WO2020206832A1 - 一种高铁赤泥提铁及直接水泥化的方法 - Google Patents
一种高铁赤泥提铁及直接水泥化的方法 Download PDFInfo
- Publication number
- WO2020206832A1 WO2020206832A1 PCT/CN2019/090841 CN2019090841W WO2020206832A1 WO 2020206832 A1 WO2020206832 A1 WO 2020206832A1 CN 2019090841 W CN2019090841 W CN 2019090841W WO 2020206832 A1 WO2020206832 A1 WO 2020206832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- red mud
- mixture
- mass
- raw materials
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Definitions
- the invention relates to the technical field of environmental protection, in particular to a method for high-speed railway red mud iron extraction and direct cementation.
- Red mud is a strong alkaline solid waste produced by preparing alumina or aluminum hydroxide from bauxite. At present, the global red mud reserve is estimated to exceed 3 billion tons, and it is growing at a rate of about 120 million tons per year. The average utilization rate of red mud in the world is 15%. The cumulative stock of red mud in China has grown to 600 million tons, and is growing at a rate of about 100 million tons per year. The utilization rate of red mud in China is only 4%. Most of the red mud is still disposed of on land.
- Red mud storage not only wastes secondary resources and occupies a large amount of land, but also destroys the surrounding environment of the red mud storage yard, causing serious environmental problems, resulting in a sharp increase in environmental protection pressure on the aluminum industry.
- the environmental risks of red mud storage have long attracted the attention of the governments and enterprises of various alumina producing countries.
- the key to solving the red mud problem is to develop red mud comprehensive utilization technology.
- the existing red mud utilization technologies can generally be divided into two types: one is the overall utilization as a general industrial raw material, such as Zhao Guangming “A method for producing cement clinker using red mud” (application number: CN201210031710.1) invented by others is to add dealkalized gypsum and fly ash to dealkalized red mud, and put the above three materials in a mixing tank Mix the mixture uniformly, add water to adjust its concentration to 30%, use a plate and frame high pressure filter press to filter until the water content of the solid mixture is less than 25%, and then send it to the rotary kiln for calcination into cement clinker; Wang Wenju and others invented “A process and method for transforming all waste slag from aluminum industry process into ecological building materials” (application number: CN200710105971), using solid waste red mud (sintering method, Bayer method) and boiler
- the non-magnetic products are dissolved in ammonia water to dissolve alumina, and the washing slag is mixed with water to form a slurry, which acts as an absorbent to absorb SO 2 in coal-fired flue gas ,
- Add high concentrated acid to the washing residue for acid hydrolysis dissolve scandium and titanium in the acid hydrolysis solution, filter out the acid hydrolysis residue, add metatitanic acid seed crystals to the acid hydrolysis solution, and the titanium is passed through water in the form of metatitanic acid
- the acid hydrolysate after extraction of titanium used 13% P204, 7% TBP and 80% kerosene as the extractant, the scandium in the solution was extracted, and the solution after the extraction of scandium was added to ammonia water to neutralize it with 19% P204, 8% TBP and 73% kerosene are used as extractants to extract vanadium.
- red mud When red mud is used as a general industrial raw material, there are problems such as red mud alkalinity restriction, low product price, poor profitability, etc.; most of the methods for extracting valuable elements separately have long treatment processes, large amounts of waste water, and unavailable tailings Utilization and other issues.
- the present invention provides a method for extracting iron from high-speed iron red mud and direct cementation.
- the high-speed iron red mud treated by the calcification-carbonization method is used as a raw material, and the iron is extracted from the red mud through vortex reduction.
- the molten slag adjusts its components at high temperature and becomes cement clinker directly after cooling, crushing and grinding.
- mCaO is the mass of calcium oxide in the mixture
- mAl 2 O 3 is the mass of alumina in the mixture
- mSiO 2 is the mass of silicon oxide in the mixture.
- the iron recovery rate is ⁇ 90%.
- the high-speed iron red mud treated by the calcification-carbonization method of the raw material belongs to low-alkali and low-aluminum red mud, which eliminates the restriction of alkali in the red mud on the production of cement clinker, and can increase the addition of red mud to burn cement clinker the amount;
- the iron-containing phase monomers in the high-iron red mud treated by the calcification-carbonization method have a high degree of dissociation, which is beneficial to the extraction of iron during the reduction process, and the iron extraction rate can reach more than 95%;
- the molten slag after reduction of ironmaking can be directly added to the control powder under high-temperature vortex stirring, and can be directly turned into cement clinker after cooling, crushing, and grinding.
- the tailings are completely used to produce cement clinker, and the red mud utilization rate is up to 100%.
- Fig. 1 is a schematic flow diagram of the method for extracting iron from red mud and direct cementing of high-speed railway of the present invention.
- composition of the cement clinker in the embodiment of the present invention contains 62-64% CaO, 20-24% SiO 2 , 4.8-6% Al 2 O 3 and 2.5-3.2% Fe 2 O 3 by mass percentage.
- the wear-resistant cast iron product in the embodiment of the present invention is wear-resistant cast iron of the brand HBW555Cr13 (ISO 21988/JN/HB).
- the high-speed iron red mud treated by the calcification-carbonization method in the embodiment of the present invention is the invention patent "a method for dissipating red mud" (application number 201110275030.X), the Bayer process red mud is calcified, carbonized and dissolved aluminum
- the formed leachable slag has a calcification temperature of 160°C, a carbonization temperature of 120°C, and a melting temperature of 60°C.
- the temperature when the raw material is dried is 150-200°C.
- the vortex stirring reduction of the present invention refers to the method disclosed in the invention of "a method for vortex stirring smelting reduction ironmaking", and the involved vortex stirring reduction high-temperature furnace is the equipment used for this method.
- a vortex stirring smelting reduction ironmaking method of the present invention is a patent application with publication number CN106435080A.
- the adjusting component is adding calcium raw material, siliceous raw material and/or iron raw material.
- the calcareous raw material is at least one of limestone and calcium carbide slag;
- the siliceous raw material is at least one of kaolin, clay, fly ash, and tailings slag;
- the iron raw material is at least one of high-speed iron red mud, iron slag, and steel slag.
- the calcareous raw material is at least one of limestone and calcium carbide slag;
- the siliceous raw material is at least one of kaolin, clay, fly ash, and tailings slag;
- the iron raw material is at least one of high-speed iron red mud, iron slag, and steel slag.
- the slag agent is a mixture of CaO and CaF 2 , where CaO is added according to the basicity of the mixture at 1.4, and CaF 2 accounts for 30% of the total mass of CaO:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种高铁赤泥提铁及直接水泥化的方法,按以下步骤进行:(1)准备原料钙化-碳化法处理后的高铁赤泥;(2)原料与固态碳质还原剂和造渣剂制成混合料,喷吹到涡流搅拌高温炉的漩涡中心,进行还原:(3)形成的铁水与熔融渣分层;铁水制成耐磨铸铁;(4)熔融渣制成水泥熟料。该方法原料不用烧结,增加了赤泥利用的附加值。
Description
本发明涉及环境保护技术领域,具体涉及一种高铁赤泥提铁及直接水泥化的方法。
赤泥是以铝土矿为原料制取氧化铝或氢氧化铝后所产生的强碱性固体废物。目前,全球赤泥储量估测已经超过30亿吨,并且每年大约以1.2亿吨的速度增长,世界赤泥平均利用率为15%。中国赤泥累计堆存量已增长至6亿吨,并且每年大约以1亿吨的速度增长,中国赤泥利用率仅为4%。大部分赤泥仍然采取陆地堆存的方法处置。赤泥堆存不仅浪费了二次资源、占用大量土地,而且破坏了赤泥堆场的周边环境,带来了严重的环境问题,致使铝工业的环保压力剧增。赤泥堆存的环境风险早已引起了各氧化铝生产国政府及企业的重视,解决赤泥问题的关键是研发赤泥综合利用技术。
为实现赤泥的高效利用以及有价元素提取,我国铝工业进行了大量的研发工作,现有的赤泥利用技术一般可分为两种:一种是作为一般性工业原料整体利用,如赵广明等人发明的“一种利用赤泥生产水泥熟料的方法”(申请号:CN201210031710.1),是向脱碱赤泥中添加脱碱石膏和粉煤灰,将以上三种材料在搅拌罐中混合均匀,同时加水将其浓度调整至30%,使用板框式高压压滤机压滤至固体混合物含水量低于25%,然后送入转窑内煅烧成水泥熟料;王文举等人发明的“一种铝工业工艺废渣全部转型为生态建筑材料的工艺与方法”(申请号:CN200710105971),利用铝工业在生产过程中所产出的固体废物赤泥(烧结法、拜耳法)、锅炉炉渣、选矿尾矿、化灰渣、煤气发生炉渣、污泥六种废渣自身的物质属性,通过干燥、粉碎、合理配比、加工成型(碾压、挤压)固结或烧结工艺,转化为新型的路用材料和建筑墙体材料。
也有从赤泥中提取有Na、Al、Fe、稀有金属等有价金属元素的技术;娄东民等发明的“一种拜耳法赤泥的脱碱方法”(申请号:CN201810572642.7)先对赤泥进行磨制,使赤泥的表面更新,然后再对经过表面更新处理的赤泥与石灰乳混合后进行脱碱反应,经过脱碱反应后的赤泥浆液进行洗涤、液固分离,可以获得含碱的溶液,返回氧化铝生产流程,分离后低碱含量的赤泥送赤泥大坝堆存;
董红军等发明的“从赤泥中综合回收铁、铝、钪、钛、钒等有价金属的方法,申请号CN201410121083.X”将赤泥与还原剂混合进行还原焙烧,使Fe
2O
3转化成Fe
3O
4,通过磁选得到磁性铁精矿和非磁性产品,非磁性产品经过氨水溶出氧化铝,洗涤渣与水配成矿浆,作为吸收剂,吸收燃煤烟气中的SO
2,向洗涤渣中加入高浓酸进行酸解,溶出钪、钛于酸解液 中,过滤出酸解渣后,向酸解液加入偏钛酸晶种,钛以偏钛酸的形式通过水解析出,提取了钛以后的酸解液用13%P204、7%TBP和80%煤油作为萃取剂,萃取溶液中的钪,萃取钪后的溶液加入氨水中和,用19%P204、8%TBP和73%煤油做萃取剂萃取得到钒。
赤泥作为一般性工业原料整体利用时存在赤泥碱性制约、产品价格低、收益差等问题;分别提取有价元素的方法又大多存在处理工艺流程过长、废水量大、尾渣无法得到利用等问题。张廷安等发明的“一种消纳赤泥的方法”(申请号:CN201110275030.X)将拜耳法赤泥与熟石灰混合,进行钙化脱碱后,向容器内通入CO
2得到主要成分为硅酸钙、碳酸钙以及氢氧化铝的碳化渣,最后使用氢氧化钠溶液或铝酸钠溶液提取氢氧化铝,通过钙化转型和碳化转型改变赤泥的结构和组成,从而得到以硅酸钙和碳酸钙为主要物相的钙化-碳化赤泥。
发明内容
为了更好的实现赤泥的综合利用,本发明提供一种高铁赤泥提铁及直接水泥化的方法,以钙化-碳化法处理后的高铁赤泥为原料,经涡流还原提取其中的铁,熔融渣在高温下调整组分,经冷却、破碎、研磨直接成为水泥熟料。
实现本发明的技术方案按以下步骤进行:
(1)准备原料钙化-碳化法处理后的高铁赤泥,原料按质量百分比TFe 20~45%,含Al
2O
38~12%,SiO
2 5~20%,Na
2O 0.1~1.0%,H
2O 5~20%;并且Al
2O
3与SiO
2的质量比A/S=0.2~0.9;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300~1600℃进行涡流搅拌还原10~60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2~1.5,造渣剂为CaO和CaF
2的混合物,其中CaO按混合料的碱度为1.0~1.4添加,CaF
2占CaO总质量的10~30%:
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料。
上述方法中,碱度的计算式按:
式中,mCaO为混合料中氧化钙的质量,mAl
2O
3为混合料中氧化铝的质量,mSiO
2为混合料中氧化硅的质量。
上述方法中,还原过程涉及的主反应式如下:
Fe
xO
y+yC=yCO+xFe (2)、
Fe
xO
y+yCO=yCO
2+xFe (3)
和
Fe
xO
y+y/2C=y/2CO
2+xFe (4)。
上述方法中,铁的回收率≥90%。
与现有技术相比,本发明的特点和有益效果是:
(1)原料采用的钙化-碳化法处理后的高铁赤泥属于低碱低铝赤泥,消除了赤泥中碱对水泥熟料生产的限制,可增加赤泥烧制水泥熟料的添配量;
(2)钙化-碳化法处理后的高铁赤泥中含铁相的单体解离度高,有利于还原过程铁的提取,铁的提取率可达95%以上;
(3)采用涡流搅拌熔融还原,原料不用烧结,可直接入炉还原,还原动力学条件充分;
(4)得到的铁水加入铬铁、锰铁直接冶炼成耐磨铸铁,增加了赤泥利用的附加值;
(5)还原炼铁后的熔融渣在高温涡流搅拌下可直接加入调控粉料,经冷却、破碎、研磨可直接成为水泥熟料,尾渣完全用于生产水泥熟料,赤泥利用率达100%。
图1为本发明的高铁赤泥提铁及直接水泥化的方法流程示意图。
具体的实施方式
本发明实施例中水泥熟料的成分按质量百分比含CaO 62~64%,SiO
2 20~24%,Al
2O
34.8~6%,Fe
2O
3 2.5~3.2%。
本发明实施例中的耐磨铸铁产品为牌号HBW555Cr13(ISO 21988/JN/HB)的耐磨铸铁。
本发明实施例中的钙化-碳化法处理后的高铁赤泥为发明专利“一种消纳赤泥的方法”(申请号201110275030.X)中,拜尔法赤泥经钙化、碳化和溶铝形成的溶出渣,其中钙化温度160℃,碳化温度120℃,溶铝温度60℃。
本发明实施例中原料干燥时的温度为150~200℃。
本发明的涡流搅拌还原是指发明“一种涡流搅拌熔融还原炼铁方法”公开的方法,所涉及的涡流搅拌还原高温炉为该方法是用的设备。
本发明的一种涡流搅拌熔融还原炼铁方法为公开号CN106435080A的专利申请。
本发明实施例中调整组分是加入钙质原料、硅质原料和/或铁质原料。钙质原料选用石灰石、电石渣中的至少一种;硅质原料选用高岭土、黏土、粉煤灰、尾矿渣中的至少一种;铁质原料选用高铁赤泥、铁渣、钢渣中的至少一种。
下面结合实施例对本发明做进一步的详细说明。
实施例1
(1)准备原料钙化-碳化法处理后的高铁赤泥,原料按质量百分比TFe 45%,Na
2O 0.62%;A/S=0.74;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1600℃进行涡流搅拌还原60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2,造渣剂为CaO和CaF
2的混合物,其中CaO按混合料的碱度为1.0添加,CaF
2占CaO总质量的10%:
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;铁的回收率95%;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成ISO 21988/JN/HBW555Cr13牌号耐磨铸铁,含Cr 13%,Mn 1.1%;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料,CaO、SiO
2、Al
2O
3和Fe
2O
3的含量分别为64%、20%、6%和2.5%。
实施例2
(1)准备原料钙化-碳化法处理后的高铁赤泥,原料按质量百分比TFe 20%,Na
2O 0.33%;A/S=0.81;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300℃进行涡流搅拌还原10~60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.5,造渣剂为CaO和CaF
2的混合物,其中CaO按混合料的碱度为1.4添加,CaF
2占CaO总质量的30%:
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;铁的回收率90%;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成ISO 21988/JN/HBW555Cr13耐磨铸铁,含Cr 11%,Mn 0.9%;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料,CaO、SiO
2、Al
2O
3和Fe
2O
3的含量分别为62%、24%、6%和3%。
实施例3
(1)准备原料钙化-碳化法处理后的高铁赤泥,原料按质量百分比TFe 32%,Na
2O 0.27%;A/S=0.6;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1500℃进行涡流搅拌还原10min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.3,造渣剂为CaO和CaF
2的混合物,其中CaO按混合料的碱度为1.2添加,CaF
2占CaO总质量的20%:
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;铁的回收率为91%;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成ISO 21988/JN/HBW555Cr13耐磨铸铁,含Cr 12%,Mn 0.8%;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料CaO、SiO
2、Al
2O
3和Fe
2O
3的含量分别为63%、23%、4.8%和3.2%。
Claims (3)
- 一种高铁赤泥提铁及直接水泥化的方法,其特征在于按以下步骤进行:(1)准备原料钙化-碳化法处理后的高铁赤泥,原料按质量百分比TFe 20~45%,含Al 2O 3 8~12%,SiO 2 5~20%,Na 2O 0.1~1.0%,H 2O 5~20%;并且Al 2O 3与SiO 2的质量比A/S=0.2~0.9;(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300~1600℃进行涡流搅拌还原10~60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2~1.5,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为1.0~1.4添加,CaF 2占CaO总质量的10~30%:(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料。
- 根据权利要求1所述的一种高铁赤泥提铁及直接水泥化的方法,其特征在于铁的回收率≥90%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910291219.4A CN109913604B (zh) | 2019-04-11 | 2019-04-11 | 一种高铁赤泥提铁及直接水泥化的方法 |
CN201910291219.4 | 2019-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020206832A1 true WO2020206832A1 (zh) | 2020-10-15 |
Family
ID=66969537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090841 WO2020206832A1 (zh) | 2019-04-11 | 2019-06-12 | 一种高铁赤泥提铁及直接水泥化的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109913604B (zh) |
WO (1) | WO2020206832A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113174456B (zh) * | 2021-04-28 | 2022-10-04 | 东北大学 | 一种底顶复合吹熔融还原高铁赤泥的综合利用方法 |
CN115784642A (zh) * | 2022-11-30 | 2023-03-14 | 四川省星船城水泥股份有限公司 | 一种高铁赤泥提铁及直接水泥原料的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876749A (en) * | 1971-04-17 | 1975-04-08 | Magyar Aluminium | Method for the reduction treatment of red mud |
CN101429582A (zh) * | 2008-12-04 | 2009-05-13 | 武汉科技大学 | 利用赤泥和铝灰制备硅铁合金和铝酸钙材料的方法 |
CN102757060A (zh) * | 2011-09-16 | 2012-10-31 | 东北大学 | 一种消纳拜耳法赤泥的方法 |
CN106435080A (zh) * | 2016-09-27 | 2017-02-22 | 东北大学 | 一种涡流搅拌熔融还原炼铁方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102174664A (zh) * | 2010-11-24 | 2011-09-07 | 胡长春 | 赤泥煤基回转窑法综合利用方法 |
CN103468848B (zh) * | 2013-09-06 | 2015-05-06 | 鞍钢股份有限公司 | 一种高温铁浴处理高铁赤泥的方法 |
-
2019
- 2019-04-11 CN CN201910291219.4A patent/CN109913604B/zh active Active
- 2019-06-12 WO PCT/CN2019/090841 patent/WO2020206832A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876749A (en) * | 1971-04-17 | 1975-04-08 | Magyar Aluminium | Method for the reduction treatment of red mud |
CN101429582A (zh) * | 2008-12-04 | 2009-05-13 | 武汉科技大学 | 利用赤泥和铝灰制备硅铁合金和铝酸钙材料的方法 |
CN102757060A (zh) * | 2011-09-16 | 2012-10-31 | 东北大学 | 一种消纳拜耳法赤泥的方法 |
CN106435080A (zh) * | 2016-09-27 | 2017-02-22 | 东北大学 | 一种涡流搅拌熔融还原炼铁方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109913604B (zh) | 2021-02-26 |
CN109913604A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020206833A1 (zh) | 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法 | |
CN101413054B (zh) | 一种高铁含铝物料的综合利用方法 | |
WO2020206830A1 (zh) | 一种赤泥回收钠、铁和钛同时熔融渣直接水泥化的方法 | |
US9963353B2 (en) | Method for recovering alkali and aluminum in course of treatment of bayer red mud by using calcification-carbonation method | |
CN102583477B (zh) | 一种高铁低品位铝土矿的综合利用方法 | |
WO2020206831A1 (zh) | 一种钙化-碳化高铁赤泥回收铁及尾渣水泥化的方法 | |
CN101831520B (zh) | 一种利用拜耳法赤泥生产海绵铁联产铝酸钠溶液的方法 | |
CN103614547B (zh) | 一种从一水硬铝石型铝土矿中分离铁铝硅的方法 | |
CN106006688B (zh) | 一种钙化‑碳化一步法处理拜耳法赤泥的方法 | |
Pei et al. | A novel process to fully utilize red mud based on low-calcium sintering | |
JP6585747B2 (ja) | チタン含有骨材、その製造方法及びその使用 | |
CN110066923A (zh) | 赤泥综合回收低熔点金属、铁、钒及熔融渣水泥化的方法 | |
CN108950212B (zh) | 一种赤泥中综合回收钠、铝、铁的方法 | |
CN111893308A (zh) | 一种无尾渣综合利用赤泥的方法 | |
WO2020206832A1 (zh) | 一种高铁赤泥提铁及直接水泥化的方法 | |
CN113979655B (zh) | 一种基于钢铁尘泥和赤泥的改性钢渣及其制备方法和应用 | |
WO2018233686A1 (zh) | 钙铁榴石一步碱热法处理中低品位铝土矿生产冶金级氧化铝的方法 | |
US20230211392A1 (en) | Impurity Removal Method of Silicate Solid Waste and Its Application | |
CN100487141C (zh) | 赤泥提取钛渣工艺 | |
CN101450843B (zh) | 铁铝复合矿综合利用的方法 | |
CN109095795A (zh) | 一种资源化利用炼钢炉渣的方法 | |
CN110066922A (zh) | 高铁高钛赤泥生产钛铁合金副产水泥熟料的方法 | |
CN102180494B (zh) | 一种从粉煤灰中提取氧化铝的方法 | |
CN109913656A (zh) | 一种高铁高钛赤泥回收铁和钛及直接水泥化的方法 | |
CN110066921A (zh) | 一种赤泥脱碱生产钛铁合金和水泥熟料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19924531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19924531 Country of ref document: EP Kind code of ref document: A1 |