WO2021008375A1 - 一种利用空压动力的管道式空悬浮高速行驶列车装置 - Google Patents

一种利用空压动力的管道式空悬浮高速行驶列车装置 Download PDF

Info

Publication number
WO2021008375A1
WO2021008375A1 PCT/CN2020/099821 CN2020099821W WO2021008375A1 WO 2021008375 A1 WO2021008375 A1 WO 2021008375A1 CN 2020099821 W CN2020099821 W CN 2020099821W WO 2021008375 A1 WO2021008375 A1 WO 2021008375A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
train
pipeline
air injection
injection ports
Prior art date
Application number
PCT/CN2020/099821
Other languages
English (en)
French (fr)
Inventor
龚水明
金在浩
Original Assignee
龚水明
金在浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龚水明, 金在浩 filed Critical 龚水明
Publication of WO2021008375A1 publication Critical patent/WO2021008375A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/10Tunnel systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C11/00Locomotives or motor railcars characterised by the type of means applying the tractive effort; Arrangement or disposition of running gear other than normal driving wheel
    • B61C11/06Locomotives or motor railcars characterised by the type of means applying the tractive effort; Arrangement or disposition of running gear other than normal driving wheel tractive effort applied or supplied by aerodynamic force or fluid reaction, e.g. air-screws and jet or rocket propulsion

Definitions

  • the invention belongs to the technical field of high-speed trains, and in particular relates to a pipeline type air-suspension high-speed train device using pneumatic power.
  • the high-speed train represented by the super high-speed rail currently under development represents the future direction of the development of high-speed rail transportation.
  • This is a transportation tool based on vacuum pipeline transportation.
  • the operating space is a closed vacuum without friction, so it has the characteristics of ultra-high speed, safety, low energy consumption, low noise, and low pollution.
  • maintaining the vacuum and suspension of the pipeline is a technical problem that needs to be solved urgently. If the pipeline is completely vacuum, the pipeline will be squeezed and deformed because the external air pressure is greater than the internal pressure, and there will be passengers in the high-speed rail, so it is impossible to maintain an absolute vacuum.
  • the levitation technology currently recommended is the maglev train, which requires linear motors for traction, and its construction cost is very expensive, and there is a high magnetic field, which is likely to cause electromagnetic pollution.
  • the air suspension train currently developed is based on the technical principles of aircraft and aero engines. The air is compressed and stored in the car. It is controlled by a solenoid valve. The compressed air is sprayed to the flat ground through a nozzle to make the car levitate. The reaction obtains the driving force and the control force, and moves with the driving force of the car body through the propeller or jet engine.
  • Both maglev trains and existing air-levitation trains are moved through propulsion devices and complex control devices installed on the trains. These devices themselves increase the load of the train and are not suitable for high-speed or ultra-high-speed operation.
  • the propulsion device needs to be connected with wires to obtain electricity from the outside. Once the power is cut off, the train will be isolated in a closed pipeline, and the cost of the propulsion device is also high.
  • the present invention provides a pipeline-type air-suspension high-speed train device using air pressure power to solve the problem of heavy weight of the train due to the propulsion device and control device being mounted on the train in the prior art, and the use of fossil energy as the driving force.
  • the hidden danger of power failure in the external wire supply power and the problem of maintaining the vacuum state of the pipeline are solved, so as to realize the ultra-high-speed operation of the train.
  • the technical solution of the present invention includes a train and a pipeline.
  • the train runs in the pipeline.
  • the pipeline is composed of a combination of a plurality of pipeline bodies, a pipeline terminal and a pipeline support body.
  • the pipeline terminal is connected in series at the end of the pipeline body series body.
  • the pipe support body is arranged at the lower part of the pipe body and the pipe terminal.
  • the bottom wall of the pipe body is provided with an air injection port for levitation, and the bottom of the train is provided with a lower air track.
  • the compressed air sprayed from the levitation air injection port acts on the lower air track to suspend the train; on the inner side wall of the pipe body Air injection ports for advancing are provided, and first grooves are respectively provided on both sides of the train.
  • the compressed air sprayed from the air injection ports for advancing acts on the first groove to push the train to travel;
  • the top wall of the pipe body is provided with Multiple height-limiting air injection ports, the top of the train is equipped with an upper air track, and the compressed air sprayed from the height-limiting air injection port acts on the upper air track to prevent the train from over-height topping and ensure the safety of train operation;
  • the top and the tail of the train are also provided with a plurality of second grooves, the front and back directions of the second grooves are adjustable, push forward and brake backward.
  • a set of compressed air tanks are installed on the upper and lower parts of the pipe body.
  • the air injection port for suspension, the air injection port for advancement and the air injection port for height limitation all pass through the air compression pipeline and the output end of the air pressure tank.
  • the input end of the air pressure box is connected to the output end of the air compressor or the compression box outside the pipe body through the air compression pipeline connection part, so as to receive and store compressed air, and provide kinetic energy for the suspension and advancement of the train and height limitation.
  • Auxiliary rails, auxiliary wheels and wheel grooves are also provided at the bottom of the train.
  • the wheel surfaces of the auxiliary wheels protrude beyond the rail surfaces of the auxiliary rails through the wheel grooves to prevent the auxiliary rails from contacting the auxiliary wheel rails. There is friction.
  • the auxiliary wheels are used in conjunction with the auxiliary wheel rails arranged on the bottom wall of the pipeline. When the train is stationary, the auxiliary wheels and the auxiliary wheel rails support the weight of the train.
  • a vacuum suction hole is also provided on the side wall of the pipe body.
  • the vacuum suction hole communicates with one end of the vacuum suction main pipe.
  • the other end of the vacuum suction main pipe is connected to the pipe body through the vacuum suction connection pipe and the vacuum suction connection part.
  • the external vacuum inhaler is connected, and the vacuum inhaler is used to suck out the air inside the pipe.
  • a controller is also provided inside the pipe body, including an air controller for levitation, an air controller for advancing, and a vacuum suction controller.
  • the air controller for levitation is installed between the air pressure box for levitation and the air injection port for levitation. Between the air pressure box for the upper suspension and the air injection port for height limitation, it is used to control the time for the air injection port for suspension and the air injection port for height limitation to inject high-pressure air.
  • the air controller for forward movement is set in the forward space Between the pressure box and the advancing air injection port, on the inner wall of the pipe, it is used to control the time for the advancing air injection port to inject high-pressure air for advancing.
  • the high-speed train device further includes a first sensor and a second sensor, and a plurality of first sensors are arranged on the bottom wall of the pipeline body for monitoring the position of the train in the pipeline.
  • the second sensor is arranged at the lower part of the head of the train and is used to monitor the position of the head of the train in the pipeline.
  • the high-speed train device also includes a mechanical control device and a control line.
  • the mechanical control device includes a control device body, a control key, and a lock valve arranged on the control device body and connected with the control key.
  • the control device body is connected in series with the air In the pipeline, control lines extending along the length of the train are respectively arranged on both sides of the train, and the control lines open and close the lock valve through the control key.
  • the power driving device and the control components are arranged in the pipeline, and there is no need to install the engine or battery, the engine and other power driving devices in the train, which achieves the lightweight body, and the train has a simple structure, low production cost, easy maintenance, safety and economy Sex.
  • the compressed air in the air compressor box has an energy function, which can not only provide power for the train, but also push the air engine outside the pipeline to generate electricity. Even if there is a power outage in the pipeline for a period of time, the problem of isolation of the train in the pipeline when the fault occurs can be solved, and it can also provide electricity for remote areas where the pipeline passes.
  • Figure 1 is a schematic structural diagram of a high-speed train device provided by an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a pipeline structure provided by an embodiment of the present invention.
  • Figure 3 is a partial schematic diagram of a train head part provided by an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a train structure provided by an embodiment of the present invention.
  • Figure 5 is a perspective view of a train provided by an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the top structure of a pipe provided by an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the bottom structure of a pipe provided by an embodiment of the present invention.
  • Figure 8 is a partial schematic diagram of a pipeline provided by an embodiment of the present invention.
  • Figure 9 is a schematic diagram of the top of a pipe provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the middle part of a pipeline provided by an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a train structure provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a mechanical control device provided by an embodiment of the present invention.
  • Figure 13 is a cutaway view of a mechanical control device according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the mechanical control device in another working state according to the embodiment of the present invention.
  • a pipeline type air-suspension high-speed train device using pneumatic power in an embodiment of the present invention includes a pipeline 1 and a train 2, and the train 2 travels in the pipeline 1.
  • the pipeline 1 is composed of a combination of 20 pipeline bodies 11, a pipeline terminal 12, and 14 pipeline supports 13.
  • One pipeline terminal 12 is connected in series at the end of the 20 pipeline bodies 11, and 14 pipeline supports 13 They are respectively arranged at the lower part of the pipe body 11 and the pipe terminal 12.
  • the pipeline 1 is formed by connecting 20 identical pipeline bodies 11, and two adjacent pipeline bodies 11 are connected by a pipeline connection part 19, and the pipeline body 11 and a pipeline terminal 12 are also connected by a pipeline connection part. 19Connect.
  • an air injection port 14 for levitation is provided on the bottom wall of the duct body 11, a lower air rail 21 is provided at the bottom of the train 2, and compressed air ejected from the air injection port 14 for levitation Acting on the lower air rail 21 makes the train 2 levitate.
  • the inner side wall of the duct body 11 is provided with air injection ports 15 for advancing, and a plurality of first grooves 22 are respectively provided on both sides of the train 2, and the plurality of first grooves 22 are arranged at intervals along the outer side of the train 2.
  • the compressed air sprayed from the injection port 15 acts on the first groove 22 to propel the train 2 to travel, and the air injection port 15 for advancing provides the main kinetic energy of the train 2 running.
  • the first groove 22 is a bent groove, the shape of the first groove 22 is " ⁇ " or other shapes, and the direction of the first groove 22 faces the front direction of the vehicle.
  • the bottom wall of the pipe body 11 is also provided with a rail 18 for auxiliary wheels.
  • Two rails 18 for auxiliary wheels are arranged on the bottom wall of the pipe body 11 at intervals.
  • the rail 18 for auxiliary wheels has a groove-shaped structure.
  • the length direction of the pipe body 11 extends.
  • the bottom of the train 2 is provided with an auxiliary rail 26, auxiliary wheels 27, and wheel grooves 25.
  • the surface of the auxiliary wheels 27 protrudes outside the track surface of the auxiliary rail 26 through the wheel grooves 25 to prevent the auxiliary rail 26 and the auxiliary wheels Contact with rail 18 causes friction.
  • the auxiliary wheel 27 is in dynamic cooperation with the auxiliary wheel rail 18 provided on the bottom wall of the pipeline.
  • the auxiliary wheel 27 contacts the auxiliary wheel rail 18 to fine-tune the forward direction of the train 2 so that the train 2 runs stably and prevents Derailment; when the train 2 is stationary, the auxiliary wheel track 18 and auxiliary wheels 27 are used to support the weight of the train 2.
  • the auxiliary wheels 27 extend into the auxiliary wheel rails 18.
  • the auxiliary rails 26 and the auxiliary wheels 27 are prepared to deal with the collision between the lower air rail 21 and the duct body 11.
  • the auxiliary wheels 27 can prevent the train 2 from colliding with the duct body 11. When the side wall of the pipe body 11 collides, it is impacted, which improves the safety of the train 2.
  • the top wall of the duct body 11 is provided with an air injection port 17 for height limitation, and an upper air rail 28 is provided on the top of the train 2.
  • the compressed air sprayed from the air injection port 17 for height limitation acts on The upper air track 28 prevents the train 2 from floating too high and touching the top wall of the duct body 11.
  • the train 2 includes a locomotive 210 and a car 220.
  • the headlight 210 is provided with a headlight 211, a battery for lighting the train 2, an electronic box 213 for controlling basic electronic equipment and sensors, and no engine is provided.
  • the locomotive 210 adopts a buffer design. When the train 2 collides, the position of the locomotive 210 has the effect of relieving the impact.
  • Seats 214 are arranged in the carriage 220, doors 24 and windows 23 are arranged on the sides of the carriage, and the doors 24 are used for passengers to get on and off the train 2.
  • a plurality of second grooves 29 are provided on the top and tail of the train 2. As shown in FIG. 4, the high-pressure air ejected from the pipe body 11 is received to provide the train 2 with forward power. By setting the orientation of the top second groove 29, the train 2 can be provided with forward forward power or backward braking power. When the top second groove 29 is forward, it provides forward power for the train; when the top second groove 29 is backward, the high-pressure air ejected from the pipe body 11 can slow down the train 2 and even make the train 2 retreat .
  • the driving force of the train 2 comes from the first groove 22 on the side wall of the train, and also from the second groove 29 on the top and the rear of the train.
  • the driving force required for the train 2 is very small when running at a constant speed in a near vacuum state, only the driving force required for the initial acceleration is large, so the reasonable setting of the forward air injection port 15 and the selection of a suitable pressure air box 4. It is ideal and feasible to use segmented acceleration before train 2 reaches a stable speed. For example, the first stage accelerates to 10m/s, the second stage accelerates to 20m/s, and finally achieves high-speed operation, which can be used reasonably and effectively High pressure air.
  • a set of very long air compressor boxes 4 are provided on the upper and lower parts of the pipe body 11, with air injection ports 14 for suspension, air injection ports 15 for advancing, and air injection ports for height limitation. 17 are communicated with the output end of the air pressure tank 4 through the air compression pipeline 16, and the input end of the air pressure tank 4 is connected to the air compressor or the output end of the compression tank outside the pipeline body 11 through the air compression pipeline connection part 122. Accepts and stores compressed air to provide kinetic energy for the suspension and advancement of train 2. At the same time, the compressed air in the air compressor box 4 can also be used to drive the engine outside the pipe body 11 to generate electricity, so as to solve the problem of isolation of the train 2 caused by the power outage in the pipe 1.
  • Each air pressure box 4 includes an air pressure box 4a for suspension and an air pressure box 4b for advance.
  • the air pressure box 4a for levitation communicates with the air injection port 14 for levitation and the air injection port 17 for height limitation through the air discharge pipe 42 for levitation respectively.
  • the air injection port 14 for levitation is also provided with an injection port expansion groove 43, and the injection port is expanded
  • the groove 43 has a bowl-shaped structure, which can increase the air-receiving area at the bottom of the train 2.
  • the forward air pressure tank 4b communicates with the forward air injection port 15 through the forward air discharge pipe 121.
  • the air pressure box 4a for levitation provides compressed air for the suspension of the train 2, and the air pressure box 4b for advance provides compressed air for the advancement of the train 2.
  • a vacuum suction hole 215 is provided on the inner side wall of the pipe body 11.
  • the vacuum suction hole 215 is connected to one end of the vacuum suction main pipe 216, and the other end of the vacuum suction main pipe 216 is connected by vacuum suction.
  • the pipe 217 and the vacuum suction connection part 218 are connected to a vacuum inhaler (not shown in the figure) provided outside the pipe body 11.
  • the vacuum inhaler is used to suck out the air inside the pipe body 11 to form a vacuum or similar vacuum in the pipe. status.
  • Figure 8 shows a schematic diagram of the vacuum suction hole 215 sucking in air.
  • the vacuum suction hole 215 forms a partial vacuum in front of the train 2, especially in the area within 1m in front of the front of the train. By reducing the friction between the air and the train 2, it is reduced The resistance of train 2 to advance increases the speed.
  • the high-speed train device may adopt an electronic control method. 2 and 3, a plurality of first sensors 5a are provided on the bottom wall of the pipe body 11, and a second sensor 5b is provided under the head 210 of the train 2.
  • the first sensor 5a is used to monitor the train 2 in the pipe Location within 1.
  • a probe (not shown in the figure) provided on the inner wall of the pipe body 11 can sense the second sensor 5b to identify the position of the front of the train 2.
  • the sensors and probes are connected to the monitoring room with signals to realize the sharing of train 2 information with the monitoring room.
  • a controller is provided inside the duct body 11, including an air controller 41 for levitation, an air controller 44 for advancing, and a vacuum suction controller 219.
  • the levitation air controller 41 is installed between the lower levitation air pressure box 4a and the levitation air injection port 14, and between the upper levitation air pressure box 4a and the height-limiting air injection port 17, for controlling levitation
  • the advancing air controller 44 is provided between the advancing air pressure box 4b and the advancing air injection port 15, and on the inner side wall of the duct body 11, is used to control the time during which the advancing air injection port 15 sprays the advancing high pressure air.
  • the vacuum suction controller 219 is arranged between the vacuum suction main pipe 216 and the vacuum suction hole 215, and is used to control the on and off of the vacuum suction hole 215 and the external vacuum suction device to form a vacuum or a similar vacuum in front of the train 2. Lower than other areas).
  • the controller can choose wireless or wired control electronic valves, solenoid valves and other electronic components, which can be accurately activated through electronic signal control. Only when the first sensor 5a senses that the train 2 passes by, the air injection port will spray compressed air, and the vacuum suction hole 215 sucks the air in front of the train 2 so that the vehicle levitates and travels at high speed.
  • the high-speed train device can also adopt a mechanical control method.
  • a mechanical control device 6 is provided on the inner side wall of the duct body 11 to control the discharge or suction of air.
  • a control wire 300 extending in the longitudinal direction of the train is provided on the outer side wall of the train 2, and the control wire 300 is opened and closed with the lock valve 63 via the control key 62.
  • the control line 300 opens the lock valve 63, and when the train 2 passes, the lock valve 63 automatically closes.
  • the mechanical control device 6 is divided into a normally closed control device 611 and a normally open control device 622.
  • the normally closed control device 611 controls the injection port 7 to eject high-pressure air for pushing the train 2 or suspending the train 2.
  • the normally open control device 622 controls the suction hole 8 to suck in air, so that a vacuum can be formed in front of the train 2.
  • the position of the mechanical control device 6 on the inner wall of the pipeline is adjustable.
  • the mechanical control device 6 includes a control device body 61, a control key 62, and a lock valve 63 arranged on the control device body 61 and connected to the control key 62.
  • the control device body 61 is connected in series in the air duct .
  • the lock valve 63 controls the opening and closing of the first air discharge port 64 and the first air suction port 65 in the main body 61 of the control device. Touch the control key 62 to close or open the lock valve 63.
  • the lock valve 63 controls the on and off of the second air discharge port 66 and the second air suction hole 67 in the main body 61 of the control device.
  • the lock valve 63 adopts a highly sensitive valve core. As long as the train 2 slightly touches the control key 62, the lock valve 63 will open or close. Therefore, when the control key 62 is in contact with the train 2, there will be no greater resistance to the train 2. It will not affect the safe and high-speed driving of train 2.
  • the normally closed control device 611 is connected to the air discharge pipeline. Normally, the lock valve 63 is closed under the pressure of the first air suction port 65, but as the train 2 passes by, as long as the control When the key 62 is touched, the lock valve 63 is opened, and the first air discharge port 64 discharges compressed air.
  • the normally open control device 622 is connected to the main vacuum suction pipe 216.
  • the lock valve 63 Under normal circumstances, the lock valve 63 is in an open state, and the second air suction hole 67 sucks in the air in the pipe 1 and discharges it through the second air outlet 66 to make the pipe 1 It is in a vacuum state, but as the train 2 passes by, as long as the control key 62 is touched, the lock valve 63 will be closed, and the second air suction hole 67 will no longer suck in air. At this time, the first control device 611 of the normally closed type The air outlet 64 will spray a large amount of high-pressure air. This structure can simply and effectively perform air ejection and suction, so the high-speed train 2 can be effectively started. The entire train power is set in the pipeline 1 instead of on the train 2, which greatly reduces the weight of the train 2 and saves the limited space of the train 2 at the same time, which can be used to set more seats 214.
  • the pipeline type air suspension high-speed train device using air pressure power has an electronic control method and a mechanical control method in which the power drive device and control components are arranged in the pipeline, and no engine is required in the train 2 Or battery, engine and other power driving devices, which greatly reduces the weight and production cost of the train 2, and at the same time saves the limited space of the train 2, which can be used to set more seats 214, and the main components of the pipeline are only the air pressure box 4, air
  • the pipeline and controller are therefore simple in structure, easy to maintain, and highly safe and economical. Since the compressed air in the air pressure box 4 can provide electric energy in addition to kinetic energy, it can solve the problem of the train 2 being isolated in the pipeline during a power outage and help provide electric energy to remote areas that the pipeline passes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Abstract

一种利用空压动力的管道式空悬浮高速行驶列车装置,包括列车(2)和管道(1),列车(2)在管道(1)内行进,管道(1)由管道本体(11)、管道终端(12)和管道支撑体(13)构成。管道本体(11)底壁设有悬浮用空气喷射口(14),列车(2)底部设有下部空气轨道(21),悬浮用空气喷射口(14)喷射压缩空气于下部空气轨道(21)使列车(2)悬浮;管道本体(11)内侧壁设有前进用空气喷射口(15),列车(2)侧壁设有第一凹槽(22),前进用空气喷射口(15)喷射压缩空气于第一凹槽(22)推动列车(2)行进;管道本体(11)顶壁设有多个限高用空气喷射口(17),列车(2)顶部设有上部空气轨道(28),限高用空气喷射口(17)喷射压缩空气于上部空气轨道(28)防止列车(2)触顶;悬浮用空气喷射口(14)、前进用空气喷射口(15)和限高用空气喷射口(17)均通过空气压缩管路(16)与空压箱(4)连通。

Description

一种利用空压动力的管道式空悬浮高速行驶列车装置 技术领域
本发明属于高速列车技术领域,具体涉及一种利用空压动力的管道式空悬浮高速行驶列车装置。
背景技术
目前传统列车均是通过引擎或电力驱动,列车的速度已达到瓶颈,驱动使用的能源以化石燃料为主,因化石能源具有不可再生性,在燃烧过程中还会产生二氧化碳等废气,造成严重的大气污染。
以当前正在开发的超级高铁为代表的高速列车代表了未来高速轨道交通发展的方向,这是一种以真空管道运输为理论的交通工具。运行空间是密闭的真空,无摩擦力,因此具有超高速、安全、低能耗、噪声小、污染小等特点,但维持管道的真空和悬浮状态则是目前亟待解决的技术难题。若管道是完全真空,会因外部气压大于内部而导致管道受挤压变形,并且高铁中要乘坐人,因此不可能保持绝对的真空状态。悬浮技术目前大家推荐的是磁悬浮列车,需用直线电机做牵引,其建设成本非常昂贵,并且存在高磁场,容易造成电磁污染。目前研发的空悬浮列车是根据飞机和航空发动机的技术原理,将空气压缩后存储在车内,由电磁阀进行控制,将压缩空气通过喷嘴喷射到平坦的地面从而使车悬浮,同时利用气体的反作用得到推动力和控制力,通过螺旋桨或喷气发动机,以车体的推动力进行移动。
磁悬浮列车和现有的空悬浮列车均是通过设置在列车上的推进装置和复杂的控制装置来实现移动,这些装置本身增加了列车的负荷,并不适于高速或超高速运行。另外,推进装置还需连接导线从外部获得电力,一旦停电,就会导致列车被孤立在封闭管道内,并且推进装置的费用也较高。
发明内容
本发明提供了一种利用空压动力的管道式空悬浮高速行驶列车装置,以解决现有技术中由于推进装置、控制装置搭载在列车上而导致列车重量较重,使用化石能源作驱动、因外接导线供应电力存在的断电隐患以及解决管道维持真空状态的问题, 从而实现列车的超高速运行。
为了实现上述目的,本发明的技术方案包括列车和管道,列车在管道内行进,管道由多个管道本体、管道终端和管道支撑体组合构成,管道终端串连设置在管道本体串连体的末端,管道支撑体设置在管道本体和管道终端的下部。
其中,在管道本体的底壁设置有悬浮用空气喷射口,列车的底部设置有下部空气轨道,悬浮用空气喷射口喷出的压缩空气作用于下部空气轨道使列车悬浮;在管道本体的内侧壁设置有前进用空气喷射口,在列车的两侧分别设置有第一凹槽,前进用空气喷射口喷出的压缩空气作用于第一凹槽以推动列车行进;在管道本体的顶壁设置有多个限高用空气喷射口,列车的顶部设置有上部空气轨道,限高用空气喷射口喷出的压缩空气作用于上部空气轨道以防止列车超高触顶,确保列车运行的安全性;在列车的顶部和尾部还设置有多个第二凹槽,第二凹槽的前、后朝向变化可调,向前推动,向后制动。在管道本体的上部和下部各设置一套存储压缩空气的空压箱,悬浮用空气喷射口、前进用空气喷射口和限高用空气喷射口均通过空气压缩管路与空压箱的输出端连通,空压箱输入端通过空气压缩管路连接部与管道本体外部的空压机或压缩箱输出端连接,以此接受并存储压缩空气,为列车悬浮和前进及限高等提供动能。
在所述列车的底部还设置有辅助轨道、辅助车轮和车轮凹槽,辅助车轮的轮面透过车轮凹槽凸出在辅助轨道的轨道面外,用于防止辅助轨道与辅助车轮用轨道接触发生摩擦。辅助车轮与设置在管道底壁的辅助车轮用轨道动配合使用,当列车静止时,辅助车轮以及辅助车轮用轨道支撑列车的重量。
在所述管道本体的侧壁上还设置有真空吸入孔,真空吸入孔与真空吸入主管道的一端连通,真空吸入主管道的另一端通过真空吸入连接管和真空吸入连接部与设置在管道本体外部的真空吸入器连接,真空吸入器是用于吸出管道内部的空气。
在所述管道本体内部还设置有控制器,包含悬浮用空气控制器、前进用空气控制器和真空吸入控制器,悬浮用空气控制器设置在下部悬浮用空压箱与悬浮用空气喷射口之间,以及上部悬浮用空压箱与限高用空气喷射口之间,用于控制悬浮用空气喷射口和限高用空气喷射口喷射高压空气的时间,前进用空气控制器设置在前进用空压箱与前进用空气喷射口之间,在管道的内侧壁,用于控制前进用空气喷射口喷射前进用高压空气的时间。
所述高速行驶列车装置还包括第一传感器和第二传感器,多个第一传感器 设置在管道本体底壁上,用于监测列车在管道内的位置。第二传感器设置在列车的车头部位下部,用于监测列车车头在管道内的位置。
所述高速行驶列车装置还包括机械式控制装置和控制线,机械式控制装置包括控制装置本体、控制键和设置在控制装置本体上并与控制键连接的锁定阀,控制装置本体串接在空气管道中,列车的两侧分别设置有沿列车长度方向延伸的控制线,控制线通过控制键打开、关闭锁定阀。
本发明具有如下优点:
本发明将动力驱动装置和控制部件设置在管道内,列车内无需设置引擎或电池、发动机等动力驱动装置,达到了车身轻量化,并且列车结构简单,制作成本低廉,便于维护,具有安全及经济性。在空压箱中的压缩空气具有能源作用,既可为列车提供动力,又可推动管道外的空气发动机进行发电。即使管道内停电一段时间,也可解决故障发生时列车在管道内孤立的问题,此外还可为管道经过的偏僻地区提供电能。
附图说明
图1为本发明实施例提供的一种高速行驶列车装置结构示意图;
图2为本发明实施例提供的管道结构示意图;
图3为本发明实施例提供的列车车头部位局部示意图;
图4为本发明实施例提供的列车结构示意图;
图5为本发明实施例提供的列车透视图;
图6为本发明实施例提供的管道顶部结构示意图;
图7为本发明实施例提供的管道底部结构示意图;
图8为本发明实施例提供的管道局部示意图;
图9为本发明实施例提供的管道顶部示意图;
图10为本发明实施例提供的管道中部结构示意图;
图11为本发明实施例提供的列车结构示意图;
图12为本发明实施例提供的机械式控制装置结构示意图;
图13为本发明实施例提供的机械式控制装置剖切图;
图14为本发明实施例提供的机械式控制装置另一工作状态下的剖切图。
图中标注:
1-管道  11-管道本体  12-管道终端  13-管道支撑体
14-悬浮用空气喷射口  15-前进用空气喷射口  16-空气压缩管路
17-限高用空气喷射口  18-辅助车轮用轨道  19-管道连接部
121-前进用空气排放管  122、空气压缩管路连接部
2-列车  21-下部空气轨道  22-第一凹槽  23-车窗  24-车门
25-车轮凹槽  26-辅助轨道  27-辅助车轮  28-上部空气轨道
29-第二凹槽  210-车头部位  211-前照灯  213-电子盒
214-坐席    215-真空吸入孔  216-真空吸入主管道
217-真空吸入连接管  218-真空吸入连接部  219-真空吸入控制器
4-空压箱  4a-悬浮用空压箱  4b-前进用空压箱
41-悬浮用空气控制器  42-悬浮用空气排放管  43-喷射口扩展槽
44-前进用空气控制器  5a-第一传感器  5b-第二传感器
6-机械式控制装置  61-控制装置本体  62-控制键  63-锁定阀
64-第一空气排出口  65-第一空气吸入口  66-第二空气排出口
67-第二空气吸入孔  7-喷射口  300-控制线
具体实施方式
下面结合附图对本发明实施例进行具体说明:
如图1所示,本发明实施例的一种利用空压动力的管道式空悬浮高速行驶列车装置包括管道1和列车2,列车2在管道1内行进。管道1由20个管道本体11、1个管道终端12和14个管道支撑体13组合构成,1个管道终端12串连设置在20个管道本体11串连体的末端,14个管道支撑体13分别设置在管道本体11和管道终端12的下部。
如图1、图2所示,管道1是由20个相同的管道本体11连接而成,相邻两个管道本体11通过管道连接部19连接,管道本体11和管道终端12也通过管道连接部19连接。
如图2、图3、图4所示,在管道本体11的底壁设置有悬浮用空气喷射口14,列车2的底部设置有下部空气轨道21,悬浮用空气喷射口14喷出的压缩空气作用于下部空气轨道21使列车2悬浮。在管道本体11的内侧壁设置有前进用空气喷射口15,在列车2的两侧分别设置多个第一凹槽22,多个第一凹槽22沿列车2的外侧间隔设置,前进用空气喷射口15喷出的压缩空气作用于第一凹槽22以推动列车2行进,前进用空 气喷射口15提供列车2运行的主要动能。第一凹槽22为弯折的凹槽,第一凹槽22的形状为“〈”状或其它形状,而且第一凹槽22的方向朝向车头方向。在管道本体11的底壁还设置有辅助车轮用轨道18,两个辅助车轮用轨道18间隔布置于管道本体11的底壁,辅助车轮用轨道18为凹槽形结构,辅助车轮用轨道18沿管道本体11的长度方向延伸。列车2的底部设置有辅助轨道26、辅助车轮27和车轮凹槽25,辅助车轮27的轮面透过车轮凹槽25凸出在辅助轨道26的轨道面外,可防止辅助轨道26与辅助车轮用轨道18接触发生摩擦。辅助车轮27与设置在管道底壁的辅助车轮用轨道18动配合,当列车运行时,辅助车轮27与辅助车轮用轨道18接触用于对列车2前进方向进行微调,使列车2运行稳定,防止脱轨;当列车2静止时,辅助车轮用轨道18和辅助车轮27用于支撑列车2的重量。在列车需要时,辅助车轮27伸入辅助车轮用轨道18内,辅助轨道26和辅助车轮27是为了应对下部空气轨道21与管道本体11发生碰撞情况而准备的,辅助车轮27可避免列车2与管道本体11侧壁发生碰撞时受到冲击,提高列车2的安全性。
如图4、图6所示,在管道本体11的顶壁设置有限高用空气喷射口17,列车2的顶部设置有上部空气轨道28,限高用空气喷射口17喷出的压缩空气作用于上部空气轨道28以防止列车2悬浮太高而触碰管道本体11的顶壁。
如图3~图5所示,列车2包括车头210和车厢220。车头210上设置有前照灯211,以及用于列车2照明所需的电池、控制基本电子设备和传感器的电子盒213,没有设置引擎。车头210采用缓冲设计,当列车2发生碰撞时,车头210部位具有缓解冲击的作用。车厢220内设有坐席214,车厢侧面设有车门24和车窗23,车门24用于乘客上下列车2。
在列车2的顶部和尾部设置有多个第二凹槽29,图4所示,接受从管道本体11喷出的高压空气为列车2提供前进的动力。通过设置顶部第二凹槽29的朝向可以为列车2提供向前的前进动力,或者向后的制动力。当顶部第二凹槽29向前时为列车提供向前的前进动力;当顶部第二凹槽29向后时,管道本体11喷射出的高压空气可使列车2实现减速,甚至使列车2后退。
列车2前进的动力来自于列车侧壁的第一凹槽22,还来自于列车顶部和尾部的第二凹槽29。
由于列车2在接近真空状态下匀速运行时所需的驱动力很小,只有在初期加 速时所需驱动力较大,因此通过前进用空气喷射口15的合理设置及选择合适压力的空压箱4,在列车2达到稳定速度之前采用分段加速的方式是理想可行的,比如第一阶段加速至10m/s,第二阶段加速至20m/s,最终实现高速运行,这样可合理有效的使用高压空气。
参考图2、图6、图7,在管道本体11的上部和下部各设置一套很长的空压箱4,悬浮用空气喷射口14、前进用空气喷射口15和限高用空气喷射口17均通过空气压缩管路16与空压箱4的输出端连通,空压箱4输入端通过空气压缩管路连接部122与管道本体11外部的空压机或压缩箱输出端连接,以此接受并存储压缩空气,为列车2悬浮和前进提供动能。同时,空压箱4内的压缩空气还可用于驱动管道本体11外的发动机来发电,解决因管道1内停电而造成的列车2孤立的问题。
每套空压箱4包括悬浮用空压箱4a和前进用空压箱4b。悬浮用空压箱4a通过悬浮用空气排放管42分别与悬浮用空气喷射口14和限高用空气喷射口17连通,在悬浮用空气喷射口14还设置有喷射口扩展槽43,喷射口扩展槽43呈碗状结构,可增大列车2底部接受空气的面积。前进用空压箱4b通过前进用空气排放管121与前进用空气喷射口15连通。悬浮用空压箱4a为列车2的悬浮提供压缩空气,前进用空压箱4b为列车2的前进提供压缩空气。
如图8和图9所示,在管道本体11的内侧壁上设置有真空吸入孔215,真空吸入孔215与真空吸入主管道216的一端连通,真空吸入主管道216的另一端通过真空吸入连接管217和真空吸入连接部218与设置在管道本体11外部的真空吸入器(图中未示出)连接,真空吸入器是用于吸出管道本体11内部的空气,使管道内形成真空或类似真空状态。图8示出了真空吸入孔215吸入空气的示意图,真空吸入孔215将列车2前方形成局部真空,尤其是车头部位前方1m范围以内的区域,通过减少空气与列车2之间的摩擦,减小列车2前进的阻力,提高车速。
在本发明中,高速行驶列车装置可采用电子式控制方式。结合图2和图3所示,在管道本体11底壁上设置有多个第一传感器5a,在列车2的车头210下部设置有第二传感器5b,第一传感器5a用于监测列车2在管道1内的位置。在管道本体11内壁设置的探头(图中未示出)可以感测第二传感器5b,从而识别列车2车头的位置。传感器和探头与监控室信号连接,实现列车2的信息与监控室共享。
参考图6~图8,在管道本体11内部设置有控制器,包含悬浮用空气控制器 41、前进用空气控制器44和真空吸入控制器219。悬浮用空气控制器41设置在下部的悬浮用空压箱4a与悬浮用空气喷射口14之间,以及上部的悬浮用空压箱4a与限高用空气喷射口17之间,用于控制悬浮用空气喷射口14和限高用空气喷射口17喷射高压空气的时间。前进用空气控制器44设置在前进用空压箱4b与前进用空气喷射口15之间,在管道本体11的内侧壁,用于控制前进用空气喷射口15喷射前进用高压空气的时间。真空吸入控制器219设置在真空吸入主管道216与真空吸入孔215之间,用于控制真空吸入孔215与外部真空吸入器的通断,以在列车2的前方形成真空或类似真空(气压远低于其它区域)。控制器可选用无线或有线控制的电子阀、电磁阀等电子元器件,通过电子信号控制,可被精确地启动。只有在第一传感器5a感测到列车2经过时,空气喷射口才会喷出压缩空气,同时真空吸入孔215吸走列车2前方的空气,从而使车辆悬浮并高速行进。
在本发明中,高速行驶列车装置还可采用机械式控制方式。如图10和11所示,在管道本体11的内侧壁设置有机械式控制装置6,用于控制空气的排出或吸入。在列车2的外侧壁设置有沿列车长度方向延伸的控制线300,控制线300通过控制键62打开、关闭锁定阀63。当列车2经过时,控制线300打开锁定阀63,当列车2通过后,锁定阀63自动关闭。
机械式控制装置6分为常闭型控制装置611和常开型控制装置622,常闭型控制装置611控制喷射口7喷出高压空气,用于推动列车2或使列车2悬浮。常开型控制装置622控制吸入孔8吸入空气,可使列车2前方形成真空。机械式控制装置6在管道内侧壁的位置可调。
参考图12和图13,机械式控制装置6包括控制装置本体61、控制键62和设置在控制装置本体61上并与控制键62连接的锁定阀63,控制装置本体61串接在空气管道中,锁定阀63控制控制装置本体61内的第一空气排出口64和第一空气吸入口65的通断。触碰控制键62关闭或开启锁定阀63。如图14所示,锁定阀63控制控制装置本体61内的第二空气排出口66和第二空气吸入孔67的通断。
锁定阀63采用高灵敏阀芯,只要列车2轻微触碰控制键62,锁定阀63便会打开或关闭,因此,控制键62与列车2接触时,不会对列车2产生较大的阻力,不会对列车2的安全高速行驶产生影响。
本发明实施例中,常闭型控制装置611与空气排放管路相连,正常情况下,锁定阀63在第一空气吸入口65的压力作用下处于关闭状态,但随着列车2经过,只要控制键62被触碰,锁定阀63就会被开启,第一空气排出口64就会排放压缩空气。常开型控制装置622与真空吸入主管道216相连,正常情况下,锁定阀63处于开启状态,第二空气吸入孔67吸入管道1内的空气并通过第二空气排出口66排出,使管道1呈现真空状态,但随着列车2经过,只要控制键62被触碰,锁定阀63就会被关闭,第二空气吸入孔67就不会再吸入空气,此时常闭型控制装置611的第一空气排出口64将会喷出大量高压空气。这种结构可简单有效地执行空气的喷出与吸入,因此可有效启动高速列车2。整个列车动力设置在管道1内,并非设置在列车2上,大大降低了列车2的重量,同时节约了列车2的有限空间,可用于设置更多的坐席214。
本发明提供的利用空压动力的管道式空悬浮高速行驶列车装置,其电子式控制方式和机械式控制方式均是将动力驱动装置和控制部件设置在管道内,在列车2内无需设有引擎或电池、发动机等动力驱动装置,大大降低了列车2的重量和生产成本,同时节约了列车2的有限空间,可用于设置更多的坐席214,并且管道主要构件也只有空压箱4、空气管路和控制器,因此结构简单,便于维护,具有极高的安全性及经济性。由于空压箱4内的压缩空气除了提供动能外,还能提供电能,因此可解决停电时列车2在管道内孤立的问题,并有助于为管道经过的偏远地区提供电能。

Claims (6)

  1. 一种利用空压动力的管道式空悬浮高速行驶列车装置,包括列车(2)和管道(1),列车(2)在管道(1)内行进,其特征在于,管道(1)由管道本体(11)、管道终端(12)和管道支撑体(13)组合构成,管道终端(12)串连设置在管道本体(11)串连体的末端,管道支撑体(13)设置在管道本体(11)和管道终端(12)的下部;
    其中,在管道本体(11)的底壁设置有悬浮用空气喷射口(14),列车(2)的底部设置有下部空气轨道(21),悬浮用空气喷射口(14)喷出的压缩空气作用于下部空气轨道(21)使列车(2)悬浮;
    在管道本体(11)的内侧壁设置有前进用空气喷射口(15),在列车(2)的两侧分别设置有第一凹槽(22),前进用空气喷射口(15)喷出的压缩空气作用于第一凹槽(22)以推动列车(2)行进;
    在管道本体(11)的顶壁设置有多个限高用空气喷射口(17),列车(2)的顶部设置有上部空气轨道(28),限高用空气喷射口(17)喷出的压缩空气作用于上部空气轨道(28)以防止列车(2)超高触顶;在列车(2)的顶部和尾部还设置有多个第二凹槽(29),第二凹槽(29)的前、后朝向变化可调,向前推动,向后制动;
    在管道本体(11)的上部和下部各设置一套存储压缩空气的空压箱(4),悬浮用空气喷射口(14)、前进用空气喷射口(15)和限高用空气喷射口(17)均通过空气压缩管路(16)与空压箱(4)的输出端连通,空压箱(4)输入端通过空气压缩管路连接部(122)与管道本体(11)外部的空压机或压缩箱输出端连接。
  2. 根据权利要求1所述的高速行驶列车装置,其特征在于,所述列车(2)的底部设置有辅助轨道(26)、辅助车轮(27)和车轮凹槽(25),辅助车轮(27)的轮面透过车轮凹槽(25)凸出在辅助轨道(26)的轨道面外,辅助车轮(27)与设置在管道底壁的辅助车轮用轨道(18)动配合使用,当列车(2)静止时,辅助车轮(27)以及辅助车轮用轨道(18)支撑列车(2)的重量。
  3. 根据权利要求1所述的高速行驶列车装置,其特征在于,在所述管道本体(11)的内侧壁上设置有真空吸入孔(215),真空吸入孔(215)与真空吸入主管道(216)的一端连通,真空吸入主管道(216)的另一端通过真空吸入连接管(217)和真空吸入连接部(218)与设置在管道本体(11)外部的真空吸入器(219)连接。
  4. 根据权利要求1所述的高速行驶列车装置,其特征在于,在所述管道本体(11)内部设置有控制器,包含悬浮用空气控制器(41)、前进用空气控制器(44)和真空吸入控制器(219),悬浮用空气控制器(41)设置在下部悬浮用空压箱(4a)与悬浮用空气喷射口(14)之间,以及上部悬浮用空压箱(4)与限高用空气喷射口(17)之间,前进用空气控制器(44)设置在前进用空压箱(4a)与前进用空气喷射口(15)之间。
  5. 根据权利要求1~4所述的高速行驶列车装置,其特征在于,还包括第一传感器(5a)和第二传感器(5b),多个第一传感器(5a)设置在管道本体(11)底壁上,第二传感器(5b)设置在列车(2)的车头部位(210)下部。
  6. 根据权利要求1~4或5的高速行驶列车装置,其特征在于,还包括机械式控制装置(6)和控制线(300),所述机械式控制装置(6)包括控制装置本体(61)、控制键(62)和设置在控制装置本体(61)上并与控制键连接的锁定阀(63),控制装置本体(61)串接在空气管道中,列车(2)的两侧分别设置有沿列车长度方向延伸的控制线(300),控制线(300)通过控制键(62)打开、关闭锁定阀(63)。
PCT/CN2020/099821 2019-07-12 2020-07-02 一种利用空压动力的管道式空悬浮高速行驶列车装置 WO2021008375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910631082.2 2019-07-12
CN201910631082.2A CN110304079B (zh) 2019-07-12 2019-07-12 一种利用空压动力的管道式空悬浮高速行驶列车装置

Publications (1)

Publication Number Publication Date
WO2021008375A1 true WO2021008375A1 (zh) 2021-01-21

Family

ID=68081130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099821 WO2021008375A1 (zh) 2019-07-12 2020-07-02 一种利用空压动力的管道式空悬浮高速行驶列车装置

Country Status (2)

Country Link
CN (1) CN110304079B (zh)
WO (1) WO2021008375A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696913A (zh) * 2021-07-05 2021-11-26 田太康 磁浮客货列车进出超高真空磁悬浮管道的方法
CN114789738A (zh) * 2022-04-28 2022-07-26 中铁第四勘察设计院集团有限公司 一种用于海底的真空磁浮管道结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110304079B (zh) * 2019-07-12 2020-05-19 龚水明 一种利用空压动力的管道式空悬浮高速行驶列车装置
CN113879340B (zh) * 2021-08-20 2023-04-11 王全文 一种高速轨道交通装置
CN114148352B (zh) * 2021-08-20 2023-06-09 王全文 一种轨道交通装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123722A (ja) * 1986-11-13 1988-05-27 Takenaka Komuten Co Ltd 気体浮上式搬送設備における搬送方法
JPH08119448A (ja) * 1994-10-25 1996-05-14 Hitachi Kiden Kogyo Ltd 空気浮上式搬送装置
JPH10324423A (ja) * 1997-05-23 1998-12-08 Furukawa Electric Co Ltd:The 圧縮ガスを利用した搬送装置
KR20070117273A (ko) * 2006-06-08 2007-12-12 한국표준과학연구원 공기부양식 운송시스템
CN205930715U (zh) * 2016-08-18 2017-02-08 北京航玻新材料技术有限公司 气悬浮轨道和气悬浮系统
CN110304079A (zh) * 2019-07-12 2019-10-08 龚水明 一种利用空压动力的管道式空悬浮高速行驶列车装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946062B2 (ja) * 1991-05-30 1999-09-06 株式会社日立製作所 磁気浮上車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123722A (ja) * 1986-11-13 1988-05-27 Takenaka Komuten Co Ltd 気体浮上式搬送設備における搬送方法
JPH08119448A (ja) * 1994-10-25 1996-05-14 Hitachi Kiden Kogyo Ltd 空気浮上式搬送装置
JPH10324423A (ja) * 1997-05-23 1998-12-08 Furukawa Electric Co Ltd:The 圧縮ガスを利用した搬送装置
KR20070117273A (ko) * 2006-06-08 2007-12-12 한국표준과학연구원 공기부양식 운송시스템
CN205930715U (zh) * 2016-08-18 2017-02-08 北京航玻新材料技术有限公司 气悬浮轨道和气悬浮系统
CN110304079A (zh) * 2019-07-12 2019-10-08 龚水明 一种利用空压动力的管道式空悬浮高速行驶列车装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696913A (zh) * 2021-07-05 2021-11-26 田太康 磁浮客货列车进出超高真空磁悬浮管道的方法
CN114789738A (zh) * 2022-04-28 2022-07-26 中铁第四勘察设计院集团有限公司 一种用于海底的真空磁浮管道结构
CN114789738B (zh) * 2022-04-28 2023-06-02 中铁第四勘察设计院集团有限公司 一种用于海底的真空磁浮管道结构

Also Published As

Publication number Publication date
CN110304079B (zh) 2020-05-19
CN110304079A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021008375A1 (zh) 一种利用空压动力的管道式空悬浮高速行驶列车装置
CN108162995B (zh) 一种空气导流装置及利用其减小空气压差阻力的方法
CN112849167B (zh) 磁悬浮轨道与稀薄空气管道串联高速飞车系统及运输方法
CN109703574B (zh) 一种利用气压差驱动的轨道交通系统
CN110281985A (zh) 一种超高速磁悬浮列车运行控制系统和方法
RU2296683C2 (ru) Линейная пневматическая система для приведения в движение транспортных средств
WO2021135042A1 (zh) 具有气动升力控制装置的轨道车辆
CN102164812A (zh) 配有内部空气流推进系统的陆地车辆
CN110422051B (zh) 一种永磁磁悬浮管轨运输系统
US11220278B2 (en) High speed transportation in running tube as running rail
CN210083205U (zh) 一种亚真空管道交通运输系统
CN103723154B (zh) 一种真空管道交通车辆上翘式车头车尾结构
CN105946879A (zh) 适用于高海拔地区高铁线路的双动力接触网检测车
CN103661420A (zh) 气浮列车及轨道系统
CN111845372A (zh) 超高速超导磁浮轨道交通系统
CN108584611B (zh) 一种用于竖直起降电梯的缓冲系统
CN108583590A (zh) 一种类真空轨道运输系统及其控制方法
CN212685533U (zh) 超高速超导磁浮轨道交通系统
KR100798468B1 (ko) 공기부양식 운송시스템
WO2010051687A1 (zh) 悬浮列车
CN1966324A (zh) 单轨悬浮高速列车
CN1715111A (zh) 一种高速铁路
CN114148352B (zh) 一种轨道交通装置
CN108860182A (zh) 一种直线风箱高速轨道运输系统
CN202011329U (zh) 仿生减阻降噪型高速受电弓

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840026

Country of ref document: EP

Kind code of ref document: A1