU的结束时间与所述第二PPDU的结束时间相同。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述第一PPDU包括传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长;或,
    所述第二PPDU的物理层前导包括所述传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述第三PPDU包括指示第三TXOP时长的第三TXOP时长信息,所述第三TXOP时长不超过所述第一PPDU中的第一TXOP时长信息所指示的第一TXOP时长和第二时长中的最小值或最早结束值;
    其中,所述第二时长为所述第二PPDU的传输时长,或,所述第二PPDU的传输时长+SIFS+响应于所述第二PPDU的确认信息的传输时长。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述第一多链路设备为多链路AP,所述第二多链路设备为多链路STA。
  21. 一种多链路通信装置,其特征在于,包括:
    第一发送模块,用于在第一链路上通过信道竞争向第二多链路设备发送第一物理层协议数据单元PPDU;
    第二发送模块,用于在第二链路上通过竞争信道向所述第二多链路设备发送第二PPDU,其中,所述第二PPDU的结束时间与所述第一PPDU的结束时间对齐。
  22. 根据权利要求21所述的装置,其特征在于,所述第二多链路设备不支持同时收发。
  23. 根据权利要求11或12所述的装置,其特征在于,所述第二PPDU的结束时间与所述第一PPDU的结束时间对齐,包括:所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间。
  24. 根据权利要求23所述的装置,其特征在于,所述第二PPDU的结束时间不晚于所述第一PPDU的结束时间,包括:所述第二PPDU的结束时间与所述第一PPDU的结束时间相同。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述第二PPDU的发送时间不早于所述第一PPDU的发送时间。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述第一PPDU和/或所述第二PPDU是多用户PPDU。
  27. 根据权利要求21至25中任一项所述的装置,其特征在于,
    所述第一发送模块,还用于在所述第一链路上接收所述第二多链路设备发送的响应于所述第一PPDU的第一信息;
    所述第二发送模块,还用于在所述第二链路上接收所述第二多链路设备发送的响应于所述第二PPDU的第二信息。
  28. 根据权利要求27所述的装置,其特征在于,所述第一信息与所述第一PPDU的时间间隔为预设时间间隔,所述第二信息与所述第二PPDU的时间间隔为所述预设时间间隔。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一信息与所述第二信息传输时间相同
  30. 根据权利要求21至29中任一项所述的装置,其特征在于,所述第一PPDU包括上下行指示,所述上下行指示用于指示所述第一PPDU的传输方向,所述传输方向包括上行或下行。
  31. 根据权利要求21至30中任一项所述的装置,其特征在于,所述第一PPDU包括第一TXOP时长信息,所述第一TXOP时长信息指示第一TXOP的时长,所述第二PPDU包括第二TXOP时长信息,所述第二TXOP时长信息指示第二TXOP的时长,所述第一TXOP的时长与所述第二 TXOP的时长相同。
  32. 根据权利要求21至31中任一项所述的装置,其特征在于,所述装置为多链路AP,所述第二多链路设备为多链路STA。
  33. 一种多链路通信装置,其特征在于,应用于第一多链路设备,所述装置包括:
    第一发送模块,用于在第一链路上发送第一物理层协议数据单元PPDU;
    第一接收模块,用于在预设时间间隔后,在所述第一链路上接收第二多链路设备发送的响应于所述第一PPDU的第二PPDU;
    第二接收模块,用于在第二链路上,接收由所述第二多链路设备在所述第二链路上发送的第三PPDU,所述第三PPDU的结束时间与所述第二PPDU的结束时间对齐。
  34. 一种多链路通信装置,其特征在于,应用于第二多链路设备,所述装置包括:
    第一收发模块,用于获取第一多链路设备在第一链路上传输的第一PPDU;
    所述第一收发模块,还用于在所述第一链路上发送响应于所述第一PPDU的第二PPDU;
    第二收发模块,用于在第二链路上,发送第三PPDU,所述第三PPDU的结束时间与第二PPDU的结束时间对齐。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第二多链路设备不支持同时收发。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,所述第三PPDU的结束时间与所述第二PPDU的结束时间对齐,包括:所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间。
  37. 根据权利要求36所述的装置,其特征在于,所述第三PPDU的结束时间不晚于所述第二PPDU的结束时间,包括:所述第三PPDU的结束时间与所述第二PPDU的结束时间相同。
  38. 根据权利要求33至37中任一项所述的装置,其特征在于,所述第一PPDU包括传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长;或,
    所述第二PPDU的物理层前导包括所述传输时长信息,所述传输时长信息用于指示所述第二PPDU的传输时长。
  39. 根据权利要求33至38中任一项所述的装置,其特征在于,所述第三PPDU包括指示第三TXOP时长的第三TXOP时长信息,所述第三TXOP时长不超过所述第一PPDU中的第一TXOP时长信息所指示的第一TXOP时长和第二时长中的最小值或最早结束值;
    其中,所述第二时长为所述第二PPDU的传输时长,或,所述第二PPDU的传输时长+SIFS+响应于所述第二PPDU的确认信息的传输时长。
  40. 根据权利要求33至39中任一项所述的装置,其特征在于,所述第一多链路设备为多链路AP,所述第二多链路设备为多链路STA。
  41. 一种装置,包括处理器和存储器,所述存储器用于保存指令,当所述指令被所述处理器运行时,使得所述装置执行权利要求1至20中任一项所述的方法。
  42. 一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行权利要求1至20中任一项所述的方法。
  43. 一种计算机可读存储介质,所述计算机可读存储介质包括用于实现权利要求1至20中任一项所述的方法的指令。
  44. 一种装置,用于实现权利要求1至20中任一项所述的方法。
PCT/CN2020/101730 2019-07-12 2020-07-13 多链路通信方法和装置 WO2021008502A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020227003669A KR20220030278A (ko) 2019-07-12 2020-07-13 멀티-링크 통신 방법 및 장치
EP20840050.7A EP3993491B1 (en) 2019-07-12 2020-07-13 Multilink communication method and apparatus
BR112022000491A BR112022000491A2 (pt) 2019-07-12 2020-07-13 Método de comunicação multienlace, aparelho, produto de programa de computador, e meio de armazenamento legível por computador
JP2022501243A JP7309030B2 (ja) 2019-07-12 2020-07-13 マルチリンク通信方法及び装置
EP24155392.4A EP4387380A3 (en) 2019-07-12 2020-07-13 Multi-link communication method and apparatus
AU2020314490A AU2020314490B2 (en) 2019-07-12 2020-07-13 Multilink communication method and apparatus
US17/573,768 US20220141785A1 (en) 2019-07-12 2022-01-12 Multi-link communication method and apparatus
US18/333,563 US20230328666A1 (en) 2019-07-12 2023-06-13 Multi-link communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910629773.9 2019-07-12
CN201910629773.9A CN112218336A (zh) 2019-07-12 2019-07-12 多链路通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/573,768 Continuation US20220141785A1 (en) 2019-07-12 2022-01-12 Multi-link communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021008502A1 true WO2021008502A1 (zh) 2021-01-21

Family

ID=74047183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101730 WO2021008502A1 (zh) 2019-07-12 2020-07-13 多链路通信方法和装置

Country Status (8)

Country Link
US (2) US20220141785A1 (zh)
EP (2) EP3993491B1 (zh)
JP (1) JP7309030B2 (zh)
KR (1) KR20220030278A (zh)
CN (2) CN116193632B (zh)
AU (1) AU2020314490B2 (zh)
BR (1) BR112022000491A2 (zh)
WO (1) WO2021008502A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115442919A (zh) * 2021-06-04 2022-12-06 成都极米科技股份有限公司 多链路系统中数据传输方法、设备、系统及存储介质
WO2022270833A1 (en) * 2021-06-21 2022-12-29 Samsung Electronics Co., Ltd. Peer-to-peer communication with non-simultaneous transmit and receive operation
JP2023517638A (ja) * 2020-03-11 2023-04-26 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド マルチリンクを用いる無線通信方法及びこれを用いる無線通信端末
WO2023130270A1 (zh) * 2022-01-05 2023-07-13 Oppo广东移动通信有限公司 一种无线通信方法及装置、通信设备
TWI836665B (zh) * 2021-10-14 2024-03-21 聯發科技股份有限公司 由無線保真多鏈路設備採用之控制方法
EP4301064A4 (en) * 2021-02-26 2024-07-24 Sony Group Corp COMMUNICATION DEVICE AND COMMUNICATION METHOD

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193632B (zh) * 2019-07-12 2023-11-28 华为技术有限公司 多链路通信方法和装置
WO2021045563A1 (ko) * 2019-09-05 2021-03-11 엘지전자 주식회사 무선 통신 시스템에서 다중 프레임 전송을 위한 기법
WO2021091231A1 (ko) * 2019-11-06 2021-05-14 엘지전자 주식회사 멀티링크에서 채널 액세스
US11785562B2 (en) * 2019-12-20 2023-10-10 Avago Technologies International Sales Pte. Limited Multi-link operation with triggered alignment of frames
US12058750B2 (en) * 2020-03-11 2024-08-06 Qualcomm Incorporated Transmission opportunity handling for multi-link communications
TWI759080B (zh) * 2021-01-19 2022-03-21 香港商冠捷投資有限公司 無線通訊頻段設定方法、影像訊號接收裝置及無線通訊系統
CN112911728B (zh) * 2021-01-29 2023-05-02 极米科技股份有限公司 隧道直接链路建立中搜索对等终端的方法、终端及介质
CN112911729B (zh) * 2021-01-29 2023-04-28 极米科技股份有限公司 隧道直接链路建立的方法、终端及存储介质
US20220286844A1 (en) * 2021-03-04 2022-09-08 Huawei Technologies Co., Ltd. Wlan multi-link tdls key derivation
CN115278909A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种传输信息的方法及其装置
CN115484677A (zh) * 2021-05-31 2022-12-16 展讯通信(上海)有限公司 时间分配方法与装置、接入点和站点
EP4387378A4 (en) * 2021-08-09 2024-09-25 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD AND DEVICE
WO2023019405A1 (zh) * 2021-08-16 2023-02-23 北京小米移动软件有限公司 多连接下的通信方法和通信装置
WO2023024108A1 (zh) * 2021-08-27 2023-03-02 Oppo广东移动通信有限公司 数据包的传输方法、装置、设备及存储介质
WO2023115415A1 (en) * 2021-12-22 2023-06-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, communication apparatus, multi-link device, and storage medium
CN116744273A (zh) * 2022-03-01 2023-09-12 华为技术有限公司 一种通信方法和通信装置
WO2024060101A1 (zh) * 2022-09-21 2024-03-28 Oppo广东移动通信有限公司 感知测量方法、装置、设备、芯片及存储介质
EP4369683A1 (en) * 2022-11-10 2024-05-15 MediaTek Inc. Wi-fi device and associated transmission control method
WO2024142900A1 (ja) * 2022-12-26 2024-07-04 ソニーグループ株式会社 無線通信装置、及び無線通信方法
US20240306228A1 (en) * 2023-03-10 2024-09-12 Samsung Electronics Co., Ltd. TUNNELED DIRECT LINK SETUP LATENCY MANAGEMENT FOR NON-COLLOCATED APs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206608A1 (zh) * 2015-06-26 2016-12-29 华为技术有限公司 一种双信道并行收发方法及装置
CN106941731A (zh) * 2016-01-04 2017-07-11 华为技术有限公司 无线通信系统中nav设置方法及相关设备
US20180006866A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Apparatus, system and method of communicating a physical layer convergence procedure (plcp) protocol data unit (ppdu)

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510139B (en) * 2013-01-24 2015-06-03 Broadcom Corp Method, apparatus and computer program for providing a transmission opportunity
US20160065466A1 (en) * 2014-08-28 2016-03-03 Qualcomm Incorporated Systems and methods for signaling multi-destination aggregated multi-user media access control protocol data units in a wireless network
KR20160041007A (ko) * 2014-10-06 2016-04-15 뉴라컴 인코포레이티드 고효율 무선랜에서 빔포밍된 전송
US10098151B2 (en) * 2014-11-26 2018-10-09 Newracom, Inc. Transmission method for multi user in wireless local area network
US10536937B2 (en) * 2014-12-16 2020-01-14 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
WO2017043713A1 (ko) * 2015-09-08 2017-03-16 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017074070A1 (ko) * 2015-10-27 2017-05-04 엘지전자 주식회사 무선랜 시스템에서 다중 사용자의 상향링크 프레임의 전송을 위한 방법
US20170332385A1 (en) * 2016-05-11 2017-11-16 Qualcomm Incorporated Buffer status reporting in a wireless local area network (wlan)
US10609647B2 (en) * 2016-09-29 2020-03-31 Intel IP Corporation Multi-band link-aggregation pre-negotiated power save modes
CN109644519B (zh) * 2016-11-04 2022-02-22 松下电器(美国)知识产权公司 通信装置和通信方法
US20180176789A1 (en) * 2016-12-16 2018-06-21 Avago Technologies General Ip( Singapore) Pte Ltd. Spatial reuse ppdu indication
US10659540B2 (en) * 2017-03-27 2020-05-19 Intel IP Corporation [5G next generation Wi-Fi] on the fly traffic steering for collocated multi-band aggregation
WO2019225986A1 (ko) * 2018-05-23 2019-11-28 엘지전자 주식회사 무선랜 시스템에서 fdd를 기반으로 ppdu를 송수신하는 방법 및 장치
KR20200126936A (ko) * 2019-04-30 2020-11-09 현대자동차주식회사 광대역 무선 통신 네트워크에서 채널의 확장 여부 결정을 통한 프레임 전송 방법 및 장치
WO2020226462A1 (ko) * 2019-05-09 2020-11-12 현대자동차주식회사 광대역 무선 통신 네트워크에서 다중 랜덤 백오프 동작을 통한 프레임 전송 방법 및 장치
US20220167444A1 (en) * 2019-07-02 2022-05-26 Lg Electronics Inc. Multi-link operation mode
WO2021006545A1 (ko) * 2019-07-05 2021-01-14 현대자동차주식회사 멀티 링크 무선랜에서의 다중 전송 방법 및 장치
CN116193632B (zh) * 2019-07-12 2023-11-28 华为技术有限公司 多链路通信方法和装置
US11516841B2 (en) * 2019-09-06 2022-11-29 Mediatek Singapore Pte. Ltd. Enhanced high-throughput multi-link channel access and operation
US20210076412A1 (en) * 2019-09-10 2021-03-11 Samsung Electronics Co., Ltd. Multi link operation channel access
US11432326B2 (en) * 2019-10-29 2022-08-30 Mediatek Singapore Pte. Ltd. Multi-link channel access and operation with efficient utilization of multi-link resources
US11785562B2 (en) * 2019-12-20 2023-10-10 Avago Technologies International Sales Pte. Limited Multi-link operation with triggered alignment of frames
US20210282186A1 (en) * 2020-03-04 2021-09-09 Qualcomm Incorporated Uplink (ul) aggregation for multi-link operation (mlo)
KR102544254B1 (ko) * 2020-03-11 2023-06-16 주식회사 윌러스표준기술연구소 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR20210124917A (ko) * 2020-04-07 2021-10-15 한국전자통신연구원 다중 링크를 지원하는 통신 시스템에서 데이터의 송수신 위한 방법 및 장치
US11997733B2 (en) * 2020-05-27 2024-05-28 Qualcomm Incorporated Transitioning between multi-link and single-link mode on a transmission opportunity (TXOP) basis
JP2023099242A (ja) * 2020-06-03 2023-07-12 シャープ株式会社 通信装置、通信方法
US11716760B2 (en) * 2020-07-01 2023-08-01 Sony Group Corporation Channel access of a simultaneous-transmit-receive (STR) multi-link-device (MLD) with a non-STR MLD
US20220053560A1 (en) * 2020-08-17 2022-02-17 Sony Group Corporation Request trigger frame and txop sharing launched by non-ap sta
CN114205067B (zh) * 2020-08-29 2023-09-08 华为技术有限公司 多链路同步发送方法及装置
US11716770B2 (en) * 2020-11-11 2023-08-01 Nxp Usa, Inc. Device and method for multi-link operations
US11856606B2 (en) * 2020-12-01 2023-12-26 Sony Group Corporation Coordinated stations in OBSS with shared TXOP in time domain
US12075471B2 (en) * 2020-12-01 2024-08-27 Sony Group Corporation Coordinated WiFi stations with shared TXOP among DL and UL over time domain
US11871353B2 (en) * 2021-03-22 2024-01-09 Samsung Electronics Co., Ltd. Restricted TWT operations for multi-link devices
US20220345973A1 (en) * 2021-04-22 2022-10-27 Sony Group Corporation Secondary link access to a mobile soft access point multi-link device
US20230057502A1 (en) * 2021-08-06 2023-02-23 Samsung Electronics Co., Ltd. Method and apparatus for quality of service traffic handling under nstr constraints
US20230123499A1 (en) * 2021-10-14 2023-04-20 Mediatek Inc. Control method employed by wireless fidelity multi-link device for dealing with multi-link coherent operation
WO2023122530A1 (en) * 2021-12-20 2023-06-29 Sony Group Corporation Fast restricted target wait time update

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206608A1 (zh) * 2015-06-26 2016-12-29 华为技术有限公司 一种双信道并行收发方法及装置
CN106941731A (zh) * 2016-01-04 2017-07-11 华为技术有限公司 无线通信系统中nav设置方法及相关设备
US20180006866A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Apparatus, system and method of communicating a physical layer convergence procedure (plcp) protocol data unit (ppdu)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAZID MOHAND; KSENTINI ADLEN; BOUALLOUCHE-MEDJKOUNE LOUIZA; AISSANI DJAMIL: "Enhancement of the TXOP sharing designed for DL-MU-MIMO IEEE 802.11ac WLANs", 2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), IEEE, 9 March 2015 (2015-03-09), pages 908 - 913, XP032786351, DOI: 10.1109/WCNC.2015.7127590 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517638A (ja) * 2020-03-11 2023-04-26 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド マルチリンクを用いる無線通信方法及びこれを用いる無線通信端末
EP4301064A4 (en) * 2021-02-26 2024-07-24 Sony Group Corp COMMUNICATION DEVICE AND COMMUNICATION METHOD
CN115442919A (zh) * 2021-06-04 2022-12-06 成都极米科技股份有限公司 多链路系统中数据传输方法、设备、系统及存储介质
CN115442919B (zh) * 2021-06-04 2024-04-09 成都极米科技股份有限公司 多链路系统中数据传输方法、设备、系统及存储介质
WO2022270833A1 (en) * 2021-06-21 2022-12-29 Samsung Electronics Co., Ltd. Peer-to-peer communication with non-simultaneous transmit and receive operation
TWI836665B (zh) * 2021-10-14 2024-03-21 聯發科技股份有限公司 由無線保真多鏈路設備採用之控制方法
WO2023130270A1 (zh) * 2022-01-05 2023-07-13 Oppo广东移动通信有限公司 一种无线通信方法及装置、通信设备

Also Published As

Publication number Publication date
EP4387380A2 (en) 2024-06-19
EP3993491A4 (en) 2022-08-03
US20230328666A1 (en) 2023-10-12
AU2020314490B2 (en) 2023-06-01
CN116193632A (zh) 2023-05-30
KR20220030278A (ko) 2022-03-10
AU2020314490A1 (en) 2022-02-24
EP3993491A1 (en) 2022-05-04
EP3993491B1 (en) 2024-03-27
EP4387380A3 (en) 2024-09-18
US20220141785A1 (en) 2022-05-05
JP2022539895A (ja) 2022-09-13
BR112022000491A2 (pt) 2022-03-08
CN116193632B (zh) 2023-11-28
CN112218336A (zh) 2021-01-12
JP7309030B2 (ja) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2021008502A1 (zh) 多链路通信方法和装置
US10841924B2 (en) Basic bandwidth device on secondary channel
US20240172275A1 (en) Methods, apparatus and systems for procedures for carrier sense multiple access and spatial reuse in sub-channelized wireless local area networks (wlans)
US10194468B2 (en) Wireless channel reservation
US10542557B2 (en) System and method for digital communications with interference avoidance
TWI698152B (zh) 在無線區域網路中執行由協調存取點執行的協調發送的方法及裝置
WO2017107699A1 (zh) 一种接入方法及装置
JP2018518868A (ja) Wlanにおけるサブチャネル化送信方式のための方法およびデバイス
KR20180040505A (ko) 무선랜에서 초기 협상 방법 및 장치
KR102148315B1 (ko) 웨이크업 프레임 전송 방법, 및 노드 웨이크업 후에 제1 프레임을 전송하기 위한 방법, 디바이스 및 장비
US11470638B2 (en) Terminal apparatus and communication method
US20240172237A1 (en) Data transmission method and apparatus
JP2017522810A (ja) 無線ネットワーク内の重複伝送を可能にすること
US10582449B2 (en) Intra-PDDU power saving in WLAN
US20230354377A1 (en) Sidelink communications in wireless network
EP3694288B1 (en) Terminal and communication method
WO2021237573A1 (zh) 信息传输方法、装置及通信设备
WO2017036258A1 (zh) 竞争接入方法、竞争接入装置、站点及竞争接入系统
CN110198542B (zh) 一种具备冲突避免的非授权频段LTE-U与WiFi共存网络的e-LBT信道接入方法
US20230254735A1 (en) Radio communication apparatus and radio communication method
CN118283653A (zh) 一种通信方法及装置
WO2016131191A1 (zh) 一种信道接入方法及信道接入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000491

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227003669

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020840050

Country of ref document: EP

Effective date: 20220127

ENP Entry into the national phase

Ref document number: 2020314490

Country of ref document: AU

Date of ref document: 20200713

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022000491

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220111