WO2021008268A1 - 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车 - Google Patents

半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车 Download PDF

Info

Publication number
WO2021008268A1
WO2021008268A1 PCT/CN2020/094608 CN2020094608W WO2021008268A1 WO 2021008268 A1 WO2021008268 A1 WO 2021008268A1 CN 2020094608 W CN2020094608 W CN 2020094608W WO 2021008268 A1 WO2021008268 A1 WO 2021008268A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
swing arm
control
radius rod
rod
Prior art date
Application number
PCT/CN2020/094608
Other languages
English (en)
French (fr)
Inventor
刘海鹏
Original Assignee
刘海鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘海鹏 filed Critical 刘海鹏
Priority to RU2021115359A priority Critical patent/RU2760795C1/ru
Priority to DE112020000152.0T priority patent/DE112020000152B4/de
Publication of WO2021008268A1 publication Critical patent/WO2021008268A1/zh
Priority to US17/209,221 priority patent/US11370485B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/16Arrangement of linkage connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
    • B62D7/09Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/02Power-assisted or power-driven steering mechanical, e.g. using a power-take-off mechanism for taking power from a rotating shaft of the vehicle and applying it to the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/22Arrangements for reducing or eliminating reaction, e.g. vibration, from parts, e.g. wheels, of the steering system
    • B62D7/228Arrangements for reducing or eliminating reaction, e.g. vibration, from parts, e.g. wheels, of the steering system acting between the steering gear and the road wheels, e.g. on tie-rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/24Endless track steering specially adapted for vehicles having both steerable wheels and endless track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1527Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles comprising only mechanical parts, i.e. without assistance means

Definitions

  • the invention relates to the technical field of non-rail vehicle steering, and more specifically to a constant steering control mechanism and method for a radius rod connected trapezoidal swing arm, and a multi-wheel vehicle.
  • the front wheel steering is mainly based on trapezoidal transmission compensation, but the trapezoidal steering is an approximate steering technology.
  • the steering effect curve is only in the vicinity of 3 degrees and 35 degrees. Straight line cross coincides, when the angle is greater than 43 degrees, the dispersion increases, causing the vehicle tires that turn (especially in parking) to produce sideslip, even accompanied by steering wheel jitter and abnormal noise.
  • the present invention aims to solve one of the above-mentioned technical problems in the prior art at least to a certain extent.
  • an object of the present invention is to provide a simple structure that overcomes vehicle turning (parking) restricted by trapezoidal steering to produce wheel sideslip, steering wheel jitter, and abnormal noise.
  • Radius rod connected trapezoidal swing arm cosine compensation constant steering Control agencies.
  • Radius rod connected trapezoidal swing arm constant steering control mechanism which is mounted in the middle of the front end of the vehicle body, and the rear wheel of the vehicle has no steering function, including:
  • Radius rod one end of the radius rod is fixed with the bottom of the steering column of the steering wheel, the steering wheel angle is ⁇ , and the radius rod length is R; the rotation of the steering wheel drives the radius rod to generate sine sin ⁇ and cosine cos ⁇ , and keep the sine sin ⁇ and cosine cos ⁇ following the rotation of the steering wheel;
  • Trapezoidal swing arm one end of the trapezoidal swing arm is vertically fixed to the other end of the radius rod, and a fixed swing axis is formed at the fixed point; the length of the trapezoidal swing arm is R*M/Hi; it deflects with the steering wheel angle ⁇ , and at the same time produces longitudinal cosine compensation The effect is R*M/Hi*sin ⁇ , and the longitudinal displacement is R*cos ⁇ R*M/Hi*sin ⁇ ;
  • the sine connecting rod is a horizontal rod arranged in the horizontal direction. There are two bushings on it.
  • the fixed pendulum shaft is inserted into the first bushing, and the sine connecting rod is positioned vertically on the radius rod and the trapezoidal pendulum. Between the arms, make it follow the fixed swing shaft;
  • the driven radius rod one end of the driven radius rod is hinged in the second sleeve, and the other end is hinged to the frame, parallel to the radius rod and the same length, and together with the sine connecting rod to form a parallel four-bar linkage mechanism;
  • the two-dimensional synthetic control transmission arm has a cross-shaped groove, the horizontal groove is parallel to the semi-axes on both sides, and the vertical groove is arranged parallel to the length of the vehicle body; a connecting arm is extended on the side close to the horizontal groove;
  • the vector control swing arm is provided with a sliding groove on the vector control swing arm, and the initial position of the setting direction of the sliding groove is parallel to the arrangement direction of the radius rod;
  • the first sliding block is fixed on one end of the sine connecting rod and can be slid in the vertical groove to form the lateral sinusoidal displacement R*sin ⁇ of the two-dimensional synthetic control transmission arm;
  • the second sliding block and the trapezoidal swing arm are separately One end is hinged, which can be slid in the horizontal groove, so that the longitudinal displacement of the two-dimensional synthetic control transmission arm is always equal to R*cos ⁇ R*M/Hi*sin ⁇ , thereby controlling the two-dimensional synthetic control transmission arm to be horizontally and vertically up and down , Move left and right;
  • the third sliding block is hinged with one end of the connecting arm to form a key control point Gi, and it can slide in the chute;
  • a secondary steering shaft or a solid steering shaft is connected to the chute, and the third sliding block drives the chute to rotate around the secondary steering shaft, so that the secondary steering shaft generates a steering angle ⁇ i, which is then connected by a synchronous gear shaft, a parallel connecting rod or a crankshaft
  • the rod is connected to the solid steering shaft; or the vector control swing arm is directly connected to the steering solid steering shaft, and the third slider drives the chute to rotate around the solid steering shaft to generate steering angle ⁇ i, and then connect the hub half through the solid steering shaft as the axis.
  • Axis, and finally get cos ⁇ i R*cos ⁇ R*M/H*sin ⁇ .
  • the present disclosure provides a radius rod connected trapezoidal swing arm constant steering control mechanism. Since the radius rod and the trapezoidal swing arm are integrated, they are arranged perpendicular to each other, simplifying The structure of the steering control mechanism is improved.
  • the constant universal steering can be realized by adding a two-dimensional synthetic control transmission arm, which reduces the manufacturing cost, is convenient to install, and is safe and reliable to use.
  • the normal line of all wheels and the short axis of the wheel hub point to the same instantaneous turning center to prevent side slip.
  • the technical solution of the present invention as long as the suspension allows, the steering angle of the steering shaft can be turned in a full circle.
  • the cosine compensation displacement drives a two-dimensional
  • the longitudinal displacement of the synthetic control transmission arm becomes the main steering assist. It passes through the right angle position and the steering angle enters the second quadrant, and even continues to rotate the full circle four quadrants. This is the obvious difference between the present invention and the conventional trapezoidal steering.
  • This large-angle steering The main application objects are low-speed horizontal parking of ordinary vehicles or forklifts.
  • the length R of the radius rod is determined by the installation space on the vehicle body; the installation space on different vehicle types is different, and the calculation and selection are made according to the vehicle type.
  • the vehicle type such as 75mm, 105mm or 125mm.
  • the lengths of the first slider and the second slider are both greater than twice the width of the cross-shaped slot intersection to prevent the first slider and the second slider from slipping out of the cross-shaped slot intersection.
  • the housing also includes a housing.
  • the radius rod, the driven radius rod, the trapezoidal swing arm, the sinusoidal link, the two-dimensional synthetic control transmission arm, the vector control swing arm and the slider are all fixed in the housing, and the bottom of the steering column is inserted
  • the top of the shell is fixed with the radius rod, and the auxiliary steering shaft extends out of the shell to connect with the synchronous gear shaft or the parallel connecting rod or the double connecting rod of the crankshaft to connect the solid steering shaft.
  • the housing blocks external dust and impurities; further, a seal is provided at the position corresponding to the extension end of the steering shaft and the housing; the housing can also be filled with lubricating oil to reduce working resistance and cooling components.
  • the trapezoidal swing arm, the two-dimensional synthetic control transmission arm, the vector control swing arm and the slider are in two groups; the first group is active, the second group is driven, and the trapezoidal swing arm of the first group is fixed to the first group.
  • the shaft sleeve is perpendicular to the radius rod; the trapezoidal swing arm of the second group is fixed at the second sleeve and is parallel to the trapezoidal swing arm of the first group; the horizontal slot of the second group of two-dimensional synthetic control transmission arm is another
  • a connecting arm is provided on the side.
  • the connecting arm of the second group drives the vector control swing arm of the second group through the third slider of the second group.
  • the installation positions of the first slider and the second slider of the second group are the same as those of the first slider.
  • a crankshaft double-link mechanism is connected at the hinged shaft positions of the driving radius rod and the driven radius rod, and the crankshaft double-link mechanism is to add a fixed-length crank at the same vertical phase of the driving radius rod and the driven radius rod, It is connected by a crank connecting rod, and the radius of the fixed-length crank is a fixed value from R/2 to 4R/5.
  • the beneficial effect of adopting this solution is that on the basis of the foregoing embodiment of double-sided compensation for acute-angle steering, the steering angle can be expanded to an obtuse angle.
  • the trapezoidal swing arm, the two-dimensional synthetic control transmission arm, the vector control swing arm and the slider are in two groups; the two-dimensional synthetic control transmission arm of the first group is arranged on the upper level near the frame, and the second group is two-dimensional synthetic
  • the arm is connected to drive the second sliding block of the second group to follow; the first sliding block of the second group is fixed on the other end of the sine connecting rod and follows the sine connecting rod and the radius rod; the trapezoidal swing arm of the second group
  • the length of is twice the length of the first set of trapezoidal swing arms, and is correspondingly connected to two sets of corresponding second sliders; among them, the driven radius rod can be replaced with a floating vertical chute set on the frame, and a floating
  • the floating vertical chute includes a horizontal floating chute that is fixedly connected to the frame and parallel to the axle and a longitudinal floating chute arranged perpendicular to it.
  • the horizontal fourth slide is provided in the horizontal floating chute, And it is fixed by the fourth horizontal slider and the longitudinal floating chute, the fifth vertical slider slides in the longitudinal floating chute, and the fifth vertical slider is fixed to the first slider; or the fourth horizontal slider is vertically fixed and connected to the vertical first slider.
  • the fifth longitudinal slider is slidably connected to the longitudinal floating chute
  • the fourth transverse slider is slidably connected to the horizontal floating chute
  • the longitudinal floating chute is fixedly connected to the sine connecting rod
  • the fourth transverse slider extends to both sides respectively .
  • the upper end of the horizontal fourth slider extends below the vertical groove of the first group of two-dimensional synthetic control arm
  • the lower end of the horizontal fourth slider extends above the vertical groove of the second group of dimensional synthetic control arm
  • the connecting rod forms the opposite side of the square frame Parallel synchronous follow-up
  • the floating vertical chute controls the sine connecting rod to move horizontally and vertically along the floating vertical chute.
  • the control effect of the steering control mechanism is to give a chute for controlling the vector direction of the four wheels of left front, left rear, right front, and right rear and the length of the vector control arm.
  • the chute for the length of the vector control arm refers to the vector Control arm chute, vertical groove and longitudinal floating chute, a potentiometer is fixedly installed on the side of the chute where the length of the vector control arm is adjusted, and the potentiometer is a DC sliding resistance potentiometer or an AC Hall sensor Brush potentiometer, the guide rail control terminal of the sliding resistance potentiometer or the movable coil pull rope end of the Hall induction potentiometer is connected to the third sliding block that is relatively displaced along the chute, and the initial zero position of each potentiometer corresponds to The potential of the drive target is the standard radius R.
  • Each drive half shaft that implements vector linkage electronic control differential speed needs to install a potentiometer in its respective appropriate position to obtain the target potential required by the steering control mechanism vector linkage electronic control differential speed correspondingly.
  • the left front wheel vector is the length R of the corresponding radius rod (this potentiometer is fixed-length and can be replaced by a standard resistor in a different place), and the left rear wheel vector is theoretically R*cos ⁇ displacement in the longitudinal floating chute (if the left rear wheel differential drive is required, the floating chute needs to be installed, and the longitudinal floating chute is sleeved on the fifth slider or the longitudinal floating chute is sleeved on the first slider Chute, a potentiometer is installed on one side of the longitudinal floating chute, and the control end of the potentiometer is connected by the slider bearing.
  • the left front wheel vector corresponds to the displacement of the key control point Gi in the left chute
  • the left rear wheel vector corresponds to The R*cos ⁇ i displacement in the left vertical chute (that is, the vertical displacement between the intersection of the groove and the vertical groove and the steering shaft core, fixedly installed on the potentiometer on the side of the vertical groove, the sliding brush connected to the rail control terminal or Huo
  • the end of the pull rope of the movable coil of the Er induction potentiometer is connected to the bottom end of the fourth horizontal slider, which crosses the vertical groove vertically in a staggered layer and moves horizontally)
  • the right front wheel corresponds to the key in the right chute
  • the displacement of the control point Gi, the displacement of R*cos ⁇ i in the vertical groove on the right side of the right rear wheel that is, the vertical displacement between the cross point of the horizontal and vertical chute and the steering shaft core, the potentiometer fixedly installed on the side
  • the potential obtained by the sliding resistance potentiometer or the Hall induction brushless potentiometer is the target potential of the vehicle electronic control differential speed. It is compared with the actual measured potential of the tachometer generator.
  • the double-branch diode potential balance comparison circuit is negative after the differential electrical signal is amplified.
  • Feedback control servo differential actuator The vector direction of all wheels and the vector electronic differential speed adjustment are always coordinated. This is a differential control method that conventional trapezoidal steering cannot provide. By adjusting the base resistance value, the sensitivity is controlled, and the response is faster than Eaton Electronics. Differential lock, and allows the inner wheel axle to be lower than the average angular velocity.
  • the present invention also provides a multi-wheeled vehicle, including: a vehicle body, and the above-mentioned radius rod connected trapezoidal swing arm cosine compensation constant steering control mechanism and safety limiter;
  • the safety limiter includes a spring pressure normalizing cam mechanism and a high-speed safety angle limit mechanism fixed on the steering column from top to bottom of the steering wheel; the shaft core of the steering column is disconnected, the radial rod and the ring disc slot Insert pressure-sensitive resistance strain gauges into the gaps on both sides, and connect the clockwise and counterclockwise assist control circuits of the vehicle steering gear through wires.
  • the steering column corresponding to the lower end of the ring disc slot is connected to the rotating shaft of the radius rod through the universal joint rotating shaft drive. Core; the vehicle steering gear controlled by the pressure-sensitive resistance strain gauge transmits the steering assist through the vortex rack and pinion transmission, or the worm meshing gear is directly connected to the rotating shaft gear set on the radius rod to transmit the steering assist;
  • the axis of the physical steering shaft is vertically connected to the axle of the vehicle hub, and the safety limiter is used to limit the steering angle ⁇ of the steering wheel to less than 3° when the vehicle speed is greater than 80km/h.
  • the present disclosure provides a multi-wheeled vehicle. Since the radius rod and the trapezoidal swing arm are integrated and arranged vertically, the structure of the steering control mechanism is simplified. On the basis of the existing vehicle trapezoidal steering mechanism, the addition of a two-dimensional synthetic control transmission arm can achieve constant universal steering, which reduces manufacturing costs, is convenient to install, and is safe and reliable to use. The normal line of all wheels and the short axis of the wheel hub point to the same instantaneous turning center to prevent side slip.
  • the technical solution of the present invention as long as the suspension allows, the steering angle of the steering shaft can be turned in a full circle. During this process, sideslip and tire wear are prevented.
  • the cosine compensation displacement drives a two-dimensional
  • the longitudinal displacement of the synthetic control transmission arm becomes the main steering assist. It passes through the right angle position and the steering angle enters the second quadrant, and even continues to rotate the full circle four quadrants. This is the obvious difference between the present invention and the conventional trapezoidal steering.
  • This large-angle steering The main application objects are low-speed horizontal parking of ordinary vehicles or forklifts.
  • the spring pressure return cam mechanism includes a spring, a pressure plate, a guide rod and an eight-sided cam.
  • One end of the spring is fixed to the vehicle body, and the other end is connected with a pressure plate.
  • the pressure plate is fixed with a guide rod near the spring side, and the other end of the spring is sleeved on the guide rod;
  • the octahedral cam has 8 planes fixed on the steering column of the steering wheel, which abuts against the pressure plate; the spring pushes the pressure plate and the guide rod to press the octagonal cam with appropriate pressure (divide the full-circle steering angle ⁇ of the steering shaft into eight parts, Among them, -35 ⁇ +35 degrees is the starting plane.)
  • the driver controls the steering wheel, it will automatically return to the closest and safest steering angle, such as zero-angle straight, 45-degree fixed circle. Steering, turning in place at right angles, etc., to ensure that the octahedral cam normalizing torque is 2
  • the tachogenerator installed on each drive half shaft produces an average vector differential power supply.
  • This power supply drives a voltmeter mechanism, and the shaft of the voltmeter mechanism drives a pair of limit forks, inside the limit fork
  • the gap on one side is only 4.2mm. Only the steering angle is allowed to be plus or minus 3 degrees.
  • the limit driven by the voltmeter In the normal stationary state of the position fork, the limit fork is close to the horizontal state, and there is no restriction on the steering angle of the radial rod.
  • the piezoelectric meter mechanism drives the limit fork to rotate, and the limit fork gradually drops to a vertical position.
  • the sag angle of the limit fork is less than 30 degrees, there is no restrictive contact with the root of the radial rod, and the steering angle is arbitrary.
  • the limit The fork reaches the position of 60 degrees drooping, and the left gap allows the steering angle to be plus or minus 6.05 degrees.
  • the present invention also provides a method for a constant steering control mechanism for a radius rod connected trapezoidal swing arm.
  • the radius rod and the trapezoidal swing arm are arranged perpendicularly to form a right triangle, the radius rod is a right-angled triangle leg, and the trapezoidal swing arm is a hook.
  • the first slider is connected to the vertical slot to transmit the sinusoidal displacement to the vertical slot, and at the same time, it controls the two-dimensional synthetic control transmission arm to be horizontal and vertical; the two-dimensional synthetic control
  • the method of the present invention takes the vertex of the right triangle outside the cross slide groove as the fixed axis of rotation and the origin of the polar coordinates. Under the condition that the cross slide groove of the elliptical compass is kept horizontal and vertical, the right triangle drives the ellipse compass to rotate as a whole.
  • the intersection Gi of the cross chute is a brush, drawing a deflection ellipse.
  • Fig. 1 is a schematic structural diagram of an embodiment of the unilateral cosine compensation of the right front wheel of the constant steering control mechanism of the radius rod connected trapezoidal swing arm provided by the present invention
  • Figure 2 is a schematic structural diagram of an embodiment of the parallel arrangement of left and right wheels cosine compensation of the radial rod connected trapezoidal swing arm constant steering control mechanism provided by the present invention
  • Figure 3 is a schematic structural diagram of another embodiment of the parallel arrangement of left and right wheels cosine compensation of the radial rod connected trapezoidal swing arm constant steering control mechanism provided by the present invention
  • Fig. 4 is a schematic structural diagram of an embodiment of the overlapping arrangement of left and right wheel cosine compensation of the radius rod connecting trapezoidal swing arm constant steering control mechanism provided by the present invention
  • FIG. 5 is a schematic structural diagram of another embodiment of the cosine compensation layered arrangement of the left and right wheels of the radial rod connected trapezoidal swing arm constant steering control mechanism provided by the present invention
  • Fig. 6 is a schematic diagram of the installation position of the safety limiter on the multi-wheel vehicle provided by the present invention.
  • Fig. 7 is a schematic diagram of the principle of the method for the constant steering control mechanism of the radius rod connecting trapezoidal swing arm provided by the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or merely indicating that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the present invention provides an embodiment of one-sided compensation for the right wheel.
  • the radius rod 1 is connected to the trapezoidal swing arm and the 2 constant steering control mechanism is mounted on the middle of the front end of the vehicle body, and the rear wheel of the vehicle has no Steering functions, including:
  • Radius rod 1 one end of the radius rod 1 is fixed with the bottom of the steering column, the steering wheel angle is ⁇ , and the length of the radius rod 1 is R; the rotation of the steering wheel drives the radius rod 1 to produce sine sin ⁇ and cosine cos ⁇ , and keep the sine sin ⁇ and cosine cos ⁇ to follow the steering wheel rotation
  • Trapezoidal swing arm 2 one end of the trapezoidal swing arm 2 and the other end of the radius rod 1 are vertically fixed, and a fixed swing axis is formed at the fixed point; the length of the trapezoidal swing arm 2 is R*M/Hi; it deflects with the steering wheel angle ⁇ , and at the same time Produce longitudinal cosine compensation effect R*M/Hi*sin ⁇ , longitudinal displacement is R*cos ⁇ R*M/Hi*sin ⁇ ;
  • Sine connecting rod 3 is a horizontal rod arranged in the horizontal direction, and there are two bushings on it, the fixed pendulum shaft is inserted into the first bushing, and the sine connecting rod 3 is located on the radius rod from the vertical direction Between 1 and the trapezoidal swing arm 2, make it follow the fixed swing axis;
  • the driven radius rod 1' one end of the driven radius rod 1'is hinged in the second shaft sleeve, and the other end is hinged to the frame, parallel to the radius rod 1 and the same length;
  • the two-dimensional synthetic control transmission arm 4 has a cross-shaped groove, the horizontal groove 41 is parallel to the semi-axes on both sides, and the vertical groove 42 is arranged parallel to the length of the vehicle body; a connection is provided on the side close to the horizontal groove 41 Arm 43;
  • the vector control swing arm 5 is provided with a sliding groove 51 on the vector control swing arm 5, and the initial position of the setting direction of the sliding groove 51 is parallel to the arrangement direction of the radius rod 1;
  • the first sliding block 61 is fixed on one end of the sine connecting rod 3 and can be slid in the vertical groove 42 to form the lateral sinusoidal displacement R*sin ⁇ of the two-dimensional synthetic control transmission arm 4;
  • the second sliding block 62 It is hinged to the other end of the trapezoidal swing arm 2, which can slide in the transverse slot 41, so that the longitudinal displacement of the two-dimensional synthetic control transmission arm is always equal to R*cos ⁇ R*M/Hi*sin ⁇ , thereby controlling the two-dimensional synthetic control transmission
  • the arm 4 moves vertically, horizontally, and vertically;
  • the third slider 63 is hinged with one end of the connecting arm 43 to form a key control point Gi, and it can slide in the sliding groove 51;
  • a secondary steering shaft 52' or a physical steering shaft 52 is connected to the chute 51, and the third slider 63 drives the chute 51 to rotate around the secondary steering shaft 52', so that the secondary steering shaft 52' generates a steering angle ⁇ i, and then synchronizes
  • the gear shaft, the parallel connecting rod 108 or the double crankshaft connecting rod are connected to the solid steering shaft 52; or the vector control swing arm 5 is directly connected to the steering solid steering shaft 52, and the third slider 63 drives the sliding groove 51 to rotate around the solid steering shaft 52,
  • the radius rod 1 and the trapezoidal swing arm 2 are integrated and arranged perpendicular to each other, the structure of the steering control mechanism is simplified.
  • a two-dimensional synthetic control transmission arm is added 4. It can realize constant universal steering, reduce manufacturing cost, convenient installation, safe and reliable use.
  • the normal line of all wheels and the short axis of the wheel hub point to the same instantaneous turning center to prevent side slip.
  • the technical solution of the present invention as long as the suspension allows, the steering angle of the steering shaft can be turned in a full circle. During this process, sideslip and tire wear are prevented.
  • the cosine compensation displacement drives a two-dimensional
  • the longitudinal displacement of the synthetic control transmission arm becomes the main steering assist. It passes through the right angle position and the steering angle enters the second quadrant, and even continues to rotate the full circle four quadrants. This is the obvious difference between the present invention and the conventional trapezoidal steering.
  • This large-angle steering The main application objects are low-speed horizontal parking of ordinary vehicles or forklifts.
  • the length R of the radius rod 1 is determined by the installation space on the vehicle body; the installation space on different vehicle types is different, and the calculation and selection are made according to the vehicle type.
  • the vehicle type such as 75mm, 105mm or 125mm.
  • the lengths of the first slider 61 and the second slider 62 are both greater than twice the width of the cross-shaped slot intersection to prevent the first slider 61 and the second slider 62 from slipping out of the cross-shaped slot intersection.
  • a housing can be provided, the radius rod 1, the driven radius rod 1', the trapezoidal swing arm 2, the sine link 3, the two-dimensional synthetic control transmission arm 4, the vector control pendulum
  • the arm 5 and the sliding block are both fixed in the housing.
  • the bottom of the steering column is inserted into the top of the housing and fixed to the radius rod 1.
  • the auxiliary steering shaft 52' extends out of the housing and is connected to the synchronous gear shaft or the parallel connecting rod 108 or the crankshaft double connecting rod. Entity steering shaft 52.
  • the housing blocks external dust and impurities; further, a seal is provided at the position corresponding to the extension end of the steering shaft and the housing; the housing can also be filled with lubricating oil to reduce working resistance and cooling components.
  • the present invention provides a dual-sided compensation steering control mechanism.
  • the trapezoidal swing arm 2, the two-dimensional synthetic control transmission arm 4, the vector control swing arm 5 and the slider are in two groups; the first group is the active , The second group is driven.
  • the trapezoidal swing arm 2 of the first group is fixed at the first sleeve and is perpendicular to the radius rod 1.
  • the trapezoidal swing arm 2 of the second group is fixed at the second sleeve and is connected to the A group of trapezoidal swing arms 2 are parallel;
  • the second group of two-dimensional synthetic control transmission arm 4 has a connecting arm on the other side of the transverse groove 41, and the second group of connecting arms drives the second group through the third slider 63 of the second group.
  • the installation positions of the first slider 61 and the second slider 62 of the second group are the same as the installation positions and connection relations of the corresponding sliders of the first group.
  • the effect of adopting this scheme is that both the left and right front wheels can obtain cosine compensation, and since the master and slave control share a sine link 3, acute-angle steering can be realized.
  • a crankshaft double connecting rod transmission mechanism is connected at the hinged shaft positions of the driving radius rod 1 and the driven radius rod 1.
  • the connecting rod mechanism is to add a fixed-length crank 81 at the same vertical phase of the driving radius rod 1 and the driven radius rod 1', and are connected by a crank connecting rod 82, the radius of the fixed-length crank 81 is R/2 to 4R/5 The fixed value.
  • the beneficial effect of adopting this solution is that on the basis of the foregoing embodiment of double-sided compensation for acute-angle steering, the steering angle can be expanded to an obtuse angle.
  • the present invention provides another double-sided cosine compensation embodiment.
  • the trapezoidal swing arm 2, the two-dimensional synthetic control transmission arm 4, the vector control swing arm 5 and the slider are all in two groups;
  • the end crank bearing of the trapezoidal swing arm 2 of the first group passes through the bottom of the second slider 62, connects the trapezoidal swing arm 2 of the second group, and then connects to drive the second slider 62 of the second group to follow;
  • a slider 61 is fixed on the other end of the sine connecting rod 3 and follows the radius rod 1 through the sine connecting rod 3;
  • the length of the trapezoidal swing arm 2 of the second group is twice the length of the trapezoidal swing arm 2 of the first group, and Correspondingly connect two sets of
  • the horizontal floating chute 91 is provided with a horizontal fourth sliding block 64 and passing through the horizontal first
  • the four sliders 64 are fixed to the longitudinal floating chute 92, the longitudinal fifth slider 65 slides in the longitudinal floating chute 92, and the longitudinal fifth slider 65 is fixed to the first slider 61; or the horizontal fourth slider 64 is vertically fixed
  • the fifth longitudinal slider 65 is connected, the fifth longitudinal slider 65 is slidably connected to the longitudinal floating chute 92, the fourth transverse slider 64 is slidably connected to the horizontal floating chute 91, and the longitudinal floating chute 92 is fixedly connected to the sine connecting rod 3;
  • the horizontal fourth sliding block 64 extends to both sides, the upper end of the horizontal fourth sliding block 64 extends below the vertical slot 42 of the first group of two-dimensional synthetic control transmission arm 4, and the lower end of the horizontal fourth sliding block 64 extends to
  • the second group of dimensional synthetic manipulating arms 4 above the vertical slot 42 is parallel to the opposite side of the square frame formed by the connecting rod 3 and synchronously follows; the floating vertical chute 9 controls the sine connecting rod 3
  • the left front wheel has no conjoined trapezoidal swing arm compensation mechanism.
  • the left front wheel vector corresponds to the length R of the radius rod 1 (this potentiometer is fixed-length and can be installed in different places Fixed standard resistance instead)
  • the right front wheel vector is the displacement vector of the third sliding block 63 articulated corresponding to the key manipulation point Gi in the right sliding groove 51.
  • the electric potential of the right front wheel drive half shaft is obtained from the potentiometer to fix the standard Obtain the electric potential of the left front-wheel drive half-shaft on the resistance, and compare it with the actual measured potential of the front-wheel drive half-shaft tachometer generators on both sides.
  • Double-branch diode potential balance comparison circuit, negative feedback control after the difference electric signal is amplified Servo differential actuator. This is the standard configuration of the vector linkage electronic control differential of the city SUV. The rear wheel is a fixed lazy wheel, and the front wheel is raised to allow the trailer.
  • the left front wheel vector is the length R corresponding to the radius rod 1 (this potentiometer is fixed-length and can be replaced by a standard resistance installed in different places), and the left rear wheel vector is theoretically longitudinal R*cos ⁇ displacement in the floating chute 92 (if the left rear wheel differential drive is required, the floating chute needs to be installed, and the longitudinal floating chute 92 is sleeved on the fifth slider 65 or the first slider 61 is sleeved
  • the longitudinal floating chute 92 install a potentiometer on one side of the longitudinal floating chute 92, and connect the potentiometer control terminal by the fifth slider 65 or the first slider 61 bearing.
  • the right front wheel vector corresponds to the displacement vector of the key control point Gi in the right chute 51 (in the chute 51 A sliding resistance potentiometer or Hall induction brushless potentiometer is installed on one side, and the guide rail control terminal or Hall induction potentiometer movable coil rope end connected to the sliding brush is connected to the third slider 63), right rear
  • the wheel vector is the R*cos ⁇ i displacement in the vertical slot 42 on the right, that is, the vertical displacement between the intersection of the horizontal slot and the vertical slot from the steering shaft core (the potentiometer is installed on one side of the vertical slot 42 on the right, and the sliding brush is connected to the guide rail
  • the control terminal or the end of the movable coil of the Hall induction potentiometer is connected to the upper end of the fourth horizontal sliding block 64 extending to the position of the staggered intersection of the right vertical slot 42).
  • a vehicle with a radius rod connecting trapezoidal swing arm compensation mechanism installed on both front wheels as shown in Figures 2, 4, and 5, the left front wheel vector corresponds to the key control point in the left chute 51
  • the Gi displacement and the left rear wheel vector correspond to the R*cos ⁇ i displacement in the left vertical slot 42 (that is, the vertical displacement between the cross point of the horizontal and vertical chutes and the steering shaft core.
  • the potentiometer is fixedly installed on the side of the vertical slot 42 and its sliding brush
  • the connected guide rail control terminal or Hall induction potentiometer movable coil draw rope end is connected to the lower end of the fourth transverse slider 64 extending to the position of the intersection of the corresponding vertical slot 42.
  • the fourth transverse slider 64 is staggered with the vertical slot 42 Cross vertically and follow laterally), the right front wheel corresponds to the displacement vector of the key control point Gi in the right chute 51 (a sliding resistance potentiometer or Hall induction brushless potentiometer is installed on the side of the chute 51, and the sliding brush is The connected guide rail control terminal or Hall induction potentiometer movable coil draw rope end is connected to the third slider 63), the right rear wheel vector is the R*cos ⁇ i displacement in the right vertical slot 42 (that is, the distance between the cross point of the horizontal and vertical chute The vertical displacement of the steering shaft core is fixedly installed on the potentiometer on the side of the vertical slot 42 on the right.
  • the guide rail control terminal or the movable coil of the Hall induction potentiometer connected to the sliding brush is connected to the end of the pull rope extending to the corresponding The upper end of the horizontal fourth sliding block 64 at the intersection of the vertical slot 42, the horizontal fourth sliding block 64 crosses the vertical slot 42 vertically in a staggered level and moves laterally).
  • the corresponding slider bearing is connected to the adjustable control end of the control potentiometer, that is, the sliding resistance potentiometer brush or the Hall induction potentiometer movable coil pull rope end.
  • the potential of the drive target corresponding to the initial zero position of each potentiometer is the standard radius R.
  • the front-wheel steering and rear-wheel drive layouts only need to delete the front-wheel drive vector potentiometer in the four-wheel drive vehicle embodiment, and keep the rear-wheel drive vector potentiometer. .
  • the rear wheel electronic control differential becomes the main factor of steering power.
  • the tachogenerators participating in the drive are rectified and combined into an average power supply.
  • the sliding resistance potentiometer or Hall induction brushless potentiometer is redistributed from the average power supply voltage according to the vector length ratio, and the obtained potential is the corresponding driving half-axis electronics Adjust the target potential of the differential speed and compare it with the actual measured potential of the tachogenerator.
  • the double-branch diode potential balance comparison circuit after the differential electrical signal is amplified, negative feedback controls the servo differential actuator.
  • Examples of servo differential actuators are optional, brake clutch electronic limited slip, or hub motor power electronic switch control power distribution, or electronic control CVT stepless speed change, electronic control planetary gear hydraulic pump drive stepless speed change, etc. 6 types, choose one of them One.
  • the vector direction of all wheels and the vector electronic differential speed adjustment are always coordinated. This is a differential control method that conventional trapezoidal steering cannot provide. By adjusting the base resistance value, the sensitivity is controlled, and the response is faster than Eaton Electronics. Differential lock, and allows the inner wheel axle to be lower than the average angular velocity. Note that electronically controlled differential vehicles are prohibited from towing without authorization.
  • the present invention also provides a multi-wheeled vehicle, referring to Fig. 6, comprising: a vehicle body, and the radius rod 1 connected trapezoidal swing arm 2 cosine compensation constant steering control mechanism and safety limiter 10;
  • the safety limiter 10 includes a spring pressure normalizing cam mechanism 101 and a high-speed safety angle limit mechanism 102 fixed on the steering column from top to bottom of the steering wheel; the shaft core of the steering column is disconnected, the radial rod and the ring Insert pressure-sensitive resistance strain gauges 103 into the gaps on both sides of the disc slot, and connect the clockwise and counterclockwise assist control circuits of the vehicle steering gear through wires.
  • the steering column corresponding to the lower end of the ring disc slot is connected to the radius of the universal joint rotating shaft.
  • the axis of the solid steering shaft 52 is vertically connected to the axle of the vehicle hub, and the safety limiter 10 is used to limit the steering angle ⁇ of the steering wheel to be less than 3° when the vehicle speed is greater than 80 km/h.
  • the spring pressure return cam mechanism 101 includes a spring, a pressure plate, a guide rod, and an eight-sided cam.
  • One end of the spring is fixed to the vehicle body, and the other end is connected with a pressure plate.
  • the pressure plate is fixed with a guide rod near the spring side, and the other end of the spring is sleeved on the guide rod.
  • the octagonal cam has 8 planes fixed on the steering column of the steering wheel, which abuts against the pressure plate; the spring pushes the pressure plate and the guide rod, and presses the octagonal cam with appropriate pressure (the full-circle steering angle ⁇ of the steering shaft is divided into eight , Where -35 ⁇ +35 degrees is the starting plane.)
  • the driver When the driver is manually letting go of the steering wheel, it will automatically return to the closest and safest steering angle at the current steering angle, such as zero-angle straight, 45-degree fixed Circular steering, turning in place at right angles, etc., to ensure that the octahedral cam has a normalizing torque of 2 to 5N on the steering wheel grip, which serves the purpose of mechanically returning the steering wheel.
  • High-speed safe corner limit mechanism 102 The tachogenerator installed on each drive half shaft generates an average vector differential power supply. This power supply drives a voltmeter mechanism.
  • the shaft of the voltmeter mechanism drives a pair of limit forks. There is a certain gap between the inner side and the radial rod on the direction column. When the radius of the radial rod is 80mm, the gap on one side is only 4.2mm. Only the steering angle is allowed to be plus or minus 3 degrees, which is driven by the voltmeter. In the normal stationary state of the limit fork, the limit fork is close to the horizontal state, and there is no restriction on the steering angle of the radial rod.
  • the piezoelectric watch mechanism drives the limit fork to rotate, and the limit fork gradually falls.
  • Vertical when the vehicle speed is less than 10 kilometers/hour, the sag angle of the limit fork is less than 30 degrees, there is no restrictive contact with the root of the radial rod, and the steering angle is arbitrary.
  • the limit When the vehicle speed reaches 50 kilometers/hour, the limit When the fork reaches the position of 60 degrees drooping, the left gap allows the steering angle to be plus or minus 6.05 degrees.
  • the sensitive trigger pressure of the pressure-sensitive resistance strain gauge 103 is set to correspond to 1 to 2N on the steering wheel grip, and the return force of the spring pressure return cam mechanism 101 can trigger the steering assist return. In this way, redundant control of the steering wheel angle is realized to ensure the safety of the vehicle.
  • the theory of the above concept of the present invention is: taking the vertex of the right triangle outside the cross slide groove as the fixed axis of rotation and the origin of polar coordinates, and keeping the cross slide groove of the elliptical compass horizontal and vertical, let the right triangle drive the ellipse compass as a whole Rotate, and draw the deflection ellipse using the intersection of the cross chute Gi as the brush.
  • the radius rod 1 and the trapezoidal swing arm 2 are arranged perpendicularly to form a right triangle, the radius rod 1 is the right triangle side, the trapezoidal swing arm 2 is the hook side, and the chord side (corresponding to the conventional trapezoidal steering mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种半径杆连体梯形摆臂恒等转向操控机构、操控方法及多轮车,半径杆连体梯形摆臂呈直角三角形,其与由横槽(41)、竖槽(42)所呈十字形滑槽的二维合成操控传动臂(4)组成椭圆规;随方向盘转角α,半径杆连体梯形摆臂端头轴承产生恒等的余弦补偿效果,由在横槽(41)中滑动的第二滑块(62)控制纵向余弦位移;直角端轴承铰接连杆后再连接竖槽(42)中的第一滑块(61)以控制横向正弦位移,二维合成操控传动臂(4)上的端轴承划出偏转椭圆轨迹,其铰接的第三滑块(63)连接矢量操控摆臂(5)的滑槽(51),产生转向角βi。

Description

半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车 技术领域
本发明涉及非轨道车辆转向技术领域,更具体的说是涉及半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车。
背景技术
目前,国内外多轮车辆转向技术中,前轮转向以梯形传动补偿为主,但是梯形转向属近似转向技术,梯形转向的数学分析中转向效应曲线只在3度和35度角附近与理想关系直线交叉重合,当大于43度角以后,离差增大,导致转弯(特别在泊车中容易出现)的车辆轮胎产生侧滑,甚至伴有方向盘抖动和异响发生。
为了克服上述缺陷,本案申请人申请了专利申请201822081420.3中提供了四种实施方式,但是由于前四种方式结构复杂,需要进一步简化结构,扩大其在车辆中的应用范围。
因此,如何提供一种结构简单,且克服车辆转弯(泊车中)受梯形转向限制产生车轮侧滑和方向盘抖动、异响是本领域技术人员亟需解决的问题。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明的一个目的在于提出一种结构简单,克服车辆转弯(泊车中)受梯形转向限制产生车轮侧滑和方向盘抖动、异响的半径杆连体梯形摆臂余弦补偿恒等转向操控机构。
为了实现上述目的,本发明采用如下技术方案:
半径杆连体梯形摆臂恒等转向操控机构,其搭载于车辆车身前端的中部,且车辆后轮无转向功能,包括:
半径杆,半径杆一端与方向盘转向柱底部固定,方向盘转角为α,半径杆长度为R;方向盘转动带动半径杆产生正弦sinα和余弦cosα,并保持正弦sinα和余弦cosα跟随方向盘转动随动;
梯形摆臂,梯形摆臂一端与半径杆另一端垂直固定布置,且该固定点处形成固定摆轴;梯形摆臂长度为R*M/Hi;其随方向盘转角α偏转,同时产生纵向余弦补偿效果R*M/Hi*sinα,纵向位移为R*cosα±R*M/Hi*sinα;
正弦连杆,正弦连杆为沿水平方向设置的水平杆,其上具有两处轴套,固定摆轴插入第一轴套内,且使正弦连杆从竖直方向上位于半径杆和梯形摆臂之间,使其与固定摆轴随动;
从动半径杆,从动半径杆一端铰接于第二轴套内,另一端与车架铰接,与半径杆平行且长度相同,共同与所述正弦连杆组成平行四连杆机构;
二维合成操控传动臂,二维合成操控传动臂上具有十字型槽,横槽与两侧半轴平行,竖槽与车身长度方向平行布置;靠近横槽一侧延伸设置有连接臂;
矢量操控摆臂,矢量操控摆臂上设置有滑槽,滑槽的设置方向初始位置与半径杆布置方向平行;
及多个滑块,第一滑块固定于正弦连杆一端上,且可滑动于竖槽中,形成二维合成操控传动臂的横向正弦位移R*sinα;第二滑块与梯形摆臂另一端铰接,其可滑动于横槽中,使二维合成操控传动臂的纵向位移恒等于R*cosα±R*M/Hi*sinα,由此控制二维合成操控传动臂呈横平纵直状上下、左右运动;第三滑块与连接臂一端铰接形成关键控制点Gi,且其可滑动于滑槽内;
其中,滑槽上连接有副转向轴或实体转向轴,第三滑块驱动滑槽绕副转向轴旋转,使副转向轴产生转向角βi,再通过同步齿轮轴、平行连杆或曲轴双连杆连接实体转向轴;或者是由矢量操控摆臂直接连接操控实体转向轴,第三滑块驱动滑槽绕实体转向轴旋转,产生转向角βi,再通过实体转向轴为轴心垂直连接轮毂半轴,最终获得cosβi=R*cosα±R*M/H*sinα。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了半径杆连体梯形摆臂恒等转向操控机构,由于将半径杆和梯形摆臂集成于一体,且相互垂直布置,简化了转向操控机构的结构,在现有车辆梯形转向机构的基础上,加装二维合成操控传动臂即可实现恒等万能转向,降低了制造成本, 安装方便,使用安全可靠。所有车轮轮毂法线和轮毂短轴都恒等地指向同一瞬时行进转向中心,杜绝侧滑。本发明的技术方案只要悬架允许,转向轴的转向角度可以全圆转向,在此过程中都杜绝侧滑磨胎,当突破40度角这一常规梯形转向极限后,余弦补偿位移带动二维合成操控传动臂纵向位移,成为转向主要助力,先后通过直角位,转向角进入第二象限,甚至继续转动全圆四象限,这是本发明与常规梯形转向之间的明显区别,此大角度转向的应用对象,主要是普通车辆低速横向泊车或叉车更适用。
优选地,半径杆长度R由车身上安装空间决定;不同的车型上的安装空间不同,根据车型进行计算选择。如75mm,105mm或125mm。
优选地,第一滑块和第二滑块长度均大于十字型槽交叉槽口宽度的两倍防止第一滑块和第二滑块滑脱出十字型槽交叉槽口。
优选地,还包括壳体,半径杆、从动半径杆、梯形摆臂、正弦连杆、二维合成操控传动臂、矢量操控摆臂及滑块均固定于壳体内,方向盘转向柱的底部插入壳体顶部与半径杆固定,副转向轴伸出壳体外与同步齿轮轴或平行连杆或曲轴双连杆连接实体转向轴。采用此方案,壳体阻隔外部的灰尘和杂质;进一步的,转向轴伸出端与壳体对应位置设置有密封件;壳体内还可以充满润滑油,降低工作阻力和冷却部件。
优选地,梯形摆臂、二维合成操控传动臂、矢量操控摆臂及滑块均为两组;第一组为主动,第二组为从动,第一组的梯形摆臂固定于第一轴套处,且与半径杆垂直;第二组的梯形摆臂固定于第二轴套处,且与第一组梯形摆臂平行;第二组的二维合成操控传动臂的横槽另一侧设置有连接臂,第二组的连接臂通过第二组的第三滑块驱动第二组的矢量操控摆臂,第二组的第一滑块、第二滑块的安装位置与第一组对应的滑块安装位置及连接关系相同。采用本方案的效果为,左右前轮均能够得到余弦补偿,由于主从动操纵共用一个正弦连杆,可实现锐角转向。
优选地,在主动半径杆和从动半径杆的铰接轴位置连接有曲轴双连杆机构,曲轴双连杆机构为在主动半径杆和从动半径杆相同的垂直相位各增加一个定长曲柄,并通过曲柄连杆连接,定长曲柄的半径为R/2至4R/5的定值。 采用此方案的有益效果为在上述双侧补偿锐角转向的实施例的基础上,扩大了转向角可扩大至钝角。
优选地,梯形摆臂、二维合成操控传动臂、矢量操控摆臂及滑块均为两组;第一组的二维合成操控传动臂布置于上层靠近车架位置,第二组二维合成操控传动臂布置于第一组二维合成操控传动臂下层,保证初始位置α=β=0;第一组的梯形摆臂端头曲柄轴承穿过第二滑块底部,连接第二组梯形摆臂,再连接带动第二组的第二滑块随动;第二组的第一滑块固定于正弦连杆另一端上,通过正弦连杆与半径杆随动;第二组的梯形摆臂的长度为第一组梯形摆臂长度的两倍,且对应连接两组对应的第二滑块;其中,从动半径杆可替换为在车架上设置的浮动垂直滑槽,浮动垂直滑槽连接控制正弦连杆保持与车轴平行,浮动垂直滑槽包括与车架固定连接平行于车轴的横向浮动滑槽和与其垂直布置的纵向浮动滑槽,横向浮动滑槽中设置横向第四滑块,且通过横向第四滑块与纵向浮动滑槽固定,纵向浮动滑槽中滑动有纵向第五滑块,纵向第五滑块与第一滑块固定;或横向第四滑块垂直固定连接纵向第五滑块,纵向第五滑块滑动连接纵向浮动滑槽,横向第四滑块与横向浮动滑槽滑动连接,纵向浮动滑槽与正弦连杆固定连接;横向第四滑块向两侧分别延伸,横向第四滑块上端延伸到第一组二维合成操控传动臂竖槽下方,横向第四滑块下端延伸到第二组维合成操控臂的竖槽上方,与连杆组成方形框对边平行同步随动;浮动垂直滑槽控制正弦连杆沿浮动垂直滑槽横平竖直运动。本方案提供了另一种左右前轮双侧余弦补偿的实施例,由于两侧机构层叠布置,适用于高底盘的越野车型,也方便防水封装在壳体内。
优选地,转向操控机构操控的效果是给出控制左前、左后、右前、右后四个车轮矢量方向和矢量操控臂调控长度的滑槽,所述矢量操控臂调控长度的滑槽是指矢量操控臂滑槽、竖槽及纵向浮动滑槽,在所述矢量操控臂调控长度的滑槽一侧固定安装有电位器,所述电位器为直流的滑动电阻电位器或交流的霍尔感应无刷电位器,所述滑动电阻电位器的导轨控制端子或霍尔感 应电位器的活动线圈拉绳端头连接于沿滑槽发生相对位移的第三滑块上,各电位器初始零位置所对应驱动标的电位都为标准半径R。每一个实施矢量联动电子调控差速的驱动半轴,需要在各自适当的位置安装一个电位器,对应地取得转向操控机构矢量联动电子调控差速所需要的标的电位。
在左前轮无连体梯形摆臂补偿机构的车辆上,左前轮矢量是对应半径杆的长度R(这个电位器是定长的可以异地安装标准电阻替代)、左后轮矢量理论上是纵向浮动滑槽中R*cosα位移(如果需要左后轮差速驱动,就需要安装浮动滑槽,在以第五滑块上套接纵向浮动滑槽或者在第一滑块上套接纵向浮动滑槽,纵向浮动滑槽一侧安装电位器,由滑块轴承连接电位器控制端,这实际是在附图1基础上增加浮动垂直滑槽或者说是在附图4、5的基础上删减下层重叠的第二组补偿机构)、右前轮矢量是对应右侧滑槽中关键操控点Gi位移矢量、右后轮矢量是右侧滑槽中cosβi位移,即横竖滑槽交叉点距离转向轴芯的竖向位移。两侧前轮都安装有半径杆连体梯形摆臂补偿机构的车辆,附图2、4、5所示,左前轮矢量对应左侧滑槽中关键操控点Gi位移、左后轮矢量对应左侧竖滑槽中R*cosβi位移(即槽、竖槽交叉点距离转向轴芯的竖向位移,固定安装于竖槽一侧的电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于横向第四滑块底端,所述横向第四滑块与竖槽错层垂直交叉并横向随动)、右前轮对应右侧滑槽中关键操控点Gi位移、右后轮右侧竖槽中R*cosβi位移(即横竖滑槽交叉点距离转向轴芯的竖向位移,固定安装于竖槽一侧的电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于横向第四滑块底端,所述横向第四滑块与竖槽错层垂直交叉并横向随动)。对应滑块轴承连接控制电位器的可调节控制端,即滑动电阻电位器电刷或霍尔感应电位器活动线圈拉绳端头。
滑动电阻电位器或霍尔感应无刷电位器获得的电位,就是车辆电子调控差速的标的电位,与测速发电机实测电位相比较,双支路二极管电位平衡比较电路,差异电信号放大后负反馈控制伺服差速执行机构。所有车轮的矢量方向和矢量电子差速调配永远协调一致,这是常规梯形转向所无法提供的差 速控制方式,通过调控基极电阻值,控制敏感度,适应不同的路面,反应快于伊顿电子差速锁,且允许内侧车轮半轴低于平均角速度。
本发明还提供了一种多轮车,包括:车辆本体,和上述半径杆连体梯形摆臂余弦补偿恒等转向操控机构及安全限制器;
安全限制器包括由方向盘自上至下依次固定于方向盘转向柱上的弹簧压力归正凸轮机构和高速安全转角限位机构;方向盘转向柱的轴芯断开部位,径向杆与环盘槽口两侧间隙插入压力敏感电阻应变片,通过导线分别连接车辆转向机的顺时针和逆时针助力控制电路,环盘槽口下端对应的方向盘转向柱通过万向节旋转轴传动连接半径杆的旋转轴芯;受压力敏感电阻应变片控制的车辆转向机通过涡杆齿条传动传动转向助力,或涡杆啮合齿轮直接连接半径杆上设置的旋转轴齿轮以传动转向助力;
上述中,实体转向轴的轴心垂直连接车辆轮毂半轴,安全限制器用于车辆车速大于80km/h状态下,限制方向盘转向角α小于3°。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种多轮车,由于将半径杆和梯形摆臂集成于一体,且相互垂直布置,简化了转向操控机构的结构,在现有车辆梯形转向机构的基础上,加装二维合成操控传动臂即可实现恒等万能转向,降低了制造成本,安装方便,使用安全可靠。所有车轮轮毂法线和轮毂短轴都恒等地指向同一瞬时行进转向中心,杜绝侧滑。本发明的技术方案只要悬架允许,转向轴的转向角度可以全圆转向,在此过程中都杜绝侧滑磨胎,当突破40度角这一常规梯形转向极限后,余弦补偿位移带动二维合成操控传动臂纵向位移,成为转向主要助力,先后通过直角位,转向角进入第二象限,甚至继续转动全圆四象限,这是本发明与常规梯形转向之间的明显区别,此大角度转向的应用对象,主要是普通车辆低速横向泊车或叉车更适用。
其中,弹簧压力归正凸轮机构包括弹簧,压板、导向杆和八面凸轮,弹簧一端与车身固定,另一端连接有压板,压板靠近弹簧侧固定有导向杆,弹簧另一端套接导向杆上;八面凸轮具有8个平面固定于方向盘转向柱上,其与压板抵接;弹簧推动压板和导向杆,以适当的压力压紧八面凸轮(把转向轴全圆转向角α分为八份,其中-35~+35度为起始面。)在驾驶员控制方向盘过程中人为松手状态下,自动归位于当前转向角度最为接近的和最为安全 的转向角度,如零角直行、45度定圆转向行进、直角原地回旋等,进而保证产生八面凸轮归正力矩在方向盘握把上有2~5N的目的,起到机械归正方向盘的目的。
高速安全转角限位机构,各驱动半轴上安装的测速发电机产生平均矢量差速电源,用此电源带动一个电压表机构,电压表机构的转轴上带动一对限位叉,限位叉内侧与方向柱上的径向杆之间留有一定的间隙,径向杆半径为80mm时,一侧的间隙只留4.2mm,只允许转向角度为正负3度角,电压表所带动的限位叉常规静止状态下,限位叉为接近于水平状态,对径向杆的转向角度并无限制,当车速提高之后,压电表机构带动限位叉旋转,限位叉逐渐下落趋于竖直,当车速低于10千米/小时时,限位叉下垂角度小于30度角,对径向杆根部并无限制性接触,转向角度任意,当车速达到50千米/小时时,限位叉到达下垂60度的位置,所留间隙允许转向角为正负6.05度角,当车速达到80千米/小时以上时,限位叉落为竖直,与径向杆远端之间的预留间隙(4.2mm)只允许正负3角度转向,车辆转弯离心力为0.4倍重力加速度,完全在路面摩擦力(一般路面摩擦系统为0.45~0.6)所提供的向心力安全范围内。在压力敏感电阻应变片安装位置,转向柱轴芯位置是断开的,在径向杆两侧与环盘上短立柱之间,插入压力敏感电阻应变片,两个压力敏感电阻应变片分别控制顺时针助力和逆时针助力。由此实现了方向盘转角的冗余转向助力控制,保证车辆使用安全。
本发明还提供了一种用于半径杆连体梯形摆臂恒等转向操控机构的方法,半径杆与梯形摆臂垂直布置构成直角三角形,半径杆为直角三角形的股边,梯形摆臂为勾边,弦边的延长线指向车架转向中心,其中车架转向中心为不参与转向的固定轴上一点;当方向盘转角α=90°时,行进转向中心与车架转向中心点重合;勾边随股边偏转,勾边的顶点纵向位移恒等为R*cosβ=R*cosα+R*M/H*sinα,此即为阿克曼转向公式演化而来的万能转向公式;勾边顶点即梯形摆臂端头铰接第二滑块连接二维合成操控传动臂的横槽,控制纵向余弦位移;股边直角交叉点即半径杆端头轴承铰接正弦连杆控制正弦位移,正弦连杆上固定第一滑块,再连接竖槽把正弦位移传递给竖槽,同时控制二维合成操控传动臂整体横平竖直;由二维合成操控传动臂经连接臂把 二维合成关键控制点与第三滑块铰接,传动控制滑槽产生转角βi;由此半径杆连体直角三角形与二维合成操控传动臂的十字型槽组合形成偏转椭圆圆规。
本发明的方法是以十字滑槽外的直角三角形顶点为固定的旋转轴心和极坐标原点,在保持椭圆圆规的十字滑槽横平竖直的条件下,让直角三角形带动椭圆圆规整体旋转,以十字滑槽交叉点Gi为画笔,画偏转椭圆。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的半径杆连体梯形摆臂恒等转向操控机构右侧前轮单侧余弦补偿的一个实施例的结构示意图;
图2附图为本发明提供的半径杆连体梯形摆臂恒等转向操控机构左、右双侧车轮余弦补偿的并列布置的一个实施例的结构示意图;
图3附图为本发明提供的半径杆连体梯形摆臂恒等转向操控机构左、右双侧车轮余弦补偿的并列布置的另一个实施例的结构示意图;
图4附图为本发明提供的半径杆连体梯形摆臂恒等转向操控机构左、右双侧车轮余弦补偿的重叠布置的一个实施例的结构示意图;
图5附图为本发明提供的半径杆连体梯形摆臂恒等转向操控机构左、右双侧车轮余弦补偿的层叠布置的另一个实施例的结构示意图;
图6附图为本发明提供的多轮车上的安全限位器的安装位置示意图;
图7附图为本发明提供的用于半径杆连体梯形摆臂恒等转向操控机构方法的原理示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见附图1,本发明提供了一种右侧车轮单侧补偿的实施例,半径杆1连体梯形摆臂2恒等转向操控机构,其搭载于车辆车身前端的中部,且车辆后轮无转向功能,包括:
半径杆1,半径杆1一端与方向盘转向柱底部固定,方向盘转角为α,半径杆1长度为R;方向盘转动带动半径杆1产生正弦sinα和余弦cosα,并保持正弦sinα和余弦cosα跟随方向盘转动随动;
梯形摆臂2,梯形摆臂2一端与半径杆1另一端垂直固定布置,且该固定点处形成固定摆轴;梯形摆臂2长度为R*M/Hi;其随方向盘转角α偏转,同时产生纵向余弦补偿效果R*M/Hi*sinα,纵向位移为R*cosα±R*M/Hi*sinα;
正弦连杆3,正弦连杆3为沿水平方向设置的水平杆,其上具有两处轴套,固定摆轴插入第一轴套内,且使正弦连杆3从竖直方向上位于半径杆1和梯形摆臂2之间,使其与固定摆轴随动;
从动半径杆1’,从动半径杆1’一端铰接于第二轴套内,另一端与车架铰接,与半径杆1平行且长度相同;
二维合成操控传动臂4,二维合成操控传动臂4上具有十字型槽,横槽41与两侧半轴平行,竖槽42与车身长度方向平行布置;靠近横槽41一侧设置有连接臂43;
矢量操控摆臂5,矢量操控摆臂5上设置有滑槽51,滑槽51的设置方向初始位置与半径杆1布置方向平行;
及多个滑块,第一滑块61固定于正弦连杆3一端上,且可滑动于竖槽42中,形成二维合成操控传动臂4的横向正弦位移R*sinα;第二滑块62与梯形摆臂2另一端铰接,其可滑动于横槽41中,使二维合成操控传动臂的纵向位移恒等于R*cosα±R*M/Hi*sinα,由此控制二维合成操控传动臂4呈横平纵直状上下、左右运动;第三滑块63与连接臂43一端铰接形成关键控制点Gi,且其可滑动于滑槽51内;
其中,滑槽51上连接有副转向轴52’或实体转向轴52,第三滑块63驱动滑槽51绕副转向轴52’旋转,使副转向轴52’产生转向角βi,再通过同步齿轮轴、平行连杆108或曲轴双连杆连接实体转向轴52;或者是由矢量操控摆臂5直接连接操控实体转向轴52,第三滑块63驱动滑槽51绕实体转向轴52旋转,产生转向角βi,再通过实体转向轴52为轴心垂直连接轮毂半轴,最终获得cosβi=R*cosα±R*M/H*sinα。
本实施例,由于将半径杆1和梯形摆臂2集成于一体,且相互垂直布置,简化了转向操控机构的结构,在现有车辆梯形转向机构的基础上,加装二维 合成操控传动臂4即可实现恒等万能转向,降低了制造成本,安装方便,使用安全可靠。所有车轮轮毂法线和轮毂短轴都恒等地指向同一瞬时行进转向中心,杜绝侧滑。本发明的技术方案只要悬架允许,转向轴的转向角度可以全圆转向,在此过程中都杜绝侧滑磨胎,当突破40度角这一常规梯形转向极限后,余弦补偿位移带动二维合成操控传动臂纵向位移,成为转向主要助力,先后通过直角位,转向角进入第二象限,甚至继续转动全圆四象限,这是本发明与常规梯形转向之间的明显区别,此大角度转向的应用对象,主要是普通车辆低速横向泊车或叉车更适用。
实施例中,半径杆1长度R由车身上安装空间决定;不同的车型上的安装空间不同,根据车型进行计算选择。如75mm,105mm或125mm。
实施例中,第一滑块61和第二滑块62长度均大于十字型槽交叉槽口宽度的两倍防止第一滑块61和第二滑块62滑脱出十字型槽交叉槽口。
有利的是,在上述实施例的基础上,可以设置一个壳体,半径杆1、从动半径杆1’、梯形摆臂2、正弦连杆3、二维合成操控传动臂4、矢量操控摆臂5及滑块均固定于壳体内,方向盘转向柱的底部插入壳体顶部与半径杆1固定,副转向轴52’伸出壳体外与同步齿轮轴或平行连杆108或曲轴双连杆连接实体转向轴52。采用此方案,壳体阻隔外部的灰尘和杂质;进一步的,转向轴伸出端与壳体对应位置设置有密封件;壳体内还可以充满润滑油,降低工作阻力和冷却部件。
参见附图2,本发明提供了一种双侧补偿的转向操纵机构,梯形摆臂2、二维合成操控传动臂4、矢量操控摆臂5及滑块均为两组;第一组为主动,第二组为从动,第一组的梯形摆臂2固定于第一轴套处,且与半径杆1垂直;第二组的梯形摆臂2固定于第二轴套处,且与第一组梯形摆臂2平行;第二组的二维合成操控传动臂4的横槽41另一侧设置有连接臂,第二组的连接臂通过第二组的第三滑块63驱动第二组的矢量操控摆臂5,第二组的第一滑块61、第二滑块62的安装位置与第一组对应的滑块安装位置及连接关系相同。采用本方案的效果为,左右前轮均能够得到余弦补偿,由于主从动操纵共用一个正弦连杆3,可实现锐角转向。
参见附图3,在附图2的基础上,本发明提供了另一个实施例,在主动的半径杆1和从动的半径杆1的铰接轴位置连接有曲轴双连杆传动机构,曲轴双连杆机构为在主动半径杆1和从动半径杆1’相同的垂直相位各增加一个定长曲柄81,并通过曲柄连杆82连接,定长曲柄81的半径为R/2至4R/5的定值。采用此方案的有益效果为在上述双侧补偿锐角转向的实施例的基础上,扩大了转向角可扩大至钝角。
参见附图4-5,本发明提供了另一种双侧余弦补偿的实施例,梯形摆臂2、二维合成操控传动臂4、矢量操控摆臂5及滑块均为两组;第一组的二维合成操控传动臂4布置于上层靠近车架位置,第二组二维合成操控传动臂4布置于第一组二维合成操控传动臂4下层,保证初始位置α=β=0;第一组的梯形摆臂2端头曲柄轴承穿过第二滑块62底部,连接第二组梯形摆臂2,再连接带动第二组的第二滑块62随动;第二组的第一滑块61固定于正弦连杆3另一端上,通过正弦连杆3与半径杆1随动;第二组的梯形摆臂2的长度为第一组梯形摆臂2长度的两倍,且对应连接两组对应的第二滑块62;其中,从动半径杆1’可替换为在车架上设置的浮动垂直滑槽9,浮动垂直滑槽9连接控制正弦连杆3保持与车轴平行,浮动垂直滑槽9包括与车架固定连接平行于车轴的横向浮动滑槽91和与其垂直布置的纵向浮动滑槽92,横向浮动滑槽91中设置横向第四滑块64,且通过横向第四滑块64与纵向浮动滑槽92固定,纵向浮动滑槽92中滑动有纵向第五滑块65,纵向第五滑块65与第一滑块61固定;或横向第四滑块64垂直固定连接纵向第五滑块65,纵向第五滑块65滑动连接纵向浮动滑槽92,横向第四滑块64与横向浮动滑槽91滑动连接,纵向浮动滑槽92与正弦连杆3固定连接;横向第四滑块64向两侧分别延伸,横向第四滑块滑块64上端延伸到到第一组二维合成操控传动臂4竖槽42下方,横向第四滑块滑块64下端延伸到第二组维合成操控臂4竖槽42上方,与连杆3组成方形框对边平行同步随动;浮动垂直滑槽9控制正弦连杆3沿浮动垂直滑槽9横平竖直运动。本方案提供了另一种左右前轮双侧余弦补偿 的实施例,由于两侧机构层叠布置,适用于高底盘的越野车型,也方便防水封装在壳体内。
对于城市前驱车型实施例,附图1所示,左前轮无连体梯形摆臂补偿机构的车辆,左前轮矢量是对应半径杆1的长度R(这个电位器是定长的可以异地安装固定标准电阻替代)、右前轮矢量是对应右侧滑槽51中关键操控点Gi铰接第三滑块63位移矢量。在滑槽51一侧安装滑动电阻电位器或霍尔感应无刷电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于第三滑块63上,与关键控制点轴承一同位移,在左右两侧驱动半轴测速发电机组合成的平均电源为供电电源条件下,从电位器上取得右前轮驱动半轴的电子调控差速标的电位,固定标准电阻上取得左前轮驱动半轴的电子调控差速标的电位,与两侧前轮驱动半轴测速发电机实测电位相比较,双支路二极管电位平衡比较电路,差异电信号放大后负反馈控制伺服差速执行机构。这就是城市SUV的矢量联动电子调控差速标配,后轮为固定懒轮,抬起前轮允许拖车。
再以四轮驱动车辆为例,在四轮车辆转向操控机构中,控制前轮矢量方向的同时,也控制四轮驱动的矢量长度。左前轮无连体梯形摆臂补偿机构的车辆,左前轮矢量是对应半径杆1的长度R(这个电位器是定长的可以异地安装标准电阻替代)、左后轮矢量理论上是纵向浮动滑槽92中R*cosα位移(如果需要左后轮差速驱动,就需要安装浮动滑槽,在以第五滑块65上套接纵向浮动滑槽92或者在第一滑块61上套接纵向浮动滑槽92,在纵向浮动滑槽92一侧安装电位器,由第五滑块65或第一滑块61轴承连接电位器控制端子,这实际是在附图1基础上增加浮动垂直滑槽9或者说是在附图4、5的基础上删减下层重叠的第二组补偿机构)、右前轮矢量是对应右侧滑槽51中关键操控点Gi位移矢量(在滑槽51一侧安装滑动电阻电位器或霍尔感应无刷电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于第三滑块63上)、右后轮矢量是右侧竖槽42中R*cosβi位移,即横槽和竖槽交叉点距离转向轴芯的竖向位移(右侧竖槽42一侧安装电位器,其 滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于延伸到右侧竖槽42错层交叉点位置的横向第四滑块64上端)。
四轮驱动实施例中,两侧前轮都安装有半径杆连体梯形摆臂补偿机构的车辆,附图2、4、5所示,左前轮矢量对应左侧滑槽51中关键操控点Gi位移、左后轮矢量对应左侧竖槽42中R*cosβi位移(即横竖滑槽交叉点距离转向轴芯的竖向位移,固定安装于竖槽42一侧的电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于延伸到对应竖槽42交叉点位置的横向第四滑块64下端,横向第四滑块64与竖槽42错层垂直交叉并横向随动)、右前轮对应右侧滑槽51中关键操控点Gi位移矢量(在滑槽51一侧安装滑动电阻电位器或霍尔感应无刷电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于第三滑块63上)、右后轮矢量是右侧竖槽42中R*cosβi位移(即横竖滑槽交叉点距离转向轴芯的竖向位移,固定安装于右侧竖槽42一侧的电位器,其滑动电刷所连接的导轨控制端子或霍尔感应电位器活动线圈拉绳端头连接于于延伸到对应竖槽42交叉点位置的横向第四滑块64上端,横向第四滑块64与竖槽42错层垂直交叉并横向随动)。对应滑块轴承连接控制电位器的可调节控制端,即滑动电阻电位器电刷或霍尔感应电位器活动线圈拉绳端头。各电位器初始零位置所对应驱动标的电位都为标准半径R。
前轮转向无驱动和后轮驱动实施例中,前轮转向和后轮驱动布局,只需要在四轮驱动车辆实施例中删减前轮驱动矢量电位器,保留后轮驱动矢量电位器即可。在大角度转向过程中,后轮电子调控差速成为转向动力主要因素。
以各参与驱动的测速发电机整流后组合成平均电源供电,滑动电阻电位器或霍尔感应无刷电位器从平均供电电源电压中按矢量长度比例重新分配,获得的电位就是对应驱动半轴电子调控差速的标的电位,与测速发电机实测电位相比较,双支路二极管电位平衡比较电路,差异电信号放大后负反馈控制伺服差速执行机构。伺服差速执行机构中举例可选,刹车离合电子限滑、或轮毂电机电源电子开关控制功率分配、或电控CVT无级变速、电控行星齿轮液压泵传动无级变速等6种,选择其一。
所有车轮的矢量方向和矢量电子差速调配永远协调一致,这是常规梯形转向所无法提供的差速控制方式,通过调控基极电阻值,控制敏感度,适应不同的路面,反应快于伊顿电子差速锁,且允许内侧车轮半轴低于平均角速度。注意,电子调控差速车辆禁止擅自拖车。
本发明还提供了一种多轮车,参见附图6,包括:车辆本体,和上述半径杆1连体梯形摆臂2余弦补偿恒等转向操控机构及安全限制器10;
安全限制器10包括由方向盘自上至下依次固定于方向盘转向柱上的弹簧压力归正凸轮机构101和高速安全转角限位机构102;方向盘转向柱的轴芯断开部位,径向杆与环盘槽口两侧间隙插入压力敏感电阻应变片103,通过导线分别连接车辆转向机的顺时针和逆时针助力控制电路,环盘槽口下端对应的方向盘转向柱通过万向节旋转轴传动连接半径杆1的旋转轴芯;受压力敏感电阻应变片103控制的车辆转向机通过涡杆齿条传动传动转向助力,或涡杆啮合齿轮直接连接半径杆1上设置的旋转轴齿轮以传动转向助力;
上述中,实体转向轴52的轴心垂直连接车辆轮毂半轴,安全限制器10用于车辆车速大于80km/h状态下,限制方向盘转向角α小于3°。
其中,弹簧压力归正凸轮机构101包括弹簧,压板、导向杆和八面凸轮,弹簧一端与车身固定,另一端连接有压板,压板靠近弹簧侧固定有导向杆,弹簧另一端套接导向杆上;八面凸轮具有8个平面固定于方向盘转向柱上,其与压板抵接;弹簧推动压板和导向杆,以适当的压力压紧八面凸轮(把转向轴全圆转向角α分为八份,其中-35~+35度为起始面。)在驾驶员控制方向盘过程中人为松手状态下,自动归位于当前转向角度最为接近的和最为安全的转向角度,如零角直行、45度定圆转向行进、直角原地回旋等,进而保证产生八面凸轮归正力矩在方向盘握把上有2~5N的目的,起到机械归正方向盘的目的。
高速安全转角限位机构102,各驱动半轴上安装的测速发电机产生平均矢量差速电源,用此电源带动一个电压表机构,电压表机构的转轴上带动一对限位叉,限位叉内侧与方向柱上的径向杆之间留有一定的间隙,径向杆半径为80mm时,一侧的间隙只留4.2mm,只允许转向角度为正负3度角,电压表所带动的限位叉常规静止状态下,限位叉为接近于水平状态,对径向杆的 转向角度并无限制,当车速提高之后,压电表机构带动限位叉旋转,限位叉逐渐下落趋于竖直,当车速低于10千米/小时时,限位叉下垂角度小于30度角,对径向杆根部并无限制性接触,转向角度任意,当车速达到50千米/小时时,限位叉到达下垂60度的位置,所留间隙允许转向角为正负6.05度角,当车速达到80千米/小时以上时,限位叉落为竖直,与径向杆远端之间的预留间隙(4.2mm)只允许正负3角度转向,车辆转弯离心力为0.4倍重力加速度,完全的路面摩擦力(一般路面摩擦系统为0.45~0.6)所提供的向心力在安全范围内。在压力敏感电阻应变片103安装位置,转向柱轴芯位置是断开的,在径向杆两侧与环盘上短立柱之间,插入压力敏感电阻应变片103,两个压力敏感电阻应变片103分别控制顺时针助力和逆时针助力。同时,设置压力敏感电阻应变片103的灵敏触发压力对应方向盘握把上为1~2N,弹簧压力归正凸轮机构101的归正力即可触发转向助力归正。由此实现了方向盘转角的冗余控制,保证车辆使用安全。
本发明上述构思的理论为:以十字滑槽外的直角三角形顶点为固定的旋转轴心和极坐标原点,在保持椭圆圆规的十字滑槽横平竖直的条件下,让直角三角形带动椭圆圆规整体旋转,以十字滑槽交叉点Gi为画笔,画偏转椭圆。
具体而言,参见附图7,半径杆1与梯形摆臂2垂直布置构成直角三角形,半径杆1为直角三角形的股边,梯形摆臂2为勾边,弦边(对应于常规梯形转向机构中的转向支臂)的延长线指向车架转向中心,其中车架转向中心为不参与转向的固定轴上一点;当方向盘转角α=90°时,行进转向中心与车架转向中心点重合;勾边随股边偏转,勾边的顶点纵向位移恒等为R*cosβ=R*cosα±R*M/H*sinα(左侧余弦补偿用-号,右侧余弦补偿用+号,α从初始零位开始,逆时针为+,顺时针为-),此即为阿克曼转向公式演化而来的万能转向公式;勾边顶点即梯形摆臂2端头铰接第二滑块62连接二维合成操控传动臂的横槽41,控制纵向余弦位移;股边直角交叉点即半径杆1端头轴承铰接正弦连杆3控制正弦位移,正弦连杆3上固定第一滑块61,再连接竖槽42把正弦位移传递给竖槽42,同时控制二维合成操控传动臂整体横平竖直;由二维合成操控传动臂4经连接臂43把二维合成关键控制点Gi与第三滑块 63铰接,传动控制滑槽51产生转角βi;由此半径杆1连体梯形摆臂2组成直角三角形与二维合成操控传动臂的十字型槽组合形成偏转椭圆圆规。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 半径杆连体梯形摆臂恒等转向操控机构,其搭载于车辆车身前端的中部,且车辆后轮无转向功能,其特征在于,包括:
    半径杆(1),所述半径杆(1)一端与方向盘转向柱底部固定,方向盘转角为α,所述半径杆(1)长度为R;方向盘转动带动所述半径杆(1)产生正弦sinα和余弦cosα,并保持正弦sinα和余弦cosα跟随方向盘转动随动;
    梯形摆臂(2),所述梯形摆臂(2)一端与所述半径杆(1)另一端垂直固定布置,且该固定点处形成固定摆轴;所述梯形摆臂(2)长度为R*M/Hi;其随方向盘转角α偏转,同时产生纵向余弦补偿效果(R*M/Hi)*sinα,纵向位移为R*cosα±(R*M/Hi)*sinα;
    正弦连杆(3),所述正弦连杆(3)为沿水平方向设置的水平杆,其上具有两处轴套,所述固定摆轴插入第一轴套内,且使所述正弦连杆(3)从竖直方向上位于所述半径杆(1)和所述梯形摆臂(2)之间,使其与所述固定摆轴随动;
    从动半径杆(1’),所述从动半径杆(1’)一端铰接于第二轴套内,另一端与车架铰接,与所述半径杆(1)平行且长度相同,共同与所述正弦连杆(3)组成平行四连杆机构;
    二维合成操控传动臂(4),所述二维合成操控传动臂(4)上具有十字型槽,横槽(41)与两侧半轴平行,竖槽(42)与车身长度方向平行布置;所述横槽(41)一侧延伸设置有连接臂(43);
    矢量操控摆臂(5),所述矢量操控摆臂(5)上设置有滑槽(51),所述滑槽(51)的设置方向初始位置与所述半径杆(1)布置方向平行;
    及多个滑块,第一滑块(61)固定于所述正弦连杆(3)一端上,且可滑动于所述竖槽(42)中,形成二维合成操控传动臂(4)的横向正弦位移R*sinα;第二滑块(62)与所述梯形摆臂(2)另一端铰接,其可滑动于所述横槽(41)中,使二维合成操控传动臂(4)的纵向位移恒等于R*cosα±(R*M/Hi)*sinα,由此控制二维合成操控传动臂(4)呈横平纵直状上下、左右运动;第三滑块(63)与所述连接臂(43)一端铰接形成关键控制点(Gi),且其可滑动于所述滑槽(51)内;
    其中,所述滑槽(51)上连接有副转向轴(52’)或实体转向轴(52),所述第三滑块(63)驱动所述滑槽(51)绕所述副转向轴(52’)旋转,使 副转向轴(52’)产生转向角βi,再通过同步齿轮轴、平行连杆(108)或曲轴双连杆连接实体转向轴(52);或者是由所述矢量操控摆臂(5)直接连接操控实体转向轴(52),所述第三滑块(63)驱动所述滑槽(51)绕所述实体转向轴(52)旋转,产生转向角βi,再通过所述实体转向轴为轴心垂直连接轮毂半轴,最终获得R*cosβi=R*cosα±R*M/H*sinα。
  2. 根据权利要求1所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,所述半径杆(1)长度R由车身上安装空间决定。
  3. 根据权利要求1所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,所述第一滑块(61)和所述第二滑块(62)长度均大于所述十字型槽交叉槽口宽度的两倍。
  4. 根据权利要求1所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,还包括壳体,所述半径杆(1)、所述从动半径杆(1’)、所述梯形摆臂(2)、所述正弦连杆(3)、所述二维合成操控传动臂(4)、所述矢量操控摆臂(5)及滑块均固定于所述壳体内,方向盘转向柱的底部插入所述壳体顶部与所述半径杆(1)固定,所述副转向轴(52’)伸出所述壳体外与同步齿轮轴或平行连杆(108)或曲轴双连杆连接实体转向轴(52)。
  5. 根据权利要求1-4任一项所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,所述梯形摆臂(2)、二维合成操控传动臂(4)、矢量操控摆臂(5)及滑块均为两组;第一组为主动,第二组为从动,第一组的梯形摆臂(2)固定于第一轴套处,且与所述半径杆(1)垂直;第二组的梯形摆臂(2)固定于第二轴套处,且与第一组所述梯形摆臂(2)平行;第二组的二维合成操控传动臂(4)的横槽(41)另一侧设置有连接臂(43),第二组的连接臂(43)通过第二组的第三滑块(63)驱动第二组的矢量操控摆臂(5),第二组的第一滑块(61)、第二滑块(62)的安装位置与第一组对应的滑块安装位置及连接关系相同。
  6. 根据权利要求5所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,在主动的半径杆(1)和从动的半径杆(1’)的铰接轴位置连接有曲轴双连杆机构(8),所述曲轴双连杆机构(8)为在所述主动半径杆(1)和所述从动半径杆(1’)相同的垂直相位各增加一个定长曲柄(81),并通过曲柄连杆(82)连接,所述定长曲柄(81)的半径为R/2至4R/5的定值。
  7. 根据权利要求1-4任一项所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,所述梯形摆臂(2)、二维合成操控传动臂(4)、矢量操控摆臂(5)及滑块均为两组;第一组的二维合成操控传动臂(4)布置于上层靠近车架位置,第二组所述二维合成操控传动臂(4)布置于第一组二维合成操控传动臂(4)下层,保证初始位置α=β=0;第一组的梯形摆臂(2)端头曲柄轴承穿过第二滑块(62)底部,连接第二组梯形摆臂(2),再连接带动第二组的第二滑块(62)随动;第二组的第一滑块(61)固定于所述正弦连杆(3)另一端上,通过所述正弦连杆(3)与所述半径杆(1)随动;所述第二组的梯形摆臂(2)的长度为第一组梯形摆臂(2)长度的两倍,且对应连接两组对应的第二滑块(62);其中,所述从动半径杆(1’)可替换为在车架上设置的浮动垂直滑槽(9),所述浮动垂直滑槽(9)连接控制正弦连杆(3)保持与车轴平行,所述浮动垂直滑槽(9)包括与车架固定连接平行于车轴的横向浮动滑槽(91)和与其垂直布置的纵向浮动滑槽(92),所述横向浮动滑槽(91)中设置横向第四滑块(64),且通过所述横向第四滑块(64)与所述纵向浮动滑槽(92)固定,所述纵向浮动滑槽(92)中滑动有纵向第五滑块(65),所述第五滑块(65)与所述第一滑块(61)固定;或所述横向第四滑块(64)垂直固定连接所述纵向第五滑块(65),所述纵向第五滑块(65)滑动连接所述纵向浮动滑槽(92),所述横向第四滑块(64)与所述横向浮动滑槽(91)滑动连接,纵向浮动滑槽(92)与正弦连杆(3)固定连接;所述横向第四滑块(64)向两侧分别延伸,横向第四滑块(64)上端延伸到第一组二维合成操控传动臂(4)竖槽(42)下方,横向第四滑块(64)下端延伸到第二组维合成操控臂(4)的竖槽(42)上方,与连杆3组成方形框对边平行同步随动;浮动垂直滑槽(9)控制所述正弦连杆(3)沿浮动垂直滑槽(9)横平竖直运动。
  8. 根据权利要求7所述的半径杆连体梯形摆臂恒等转向操控机构,其特征在于,转向操控机构操控的效果是给出控制左前、左后、右前、右后四个车轮矢量方向和矢量操控臂调控长度的滑槽,所述矢量操控臂调控长度的滑槽是指矢量操控臂滑槽(51)、竖槽(42)及纵向浮动滑槽(92),在所述矢量操控臂调控长度的滑槽一侧固定安装有电位器,所述电位器为直流的滑动电阻电位器或交流的霍尔感应无刷电位器,所述滑动电阻电位器的导轨控 制端子或霍尔感应电位器的活动线圈拉绳端头连接于沿滑槽发生相对位移的滑块上,各电位器初始零位置所对应驱动标的电位都为标准半径R;每一个实施矢量联动电子调控差速的驱动半轴,需要在各自适当的位置安装一个电位器,对应地取得转向操控机构矢量联动电子调控差速所需要的标的电位。
  9. 一种多轮车,其特征在于,包括:车辆本体,如权利要求1-8任一项所述的半径杆连体梯形摆臂恒等转向操控机构及安全限制器(10);
    所述安全限制器(10)包括由方向盘自上至下依次固定于方向盘转向柱上的弹簧压力归正凸轮机构(101)和高速安全转角限位机构(102);方向盘转向柱的轴芯断开部位,径向杆与环盘槽口两侧间隙插入压力敏感电阻应变片(103),通过导线分别连接车辆转向机的顺时针和逆时针助力控制电路,环盘槽口下端对应的方向盘转向柱通过万向节旋转轴传动连接所述半径杆(1)的旋转轴芯;受所述压力敏感电阻应变片(103)控制的车辆转向机通过涡杆齿条传动转向助力,或涡杆啮合齿轮直接连接所述半径杆(1)上设置的旋转轴齿轮以传动转向助力;
    上述中,实体转向轴(52)的轴心垂直连接车辆轮毂半轴,所述安全限制器(10)用于车辆车速大于80km/h状态下,限制方向盘转向角α小于3°。
  10. 一种用于半径杆连体梯形摆臂恒等转向操控机构的方法,其特征在于,半径杆与梯形摆臂垂直布置构成直角三角形,所述半径杆为直角三角形的股边,所述梯形摆臂为勾边,弦边的延长线指向车架转向中心,其中车架转向中心为不参与转向的固定轴上一点;当方向盘转角α=90°时,行进转向中心与所述车架转向中心点重合;勾边随股边偏转,勾边的顶点纵向位移恒等为R*cosβ=R*cosα+(R*M/H)*sinα,此即为阿克曼转向公式演化而来的万能转向公式;勾边顶点即梯形摆臂端头铰接第二滑块连接二维合成操控传动臂的横槽,控制纵向余弦位移;股边直角交叉点即半径杆端头轴承铰接正弦连杆控制正弦位移,正弦连杆上固定第一滑块,再连接竖槽把正弦位移传递给竖槽,同时控制二维合成操控传动臂整体横平竖直;由二维合成操控传动臂经连接臂把二维合成关键控制点Gi与所述第三滑块铰接,传动控制滑槽产生转角βi;由此半径杆连体直角三角形与二维合成操控传动臂的十字型槽组合形成偏转椭圆圆规。
PCT/CN2020/094608 2019-07-12 2020-06-05 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车 WO2021008268A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2021115359A RU2760795C1 (ru) 2019-07-12 2020-06-05 Механизм (варианты) и способ идентичного рулевого управления трапециевидным качающимся рычагом с радиальной тягой и многоколесное транспортное средство
DE112020000152.0T DE112020000152B4 (de) 2019-07-12 2020-06-05 Konstanter Lenksteuermechanismus sowie -verfahren für einen mit einer Radiusstange verbundenen trapezförmigen Schwenkarm und Mehrradfahrzeug
US17/209,221 US11370485B2 (en) 2019-07-12 2021-03-23 Identical steer control mechanism of radial bar-link trapezoidal swing arm and method and multi-wheel vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910627160.1 2019-07-12
CN201910627160.1A CN110282011A (zh) 2019-07-12 2019-07-12 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/209,221 Continuation US11370485B2 (en) 2019-07-12 2021-03-23 Identical steer control mechanism of radial bar-link trapezoidal swing arm and method and multi-wheel vehicle

Publications (1)

Publication Number Publication Date
WO2021008268A1 true WO2021008268A1 (zh) 2021-01-21

Family

ID=68021380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094608 WO2021008268A1 (zh) 2019-07-12 2020-06-05 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车

Country Status (5)

Country Link
US (1) US11370485B2 (zh)
CN (1) CN110282011A (zh)
DE (1) DE112020000152B4 (zh)
RU (1) RU2760795C1 (zh)
WO (1) WO2021008268A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114608787A (zh) * 2022-04-04 2022-06-10 湘潭大学 一种适用于小型风洞的叶片动态失速试验装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282011A (zh) * 2019-07-12 2019-09-27 刘海鹏 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车
CN110587125B (zh) * 2019-10-10 2021-05-11 山东省威科泰激光科技有限公司 智能机器人用激光切割辅助装置
CN111299961B (zh) * 2020-02-25 2022-06-17 山东独聚轴承制造有限公司 一种用于过盈轴承安装的轴承内壁烤热装置
CN114918556A (zh) * 2021-08-20 2022-08-19 江苏富勤机械制造有限公司 一种激光切割系统
CN114041701B (zh) * 2021-11-23 2023-04-18 广东智源机器人科技有限公司 下料机构及食品加工设备
CN114481996B (zh) * 2022-03-16 2023-05-05 任常军 一种水产养殖清淤装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205897B2 (en) * 2009-03-30 2012-06-26 Cristiano Avigni Steering systems for use with motor vehicles
CN104443025A (zh) * 2014-11-08 2015-03-25 福州大学 一种面向多轴车辆纯滚动的电液伺服转向系统及控制方法
CN104670303A (zh) * 2013-11-29 2015-06-03 刘海鹏 多轮车辆万能转向机械式操控机构和助力方式及辅助方法
CN204623555U (zh) * 2015-04-08 2015-09-09 刘海鹏 多轮车辆万能转向机械式操控机构
CN206734393U (zh) * 2017-02-27 2017-12-12 刘海鹏 模型操控栅格电液助力同步万能转向机构
CN110282011A (zh) * 2019-07-12 2019-09-27 刘海鹏 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US941928A (en) * 1909-01-07 1909-11-30 Jean B Jourdain Universal-joint connection.
US1389764A (en) * 1920-07-23 1921-09-06 Isador Stern Motor-vehicle
US1915816A (en) * 1932-01-18 1933-06-27 Eugene M Cole Steering apparatus for wheeled frames
GB931283A (en) 1959-10-07 1963-07-17 Lansing Bagnall Ltd Improvements in or relating to vehicle steering mechanisms
JPH01153382A (ja) * 1987-12-08 1989-06-15 Isuzu Motors Ltd 舵角比制御機構
US5862874A (en) * 1997-06-19 1999-01-26 University Of Pittsburgh Steering mechanism for short wheelbased four-wheeled vehicles
JP2005053471A (ja) 2003-07-23 2005-03-03 Nissan Motor Co Ltd 車両の操舵装置
US8136613B2 (en) * 2008-03-26 2012-03-20 Mtd Products Inc Vehicle control systems and methods
WO2018220814A1 (ja) 2017-06-02 2018-12-06 株式会社ジャムコ 複合材部品の製造方法、および、複合材部品製造装置
JP7344006B2 (ja) * 2018-05-21 2023-09-13 ナブテスコ株式会社 操舵装置
CN209395868U (zh) 2018-12-12 2019-09-17 刘海鹏 装有简化的单侧余弦补偿前轮转向模型控制器的多轮车
CN109795554A (zh) * 2019-02-01 2019-05-24 天津农学院 一种便于调节的车辆角度传感器安装结构
CN210592118U (zh) * 2019-07-12 2020-05-22 刘海鹏 半径杆连体梯形摆臂恒等转向操控机构及多轮车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205897B2 (en) * 2009-03-30 2012-06-26 Cristiano Avigni Steering systems for use with motor vehicles
CN104670303A (zh) * 2013-11-29 2015-06-03 刘海鹏 多轮车辆万能转向机械式操控机构和助力方式及辅助方法
CN104443025A (zh) * 2014-11-08 2015-03-25 福州大学 一种面向多轴车辆纯滚动的电液伺服转向系统及控制方法
CN204623555U (zh) * 2015-04-08 2015-09-09 刘海鹏 多轮车辆万能转向机械式操控机构
CN206734393U (zh) * 2017-02-27 2017-12-12 刘海鹏 模型操控栅格电液助力同步万能转向机构
CN110282011A (zh) * 2019-07-12 2019-09-27 刘海鹏 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114608787A (zh) * 2022-04-04 2022-06-10 湘潭大学 一种适用于小型风洞的叶片动态失速试验装置

Also Published As

Publication number Publication date
DE112020000152T5 (de) 2021-08-05
US20210206429A1 (en) 2021-07-08
RU2760795C1 (ru) 2021-11-30
US11370485B2 (en) 2022-06-28
DE112020000152B4 (de) 2023-06-15
CN110282011A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021008268A1 (zh) 半径杆连体梯形摆臂恒等转向操控机构、方法及多轮车
CN107627900B (zh) 一种电动汽车双轮边电机差速转矩控制系统及控制方法
JP2015525708A (ja) 三輪自動車のための操舵および制御システム
CN103359161B (zh) 车辆线控转向方向盘装置
CN106585305A (zh) 一种基于双曲柄机构的线控独立转向‑驱动一体化双横臂悬架系统
CN106627744A (zh) 一种电动汽车的独立转向系统
CN107985395A (zh) 可全轮转向的电动车转向系统
CN106585706A (zh) 一种无人驾驶汽车用转向控制装置
CN206606257U (zh) 一种电动汽车的独立转向系统
CN103112367A (zh) 一种后轮为独立电机驱动的电动汽车的驱动控制系统
WO2019029559A1 (zh) 轮边/轮毂驱动多轴车辆的转向方法
JPS63297173A (ja) 自動車用複合操舵装置
CN103287493A (zh) 一种转向驱动轮
CN108860296A (zh) 基于转向角闭环的电动汽车电子差速控制系统及电动汽车
CN102874308B (zh) 一种基于操纵杆的线控转向系统角传动比控制方法
CN203005522U (zh) 销轴铰接车辆转向角度检测装置
CN210592118U (zh) 半径杆连体梯形摆臂恒等转向操控机构及多轮车
CN203345019U (zh) 车辆线控转向方向盘装置
CN108608846A (zh) 前轮后轮分别协同转向车辆的底盘系统
CN101973312B (zh) 带有可变传动比电机系统vtms的随速变传动比的电动助力转向系统
CN201837522U (zh) 汽车差速试验台
CN104097688B (zh) 一种后轮主动转向装置及其控制系统
CN103112496A (zh) 销轴铰接车辆转向角度检测装置
CN104085442A (zh) 径向挡环式车辆线控转向方向盘装置
CN203844825U (zh) 锥齿轮式车辆线控转向方向盘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840642

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20840642

Country of ref document: EP

Kind code of ref document: A1