WO2020206833A1 - 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法 - Google Patents

一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法 Download PDF

Info

Publication number
WO2020206833A1
WO2020206833A1 PCT/CN2019/090842 CN2019090842W WO2020206833A1 WO 2020206833 A1 WO2020206833 A1 WO 2020206833A1 CN 2019090842 W CN2019090842 W CN 2019090842W WO 2020206833 A1 WO2020206833 A1 WO 2020206833A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
red mud
vortex
mixture
raw material
Prior art date
Application number
PCT/CN2019/090842
Other languages
English (en)
French (fr)
Inventor
张廷安
豆志河
刘燕
吕国志
张子木
赵秋月
傅大学
张伟光
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020206833A1 publication Critical patent/WO2020206833A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention relates to the technical field of environmental protection, in particular to a method for direct cementation of high-speed iron red mud vortex smelting reduction desalination and iron raising.
  • Red mud is a strong alkaline solid waste produced by preparing alumina or aluminum hydroxide from bauxite. At present, the global red mud reserve is estimated to exceed 3 billion tons, and it is growing at a rate of about 120 million tons per year. The average utilization rate of red mud in the world is 15%. The cumulative stock of red mud in China has grown to 600 million tons, and is growing at a rate of about 100 million tons per year. The utilization rate of red mud in China is only 4%. Most of the red mud is still disposed of on land.
  • Red mud storage not only wastes secondary resources and occupies a large amount of land, but also destroys the surrounding environment of the red mud storage yard, causing serious environmental problems, resulting in a sharp increase in environmental protection pressure on the aluminum industry.
  • the environmental risks of red mud storage have long attracted the attention of the governments and enterprises of various alumina producing countries.
  • the key to solving the red mud problem is to develop red mud comprehensive utilization technology.
  • red mud utilization technologies can generally be divided into two types: one is the overall utilization as a general industrial raw material, such as Zhao Guangming “A method for producing cement clinker using red mud” (application number: 201210031710.1) invented by others is to add dealkalized gypsum and fly ash to dealkalized red mud, and mix the above three materials in a mixing tank Evenly, add water to adjust its concentration to 30%.
  • Zhao Guangming A method for producing cement clinker using red mud” (application number: 201210031710.1) invented by others is to add dealkalized gypsum and fly ash to dealkalized red mud, and mix the above three materials in a mixing tank Evenly, add water to adjust its concentration to 30%.
  • Chen Huanyue et al. invented "a method for separating iron and sodium from red mud.
  • the application of Publication No. CN108686828A uses red mud to be crushed or ball milled into a fine red mud material mainly composed of fine particles.
  • the sludge is classified, and 10 to 98% of the fine particles with a particle size of less than 5 microns in the fine red mud are separated, and the separated products with a particle size of less than 5 microns are sodium silica slag and calcium silica slag.
  • the main product, in which sodium oxide content is greater than 10%, and the remaining red mud material after classification is iron ore product, in which iron oxide content is greater than 30%.
  • red mud When red mud is used as a general industrial raw material, there are problems such as red mud alkalinity restriction, low product price, poor profitability, etc.; most of the methods for extracting valuable elements have low extraction rate and low purity of element-enriched products, which cannot be used directly. problem. Therefore, despite the numerous studies on the utilization of red mud in the alumina industry, the problem of red mud storage has not been properly resolved.
  • the present invention provides a method for direct cementation of high-speed iron red mud by vortex smelting reduction desalination and iron extraction.
  • high-speed iron red mud as a raw material
  • the dehydrated and dried high-speed iron red mud is combined with solid carbon.
  • the mixture of reducing agent and slagging agent is sprayed to the vortex center of the high-temperature reduction furnace to reduce iron.
  • Sodium enters the flue gas recovery during the reduction process, and the molten slag is adjusted to form cement clinker after cooling, crushing and grinding at high temperature.
  • the method of the present invention is carried out in the following steps:
  • the high-speed iron red mud is TFe 20-40%, Na 2 O 2-15%, Al 2 O 3 15-25%, SiO 2 15-25%, CaO 5-25% , H 2 O 5 ⁇ 20%;
  • mCaO is the mass of calcium oxide in the mixture
  • mAl 2 O 3 is the mass of alumina in the mixture
  • mSiO 2 is the mass of silicon oxide in the mixture.
  • sodium enters the flue gas during the vortex stirring reduction process, and is recovered by the flue gas dust collection system.
  • the iron recovery rate is ⁇ 90%.
  • the recovery rate of sodium is ⁇ 95%.
  • the extraction rate of sodium-alkali and iron is high, respectively above 95% and above 90%.
  • the tailings after extraction are completely used to produce calcium aluminate cement clinker, and the utilization rate of red mud reaches 100%.
  • Fig. 1 is a schematic flow diagram of a method for direct cementation of high-speed iron red mud vortex smelting reduction desalination and iron extraction according to the present invention.
  • Examples cement clinker composition embodiment of the present invention containing mass percent CaO 63 ⁇ 66%, SiO 2 20 ⁇ 22%, Al 2 O 3 4 ⁇ 6%, Fe 2 O 3 2.5 ⁇ 5%.
  • the Na 2 O mass percentage of the molten slag is less than 0.5%.
  • the wear-resistant cast iron product in the embodiment of the present invention is wear-resistant cast iron of the brand HBW555Cr13 (ISO 21988/JN/HB).
  • the temperature when the raw material is dried is 150-200°C.
  • the vortex stirring reduction of the present invention refers to the method disclosed in the invention of "a method for vortex stirring smelting reduction ironmaking", and the involved vortex stirring reduction high-temperature furnace is the equipment used for this method.
  • a vortex stirring smelting reduction ironmaking method of the present invention is a patent application with publication number CN106435080A.
  • the adjusting component is adding calcium raw material, siliceous raw material and/or iron raw material.
  • the calcareous raw material is at least one of limestone and calcium carbide slag;
  • the siliceous raw material is at least one of kaolin, clay, fly ash, and tailings slag;
  • the iron raw material is at least one of high-speed iron red mud, iron slag, and steel slag.
  • the calcareous raw material is at least one of limestone and calcium carbide slag;
  • the siliceous raw material is at least one of kaolin, clay, fly ash, and tailings slag;
  • the iron raw material is at least one of high-speed iron red mud, iron slag, and steel slag.
  • the recovery rate of sodium is ⁇ 95%, and the recovery rate of iron is ⁇ 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,按以下步骤进行:(1)准备原料高铁赤泥;(2)原料干燥获得脱水原料;脱水原料与固态碳质还原剂和造渣剂混料制成混合料,喷吹到涡流搅拌高温炉的漩涡中心,进行涡流搅拌还原;(3)还原后形成的铁水与熔融渣分层,连续溢流分离;向铁水中加入铬铁和锰铁制成耐磨铸铁产品;(4)熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,空冷后破碎和研磨制成水泥熟料。可同时实现赤泥中钠和铁的提取,工艺步骤简单,钠碱和铁的提取率较高,赤泥利用率达100%。

Description

一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法 技术领域
本发明涉及环境保护技术领域,具体涉及一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法。
技术背景
赤泥是以铝土矿为原料制取氧化铝或氢氧化铝后所产生的强碱性固体废物。目前,全球赤泥储量估测已经超过30亿吨,并且每年大约以1.2亿吨的速度增长,世界赤泥平均利用率为15%。中国赤泥累计堆存量已增长至6亿吨,并且每年大约以1亿吨的速度增长,中国赤泥利用率仅为4%。大部分赤泥仍然采取陆地堆存的方法处置。赤泥堆存不仅浪费了二次资源、占用大量土地,而且破坏了赤泥堆场的周边环境,带来了严重的环境问题,致使铝工业的环保压力剧增。赤泥堆存的环境风险早已引起了各氧化铝生产国政府及企业的重视,解决赤泥问题的关键是研发赤泥综合利用技术。
为实现赤泥的高效利用以及有价元素提取,我国铝工业进行了大量的研发工作,现有的赤泥利用技术一般可分为两种:一种是作为一般性工业原料整体利用,如赵广明等人发明的“一种利用赤泥生产水泥熟料的方法”(申请号:201210031710.1),是向脱碱赤泥中添加脱碱石膏和粉煤灰,将以上三种材料在搅拌罐中混合均匀,同时加水将其浓度调整至30%。使用板框式高压压滤机压滤至固体混合物含水量低于25%,然后送入转窑内煅烧成水泥熟料;王文举等人发明的“一种铝工业工艺废渣全部转型为生态建筑材料的工艺与方法”(申请号:CN200710105971),利用铝工业在生产过程中所产出的固体废物赤泥(烧结法、拜耳法)、锅炉炉渣、选矿尾矿、化灰渣、煤气发生炉渣、污泥六种废渣自身的物质属性,通过干燥、粉碎、合理配比、加工成型(碾压、挤压)固结或烧结工艺,转化为新型的路用材料和建筑墙体材料。
也有从赤泥中提取有Na、Al、Fe、稀有金属等有价金属元素的技术;娄东民等发明的“一种拜耳法赤泥的脱碱方法”(申请号:201810572642.7)先对赤泥进行磨制,使赤泥的表面更新,然后再对经过表面更新处理的赤泥与石灰乳混合后进行脱碱反应,经过脱碱反应后的赤泥浆液进行洗涤、液固分离,可以获得含碱的溶液,返回氧化铝生产流程,分离后低碱含量的赤泥送赤泥大坝堆存;
陈环月等发明的“一种从赤泥中分选提铁除钠的方法,公开号CN108686828A的申请将赤泥通过粉碎或球磨制成以微细颗粒为主的微细赤泥料,对微细赤泥料进行分级,将微细赤泥料中粒径小于5微米的微细颗粒中的10~98%分离出来,分离出来的粒径小于5微米的微细 颗粒产品为以钠硅渣和钙硅渣为主的产品,其中氧化钠含量大于10%,分级后剩余的赤泥料为铁矿产品,其中氧化铁含量大于30%。
赤泥作为一般性工业原料整体利用时存在赤泥碱性制约、产品价格低、收益差等问题;分别提取有价元素的方法又大多存在提取率低、元素富集产品纯度低无法直接利用等问题。因此尽管氧化铝工业关于赤泥利用的研究众多,目前赤泥的堆存问题仍然未能得到妥善解决。
发明内容
为了更好的实现赤泥的综合利用,本发明提供一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,以高铁赤泥为原料,将脱水干燥的高铁赤泥与固态碳质还原剂和造渣剂混料喷吹到还原高温炉漩涡中心还原提铁,钠在还原过程进入烟气回收,熔融渣在高温下调整组成经冷却、破碎、研磨直接成为水泥熟料。
本发明的方法按以下步骤进行:
(1)准备原料高铁赤泥,高铁赤泥按质量百分比TFe 20~40%,Na 2O 2~15%,Al 2O 315~25%,SiO 2 15~25%,CaO 5~25%,H 2O 5~20%;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300~1600℃进行涡流搅拌还原10~60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2~1.5,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为1.0~1.4添加,CaF 2占CaO总质量的10~30%:
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料。
上述方法中,碱度的计算式按:
Figure PCTCN2019090842-appb-000001
式中,mCaO为混合料中氧化钙的质量,mAl 2O 3为混合料中氧化铝的质量,mSiO 2为混合料中氧化硅的质量。
上述方法中,钠在涡流搅拌还原过程进入烟气,经烟气收尘系统回收。
上述方法中,还原过程涉及的主反应式如下:
Fe xO y+yC=yCO+xFe   (2)、
Fe xO y+yCO=yCO 2+xFe   (3)
Fe xO y+y/2C=y/2CO 2+xFe   (4)。
上述方法中,铁的回收率≥90%。
上述方法中,钠的回收率≥95%。
与现有技术相比,本发明的特点和有益效果是:
(1)高铁赤泥在高温下直接涡流熔融还原,钠碱在还原过程进入烟气回收,还原铁水加入铬铁、锰铁直接冶炼成耐磨铸铁,可同时实现赤泥中钠和铁的提取;
(2)工艺步骤简单,脱碱后的熔融渣Na 2O含量小于0.5%,符合水泥熟料对含碱量的成分要求,可增加赤泥烧制水泥熟料的添配量;
(3)采用涡流搅拌熔融还原,原料不用烧结,可直接入炉还原,还原动力学条件充分。
(4)钠碱和铁的提取率较高,分别在95%以上和90%以上,提取后的尾渣完全用于生产铝酸钙水泥熟料,赤泥利用率达100%。
附图说明
图1为本发明的一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法流程示意图。
具体的实施方式
本发明实施例中水泥熟料的成分按质量百分比含CaO 63~66%,SiO 2 20~22%,Al 2O 34~6%,Fe 2O 3 2.5~5%。
本发明实施例中熔融渣的Na 2O质量百分比小于0.5%。
本发明实施例中的耐磨铸铁产品为牌号HBW555Cr13(ISO 21988/JN/HB)的耐磨铸铁。
本发明实施例中原料干燥时的温度为150~200℃。
本发明的涡流搅拌还原是指发明“一种涡流搅拌熔融还原炼铁方法”公开的方法,所涉及的涡流搅拌还原高温炉为该方法是用的设备。
本发明的一种涡流搅拌熔融还原炼铁方法为公开号CN106435080A的专利申请。
本发明实施例中调整组分是加入钙质原料、硅质原料和/或铁质原料。钙质原料选用石灰石、电石渣中的至少一种;硅质原料选用高岭土、黏土、粉煤灰、尾矿渣中的至少一种;铁质原料选用高铁赤泥、铁渣、钢渣中的至少一种。
本发明实施例中钠的回收率≥95%,铁的回收率≥90%。
下面结合实施例对本发明做进一步的详细说明。
实施例1
(1)准备原料高铁赤泥,高铁赤按质量百分比TFe 40%,Na 2O 2%;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300℃进行涡流搅拌还原60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为1.0添加,CaF 2占CaO总质量的30%:钠在涡流搅拌还原过程进入烟气,经烟气收尘系统回收;
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料;水泥熟料中CaO、SiO 2、Al 2O 3和Fe 2O 3的含量分别为63%、20%、6%和5%,满足水泥熟料的成分要求。
实施例2
(1)准备原料高铁赤泥,高铁赤按质量百分比TFe 20%,Na 2O 15%;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1600℃进行涡流搅拌还原10min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.4,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为11添加,CaF 2占CaO总质量的20%:钠在涡流搅拌还原过程进入烟气,经烟气收尘系统回收;
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料;水泥熟料中CaO、SiO 2、Al 2O 3和Fe 2O 3的含量分别为65%、21%、5%和2.5%,满足水泥熟料的成分要求。
实施例3
(1)准备原料高铁赤泥,高铁赤按质量百分比TFe 30%,Na 2O 10%;
(2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1400℃进行涡流搅拌还原40min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.5,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为1.4添加,CaF 2占CaO总质量的10%:钠在涡流搅拌还原过程进入烟气,经烟气收尘系统回收;
(3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬 铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
(4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料;水泥熟料中CaO、SiO 2、Al 2O 3和Fe 2O 3的含量分别为66%、22%、4%、4%,满足水泥熟料的成分要求。

Claims (5)

  1. 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,其特征在于按以下步骤进行:
    (1)准备原料高铁赤泥,高铁赤按质量百分比TFe 20~40%,Na 2O 2~15%,Al 2O 3 15~25%,SiO 2 15~25%,CaO 5~25%,H 2O 5~20%;
    (2)将原料干燥至水的质量百分比≤1%,获得脱水原料;将脱水原料与固态碳质还原剂和造渣剂混料制成混合料,直接喷吹到涡流搅拌高温炉的漩涡中心,混合料被卷入熔池中,在1300~1600℃进行涡流搅拌还原10~60min;所述的固态碳质还原剂为焦煤,固态碳质还原剂的量与原料中Fe的摩尔比为1.2~1.5,造渣剂为CaO和CaF 2的混合物,其中CaO按混合料的碱度为1.0~1.4添加,CaF 2占CaO总质量的10~30%:
    (3)还原后形成的铁水与熔融渣分层,并进行连续溢流分离;向分离出的铁水中加入铬铁和锰铁直接冶炼并浇铸制成耐磨铸铁产品;
    (4)分离出的熔融渣在熔炼炉中调整组分使其符合水泥熟料要求,然后经空冷至常温,再经破碎和研磨制成水泥熟料。
  2. 根据权利要求1所述的一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,其特征在于所述的碱度的计算式按:
    Figure PCTCN2019090842-appb-100001
    式中,mCaO为混合料中氧化钙的质量,mAl 2O 3为混合料中氧化铝的质量,mSiO 2为混合料中氧化硅的质量。
  3. 根据权利要求1所述的一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,其特征在于铁的回收率≥90%。
  4. 根据权利要求1所述的一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,其特征在于钠的回收率≥95%。
  5. 根据权利要求1所述的一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法,其特征在于步骤(2)中,钠在涡流搅拌还原过程进入烟气,经烟气收尘系统回收。
PCT/CN2019/090842 2019-04-11 2019-06-12 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法 WO2020206833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910290643.7 2019-04-11
CN201910290643.7A CN109970368A (zh) 2019-04-11 2019-04-11 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法

Publications (1)

Publication Number Publication Date
WO2020206833A1 true WO2020206833A1 (zh) 2020-10-15

Family

ID=67084229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090842 WO2020206833A1 (zh) 2019-04-11 2019-06-12 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法

Country Status (2)

Country Link
CN (1) CN109970368A (zh)
WO (1) WO2020206833A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159953A (zh) * 2022-08-10 2022-10-11 齐鲁工业大学 一种赤泥脱碱联产赤泥基建筑材料的方法及系统
CN115637242A (zh) * 2022-10-20 2023-01-24 中南大学 微生物复合菌剂及其制备方法和赤泥原位生物脱碱的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073166A (zh) * 2021-03-30 2021-07-06 山东海岱泉岳环境科技有限公司 一种高铁赤泥的处理方法及其高温气化熔融炉
CN113087328B (zh) * 2021-04-26 2022-03-18 中国科学院地球化学研究所 一种利用锰渣渗滤液脱除赤泥中钠和钾的方法
CN113174455B (zh) * 2021-04-28 2022-10-04 东北大学 一种侧顶复合吹熔融还原高铁赤泥的综合利用方法
CN113174456B (zh) * 2021-04-28 2022-10-04 东北大学 一种底顶复合吹熔融还原高铁赤泥的综合利用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108825A (en) * 1978-02-08 1979-08-25 Onoda Cement Co Ltd Production of alumina cement
CN102337369A (zh) * 2011-10-27 2012-02-01 北京首钢国际工程技术有限公司 高风温旋流喷射扰动熔融还原和预还原联合装置及方法
CN103805726A (zh) * 2012-11-06 2014-05-21 莱芜钢铁集团有限公司 一种运用转底炉珠铁工艺综合利用高铁赤泥的方法
CN106222347A (zh) * 2016-08-01 2016-12-14 江苏省冶金设计院有限公司 从赤泥中回收铁的方法和系统
CN106435080A (zh) * 2016-09-27 2017-02-22 东北大学 一种涡流搅拌熔融还原炼铁方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174664A (zh) * 2010-11-24 2011-09-07 胡长春 赤泥煤基回转窑法综合利用方法
CN103397128B (zh) * 2013-08-02 2015-07-15 北京科技大学 一种赤泥深度还原提铁及二次尾渣制备胶凝材料的方法
CN107287367B (zh) * 2016-03-31 2019-04-26 鞍钢股份有限公司 一种利用高铁赤泥回收铁的方法
KR20180060095A (ko) * 2016-11-28 2018-06-07 한국산업기술대학교산학협력단 Fe 함유 슬래그 중 Fe의 회수 방법
CN107083485B (zh) * 2017-04-28 2018-09-07 东北大学 一种氧化铝赤泥的综合利用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108825A (en) * 1978-02-08 1979-08-25 Onoda Cement Co Ltd Production of alumina cement
CN102337369A (zh) * 2011-10-27 2012-02-01 北京首钢国际工程技术有限公司 高风温旋流喷射扰动熔融还原和预还原联合装置及方法
CN103805726A (zh) * 2012-11-06 2014-05-21 莱芜钢铁集团有限公司 一种运用转底炉珠铁工艺综合利用高铁赤泥的方法
CN106222347A (zh) * 2016-08-01 2016-12-14 江苏省冶金设计院有限公司 从赤泥中回收铁的方法和系统
CN106435080A (zh) * 2016-09-27 2017-02-22 东北大学 一种涡流搅拌熔融还原炼铁方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159953A (zh) * 2022-08-10 2022-10-11 齐鲁工业大学 一种赤泥脱碱联产赤泥基建筑材料的方法及系统
CN115637242A (zh) * 2022-10-20 2023-01-24 中南大学 微生物复合菌剂及其制备方法和赤泥原位生物脱碱的方法

Also Published As

Publication number Publication date
CN109970368A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020206833A1 (zh) 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法
WO2020206830A1 (zh) 一种赤泥回收钠、铁和钛同时熔融渣直接水泥化的方法
CN101413054B (zh) 一种高铁含铝物料的综合利用方法
CN101831520B (zh) 一种利用拜耳法赤泥生产海绵铁联产铝酸钠溶液的方法
US9963353B2 (en) Method for recovering alkali and aluminum in course of treatment of bayer red mud by using calcification-carbonation method
WO2020206831A1 (zh) 一种钙化-碳化高铁赤泥回收铁及尾渣水泥化的方法
CN108658483B (zh) 一种钢渣还原回收铁及二次渣制备辅助性胶凝材料的方法
CN101624654A (zh) 一种拜耳法赤泥粒径分级预处理铁铝回收方法
CN106006688B (zh) 一种钙化‑碳化一步法处理拜耳法赤泥的方法
CN110066923A (zh) 赤泥综合回收低熔点金属、铁、钒及熔融渣水泥化的方法
Pei et al. A novel process to fully utilize red mud based on low-calcium sintering
CN111893308A (zh) 一种无尾渣综合利用赤泥的方法
CN112725629A (zh) 一种从钢渣中提炼有色金属及还原铁的制备方法
WO2020206832A1 (zh) 一种高铁赤泥提铁及直接水泥化的方法
CN100487141C (zh) 赤泥提取钛渣工艺
CN112125540B (zh) 一种利用焖渣工艺资源化处理高炉瓦斯泥的方法
CN101450843B (zh) 铁铝复合矿综合利用的方法
CN108950212B (zh) 一种赤泥中综合回收钠、铝、铁的方法
WO2023075512A1 (ko) 정련슬래그를 이용한 저탄소 슬래그 분말 제조방법, 상기 방법으로 제조된 슬래그 분말을 이용한 급결제 및 시멘트 조성물
CN110066922A (zh) 高铁高钛赤泥生产钛铁合金副产水泥熟料的方法
CN111206158A (zh) 一种高炉布袋除尘灰资源化全利用的方法
CN115716738A (zh) 一种高强度钢渣砖的生产工艺
CN104711428A (zh) 一种用于酸洗污泥制备回收贵金属的方法
CN110066921A (zh) 一种赤泥脱碱生产钛铁合金和水泥熟料的方法
CN112226556B (zh) 一种转炉钢渣或高炉钢渣的循环再利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924189

Country of ref document: EP

Kind code of ref document: A1