WO2021008138A1 - 一种以赤泥为原料生产颗粒金属和碳化钛的方法 - Google Patents

一种以赤泥为原料生产颗粒金属和碳化钛的方法 Download PDF

Info

Publication number
WO2021008138A1
WO2021008138A1 PCT/CN2020/077274 CN2020077274W WO2021008138A1 WO 2021008138 A1 WO2021008138 A1 WO 2021008138A1 CN 2020077274 W CN2020077274 W CN 2020077274W WO 2021008138 A1 WO2021008138 A1 WO 2021008138A1
Authority
WO
WIPO (PCT)
Prior art keywords
red mud
titanium carbide
molten salt
solid carbon
titanium
Prior art date
Application number
PCT/CN2020/077274
Other languages
English (en)
French (fr)
Inventor
胡文韬
焦树强
刘欣伟
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2021008138A1 publication Critical patent/WO2021008138A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of mineral processing, and relates to a method for producing particulate metal and titanium carbide using red mud as a raw material.
  • Titanium carbide has many excellent properties such as high temperature resistance, high strength, corrosion resistance, and high thermal conductivity. It is widely used in many fields such as cermets, cutting tool materials, wear-resistant refractory materials, and heat-resistant gallium-iron alloys.
  • red mud is the most important titanium-containing resource in my country, but it cannot be used to produce titanium carbide.
  • the invention uses red mud as the main raw material, can directly produce high-quality titanium carbide powder through one heating, and simultaneously produces gallium slag, granular elemental iron and steel, and realizes the comprehensive utilization of iron, titanium, and gallium elements in the red mud.
  • Chinese invention patent CN108441636A discloses a two-stage vacuum reduction method for red mud, which is carried out according to the following steps: (1) Red mud and carbonaceous reducing agent are ground separately and mixed with additive sodium sulfate to form agglomerates; (2) ) The reduction reaction is carried out under vacuum and temperature 700 ⁇ 1200°C; (3) Fe-FeS alloy ball products and magnetic separation tailings are obtained by magnetic separation after grinding; (4) The magnetic separation tailings, aluminum powder and additives are mixed Afterwards, it is pressed into a secondary agglomerate; (5) A two-stage reduction reaction is carried out under vacuum and temperature 700-1200°C, and the steam crystallizes into solid metallic sodium.
  • the method of the invention realizes the thorough separation of sodium element in the red mud, and creates favorable conditions for the subsequent utilization of the residue and the extraction of rare elements in the subsequent residue.
  • Chinese invention patent CN108950180A discloses a Bayer process red mud reduction roasting method for iron extraction.
  • chloride-containing compounds are added as segregants, sodium-containing compounds as accelerators, iron-containing compounds as nucleating agents, and calcium-containing compounds.
  • sulfur-fixing agent and carbonaceous reducing agent based on the mass of the red mud, the additive amount of chloride is 3-10% by weight, the amount of sodium-containing compounds is 5-15%, and the amount of iron-containing compounds is 3 ⁇ 8%, calcium-containing compound is added at 5-12%, and carbonaceous reducing agent is added at 5-15%.
  • the invention adopts the method of reducing and roasting the red mud to reduce the iron in the red mud to low-priced magnetic substances, which are gathered together under the action of the nucleating agent to form large grains, which are separated by weak magnetic.
  • the method can significantly increase the metal conversion rate and segregation effect in the red mud reduction roasting, thereby achieving the effect of increasing the iron recovery rate or grade.
  • Chinese invention patent CN109160744A discloses a system and process for the comprehensive utilization of red mud magnetized roasting, involving the technical field of mineral resource utilization.
  • the main points of the technical solution include the following steps: detection and analysis and ingredients: detection and analysis of red mud samples, and press Add the additives that inhibit the high temperature combination of silicon, titanium, aluminum and iron; stirring and drying: stir the red mud with a good ratio for 30-60 minutes to make the materials evenly mixed, and then dry at a drying temperature of 180-200°C; roasting reduction: The dried material is roasted and reduced, the reduction temperature is controlled at 750 ⁇ 1150°C, and the reduction time is 15 ⁇ 60min; magnetic separation: the roasted and reduced product is cooled and ground, and then sieved by two-stage magnetic field in turn to separate out Magnetic iron ore powder and non-magnetic tailings.
  • the invention solves the problem of the low reaction efficiency caused by the high ash content of the traditional magnetized roasting using lignite to reduce the red mud, and improves
  • Chinese invention patent CN108085446A discloses a system and method for processing red mud.
  • the system includes: a mixing device with a red mud inlet, a reducing agent inlet, a flux inlet, a binder inlet and a mixture outlet; a pelletizing device with a mixture The material inlet and the mixed pellet outlet, the mixture material inlet is connected with the mixture material outlet;
  • the smelting device has a smelting space, the bottom of the smelting space defines a molten pool, and the smelting space sequentially forms a feeding zone along the flow direction of the melt , Reduction zone, melting zone and clarification zone, the feeding zone is located at one end of the smelting device, and the clarifying zone is located at the other end of the smelting device.
  • the side wall of the feeding zone is provided with a mixed pellet inlet, which is connected to the mixed pellet outlet ,
  • the side wall of the clarification zone is provided with a molten iron outlet and a slag outlet.
  • the side walls of the feeding zone, the reduction zone, the melting zone and the clarification zone are provided with at least one pair of regenerative burners, each pair of regenerative burners Set on the opposite side wall of the melting device.
  • the present invention provides a method for producing granular iron and titanium carbide by using red mud as a raw material and using a reducing molten salt bath.
  • the red mud and low volatile solid carbon (graphite powder, petroleum coke) are mixed into the molten salt bath and the molten salt is used.
  • the salt dissolves the iron, gallium, and titanium components in the red mud, and the iron and gallium ions on the surface of the solid carbon particles are reduced to metal, and the titanium ions combine with carbon to form titanium carbide.
  • a porous plate is used to separate solid product particles and liquid molten salt, and then iron, titanium carbide, and gallium iron alloy are separated from the solid product by magnetic separation, and finally titanium carbide particles are separated from the residue by eddy current separation. .
  • a method for producing particulate metal and titanium carbide using red mud as a raw material which is characterized in that: red mud and low volatile solid carbon are mixed into a molten salt bath, and the molten salt is used to dissolve iron, gallium, and titanium in the red mud to make It enters the molten salt in the form of free ions; iron and gallium ions are reduced to metals on the surface of the solid carbon particles, and titanium ions combine with carbon to form titanium carbide or titanium oxycarbide; after the reaction is completed, the solid product is filtered with the help of gas pressure using a porous plate In addition to most of the liquid molten salt, the remaining filter residue is cooled, and the metallic iron and gallium are separated from the solid product by magnetic separation, and finally titanium carbide particles are separated from the residue by eddy current separation.
  • the type of solid carbon is graphite powder or petroleum coke, and its composition satisfies one of the following conditions: (1) The solid carbon has a volatile content of 0.001% to 0.01%, an ash content of 0.01% to 0.1%, and a sulfur content of 0.001%. ⁇ 0.01%; (2) The volatile matter of solid carbon is between 0.01 ⁇ 0.2%, the ash content is between 0.1 ⁇ 0.15%, and the sulfur content is between 0.01 ⁇ 0.08%; (3) The volatile matter of solid carbon is between 0.01 and 0.2%. 0.2 ⁇ 0.3%, ash content between 0.15 ⁇ 0.5%, sulfur content between 0.08 ⁇ 0.2%; (4) The volatile content of solid carbon is between 0.05 ⁇ 2%, and the ash content is between 0.5 ⁇ 2%. , Sulfur content is between 0.2 and 0.9%.
  • the inorganic salt exists in a liquid state during the reaction, and the molten salt quality meets the following conditions: 2.97 ⁇ (red mud mass + solid carbon mass) ⁇ molten salt mass ⁇ 0.86 ⁇ (red mud mass + solid carbon mass); molten salt Its function is to dissolve the red mud and convert the iron, gallium, and titanium minerals into free ions; the ion conversion reaction requires molten salt as the medium; among them, the iron and gallium ions diffuse to the surface of solid carbon particles through the medium of molten salt , From "free ions" reduced to metal, and then form particles; titanium ions diffuse to the surface of solid carbon particles to transform into titanium carbide or titanium oxycarbide, and then form particles.
  • a stepwise heating and holding system is adopted; among them, the heating rate from room temperature to 575°C is between 2.81°C/min and 8.53°C/min, and the heating rate between 575°C and 998°C is between 1.91°C /min and 6.25°C/min, and the heating rate between 999°C and 1198°C is between 0.81°C/min and 6.13°C/min; heat preservation is required after the temperature reaches the predetermined temperature, and the heat preservation temperature range is in the following range 1-4 of 651°C-699°C, 951°C-998°C, 1101°C-1148°C, 1151°C-1198°C.
  • a molten salt bath with reducing properties is used as the reaction medium, and the reducing properties of the molten salt bath are provided by solid carbon particles insoluble in the molten salt; the proportion of solid carbon added is (0.19 ⁇ Fe + 0.6 ⁇ Ti + 0.42 ⁇ Ga ) ⁇ (1-V) ⁇ 100%; where ⁇ Fe , ⁇ Ti , and ⁇ Ga are the mass fractions of Fe, Ti, and Ga in the red mud, respectively, and V is the volatile content of solid carbon.
  • red mud and solid carbon are used as raw materials, and the proportion of solid carbon added is (0.19 ⁇ Fe +0.6 ⁇ Ti +0.35 ⁇ Ga ) ⁇ (1-V) ⁇ 100%; among them, ⁇ Fe and ⁇ Ti and ⁇ Ga are the mass fractions of iron, gallium, and titanium in the red mud, respectively, and V is the volatile content of solid carbon.
  • the solid carbon is graphite powder or petroleum coke, and the selection of molten salt and the holding temperature are related to the composition of the solid carbon.
  • the volatile content of solid carbon is between 0.001% and 0.01%, the ash content is between 0.01% and 0.1%, and the sulfur content is between 0.001% and 0.01%, select the single-component inorganic salt sodium chloride, and the holding temperature is 1149°C-1199°C;
  • the volatile content of solid carbon is between 0.01 and 0.2%, the ash content is between 0.1 and 0.15%, and the sulfur content is between 0.01 and 0.08%, select a single component inorganic salt calcium chloride, and the holding temperature is 1100°C-1148°C ;
  • the volatile content of solid carbon is between 0.2-0.3%, the ash content is between 0.15-0.5%, and the sulfur content is between 0.08-0.2%, select a single component inorganic salt sodium chloride or calcium chloride, and keep the temperature 999°C-1099°C; when the volatile content of solid carbon
  • a porous plate is used to filter most of the liquid molten salt from the solid product; after the molten salt is cooled, the solid product is removed and water is added to adjust the slurry concentration to 45%-65%; the slurry is stirred or After simple grinding (grinding time ⁇ 5min), magnetic separation is used to separate metallic iron and gallium particles from the solid product particles. Among them, the magnetic separation field strength is between 4kA/m and 15kA/m.
  • the magnetic separation tailings are purified by flotation (or eddy current separation) to obtain titanium carbide or titanium oxycarbide particles, and the tailings are removed at the same time.
  • the composition of the solid carbon is used to control the grade and use of the product.
  • the type and temperature of the molten salt can be used to produce high-quality wear-resistant materials.
  • the type and temperature of molten salt are used to produce titanium carbide particles, which are used to manufacture high-temperature instruments;
  • the type and temperature of molten salt can be used to produce titanium carbide particles for purification and After modification, it can be used as a raw material for the production of titanium carbide;
  • the solid carbon composition meets the condition (4), a mixture of titanium carbide and titanium oxycarbide can be produced for the production of electrolytic titanium.
  • a porous plate is used to filter most of the liquid molten salt from the solid product for recycling; after the molten salt is cooled, the metal Fe and Ga particles are separated from the solid product particles by magnetic separation, so that the non-magnetic TiC Enriched in the non-magnetic product, and finally separated from the titanium carbide particles by eddy current sorting.
  • a stepwise heating system is adopted to reduce the iron and gallium in the red mud into metallic iron, gallium or iron-gallium alloy step by step, and the titanium is converted into titanium carbide or titanium oxycarbide.
  • the invention uses red mud as the main raw material, can directly produce high-quality titanium carbide powder through one heating, and simultaneously produce granular metallic iron, metallic gallium or gallium-iron alloy, so as to realize the comprehensive utilization of iron, titanium and gallium elements in the red mud.
  • the method has short production process, wide raw material sources and low production cost. The difference with the existing technology is reflected in:
  • Raw materials The existing technology can only produce titanium carbide with raw materials such as titanium metal, titanium slag, ilmenite, titanium dioxide, etc., and cannot yet use red mud from a wider source and cheaper;
  • the existing process completes carbonization through a solid phase reaction between titanium-containing minerals and solid carbon.
  • the reaction temperature is generally above 1500°C, while the treatment temperature of the present invention is less than 1200°C;
  • the present invention is different in terms of raw materials, process parameters and product performance, and is a brand-new production process.
  • Figure 1 shows the process flow of flotation and enrichment of red mud-based titanium carbide
  • Figure 2 shows the eddy current enrichment process of red mud-based titanium carbide.
  • a red mud concentrate and 99% high-purity graphite powder in Xinjiang The main components of the red mud (the range of multiple tests, the same below) are: TFe 45.17% ⁇ 45.21%, SiO 2 9.21% ⁇ 9.24%, TiO 2 5.16% ⁇ 5.19% Ga 2 O 3 0.001% ⁇ 0.0011%, particle size composition -0.074mm accounts for 81.03% ⁇ 81.22%; graphite powder ash content 0.5% ⁇ 0.65%, moisture content 0.13% ⁇ 0.15%, volatile content 0.02% ⁇ 0.3%, particle size The composition is 0.074mm, accounting for 44.5% to 45%; industrial sodium chloride is used as molten salt.
  • Raw material preparation Take 10kg of red mud, mix the red mud, graphite powder, and sodium chloride according to a mass ratio of 1:0.15:2.5, and place them in a 10L high-purity graphite crucible in a pit furnace;
  • the main components of the red mud are: TFe 58.61% ⁇ 58.65%, SiO 2 2.23% ⁇ 2.26%, TiO 2 8.92% ⁇ 8.95%, Ga 2 O 3 0.00077% ⁇ 0.00081%, particle size composition -0.074mm accounted for 89.61%-89.67%; graphite powder ash content 0.5% ⁇ 0.65%, moisture content 0.13% ⁇ 0.15%, volatile matter 0.02% ⁇ 0.3%, particle size composition 0.074mm accounted for 44.5% ⁇ 45%; Industrial sodium chloride is used as molten salt.
  • Raw material preparation Take 10kg of red mud, mix the red mud, graphite powder, and sodium chloride according to a mass ratio of 1:0.12:2.4, and place them in a high-purity graphite crucible in a 50kg induction furnace;
  • the heating rate from room temperature to 575°C is between 2.79°C/min and 2.95°C/min, the heating rate from 575°C to 670°C is 5°C/min, and the temperature is kept at 670°C for 10 minutes; the heating rate is between 670°C and 1198°C Between 5.11°C/min and 5.42°C/min, heat up to 1198°C and keep for 35min-40min;
  • a self-made eddy current separator is used to further enrich the remaining titanium carbide tailings after magnetic separation. After two stages of eddy current separation and enrichment, titanium carbide powder with 97.28% titanium carbide content is obtained.
  • red mud concentrate and fixed carbon 95.09% petroleum coke in western Sichuan The main components of red mud are: TFe 54.19% ⁇ 54.35%, SiO 2 1.97% ⁇ 1.98%, TiO 2 10.97% ⁇ 10.98%, Ga 2 O 3 0.0092% ⁇ 0.0093%, particle size composition -0.074mm accounts for 80.2% ⁇ 80.7%; petroleum coke ash content is 3.85% ⁇ 3.91%, moisture content is 0.13% ⁇ 0.15%, volatile content is 0.8% ⁇ 0.9%, particle size composition is 0.074mm, which accounts for 49.3% ⁇ 49.6%; Industrial sodium chloride-calcium chloride is used as molten salt.
  • Raw material preparation Take 10kg of red mud, mix the red mud, graphite powder, and sodium chloride according to a mass ratio of 1:0.18:2.5, and place them in a 10L high-purity graphite crucible in a pit furnace;
  • a red mud concentrate and 99% high-purity graphite powder in Xinjiang The main components of the red mud (the range of multiple tests, the same below) are: TFe 55.17% ⁇ 55.21%, SiO 2 2.23% ⁇ 2.26%, TiO2 10.16% ⁇ 10.19%, Ga 2 O 3 0.00103% ⁇ 0.00107%, particle size composition -0.074mm accounts for 81.2% ⁇ 81.3%; graphite powder ash content 0.5% ⁇ 0.65%, moisture content 0.13% ⁇ 0.15%, volatile content 0.02% ⁇ 0.3%, particle size The composition is 0.074mm accounting for 44.5% to 45%; industrial calcium chloride is used as molten salt.
  • Raw material preparation Take 10kg of red mud, mix the red mud, graphite powder, and sodium chloride according to a mass ratio of 1:0.15:3, and place them in a 10L high-purity graphite crucible in a pit furnace;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种以赤泥为原料生产颗粒金属和碳化钛的方法。属于冶炼领域。本发明首先将赤泥与低挥发分固体炭混合置于熔盐浴中,构造"还原性熔盐浴"反应系统,配合阶段性升温制度将赤泥中的铁、镓分步还原为单质铁、镓,将钛矿物转化为碳化钛或者碳氧化钛。熔盐浴的最高保温温度为1148℃~1199℃,反应后的产物以单质铁、镓,镓铁合金,碳化钛或者碳氧化钛颗粒形态存在。产物颗粒密度大,容易沉于反应器底部。借助反应器的气压调节机构,将含有反应物的下层熔盐压出,之后利用多孔板分离固态的产物颗粒和液体熔盐,再以磁选从固态产物中分离出铁、碳化钛、镓铁合金,最后以涡电流分选方式从残余物中分离出碳化钛颗粒。本发明方法生产流程短、原料来源广泛、生产成本低。

Description

一种以赤泥为原料生产颗粒金属和碳化钛的方法 技术领域
本发明属于矿物加工领域,涉及一种以赤泥为原料生产颗粒金属和碳化钛的方法。
技术背景
碳化钛具有耐高温、高强度、耐腐蚀、高导热等诸多优异性能,被广泛应用于金属陶瓷、切削刀具材料、耐磨耐火材料、耐热镓铁合金等诸多领域。与此同时,赤泥是我国最重要的含钛资源,但目前尚不能用其生产碳化钛。本发明以赤泥为主要原料,可通过1次加热直接生产高品质碳化钛粉末,同时附产镓渣、颗粒状单质铁和钢,实现赤泥中铁、钛、镓元素的综合利用。
中国发明专利CN108441636A公开了一种二段真空还原处理赤泥的方法,按以下步骤进行:(1)将赤泥和炭质还原剂分别磨细后与添加剂硫酸钠混合压制成团块;(2)在真空和温度700~1200℃条件下进行还原反应;(3)磨细后磁选获得Fe-FeS合金球产品和磁选尾矿;(4)将磁选尾矿、铝粉和添加剂混合后压制成二次团块;(5)在真空和温度700~1200℃条件下进行二段还原反应,蒸汽结晶成为固体金属钠。该发明的方法实现了赤泥中钠元素的彻底分离,为后续残渣的利用及后续残渣中稀有元素的提取创造了有利条件。
中国发明专利CN108950180A公开了一种拜耳法赤泥还原焙烧提铁的方法,在赤泥中添加含氯化物作为离析剂、含钠化合物作为促进剂、含铁化合物作为成核剂、含钙类化合物作固硫剂和碳质还原剂,按照赤泥的质量计,含氯化物的添加剂量为3~10wt%,含钠化合物的添加用量为5~15%,含铁化合物的添加用量为3~8%,含钙化合物添加用量为5~12%,碳质还原剂添加用量为5-15%。该发明采用还原焙烧赤泥的方法,使赤泥里面的铁还原成低价有磁性的物质,并在成核剂的作用下聚集在一起形成大颗粒的晶粒,经弱磁选出。该方法能显著地提高赤泥还原焙烧中的金属转化率和离析效果,从而达到了提高铁回收率或品位的效果。
中国发明专利CN109160744A公开了一种赤泥磁化焙烧综合利用系统及工 艺,涉及矿物资源利用技术领域,其技术方案要点是包括以下步骤:检测分析并配料:对赤泥取样进行检测分析,向其中按比例加入抑制硅钛铝与铁高温结合的添加剂;搅拌烘干:将配比好的赤泥进行搅拌30~60min,使得物料混合均匀,然后干燥,干燥温度为180~200℃;焙烧还原:将干燥后的物料进行焙烧还原,还原温度控制在750~1150℃,还原时间为15~60min;磁选分离:将焙烧还原后的产品冷却后研磨,然后依次经过两级磁场进行筛分,分离出具有磁性的铁矿粉和非磁性尾渣。该发明解决了传统磁化焙烧利用褐煤还原赤泥因灰分高导致反应效率低问题,通过优化改进磁化焙烧设备提高赤泥综合利用率。
中国发明专利CN108085446A公开了处理赤泥的系统和方法,系统包括:混合装置,其具有赤泥入口、还原剂入口、助熔剂入口、粘结剂入口和混合物料出口;造球装置,其具有混合物料入口和混合球团出口,所述混合物料入口与所述混合物料出口相连;熔炼装置,其内具有熔炼空间,熔炼空间底部限定出熔池,熔炼空间沿着熔体流动方向依次形成加料区、还原区、熔化区和澄清区,加料区位于熔炼装置的一端,澄清区位于熔炼装置的另一端,加料区的侧壁上设有混合球团入口,混合球团入口与混合球团出口相连,澄清区的侧壁上设有铁水出口和出渣口,加料区、还原区、熔化区和澄清区的侧壁上均对应设置至少一对蓄热式燃烧器,每对蓄热式燃烧器设在熔炼装置的相对侧壁上。
可见,目前尚未有利用赤泥中的含钛矿物制备碳化钛的报道。
发明内容
本发明提供了一种以赤泥为原料利用还原性熔盐浴生产颗粒铁和碳化钛的方法,将赤泥与低挥发分固体炭(石墨粉、石油焦)混合投入熔盐浴,利用熔盐将赤泥中的铁、镓、钛组分溶解,在固体炭颗粒表面铁、镓离子被还原为金属,钛离子与碳结合形成碳化钛。反应结束后利用多孔板分离固态的产物颗粒和液体熔盐,再以磁选从固态产物中分离出铁、碳化钛、镓铁合金,最后以涡电流分选方式从残余物中分离出碳化钛颗粒。
一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:将赤泥与低挥发分固体炭混合投入熔盐浴,利用熔盐溶解赤泥中的铁、镓、钛,使之以自由离子形态进入熔盐;铁、镓离子在固体炭颗粒表面被还原为金属,钛离子与碳结 合形成碳化钛或碳氧化钛;反应结束后借助气体压力利用多孔板从固态产物中滤除大部分液体熔盐,剩余的滤渣冷却后通过磁选从固体产物中分离出金属铁和镓,最后以涡电流分选方式从残余物中分离出碳化钛颗粒。
所述固体炭的种类为石墨粉或石油焦,组成满足下述条件之一:(1)固体炭的挥发分在0.001~0.01%之间、灰分在0.01~0.1%之间、硫分在0.001~0.01%之间;(2)固体炭的挥发分在0.01~0.2%之间、灰分在0.1~0.15%之间、硫分在0.01~0.08%之间;(3)固体炭的挥发分在0.2~0.3%之间、灰分在0.15~0.5%之间、硫分在0.08~0.2%之间;(4)固体炭的挥发分在0.05~2%之间、灰分在0.5~2%之间、硫分在0.2~0.9%之间。
进一步地,反应过程中无机盐以液态存在,且熔盐质量满足如下条件:2.97×(赤泥质量+固体炭质量)≥熔盐质量≥0.86×(赤泥质量+固体炭质量);熔盐的作用是溶解赤泥并将其中的铁、镓、钛矿物转化为自由离子;离子的转化反应需要以熔盐为介质;其中,铁、镓离子借助熔盐的媒介作用扩散到固体炭颗粒表面,从“自由离子”还原到金属,进而形成颗粒;钛离子扩散到固体炭颗粒表面转化为碳化钛或者碳氧化钛,进而形成颗粒。
进一步地,采用阶段性的升温和保温制度;其中,室温至575℃时的升温速率介于2.81℃/min与8.53℃/min之间,575℃-998℃之间的升温速率介于1.91℃/min与6.25℃/min之间,999℃-1198℃之间的升温速率介于0.81℃/min与6.13℃/min之间;升温达到预定温度后需要保温,保温温度区间为下述区间中的1-4个,为651℃-699℃,951℃-998℃,1101℃-1148℃,1151℃-1198℃。
进一步地,利用具有还原性的熔盐浴作为反应媒介,且熔盐浴的还原性由不溶于熔盐的固体炭颗粒提供;固体炭的配加量比例为(0.19α Fe+0.6α Ti+0.42α Ga)×(1-V)×100%;其中,α Fe、α Ti、α Ga分别为赤泥中的Fe、Ti、Ga质量分数,V为固体炭的挥发分含量。
进一步地,以赤泥和固体炭为原料,且固体炭的配加量比例为(0.19α Fe+0.6α Ti+0.35α Ga)×(1-V)×100%;其中,α Fe、α Ti、α Ga分别为赤泥中的铁、镓、钛的质量分数,V为固体炭的挥发分含量。
进一步地,固体炭为石墨粉或者石油焦,且熔盐的选择、保温温度与固体炭的成分相关。固体炭的挥发分在0.001~0.01%之间、灰分在0.01~0.1%之间、硫 分在0.001~0.01%之间时选择单一组分无机盐氯化钠,保温温度1149℃-1199℃;固体炭的挥发分在0.01~0.2%之间、灰分在0.1~0.15%之间、硫分在0.01~0.08%之间时,选择单一组分无机盐氯化钙,保温温度1100℃-1148℃;固体炭的挥发分在0.2~0.3%之间、灰分在0.15~0.5%之间、硫分在0.08~0.2%之间时,选择单一组分无机盐氯化钠或氯化钙,保温温度999℃-1099℃;固体炭的挥发分在0.05~2%之间、灰分在0.5~2%之间、硫分在0.2~0.9%之间时,选择氯化钠-氯化钙二元熔盐,保温温度949℃-998℃。
进一步地,在高温下利用多孔板将大部分液态熔盐从固态产物中滤除;熔盐冷却后将固态产物移出并加水,将料浆浓度调至45%~65%;料浆经搅拌或简单研磨(研磨时间<5min)后采用磁选方式从固态产物颗粒中分离出金属态的铁、镓颗粒。其中,磁选场强介于4kA/m~15kA/m之间。磁选尾渣采用浮选(或涡电流分选)方式提纯,得到碳化钛或者碳氧化钛颗粒,同时抛除尾渣。
进一步地,利用固体炭的组成控制产品的品级和用途,当固体炭组成满足条件(1)时,配合熔盐种类和温度可生产碳化钛颗粒条件生产高品质耐磨材料;固体炭组分满足条件(2)时,配合熔盐种类和温度条件生产碳化钛颗粒,用于制造耐高温仪器;当固体炭组成满足条件(3)时,配合熔盐种类和温度可生产碳化钛颗粒,提纯和改性后可作为碳化钛的生产原料;当固体炭组成满足条件(4)时,可生产碳化钛和碳氧化钛混合物用于生产电解钛。
进一步地,在高温下利用多孔板将大部分液态熔盐从固态产物中滤除从而回收利用;熔盐冷却后利用磁选从固态产物颗粒中分离出金属Fe、Ga颗粒,使非磁性的TiC富集在非磁性产物中,最后以涡电流分选方式从中分离出碳化钛颗粒。
进一步地,在盐的熔融温度之上,采用阶段性的升温制度将赤泥中的铁和镓分步还原为金属铁、镓或铁-镓合金,将钛转化为碳化钛或者碳氧化钛。
本发明以赤泥为主要原料,可通过1次加热直接生产高品质碳化钛粉末同时附产颗粒状金属铁、金属镓或镓-铁合金,实现赤泥中铁、钛、镓元素的综合利用。该方法生产流程短、原料来源广泛、生产成本低。与现有技术的差别体现在:
(1)原料。现有技术只能以金属钛、钛渣、钛铁矿、钛白粉等原料生产碳化钛,尚不能使用来源更广、更廉价的赤泥;
(2)处理温度。现有工艺通过含钛矿物与固体炭之间的固相反应完成碳化,反应温度一般在1500℃以上,而本发明的处理温度<1200℃;
(3)扩散条件。固相反应扩散条件不充分,所得碳化钛性质不均匀,限制了应用性能的提高。而本发明引入了扩散性能极佳的熔盐浴,反应效率和产物质量有显著提升;
综上,本发明与现有的赤泥和碳化钛生产技术相比较,在原料、工艺参数和产品性能方面都不同,是一种全新的生产工艺。
附图说明
图1为浮选富集赤泥基碳化钛的工艺流程;
图2为涡电流富集赤泥基碳化钛的工艺流程。
具体实施方式
以下实例用于说明本发明的实施过程,但不用来限制本发明的使用方法和适用范围。
实例1:
新疆某赤泥精矿和99%高纯石墨粉,赤泥主要成分(多次测试的范围值,下同)为:TFe 45.17%~45.21%,SiO 2 9.21%~9.24%,TiO 2 5.16%~5.19%Ga 2O 3 0.001%~0.0011%,粒度组成-0.074mm占81.03%~81.22%;石墨粉灰分0.5%~0.65%,水分0.13%~0.15%,挥发分0.02%~0.3%,粒度组成0.074mm占44.5%~45%;采用工业氯化钠作为熔盐。
使用过程:
(1)原料准备。取10kg赤泥,将赤泥、石墨粉、氯化钠按照质量比1:0.15: 2.5混匀,置于井式炉内的10L高纯石墨坩埚中;
(2)升温和保温。室温至575℃时的升温速率介于2.81℃/min与2.9℃/min之间,575℃~670℃升温速率2.1℃/min,在670℃保温10min;670℃~1198℃之间的升温速率介于1.96℃/min与1.98℃/min之间,升温至1198℃后保温60min;
(3)熔盐抽离和过滤。向悬于熔盐上方的石英管吹入高压气体,促使熔盐从插入熔盐的石英导管流出并被压出反应器。期间通过一个多孔介质板隔离固态产物;分离液态熔盐后将装置降温至室温,取出产物颗粒;向产物颗粒中加水,将料浆浓度调至60%;
(4)搅拌和磁选。简单搅拌料浆后采用滚筒磁选机分选,场强介于6.1kA/m~6.5kA/m之间,分离出金属铁、镓和铁镓镓铁合金颗粒;
(5)浮选。磁选后剩余的富碳化钛尾渣经3段浮选富集,制得碳化钛含量98.28%的碳化钛粉末。
实例2:
河北某赤泥精矿和99%高纯石墨粉,赤泥主要成分为:TFe 58.61%~58.65%,SiO 2 2.23%~2.26%,TiO 2 8.92%~8.95%,Ga 2O 3 0.00077%~0.00081%,粒度组成-0.074mm占89.61%~89.67%;石墨粉灰分0.5%~0.65%,水分0.13%~0.15%,挥发分0.02%~0.3%,粒度组成0.074mm占44.5%~45%;采用工业氯化钠作为熔盐。
使用过程:
(1)原料准备。取10kg赤泥,将赤泥、石墨粉、氯化钠按照质量比1:0.12:2.4混匀,置于50kg感应电炉内的高纯石墨坩埚中;
(2)升温和保温。室温至575℃时的升温速率介于2.79℃/min与2.95℃/min之间,575℃~670℃升温速率5℃/min,在670℃保温10min;670℃~1198℃之间的升温速率介于5.11℃/min与5.42℃/min之间,升温至1198℃后保温35min-40min;
(3)熔盐抽离和过滤。向悬于熔盐上方的石英管吹入高压气体,促使熔盐从插入熔盐的石英导管流出并被压出反应器。期间通过多孔介质板隔离固态产物;分离液态熔盐后将装置降温至室温,取出产物颗粒;向产物颗粒中加水,将料浆浓度调至55%-56%;
(4)搅拌和磁选。简单搅拌料浆后采用滚筒磁选机分选,场强介于 4.8kA/m~5.2kA/m之间,分离出金属铁、镓和铁镓镓铁合金颗粒;
(5)浮选。采用自制的涡电流分选机进一步富集磁选后剩余的富碳化钛尾渣。经2段涡电流分选富集,制得碳化钛含量97.28%的碳化钛粉末。
实例3:
川西某赤泥精矿和固定碳95.09%石油焦,赤泥主要成分为:TFe 54.19%~54.35%,SiO 2 1.97%~1.98%,TiO 2 10.97%~10.98%,Ga 2O 3 0.0092%~0.0093%,粒度组成-0.074mm占80.2%~80.7%;石油焦灰分3.85%~3.91%,水分0.13%~0.15%,挥发分0.8%~0.9%,粒度组成0.074mm占49.3%~49.6%;采用工业氯化钠-氯化钙作为熔盐。
使用过程:
(1)原料准备。取10kg赤泥,将赤泥、石墨粉、氯化钠按照质量比1:0.18:2.5混匀,置于井式炉内的10L高纯石墨坩埚中;
(2)升温和保温。室温至575℃时的升温速率介于2.81℃/min与2.9℃/min之间,575℃~670℃升温速率1.9℃/min~1.95℃/min,在670℃保温10min;670℃~998℃之间的升温速率介于2.1℃/min~2.2℃/min之间,升温至998℃后保温30min;
(3)熔盐抽离和过滤。向悬于熔盐上方的石英管吹入高压气体,促使熔盐从插入熔盐的石英导管流出并被压出反应器。期间利用多孔介质板截留固态产物;分离液态熔盐后将装置降温至室温,取出产物颗粒;向产物颗粒中加水,将料浆浓度调至65%;
(4)搅拌和磁选。简单搅拌料浆后采用滚筒磁选机分选,场强介于4.5kA/m~4.6kA/m之间,分离出金属铁、镓和铁镓镓铁合金颗粒;
(5)浮选。磁选后剩余的富碳化钛尾渣经3段浮选富集,制得碳化钛含量83.64%的碳化钛粉末。
实例4:
新疆某赤泥精矿和99%高纯石墨粉,赤泥主要成分(多次测试的范围值,下同)为:TFe 55.17%~55.21%,SiO 2 2.23%~2.26%,TiO2 10.16%~10.19%,Ga 2O 3 0.00103%~0.00107%,粒度组成-0.074mm占81.2%~81.3%;石墨粉灰分0.5%~0.65%,水分0.13%~0.15%,挥发分0.02%~0.3%,粒度组成0.074mm占 44.5%~45%;采用工业氯化钙作为熔盐。
使用过程:
(1)原料准备。取10kg赤泥,将赤泥、石墨粉、氯化钠按照质量比1:0.15:3混匀,置于井式炉内的10L高纯石墨坩埚中;
(2)升温和保温。室温至575℃时的升温速率介于2.8℃/min与2.85℃/min之间,575℃~670℃升温速率1.9℃/min~2.1℃/min,在670℃保温20min;670℃~998℃之间的升温速率介于1.9℃/min~2.1℃/min之间,升温至1198℃后保温30min;
(3)熔盐抽离和过滤。向悬于熔盐上方的石英管吹入高压气体,促使熔盐从插入熔盐的石英导管流出并被压出反应器。期间利用多孔介质板截留固态产物;分离液态熔盐后将装置降温至室温,取出产物颗粒;向产物颗粒中加水,将料浆浓度调至55%;
(4)搅拌和磁选。简单搅拌料浆后采用滚筒磁选机分选,场强介于5.1kA/m~5.2kA/m之间,分离出金属铁、镓和铁镓镓铁合金颗粒;
(5)浮选。磁选后剩余的富碳化钛尾渣经3段浮选富集,制得碳化钛含量94.26%的碳化钛粉末。

Claims (10)

  1. 一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:将赤泥与低挥发分固体炭混合投入熔盐浴,利用熔盐溶解赤泥中的铁、镓、钛,使之以自由离子形态进入熔盐;铁、镓离子在固体炭颗粒表面被还原为金属,钛离子与碳结合形成碳化钛或碳氧化钛;反应结束后利用多孔板从固态产物中滤除大部分液体熔盐,剩余的滤渣冷却后通过磁选从固体产物中分离出金属铁和镓,最后以涡电流分选方式从磁选尾渣中分离出碳化钛颗粒;
    所述固体炭的种类为石墨粉或石油焦,组成满足下述条件之一:(1)固体炭的挥发分在0.001~0.01%之间、灰分在0.01~0.1%之间、硫分在0.001~0.01%之间;(2)固体炭的挥发分在0.01~0.2%之间、灰分在0.1~0.15%之间、硫分在0.01~0.08%之间;(3)固体炭的挥发分在0.2~0.3%之间、灰分在0.15~0.5%之间、硫分在0.08~0.2%之间;(4)固体炭的挥发分在0.05~2%之间、灰分在0.5~2%之间、硫分在0.2~0.9%之间。
  2. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:反应过程中无机盐以液态存在,且熔盐质量满足如下条件:2.97×(赤泥质量+固体炭质量)≥熔盐质量≥0.86×(赤泥质量+固体炭质量);熔盐的作用是溶解赤泥并将其中的铁、镓、钛矿物转化为自由离子;离子的转化反应需要以熔盐为介质;其中,铁、镓离子借助熔盐的媒介作用扩散到固体炭颗粒表面,从“自由离子”还原到金属,进而形成颗粒;钛离子扩散到固体炭颗粒表面转化为碳化钛或者碳氧化钛,进而形成颗粒。
  3. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:采用阶段性的升温和保温制度;其中,室温至575℃时的升温速率介于2.81℃/min与8.53℃/min之间,575℃-998℃之间的升温速率介于1.91℃/min与6.25℃/min之间,999℃-1198℃之间的升温速率介于0.81℃/min与6.13℃/min之间;升温达到预定温度后需要保温,保温温度区间为下述区间中的1-4个,为651℃-699℃,951℃-998℃,1101℃-1148℃,1151℃-1198℃。
  4. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:利用具有还原性的熔盐浴作为反应媒介,且熔盐浴的还原性由不溶于熔盐的固体炭颗粒提供;固体炭的配加量比例为(0.19α Fe+0.6α Ti+0.42α Ga) ×(1-V)×100%;其中,α Fe、α Ti、α Ga分别为赤泥中的Fe、Ti、Ga质量分数,V为固体炭的挥发分含量。
  5. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:以赤泥和固体炭为原料,且固体炭的配加量比例为(0.19α Fe+0.6α Ti+0.35α Ga)×(1-V)×100%;其中,α Fe、α Ti、α Ga分别为赤泥中的铁、镓、钛的质量分数,V为固体炭的挥发分含量。
  6. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:固体炭的挥发分在0.001~0.01%之间、灰分在0.01~0.1%之间、硫分在0.001~0.01%之间时选择单一组分无机盐氯化钠,保温温度1149℃-1199℃;固体炭的挥发分在0.01~0.2%之间、灰分在0.1~0.15%之间、硫分在0.01~0.08%之间时,选择单一组分无机盐氯化钙,保温温度1100℃-1148℃;固体炭的挥发分在0.2~0.3%之间、灰分在0.15~0.5%之间、硫分在0.08~0.2%之间时,选择单一组分无机盐氯化钠或氯化钙,保温温度999℃-1099℃;固体炭的挥发分在0.05~2%之间、灰分在0.5~2%之间、硫分在0.2~0.9%之间时,选择氯化钠-氯化钙二元熔盐,保温温度949℃-998℃。
  7. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:在高温下利用多孔板将大部分液态熔盐从固态产物中滤除;熔盐冷却后将固态产物移出并加水,将料浆浓度调至45%~65%;料浆经搅拌或简单研磨,研磨时间<5min,研磨后采用磁选方式从固态产物颗粒中分离出金属态的铁、镓颗粒;其中,磁选场强介于4kA/m~15kA/m之间;磁选尾渣采用浮选或涡电流分选方式提纯,得到碳化钛或者碳氧化钛颗粒,同时抛除尾渣。
  8. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:利用固体炭的组成控制产品的品级和用途,当固体炭组成满足条件(1)时,配合熔盐种类和温度生产碳化钛颗粒条件,生产高品质耐磨材料;固体炭组分满足条件(2)时,配合熔盐种类和温度条件生产碳化钛颗粒,用于制造耐高温仪器;当固体炭组成满足条件(3)时,配合熔盐种类和温度生产碳化钛颗粒,提纯和改性后作为碳化钛的生产原料;当固体炭组成满足条件(4)时,可生产碳化钛和碳氧化钛混合物用于生产电解钛。
  9. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法, 其特征在于:在高温下利用多孔板将大部分液态熔盐从固态产物中滤除从而回收利用;熔盐冷却后利用磁选从固态产物颗粒中分离出金属Fe、Ga颗粒,使非磁性的TiC富集在非磁性产物中,最后以涡电流分选方式从中分离出碳化钛颗粒。
  10. 根据权利要求1所述的一种以赤泥为原料生产颗粒金属和碳化钛的方法,其特征在于:在盐的熔融温度之上,采用阶段性的升温制度将赤泥中的铁和镓分步还原为金属铁、镓或铁-镓合金,将钛转化为碳化钛或者碳氧化钛。
PCT/CN2020/077274 2019-07-12 2020-02-28 一种以赤泥为原料生产颗粒金属和碳化钛的方法 WO2021008138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910630539.8A CN110395734B (zh) 2019-07-12 2019-07-12 一种以赤泥为原料生产颗粒金属和碳化钛的方法
CN201910630539.8 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021008138A1 true WO2021008138A1 (zh) 2021-01-21

Family

ID=68325526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077274 WO2021008138A1 (zh) 2019-07-12 2020-02-28 一种以赤泥为原料生产颗粒金属和碳化钛的方法

Country Status (2)

Country Link
CN (1) CN110395734B (zh)
WO (1) WO2021008138A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005285A (zh) * 2021-02-26 2021-06-22 青岛核盛智能环保设备有限公司 利用赤泥生产棕刚玉的工艺
CN115478165A (zh) * 2022-09-22 2022-12-16 郑州大学 一种低温拜耳法赤泥梯级资源化利用的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110395734B (zh) * 2019-07-12 2020-10-13 北京科技大学 一种以赤泥为原料生产颗粒金属和碳化钛的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507643A (en) * 1967-01-16 1970-04-21 Reynolds Metals Co Cell reduction of bauxite or clay
CN101665871A (zh) * 2009-10-14 2010-03-10 攀钢集团研究院有限公司 生产碳化钛渣的方法
CN103556167A (zh) * 2013-10-23 2014-02-05 攀钢集团攀枝花钢铁研究院有限公司 一种熔盐电解制备碳化钛的方法
CN110395734A (zh) * 2019-07-12 2019-11-01 北京科技大学 一种以赤泥为原料生产颗粒金属和碳化钛的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299982C (zh) * 2004-07-08 2007-02-14 武汉科技大学 一种用熔盐法制备碳化钛材料的方法
CN105907968B (zh) * 2016-05-05 2017-12-12 朱鸿民 一种以钛铁复合矿为原料提取铁、钛的方法及过滤设备
CN106399676A (zh) * 2016-09-05 2017-02-15 江苏省冶金设计院有限公司 处理赤泥的方法和系统
CN108085446A (zh) * 2017-12-28 2018-05-29 江苏省冶金设计院有限公司 处理赤泥的系统和方法
CN108752005A (zh) * 2018-07-03 2018-11-06 贵州大学 一种磷石膏和赤泥制备复合陶瓷材料联产硫酸的工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507643A (en) * 1967-01-16 1970-04-21 Reynolds Metals Co Cell reduction of bauxite or clay
CN101665871A (zh) * 2009-10-14 2010-03-10 攀钢集团研究院有限公司 生产碳化钛渣的方法
CN103556167A (zh) * 2013-10-23 2014-02-05 攀钢集团攀枝花钢铁研究院有限公司 一种熔盐电解制备碳化钛的方法
CN110395734A (zh) * 2019-07-12 2019-11-01 北京科技大学 一种以赤泥为原料生产颗粒金属和碳化钛的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005285A (zh) * 2021-02-26 2021-06-22 青岛核盛智能环保设备有限公司 利用赤泥生产棕刚玉的工艺
CN115478165A (zh) * 2022-09-22 2022-12-16 郑州大学 一种低温拜耳法赤泥梯级资源化利用的方法
CN115478165B (zh) * 2022-09-22 2023-10-03 郑州大学 一种低温拜耳法赤泥梯级资源化利用的方法

Also Published As

Publication number Publication date
CN110395734A (zh) 2019-11-01
CN110395734B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021008138A1 (zh) 一种以赤泥为原料生产颗粒金属和碳化钛的方法
Li et al. Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate
CN112111660B (zh) 一种从锂矿石中富集锂同时制备硅铁合金回收氧化铝的方法
CN106517202B (zh) 一种碳化钛渣的制备方法
WO2020206833A1 (zh) 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法
WO2017190393A1 (zh) 一种以钛铁复合矿为原料提取铁、钛的方法及过滤设备
WO2020206830A1 (zh) 一种赤泥回收钠、铁和钛同时熔融渣直接水泥化的方法
CN107090551A (zh) 一种钒钛磁铁矿的直接提钒的方法
CN101418389A (zh) 红土镍矿在回转窑中直接还原粒镍铁的方法
CN108531742A (zh) 一种由电炉粉尘制备纳米锌及铁精矿的方法
CN105087864A (zh) 一种用钒钛磁铁矿直接生产碳化钛的方法
CN106744960B (zh) 一种配碳氢气还原制备碳氧化钛或/和碳化钛的方法
EP4338858A1 (en) Impurity removal method for silicate solid waste and use thereof
CN101824544B (zh) 一种鼓风炉炼铅弃渣的综合回收方法
CN103866115B (zh) 红土镍矿一步法制备含镍不锈钢原料的方法
CN110465410A (zh) 一种铅锌矿的浮选工艺
CN105039626B (zh) 一种钒渣制备方法
CN108018426B (zh) 基于钠化还原的铜渣低温综合利用工艺
CN100515929C (zh) 硫铁矿制酸工艺中的烧渣处理方法
CN111074076B (zh) 一种冶金固体废弃物的综合利用系统及方法
WO2017133494A1 (zh) 一种利用盐卤氯化焙烧还原红土镍矿制镍铁精粉的方法
US4521385A (en) Recovery of titanium values
WO2020206832A1 (zh) 一种高铁赤泥提铁及直接水泥化的方法
CN109207720A (zh) 一种石煤提钒的浸取方法
CN113061736B (zh) 烧结机头灰中钾、铅、铁的分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839796

Country of ref document: EP

Kind code of ref document: A1