WO2021008063A1 - 一种离轨帆展开方法及其装置 - Google Patents

一种离轨帆展开方法及其装置 Download PDF

Info

Publication number
WO2021008063A1
WO2021008063A1 PCT/CN2019/121955 CN2019121955W WO2021008063A1 WO 2021008063 A1 WO2021008063 A1 WO 2021008063A1 CN 2019121955 W CN2019121955 W CN 2019121955W WO 2021008063 A1 WO2021008063 A1 WO 2021008063A1
Authority
WO
WIPO (PCT)
Prior art keywords
sail
folding
folding sail
skeleton
included angle
Prior art date
Application number
PCT/CN2019/121955
Other languages
English (en)
French (fr)
Inventor
李晓明
王战辉
邹宇
任维佳
Original Assignee
长沙天仪空间科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙天仪空间科技研究院有限公司 filed Critical 长沙天仪空间科技研究院有限公司
Priority to CN201980086648.6A priority Critical patent/CN113474255B/zh
Priority to US17/045,338 priority patent/US20230131485A1/en
Publication of WO2021008063A1 publication Critical patent/WO2021008063A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/222Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Definitions

  • the invention relates to the technical field of spacecraft de-orbiting, in particular to a method and device for deploying a de-orbiting sail.
  • the off-orbit sail is a passive off-orbit device. Its purpose is to prevent the cube star from becoming a long-term space junk after the failure of the cube star. At the end of the life of the cube star, a low-cost brake sail device is used to make it quickly out of orbit. In addition to meeting general mechanical component design principles and technical indicators, off-rail sails need to meet the following principles:
  • the space environment is characterized by high vacuum, temperature alternation, electronic radiation, ultraviolet radiation, microgravity, space debris, low-orbit atomic oxygen and other complex working conditions, so special requirements are put forward for the design.
  • the surface materials of structures and mechanisms exposed to the space environment will not suffer performance degradation; movable parts should prevent vacuum cold welding from occurring; structures and mechanisms should prevent excessive deformation due to temperature changes.
  • a Chinese patent with publication number CN105799956A discloses a CubeSat automatic sail off-orbit device. It is composed of two identical CubeSat automatic de-orbiting sub-devices.
  • the CubeSat automatic sail de-orbiting sub-device includes a de-orbiting device and a partition plate arranged on the top of the de-orbiting device.
  • the off-rail device is a centrally symmetrical structure, including the main frame, the upper end cover, the guide rail of the sail storage room, the Hall sensor, the bottom plate and two unfolding mechanisms.
  • the main frame is Z-shaped, and the center of the main frame is the center of symmetry.
  • the invention mainly uses the strip spring garden pole to expand the four film sails in four directions to increase the normal cross-sectional area of the satellite motion, and successfully solve the technical problem that the cube satellite stays in the original orbit for a long time after completing the mission and becomes space debris. .
  • the Chinese Patent Publication No. CN207292479U discloses a CubeSat automatic sail off-orbit device. It includes a locking device, a storage mechanism, a mounting panel, a conical spring, an unfolding mechanism and a film sail.
  • the locking device is fixed on the top surface of the mounting panel
  • the storage mechanism is fixed on the bottom surface of the mounting panel
  • the conical spring, the unfolding mechanism and the film The sails are all set in the storage mechanism.
  • the large diameter end of the conical spring is fixedly connected to the mounting panel, and the small diameter end is fixedly connected to the deployment mechanism.
  • the membrane sail is tied to the deployment mechanism, and the top is mounted on the panel to fix it on the bottom of the satellite. , So as not to occupy space in the satellite.
  • the locking device After receiving the command from the bottom surface, the locking device releases the central shaft in the unfolding mechanism, and the ribbon-shaped elastic garden bar wound around the central shaft drives the film sail fixed on the garden bar to unfold by releasing its own stored elastic potential energy.
  • the utility model uses the unfolding film sail to increase the cross-sectional area of the cube star in the flying direction, increase the atmospheric resistance of the cube star, and accelerate the cube star to depart from orbit quickly.
  • Zeng Yutang involved an off-orbit device in his master's thesis "Design and Research on a Three-dimensional Satellite Automatic Sail Off-orbit Device", which is composed of a brake sail cabin, a garden bar deployment mechanism and a shaft locking mechanism.
  • the garden bar deployment mechanism relies on the elastic strain energy stored by the elastic garden bar itself to provide driving force to expand the garden bar.
  • the shaft locking mechanism suppresses the rotation of the central axis in the garden bar deployment mechanism, thereby playing the role of the off-track device switch.
  • the de-orbiting device in the prior art has at least the following defects: it will be partially or completely installed inside the star, which complicates the interior of the star.
  • the present invention provides an off-orbit sail deployment device, including a non-folding sail and a folding sail, the non-folding sail and the folding sail are rotatably connected to form an off-orbit sail that drives a star off orbit .
  • the folding sail includes a skeleton for folding the sail body when it is in the folded state and supporting the sail body in the unfolded state, and the skeleton is used to fold the folding sail body and when the folding sail body is folded
  • the skeleton is fixed on the non-folding sail, which can keep the folding sail outside of the main star, which is beneficial for the folding sail to be directly unfolded outside the main star without ejecting from the main star and then unfolding after receiving the ground command. Earth saves the space in the main star.
  • the folding sail is free from the partial constraints of the non-folding sail
  • at least one of the skeletons rotates around the non-folding sail in a manner of being fixed to the folding sail.
  • the rest of the skeleton on the folding sail also has a constraining relationship with the non-folding sail, which helps prevent the binding force when the folding sail is released. The release is too fast and the speed of the sail body of the folding sail is too high, thereby effectively avoiding damage to the sail body of the folding sail.
  • the skeleton fixed to the folding sail always keeps synchronization with the folding sail when rotating around the non-folding sail, so that the skeleton can be used as the inertial main axis of the folding sail. Therefore, the skeleton can be used as the folding sail when the folding sail is fully deployed.
  • the symmetrical main axis is used to provide support for the unfolded folding sail.
  • the skeleton of the remaining part rotates relative to the non-folding sail in a manner capable of rotating around the folding sail.
  • the remaining part of the skeleton can be constrained after the folding sail is completely in contact with the non-folding sail, and the remaining part of the skeleton can unfold the sail body by simultaneously winding the folding sail and the non-folding sail, which helps to unfold
  • the rear folding sail body has a larger surface-to-mass ratio (large area and low mass); on the other hand, during the unfolding process of the remaining part of the skeleton, the remaining part of the skeleton can keep the folded sail body symmetrically expanded.
  • a symmetrical windward surface is formed in the manner that the folding sail body is fixed to the frame of the folding sail as a symmetry axis during the unfolding process, which ensures that the folding sail can be smoothly unfolded while preventing the irregular movement of the main star.
  • the folding sail includes at least one first frame that can be used to fold the sail body when it is in a folded state and is used to support the sail body when it is in an unfolded state.
  • first side of the folding sail is rotated until the first included angle between the folding sail and the non-folding sail is the first critical value
  • one or more of the at least one first skeleton is capable of interacting with The parallel first side starts to rotate around the folding sail, and the folding sail continues to rotate relative to the first side of the non-folding sail, so that the first included angle continues to increase to enable the folding
  • the sail and the non-folding sail form a second critical value of the off-orbit sail.
  • the folding sail includes at least one second skeleton capable of folding the sail body when it is in a folded state and supporting the sail body in its unfolded state, at least a part of the second skeleton Based on its contact force with the non-folding sail, it is folded into the first frame in a manner capable of rotating around the first frame, so that the folding sail is rotated relative to the first side of the non-folding sail
  • the second skeleton rotates around the first skeleton in a manner that can increase the unfolding area of the off-rail sail.
  • the rotation speed of the folding sail is greater than or equal to the rotation speed of the first skeleton; and/or the rotation speed of the folding sail is greater than or equal to the rotation speed of the second skeleton Rotation speed.
  • the folding sail includes a first skeleton II and at least two first skeletons I evenly arranged on both sides of the first skeleton II, wherein the first skeleton II does not always fold around the The sail rotates, and the at least two first skeletons I rotate around the folding sail at the same speed when the first angle between the folding sail and the non-folding sail is greater than the first critical value, so that the The first skeleton II and the first skeleton I can form a supporting structure capable of the sail body during the flight of the star and during the unfolding process of the folding sail.
  • the first sail surface of the non-folding sail has a buckle hole capable of cooperating with the buckling body of the first skeleton, and the folding sail rotates to the first side relative to the non-folding sail.
  • the fastening body and the fastening hole interact with each other so that the first frame cannot be folded around the The sail turns.
  • the second sail surface of the folding sail and the first sail surface in the folded state are opposite to each other; when the non-folding sail is in the fully deployed state Next, the second sail surface in a fully deployed state and the first sail surface form a windward surface or a windward surface.
  • the folding sail has at least the following intermediate posture during the unfolding process: when the first included angle is less than a first critical value, the first frame I and the second side of the non-folding sail
  • the second included angle formed is 0 degrees; or when the first included angle is greater than the first critical value and less than the second critical value, the second included angle follows the first angle in such a way that its maximum value is less than 90 degrees.
  • An included angle increases; when the first included angle is equal to the second critical value, the second included angle is equal to 90°; wherein, when the second included angle increases with the first included angle
  • the free end of the second frame II in the first frame II can rotate around the first frame II without touching the non-folding sail.
  • a fixing mechanism is provided between the non-folding sail and the folding sail for maintaining the folding sail in a folded state during the flight of the star, wherein the fixing mechanism can respond to off-orbit It is instructed to automatically release the fixing effect of the non-folding sail and the folding sail, so that the folding sail can start to rotate around the first side of the non-folding sail.
  • the present invention also discloses a foldable sail for deployment of off-orbit sails, which can unfold and form off-orbit sails with the non-foldable sails while rotating around and connected to the star.
  • the folding sail includes a skeleton for folding the sail body when it is in a folded state and supporting the sail body when it is in an unfolded state, and at least one of the skeletons can be separated from the non-sail body when the folding sail is
  • the folding sail is partially restrained, it rotates around the non-folding sail in a manner of being fixed to the folding sail, and the skeleton of the remaining part moves relative to the non-folding sail in a manner capable of rotating around the folding sail.
  • the method is realized by the aforementioned deployment device or the aforementioned folding sail.
  • the present invention also provides an off-orbit sail, comprising a non-folding sail and a folding sail, the non-folding sail is rotatably connected with the folding sail to form the off-orbit sail that drives the star off orbit; it is characterized in that the
  • the folding sail includes at least one first frame and at least one second frame that can be used to fold the sail body when it is in the folded state and to support the sail body in the unfolded state.
  • At least a part of the second skeleton is folded in the first skeleton in a manner capable of rotating around the first skeleton based on its contact force with the non-folding sail, so that the folding sail is relatively
  • the second frame rotates around the first frame in a manner that can increase the deployment area of the off-rail sail.
  • the present invention provides an off-orbit sail deployment device and method, which has at least the following advantages:
  • the off-orbit sail can be placed outside the star without occupying the inner space of the star; before launch, the folding sail can be folded to minimize the volume; after the star mission is completed, it can be deployed smoothly and can be maintained after deployment Fixed unfolded state; the unfolded frame should have sufficient strength and rigidity to minimize the impact on attitude control while ensuring the supporting ability; the off-rail sail has a sufficiently large surface-to-mass ratio in the unfolded state.
  • Fig. 1 is a schematic diagram of the folded state of an off-rail unfolding device provided by the present invention, which shows the state of the second frame 300b under the action of the contact force between the second frame 300b and the non-folding sail 200. ;
  • FIG. 2 is a schematic diagram of the intermediate unfolded state of an off-rail unfolding device provided by the present invention, which shows that the first skeleton I300a-1 is folded around in a manner capable of forming a second included angle ⁇ with the second side of the non-folding sail 200 The state of the sail 300 rotating;
  • FIG. 3 is a schematic diagram of a fully deployed state of an off-rail deployment device provided by the present invention, which shows the deployed state of the folded sail with ⁇ being 90°;
  • FIG. 4 is a schematic diagram of another intermediate deployment state of the off-rail deployment device provided by the present invention, which shows the deployment state of the folded sail when the first included angle ⁇ is less than the first critical value;
  • Fig. 5 is a schematic diagram of the positional relationship of an off-orbit sail in a fully deployed state provided by the present invention.
  • Non-folding sail 300a-1 First skeleton I
  • the present invention discloses an off-orbit sail deployment device.
  • the off-rail sail deployment device includes a non-folding sail 200 and a folding sail 300.
  • the non-folding sail 200 and the folding sail 300 are rotatably connected to form an off-orbit sail that drives the star 100 off orbit.
  • a connecting plate 400 is provided on the first side of the non-folding sail 200.
  • the connecting plate 400 is provided with a hinge 400a capable of rotating the folding sail 300 relative to the first side.
  • the folding sail 300 includes at least one first frame 300a that can be used to fold the sail body when it is in the folded state and is used to support the sail body in the unfolded state.
  • the first skeleton 300a is a lightweight alloy steel, for example, a material.
  • the use of lightweight alloy rigidity can reduce the weight on the premise that the mechanical construction rigidity and strength of the folding sail 300 meet the technical indicators.
  • the folding sail 300 is arranged in a manner capable of rotating relative to the first side of the non-folding sail 200.
  • the first included angle ⁇ between the folding sail 300 and the non-folding sail 200.
  • the first included angle ⁇ reaches the first critical value, one or more of the at least one first skeleton 300a starts to rotate around the folding sail 300 in such a way that it can be parallel to the first side.
  • the first skeleton I300a-1 located on both sides of the folding sail 300 rotates around the folding sail 300 in a manner capable of forming a second angle ⁇ with the second side of the non-folding sail 200 until ⁇ equals to 90° (as shown in Figure 3).
  • the first side and the second side are perpendicular to each other. That is, at least two sides of the non-folding sail 200 are perpendicular to each other, for example, the non-folding sail 200 is rectangular or square.
  • the first side of the folding sail 300 relative to the non-folding sail 200 continues to rotate, and the first included angle ⁇ continues to increase.
  • the folding sail 300 and the non-folding sail 200 form an off-orbit sail, as shown in FIG. 3.
  • the present invention has at least the following advantages to form an off-orbit sail according to the above structure: 1.
  • the off-orbit sail can be placed outside the star 100 without occupying the inner space of the star 100; 2.
  • the folding sail 300 requires After forming a certain angle with the non-folding sail 200 (the first angle ⁇ ), it will unfold, which can prevent the sudden change of the external load on the star 100 and affect the flight of the star 100; 3.
  • the first included angle ⁇ can be defined geometrically: it is the dihedral angle of the folding sail 300 and the non-folding sail 200. That is, the first included angle ⁇ may be the dihedral angle between the first sail surface 200a and the second sail surface 300c. When the first included angle ⁇ is 0, the first sail surface 200a and the second sail surface 300c are opposite. When the first included angle ⁇ is 180, the first sail surface 200a and the second sail surface 300c form a windward surface or a windward surface.
  • the first critical value is preferably 3 to 10°.
  • the first critical value is particularly preferably 4 to 7°.
  • the second critical value is preferably 180°.
  • the first critical value is related to the location and size of the fastening body.
  • the folding sail 300 includes at least one second skeleton 300b.
  • the second skeleton 300b has the same or similar function as the first skeleton 300a, that is, it can be used to fold the sail body when it is in the folded state and used to support the sail body in the unfolded state.
  • the folding sail 300 rotates relative to the first side of the non-folding sail 200, the second skeleton 300b rotates around the first skeleton 300a.
  • the present invention has at least the following advantages: 1.
  • the second frame 300b is folded on the first frame 300a, while the sail body can be installed in a limited space with the smallest folding space, but after it is unfolded ,
  • the sail body can have a large enough unfolding area;
  • the second frame 300b is based on its connection relationship with the first frame 300a and based on its contact relationship with the non-folding sail 200, during the rotation of the folding sail 300 ,
  • the second frame 300b can gradually disengage from the non-folding sail 200, so as to realize autonomous rotation around the first frame 300a, which is conducive to the lightness of the off-rail sail; 3.
  • the off-rail sail is sufficiently large in the unfolded state
  • the surface-to-mass ratio is lighter in weight but larger in area.
  • the rotation speed of the folding sail 300 is greater than or equal to the rotation speed of the first skeleton 300a.
  • the rotation speed of the folding sail 300 is greater than or equal to the rotation speed of the second skeleton 300b.
  • the rotation speed of the first skeleton 300a and/or the rotation speed of the second skeleton 300b may be determined by the stiffness of the torsion spring to ensure that the rotation speed of the folding sail 300 is greater than or equal to the rotation speed of the first skeleton 300a and/or the folding sail
  • the rotation speed of 300 is greater than or equal to the rotation speed of the second skeleton 300b.
  • the present invention has at least the following advantages: the sail body of the folding sail has stability during the unfolding process.
  • the folding sail 300 includes a first skeleton II300a-2 and at least two first skeletons I300a-1 evenly arranged on both sides of the first skeleton II300a-2.
  • the first skeleton II300a-2 does not rotate around the folding sail 300 at all times.
  • the first angle ⁇ between the folding sail 300 and the non-folding sail 200 is greater than the first critical value
  • at least two first skeletons I300a-1 rotate around the folding sail 300 at the same speed. Therefore, during the off-orbit flight of the star 100 and the unfolding of the folding sail 300, the first skeleton II300a-2 and the first skeleton I300a-1 can form a supporting structure capable of supporting the sail body.
  • the present invention has at least the following advantages: 1.
  • the structure since the structure is symmetrical, its mass distribution will not change, so its inertial principal axis (first skeleton II300a- 2) Always unchanged, it can reduce the degree of influence on the flight attitude of the star 100 to achieve a precise off-orbit flight attitude.
  • the folding sail 300 includes a first skeleton II300a-2 and two first skeletons I300a-1 with the first skeleton II300a-2 as the center of symmetry.
  • the first sail surface 200a of the non-folding sail 200 has a fastening hole 200b that can be fitted with the fastening body 300d of the first skeleton 300a.
  • the fastening body 300d and the fastening hole 200b act on each other, So that the first skeleton 300a cannot rotate around the folding sail 300.
  • the interaction between the buckling body 300d and the buckling hole 200b can be set in a manner of relative sliding friction, that is, when the folding sail 300 is relative to the first side of the non-folding sail 200, the buckling body 300d and the buckling hole 200b slide and rub, so as to
  • the folding sail 300 and the non-folding sail 200 have a first included angle ⁇ .
  • the second sail surface 300c and the first sail surface 200a of the folding sail 300 in the folded state are opposite to each other.
  • the non-folding sail 200 is in a fully deployed state
  • the second sail surface 300c in the fully deployed state and the first sail surface 200a form a windward surface or a windward surface.
  • the folding sail 300 has at least the following intermediate postures such as the first posture, the second posture, and the third posture during its deployment.
  • first posture as shown in FIG. 4
  • second included angle ⁇ formed by the first skeleton I300a-1 and the second side of the non-folding sail 200 is 0 degrees.
  • second posture as shown in Figure 2
  • the second included angle ⁇ increases with the first included angle ⁇ in such a way that its maximum value is less than 90°. Increase and increase.
  • the third posture as shown in FIG. 3, when the first included angle ⁇ is equal to the second critical value, the second included angle ⁇ is equal to 90°.
  • the free end of the second skeleton II300b-2 in the first skeleton II300a-2 can not touch the non-folding sail Rotate around the first skeleton II300a-2 in a 200 way.
  • the free end of the second skeleton II300b-2 refers to the opposite end of the second skeleton II300b-2 to the rotational connection end of the second skeleton II300b-2.
  • the expansion method of the second skeleton II300b-2 of the present invention can be carried out as follows: when the first included angle ⁇ is greater than the third critical angle and the second included angle is greater than the fourth critical angle, the second skeleton II300b-2 starts to wrap around The first skeleton II300a-2 rotates.
  • the third critical angle is greater than the first critical angle and smaller than the second critical angle.
  • the spatial angle formed by the third critical angle and the fourth critical angle can just prevent the second skeleton II300b-2 from touching the non-folding sail 200.
  • a pressing plate is fixedly arranged on the second frame II300b-1, and the pressing plate is press-fitted with the pressing holes on the second frame II300b-2.
  • the pressing plate follows its rotation, so that it can release the pressure on the pressure hole when the first included angle ⁇ is greater than the third critical angle and the second included angle is greater than the fourth critical angle.
  • the tightening action enables the second skeleton II300b-2 to rotate around the first skeleton II300a-2.
  • the present invention has at least the following advantages: 1. When the second skeleton II300b-2 is unfolded, it will not cause damage to the non-folding sail 200. 2. During the unfolding process, the mass distribution of the entire off-orbit sail is still uniform.
  • a fixing mechanism is provided between the non-folding sail 200 and the folding sail 300.
  • the fixing mechanism is used to maintain the folding sail 300 in a folded state during the flight of the star 100.
  • the fixing mechanism can automatically release the fixing function of the non-folding sail 200 and the folding sail 300 in response to the off-track instruction, so that the folding sail 300 can start to rotate around the first side of the non-folding sail 200.
  • the off-track instruction may come from the ground control center, which transmits the execution device of the fixing mechanism through the communication device, and the execution device unlocks the fixing mechanism to release the folding sail 300.
  • the fixing mechanism includes a connecting wire and a fuse resistance. One end of the connecting wire and the fuse resistor are in a fixed state before receiving the off-rail command.
  • the other end of the connecting line is fixedly connected with the folding sail 300.
  • the fuse resistor is fixed on the non-folding sail 200 by screws. After the fuse resistor is conductive, it generates heat to fuse the connecting wire, release the fixing function of the folding sail 300, and enable it to rotate.
  • the resistance of the fusing resistor is preferably 5-20 ohms. It is particularly preferably 10 ohms.
  • the connecting line may be a fishing line. After the fixing mechanism receives the off-track instruction, the fuse resistor is energized to heat up, and the fishing line is melted to release the fixing effect between the non-folding sail 200 and the folding sail 300.
  • the fuse resistance may be a power resistance, which can generate heat when energized, so as to transfer the heat to the fuse wire to fuse it.
  • the fuse line may be a fishing line.
  • the fuse resistance can be energized in the following manner: the microprocessor on the main satellite 100 sends a closing command to the electromagnetic switch connected in series with the fuse resistance when receiving the ground off-orbit instruction, and the electromagnetic switch is closed and energized to generate a current I.
  • the power source of the fuse resistor is a power source device on the main star 100. It is common knowledge in the art to install power equipment on the satellite. The communication method between ground commands and satellites is also common knowledge in this field. The communication method between the microprocessor and the electromagnetic switch is also common knowledge in the pump field. Therefore, those skilled in the art can adopt common knowledge to realize the steps of fusing the fuse line by fuse resistance.
  • the present invention discloses a preferred folding sail 300 that can be used at least in the aforementioned off-orbit sail deployment device.
  • the folding sail includes at least one first frame 300a and a sail body. Preferably, it may also include a second skeleton 300b.
  • the sail body can be an aluminum film sail. It can be sewn on each frame with cotton thread.
  • the sail body can be an independent sail body, or a plurality of sails can be assembled between two first frames 300a.
  • the folding sail 300 is folded, the sail body can be in a folded state based on the first skeleton 300a and the second skeleton 300b.
  • the folding sail 300 When the folding sail 300 is unfolded, the sail body can be in an unfolded state based on the support of the first skeleton 300a and the second skeleton 300b.
  • the folding sail 300 includes two first frames I300a-1 and one first frame II300a-2.
  • the two first skeletons I300a-1 are arranged symmetrically on both sides of the first skeleton II300a-2, respectively.
  • the two first skeletons I300a-1 and one first skeleton II300a-2 are both connected to the second skeleton 300b by torsion springs, so that the second skeleton 300b can respectively surround the corresponding two first skeletons I300a-1 and one The first skeleton II300a-2 rotates.
  • the two first skeletons I300a-1 are also connected to the connecting plate 400 by torsion springs, so that both of the first skeletons I300a-1 can rotate around the folding sail 300.
  • the foldable sail 300 disclosed in the present invention can unfold and form an off-orbit sail with the non-foldable sail 200 during the rotation of the non-foldable sail 200 connected to the star body 100.
  • the non-folding sail 200 is fixed relative to the star 100 in the process of forming the off-orbit sail.
  • the first frame 300a is used to fold the sail body when the folding sail 300 is in the folded state and used to support the sail body in the unfolded state.
  • the present invention names the first skeleton 300a according to their respective different motions and functions, the first skeleton I300a-1 and the first skeleton II300a-2.
  • the first skeleton I300a-1 will also rotate around the folding sail 300 during the rotation of the folding sail 300 to form a part of a bottom edge of the unfolded folding sail 300.
  • the first skeleton II300a-2 always has no relative movement with the folding sail 300 during the rotation of the folding sail 300, so as to form a height of the folded sail 300 after deployment.
  • the first skeleton I300a-1 is able to interact with the first The side-side parallel manner starts to rotate around the folding sail 300, and the folding sail 300 continues to rotate relative to the first side of the non-folding sail 200, so that the first angle ⁇ continues to increase to enable the folding sail 300 and the non-folding sail 200 Form the second critical value for off-orbit sails.
  • the first skeleton II300a-2 has no movement relative to the folding sail 300 at all.
  • the off-orbit sail deployment device includes a non-folding sail 200 and a folding sail 300.
  • the non-folding sail 200 and the folding sail 300 are connected by a connecting plate 400.
  • the connecting plate 400 is provided with a hinge 400a. It is used to rotate the folding sail 300 around the non-folding sail 200.
  • the non-folding sail 200 is provided with a fixing mechanism at the opposite end of the connecting plate 400.
  • the fixing mechanism includes a connecting wire and a fuse resistance. One end of the connecting wire and the fuse resistor are in a fixed state before receiving the off-rail command. The other end of the connecting line is fixedly connected with the folding sail 300.
  • the fuse resistor is fixed on the non-folding sail 200 by screws.
  • the fuse resistor After the fuse resistor is conductive, it generates heat to fuse the connecting wire, release the fixing function of the folding sail 300, and enable it to rotate.
  • the resistance of the fusing resistor is preferably 5-20 ohms. It is particularly preferably 10 ohms.
  • the connecting line may be a fishing line.
  • the fuse line may be a fishing line.
  • the fuse resistance can be energized in the following manner: the microprocessor on the main satellite 100 sends a closing command to the electromagnetic switch connected in series with the fuse resistance when receiving the ground off-orbit instruction, and the electromagnetic switch is closed and energized to generate a current I.
  • the power source of the fuse resistor is a power source device on the main star 100.
  • the folding sail 300 includes two first skeletons I300a-1 and one first skeleton II300a-2.
  • the two first skeletons I300a-1 are arranged symmetrically on both sides of the first skeleton II300a-2, respectively.
  • the two first skeletons I300a-1 and one first skeleton II300a-2 are both connected to the second skeleton 300b by torsion springs, so that the second skeleton 300b can respectively surround the corresponding two first skeletons I300a-1 and one The first skeleton II300a-2 rotates.
  • the two first skeletons I300a-1 are also connected to the connecting plate 400 by torsion springs, so that both of the first skeletons I300a-1 can rotate around the folding sail 300.
  • each side of the first skeleton 300a (two first skeletons I300a-1 and one first skeleton II300a-2) facing the first sail surface 200a is provided with a fastening body 300d.
  • the fastening body 300d is cylindrical.
  • the first sail surface 200a is provided with a buckling hole 200b that cooperates with the buckling body 300d.
  • the fastening body 300d and the fastening hole 200b cooperate with each other.
  • the first critical value of the first included angle ⁇ in the present invention is 6°.
  • is less than 6°, the fastening body 300d is in sliding contact with the fastening hole 200b, and the two first frames I300a-1 do not allow the folding sail 300 to rotate.
  • is equal to 6°, the fastening body 300d and the fastening hole 200b just detach. Therefore, when ⁇ is greater than or equal to 6°, the two first frames I300a-1 rotate around the folding sail 300 based on the action of the torsion spring.
  • the second critical value of the first included angle ⁇ is 180°. That is, the folding sail 300 and the non-folding sail 200 can form off-orbit sails in the form of the same plane.
  • FIG. 2 is a schematic diagram of a state of the off-track device during deployment.
  • the hinge 400 a on the connecting plate 400 drives the folding sail 300 to rotate around the non-folding sail 200.
  • the top view projection of the first skeleton II300a-2 on the folding sail 300 on the non-folding sail 200 is smaller than its true length, that is, the folding sail 300 and the non-folding sail 200 form a first included angle ⁇ .
  • the second skeleton II300a-1 on the folding sail 300 rotates around the folding sail 300, and forms a second angle ⁇ with the second side of the non-folding sail 200.
  • the value range of the second included angle ⁇ is 0 to 90°.
  • the corresponding relationship between the second included angle ⁇ and the first included angle is: when the first included angle ⁇ is less than the first critical value, ⁇ is 0 degrees, that is, the two first skeletons I300a-1 do not allow the folding sail 300 to rotate.
  • the first included angle ⁇ is equal to the first critical value, ⁇ approaches 0 degrees, and the two first skeletons I300a-1 begin to rotate around the folded sail 300.
  • the second included angle ⁇ is equal to 90°.
  • the two first skeletons I300a-1 are parallel to the first side edge provided with the connecting plate and folded
  • the sail 300 is fully deployed and forms an off-orbit sail with the non-folding sail 200.
  • the off-rail sail when it is fully deployed, it is an isosceles triangle.
  • the first skeleton II300a-2 and the second skeleton 300b on it form the height of an isosceles triangle.
  • the structure of the folding sail 300 when it is fully deployed to form a triangle at least helps the off-rail sail to have a stable shape when resisting air resistance.
  • the present invention provides a preferred specific deployment method as follows:
  • the folding sail 300 rotates around the first side of the non-folding sail 200, and the fastening body 300d on the first frame I300a-1 is buckled with the non-folding sail 200 Sliding friction of hole 200b;
  • the folding sail 300 rotates around the non-folding sail 200 until the first included angle ⁇ is equal to the first critical value, and the fastening body 300d on the first skeleton I300a-1 is completely out of contact with the fastening hole 200b on the non-folding sail 200. So that the first skeleton I300a-1 rotates around the folding sail 300 based on the torsion spring connected thereto, and forms a second angle ⁇ with the second side 200 of the non-folding sail 200;
  • the respective second skeletons 300b on the first skeleton 300a can be automatically detached from the non-folding sail 200 during the process of folding the sail 300 around the non-folding sail 200, so that it can also rotate around the first skeleton 300a based on the torsion spring connected thereto.
  • the first skeleton 300a and its respective second skeleton 300b will present a third angle ⁇ during the unfolding process of the folding sail 300.
  • the maximum value of the third angle ⁇ is 180°, that is, after the folding sail 300 is fully deployed, the first skeleton 300a and the second skeleton 300b are collinear.
  • the off-orbit sail can be placed outside the star without occupying the inner space of the star.
  • the off-orbit sail is built into the star, which needs to occupy a part of the space inside the star, and the built-in inside the star is easy to unfold when it needs to be off-orbited.
  • the folding sail 200 of the present invention is folded on the non-folding sail 300.
  • the folding sails are folded on the non-folding sails to minimize the volume; after the star mission is completed, it can be unfolded smoothly and can maintain a fixed unfolded state after unfolding; the unfolded frame should have sufficient strength and rigidity, While ensuring the support ability, minimize the impact on attitude control; when the off-orbit sail is deployed, there is a sufficiently large surface-to-mass ratio.
  • the present invention discloses an off-rail sail, including a non-folding sail 200 and a folding sail 300.
  • the non-folding sail 200 and the folding sail 300 are rotatably connected to form an off-orbit sail that drives the star 100 off orbit.
  • the folding sail 300 includes a skeleton for folding the sail body when it is in the folded state and supporting the sail body when it is in the unfolded state, and at least one of the skeletons can be detached from the partial constraint of the non-folding sail 200 when the folding sail 300 is
  • the lower part rotates around the non-folding sail 200 in a manner of being fixed to the folding sail 300, and the remaining part of the skeleton rotates relative to the non-folding sail 200 in a manner capable of rotating around the folding sail 300.
  • the folding sail 300 includes at least one first frame 300a that can be used to fold the sail body when it is in a folded state and is used to support the sail body in its unfolded state.
  • first frame 300a that can be used to fold the sail body when it is in a folded state and is used to support the sail body in its unfolded state.
  • the folding sail 300 rotates relative to the first side of the non-folding sail 200 until the first included angle ⁇ between the folding sail 300 and the non-folding sail 200 is the first critical value
  • one or more of the first skeletons 300a follow It can start to rotate around the folding sail 300 in parallel with the first side, and the folding sail 300 continues to rotate relative to the first side of the non-folding sail 200, so that the first angle ⁇ continues to increase to enable the folding sail 300 and
  • the non-folding sail 200 forms a second critical value for the off-orbit sail.
  • the folding sail 300 includes at least one second frame 300b that can be used to fold the sail body when it is in a folded state and support the sail body when it is in an unfolded state. At least a part of the second frame 300b is folded in the first frame 300a in a manner capable of rotating around the first frame 300a based on its contact force with the non-folding sail 200, so that the first side of the folding sail 300 relative to the non-folding sail 200 During the rotation, the second skeleton 300b rotates around the first skeleton 300a in a manner that can increase the unfolding area of the off-rail sail.
  • the rotation speed of the folding sail 300 is greater than or equal to the rotation speed of the first skeleton 300a.
  • the rotation speed of the folding sail 300 is greater than or equal to the rotation speed of the second skeleton 300b.
  • the folding sail 300 includes a first skeleton II300a-2 and at least two first skeletons I300a-1 evenly arranged on both sides of the first skeleton II300a-2.
  • the first skeleton II300a-2 does not always rotate around the folding sail 300, and at least two first skeletons I300a-1 go around when the first angle ⁇ between the folding sail 300 and the non-folding sail 200 is greater than the first critical value.
  • the folding sail 300 rotates at the same rotation speed, so that the first skeleton II300a-2 and the first skeleton I300a-1 can form a supporting structure capable of supporting the sail body during the flight of the star 100 and during the unfolding process of the folding sail 300.
  • the first sail surface 200a of the non-folding sail 200 has a fastening hole 200b that can be fitted with the fastening body 300d of the first skeleton 300a.
  • the fastening body 300d and the fastening hole 200b act on each other, So that the first skeleton 300a cannot rotate around the folding sail 300.
  • the second sail surface 300c and the first sail surface 200a of the folded sail 300 are opposite to each other.
  • the second sail surface 300c in the fully deployed state and the first sail surface 200a form a windward surface or a windward surface.
  • the folding sail 300 has at least the following intermediate posture during its deployment:
  • the second included angle ⁇ formed by the first skeleton I300a-1 and the second side of the non-folding sail 200 is 0°;
  • the second included angle ⁇ increases with the increase of the first included angle ⁇ in such a way that the maximum value thereof is less than 90°;
  • the second included angle ⁇ is equal to 90°.
  • the free end of the second skeleton II300b-2 in the first skeleton II300a-2 can not touch the non-folding sail Rotate around the first skeleton II300a-2 in a 200 way.
  • a fixing mechanism is provided between the non-folding sail 200 and the folding sail 300 to maintain the folding sail 300 in a folded state during the flight of the star 100.
  • the fixing mechanism provided between the non-folding sail 200 and the folding sail 300 can automatically release the fixing function of the non-folding sail 200 and the folding sail 300 in response to the off-track instruction, so that the folding sail 300 can start to wrap around the non-folding sail 300 The first side of the 200 rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Tents Or Canopies (AREA)

Abstract

一种离轨帆展开方法及其装置,包括非折叠帆(200)和折叠帆(300),非折叠帆(200)与折叠帆(300)可转动连接以形成驱使星体(100)离轨的离轨帆;折叠帆(300)包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的至少一个第一骨架(300a),在折叠帆(300)相对非折叠帆(200)的第一侧边转动至折叠帆(300)与非折叠帆(200)的第一夹角(α)为第一临界值的情况下,至少一个第一骨架(300a)中的一个或多个按照其能够与第一侧边并行的方式开始绕折叠帆(300)转动,并且折叠帆(300)相对非折叠帆(200)的第一侧边继续转动,从而第一夹角(α)继续增大至能够使得折叠帆(300)与非折叠帆(200)形成离轨帆的第二临界值。在发射前,折叠帆(300)就能够折叠好,以尽量减小体积;离轨帆展开状态下有足够大的面质比。

Description

一种离轨帆展开方法及其装置 技术领域
本发明涉及航天器离轨技术领域,尤其涉及一种离轨帆展开方法及其装置。
背景技术
离轨帆是一种被动离轨装置,其目的是为了避免立方星失效后成为长期滞留太空的太空垃圾,在立方星寿命末期采用低成本制动帆装置使其快速脱离轨道。离轨帆在设计时除了满足一般的机械构件设计原则和技术指标外,还需要满足以下原则:
(1)轻量化:离轨帆展开后,质量分布发生改变,更多的质量远离惯性主轴,会对姿控部件能力提出更高的要求。而且卫星质量与发射成本也关系密切,因此在保证离轨帆刚度的前提下应尽量减轻质量,实现轻量化设计。
(2)适应太空环境:太空环境的特点是高真空、温度交变、电子福射、紫外辐射、微重力、空间碎片、低轨道原子氧等复杂工况,因此对设计提出了特殊要求。例如:暴露在空间环境中的结构和机构表面材料不会发生性能退化;活动部件应防止真空冷焊现象发生;结构和机构应防止因温度交变而导致过大的变形等。
(3)高度可靠性:卫星发射后出现故障难以修复、不可维护的特点要求离轨帆机构具有很高的可靠性。
例如,公开号为CN105799956A的中国专利公开的一种立方体卫星自动帆离轨装置。其由两个完全相同的立方体卫星自动离轨子装置构成,立方体卫星自动帆离轨子装置包括离轨装置和设置在离轨装置顶部的分隔板。离轨装置为中心对称结构,包括主框架、上端盖、帆存储室导轨、霍尔传感器、底板和两个展开机构,主框架为Z字形,以主框架的中心为对称中心,将主框架分为两个相同的分室,两个展开机构分别设置在两个分室内。该发明主要利用带状弹簧栀杆将四个薄膜帆沿四个方向分别展开增大卫星运动的法 相截面积进而成功解决立方体卫星在完成任务后长时间停留在原有轨道并成为空间碎片的技术问题。
例如,公开号为CN207292479U的中国专利公开的一种立方体卫星自动帆离轨装置。其包括锁紧装置、存储机构、安装面板、锥形弹簧、展开机构和薄膜帆,锁紧装置固定在安装面板的顶面,存储机构固定在安装面板的底面,锥形弹簧、展开机构和薄膜帆均设置在存储机构内,锥形弹簧直径大的一端与安装面板固连,直径小的一端与展开机构固连,薄膜帆系在展开机构上,通过顶部安装在面板将其固定在卫星底部,从而不占用星内空间。在收到底面指令后,锁紧装置释放展开机构内的中心轴,缠绕于中心轴的带状弹性栀杆通过释放自身存储的弹性势能带动固定在栀杆上的薄膜帆展开。该实用新型利用展开薄膜帆来增大立方星飞行方向上的截面积,提高立方星所受到的大气阻力,从而加速立方星快速脱离轨道。
曾玉堂在其硕士论文《立体体卫星自动帆离轨装置的设计与研究》中涉及了一种离轨装置,由制动帆舱、栀杆展开机构和轴锁紧机构组成。该栀杆展开机构依靠弹性栀杆自身存储的弹性应变能提供驱动力展开栀杆,轴锁紧机构通过抑制栀杆展开机构内的中心轴旋转,从而起到离轨装置开关的作用。
基于现有技术的解读,现有技术中的离轨装置至少具有如下的缺陷:其会部分或全部的设置于星体内部,造成星体内部的复杂化。
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于发明人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。
发明内容
针对现有技术之不足,本发明提供了一种离轨帆展开装置,包括非折叠帆和折叠帆,所述非折叠帆与所述折叠帆可转动连接以形成驱使星体离轨的离轨帆。
所述折叠帆包括在其呈折叠状态时用于折叠帆体的且在其呈展开状态 用于支撑所述帆体的骨架,该骨架用于将折叠帆体进行折叠并且在折叠帆体折叠时该骨架固定于非折叠帆上,能够使得该折叠帆保持在主星的外部,有利于在接收到地面指令时,折叠帆能够在主星外部直接展开而不需要从主星内部弹出后再展开,从而有效地节约了主星内的空间。
在所述折叠帆脱离所述非折叠帆的部分约束的情况下,骨架中至少一个以固定于折叠帆的方式绕所述非折叠帆转动。按照这种方式,固定于折叠帆上的骨架在绕非折叠帆转动时,折叠帆上的其余骨架还与非折叠帆有约束关系,这有助于在解除折叠帆的约束时防止该约束力释放的过快而使得折叠帆的帆体展开速度过大,从而有效地避免了折叠帆的帆体损坏。其次,该固定于折叠帆的骨架在绕非折叠帆转动时始终保持与折叠帆的同步性,从而该骨架能够作为折叠帆的惯性主轴,因此,在折叠帆完全展开时该骨架能够作为折叠帆的对称主轴,用于为展开后的折叠帆提供支撑力。
剩余部分的骨架以能够绕所述折叠帆转动的方式相对所述非折叠帆转动。按照这种方式,剩余部分的骨架能够在折叠帆完全与非折叠帆接触约束后,剩余部分的骨架能够以同时绕折叠帆和非折叠帆的方式将帆体展开,这一方面有助于展开后的折叠帆帆体具有较大的面质比(面积大,质量小);另一方面,在剩余部分的骨架展开的过程中,剩余部分的骨架能够保持折叠帆帆体是对称展开的,以使得展开过程中的折叠帆帆体以固定于折叠帆的骨架为对称轴的方式形成对称的迎风面,保证了折叠帆能够平稳展开的同时还能够防止主星的不规则运动。
优选地,所述折叠帆包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的至少一个第一骨架,在所述折叠帆相对所述非折叠帆的第一侧边转动至所述折叠帆与所述非折叠帆的第一夹角为第一临界值的情况下,至少一个所述第一骨架中的一个或多个按照其能够与第一侧边并行的方式开始绕所述折叠帆转动,并且所述折叠帆相对所述非折叠帆的第一侧边继续转动,从而所述第一夹角继续增大至能够使得所述折叠帆与所述非折叠帆形成所述离轨帆的第二临界值。
有利地,所述折叠帆包括能够在其呈折叠状态时用于折叠所述帆体的且在其呈展开状态用于支撑所述帆体的至少一个第二骨架,所述第二骨架至少一部分基于其与所述非折叠帆的接触力按照能够绕所述第一骨架转动的方 式折叠于所述第一骨架内,以使得在所述折叠帆相对所述非折叠帆的第一侧边转动的过程中,所述第二骨架按照能够增加所述离轨帆的展开面积的方式绕所述第一骨架转动。
有利地,在所述折叠帆展开过程中,所述折叠帆的转动速度大于或等于所述第一骨架的转动速度;和/或所述折叠帆的转动速度大于或等于所述第二骨架的转动速度。
有利地,所述折叠帆包括第一骨架II和均布排列于所述第一骨架II两侧的至少两个第一骨架I,其中,其中,所述第一骨架II始终不绕所述折叠帆转动,而所述至少两个第一骨架I在所述折叠帆与所述非折叠帆的第一夹角大于第一临界值的情况下绕所述折叠帆同转速转动,以使得所述第一骨架II和所述第一骨架I能够在所述星体飞行的过程中且在所述折叠帆展开的过程中形成能够所述帆体的支撑结构。
有利地,所述非折叠帆的第一帆面具有能够与所述第一骨架的扣合体相配合的扣合孔,在所述折叠帆相对所述非折叠帆的第一侧边转动至所述折叠帆与所述非折叠帆的第一夹角小于所述第一临界值的情况下,所述扣合体与所述扣合孔彼此作用,以使得所述第一骨架不能绕所述折叠帆转动。
有利地,在所述折叠帆处于折叠状态的情况下,呈折叠状态的所述折叠帆的第二帆面与所述第一帆面彼此相对;在所述非折叠帆处于完全展开状态的情况下,呈完全展开状态的所述第二帆面与所述第一帆面形成迎风面或者被风面。
有利地,所述折叠帆在其展开过程中至少具有如下的中间姿态:在所述第一夹角小于第一临界值时,所述第一骨架I与所述非折叠帆的第二侧边形成的第二夹角为0度;或在所述第一夹角大于第一临界值且小于第二临界值时,所述第二夹角按照其最大值小于90°的方式随所述第一夹角的增大而增大;在所述第一夹角等于第二临界值时,所述第二夹角等于90°;其中,当所述第二夹角随所述第一夹角的增大而增大的过程中,所述第一骨架II内的第二骨架II的自由端能够以不触碰所述非折叠帆的方式绕所述第一骨架II转动。
有利地,所述非折叠帆与所述折叠帆之间设置有固定机构,用于在所述星体飞行过程中将所述折叠帆维持为折叠状态,其中,所述固定机构能够响 应于离轨指令自动解除所述非折叠帆与所述折叠帆的固接作用,以使得所述折叠帆能够开始绕所述非折叠帆的所述第一侧边转动。
有利地,本发明还公开了一种用于离轨帆展开的折叠帆,其能够在绕与连接在星体上的非折叠帆转动的过程中展开并与所述非折叠帆形成离轨帆,所述折叠帆包括在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的骨架,所述骨架中的至少一个能够在所述折叠帆脱离所述非折叠帆的部分约束的情况下以固定于折叠帆的方式绕所述非折叠帆转动,并且剩余部分的骨架以能够绕所述折叠帆转动的方式相对所述非折叠帆动。
有利地,所述方法是前述的展开装置实现或者前述折叠帆实现。
本发明还提供一种离轨帆,包括非折叠帆和折叠帆,所述非折叠帆与所述折叠帆可转动连接以形成驱使星体离轨的所述离轨帆;其特征在于,所述折叠帆包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的至少一个第一骨架和至少一个第二骨架。所述第二骨架至少一部分基于其与所述非折叠帆的接触力按照能够绕所述第一骨架转动的方式折叠于所述第一骨架内,以使得在所述折叠帆相对所述非折叠帆的第一侧边转动的过程中,所述第二骨架按照能够增加所述离轨帆的展开面积的方式绕所述第一骨架转动。
相比较与现有技术,本发明提供一种离轨帆展开装置和方法,至少具有根据下优势:
1)能够将离轨帆外置于星体,而不占据星体的内部空间;在发射前,折叠帆就能够折叠好,以尽量减小体积;星体任务完成后,能够顺利展开,展开后能够保持固定的展开状态;展开后的框架应有足够的强度和刚度,在保证支撑能力的同时尽量减小对姿控的影响;离轨帆展开状态下有足够大的面质比。
2)折叠帆需要与非折叠帆形成第一夹角α后,才会展开,这样能够防止星体受到的外载突然变化,而影响星体飞行;
3)在空间环境下,第一骨架在转动的同时,折叠帆以增大第一夹角α的方式继续转动,能够保证离轨帆是同步同时展开的,有利于防止帆体的突然损坏。
附图说明
图1是本发明提供的一种离轨展开装置的折叠状态示意图,其展示了在第二骨架300b与非折叠帆200的接触力的作用下,第二骨架300b的状态。;
图2是本发明提供的一种离轨展开装置的中间展开状态示意图,其展示了第一骨架I300a-1按照能够与非折叠帆200的第二侧边形成第二夹角β的方式绕折叠帆300转动的状态;
图3是本发明提供的一种离轨展开装置的完全展开状态示意图,其展示了β为90°的折叠帆展开状态;
图4是本发明提供的一种离轨展开装置的另一中间展开状态示意图,其展示了在第一夹角α小于第一临界值时的折叠帆展开状态;和
图5是本发明提供的一种完全展开状态下的离轨帆的位置关系示意图。
附图标记列表
100:星体                       300d:扣合体
200:非折叠帆                   300a-1:第一骨架I
300:折叠帆                     300a-2:第一骨架II
400:连接板                     300b-1:第二骨架I
200a:第一帆面                  300b-2:第二骨架II
200b:扣合孔                    400a:铰链
300a:第一骨架                  α:第一夹角
300b:第二骨架                  β:第二夹角
300c:第二帆面                  γ:第三夹角
具体实施方式
下面结合附图1-5进行详细说明。
根据一个可行方式,本发明公开一种离轨帆展开装置。
如图1-5所示,该离轨帆展开装置,包括非折叠帆200和折叠帆300。非折叠帆200与折叠帆300可转动连接以形成驱使星体100离轨的离轨帆。优选地,非折叠帆200的第一侧边设置有连接板400。连接板400上设置有能够使得折叠帆300相对该第一侧边转动的铰链400a。
折叠帆300包括有能够在其呈折叠状态时用于折叠帆体的且在其呈展 开状态用于支撑帆体的至少一个第一骨架300a。优选地,第一骨架300a是轻质合金钢,例如,材料。采用轻质合金刚能够在折叠帆300的机械构建刚度和强度满足技术指标的前提下还能够轻量化。
折叠帆300按照能够相对非折叠帆200的第一侧边转动的方式设置。折叠帆300与非折叠帆200之间的第一夹角α。在第一夹角α达到第一临界值时,至少一个第一骨架300a中的一个或多个按照其能够与第一侧边并行的方式开始绕折叠帆300转动。例如,如图2所示,位于折叠帆300两侧的第一骨架I300a-1按照能够与非折叠帆200的第二侧边形成第二夹角β的方式绕折叠帆300转动,直至β等于90°(如图3所示)。优选地,如图2所示,第一侧边和第二侧边彼此垂直。即:非折叠帆200至少有两边相互垂直,例如非折叠帆200呈长方形或者正方形。此时,折叠帆300相对非折叠帆200的第一侧边继续转动,第一夹角α继续增大。当第一夹角α继续增大至第二临界值时,折叠帆300与非折叠帆200形成了离轨帆,如图3所示。相比较与现有技术,本发明按照上述结构形成离轨帆至少具有如下的优势:1、能够将离轨帆外置于星体100,而不占据星体100的内部空间;2、折叠帆300需要与非折叠帆200形成一定的角度(第一夹角α)后,才会展开,这样能够防止星体100受到的外载突然变化,而影响星体100飞行;3、在空间环境下,第一骨架300a在转动的同时,折叠帆300以增大第一夹角α的方式继续转动,能够保证离轨帆是同步同时展开的,有利于防止帆体的突然损坏。
第一夹角α可以按照几何学上的定义:其是折叠帆300与非折叠帆200的二面角。即:第一夹角α可以是第一帆面200a和第二帆面300c之间的二面角。当第一夹角α为0时,第一帆面200a和第二帆面300c相对。当第一夹角α为180时,第一帆面200a和第二帆面300c形成迎风面或者被风面。第一临界值优选为3~10°。第一临界值特别优选为4~7°。第二临界值优选为180°。第一临界值与扣合体的设置位置和大小相关。
优选地,折叠帆300包括至少一个第二骨架300b。第二骨架300b与第一骨架300a具有相同或相似的作用,即能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的。如图1所示,在第二骨架300b与非折叠帆200的接触力的作用下,第二骨架300b至少一部分折叠于第一 骨架300a内。当在折叠帆300相对非折叠帆200的第一侧边转动的过程中,第二骨架300b绕第一骨架300a转动。按照这种方式设置,本发明至少还具有如下的优势:1、第二骨架300b折叠于第一骨架300a能够将帆体以最小的折叠空间安装在有限的空间的同时,但是在其展开的后,帆体却能够具有足够大的展开面积;2、第二骨架300b基于其与第一骨架300a的连接关系以及基于其与非折叠帆200之间的接触关系,在折叠帆300转动的过程中,第二骨架300b便能逐渐地与非折叠帆200脱离接触关系,从而实现自主地绕第一骨架300a转动,这有利于离轨帆的轻型化;3、离轨帆展开状态下有足够大的面质比,即质量轻但是面积大。
优选地,在折叠帆300展开过程中,折叠帆300的转动速度大于或等于第一骨架300a的转动速度。按照这种方式,和/或折叠帆300的转动速度大于或等于第二骨架300b的转动速度。例如,第一骨架300a的转动速度和/或第二骨架300b的转动速度可以由扭转弹簧刚度来决定,以保证折叠帆300的转动速度大于或等于第一骨架300a的转动速度和/或折叠帆300的转动速度大于或等于第二骨架300b的转动速度。按照这种方式,本发明至少具有如下的优势:折叠帆的帆体展开过程中具有平稳性。
优选地,折叠帆300包括第一骨架II300a-2和均布排列于第一骨架II300a-2两侧的至少两个第一骨架I300a-1。第一骨架II300a-2始终不绕折叠帆300转动。而在折叠帆300与非折叠帆200的第一夹角α大于第一临界值的情况下,至少两个第一骨架I300a-1绕折叠帆300同转速转动。因此,在星体100离轨飞行的过程中且在折叠帆300展开的过程中,第一骨架II300a-2和第一骨架I300a-1能够形成能够支撑帆体的支撑结构。按照这种方式设置,本发明至少还具有如下的优势:1、在离轨帆展开的过程中,由于结构是对称的,其质量分布不会发生改变,从而其惯性主轴(第一骨架II300a-2)始终不变,能够降低对星体100飞行姿态的影响程度以实现精确离轨飞行姿态。如图1-3所示,该折叠帆300包括了一个第一骨架II300a-2和以第一骨架II300a-2为对称中心的两个第一骨架I300a-1。
优选地,非折叠帆200的第一帆面200a具有能够与第一骨架300a的扣合体300d相配合的扣合孔200b。在折叠帆300相对非折叠帆200的第一侧边转动至折叠帆300与非折叠帆200的第一夹角α小于第一临界值的 情况下,扣合体300d与扣合孔200b彼此作用,以使得第一骨架300a不能绕折叠帆300转动。扣合体300d与扣合孔200b的彼此作用可以按照相对滑动摩擦的方式进行设置,即在折叠帆300相对非折叠帆200的第一侧边时,扣合体300d与扣合孔200b滑动摩擦,以使得折叠帆300与非折叠帆200具有第一夹角α。
优选地,在折叠帆300处于折叠状态的情况下,呈折叠状态的折叠帆300的第二帆面300c与第一帆面200a彼此相对。在非折叠帆200处于完全展开状态的情况下,呈完全展开状态的第二帆面300c与第一帆面200a形成迎风面或者被风面。
优选地,折叠帆300在其展开过程中至少具有如下的第一姿态、第二姿态和第三姿态等中间姿态。第一姿态,如图4所示,在第一夹角α小于第一临界值时,第一骨架I300a-1与非折叠帆200的第二侧边形成的第二夹角β为0度。第二姿态,如图2所示,在第一夹角α大于第一临界值且小于第二临界值时,第二夹角β按照其最大值小于90°的方式随第一夹角α的增大而增大。第三姿态,如图3所示在第一夹角α等于第二临界值时,第二夹角β等于90°。
优选地,当第二夹角β随第一夹角α的增大而增大的过程中,第一骨架II300a-2内的第二骨架II300b-2的自由端能够以不触碰非折叠帆200的方式绕第一骨架II300a-2转动。第二骨架II300b-2的自由端是指第二骨架II300b-2的其与第二骨架II300b-2的转动连接端的相对一端。本发明的第二骨架II300b-2的展开方式可以按照如下方式进行:当第一夹角α大于第三临界角且第二夹角大于第四临界角的时候,第二骨架II300b-2开始绕第一骨架II300a-2转动。第三临界角大于第一临界角且小于第二临界角。第三临界角和第四临界角形成的空间角度,恰好能够使得第二骨架II300b-2不触碰非折叠帆200。例如,在第二骨架II300b-1上固定设置有一根压板,该压板压与第二骨架II300b-2上的压孔相互配合。在第二骨架II300b-1固定的过程中,压板跟随其转动,从而其能够在当第一夹角α大于第三临界角且第二夹角大于第四临界角的时候解除对压孔的压紧作用,以使得第二骨架II300b-2能够绕第一骨架II300a-2转动。按照这种方式设置,本发明至少还具有如下优势:1、第二骨架II300b-2在展开时,不会对非折叠帆200 造成损害。2、在展开过程中,整个离轨帆的质量分布仍然是均匀的。
优选地,非折叠帆200与折叠帆300之间设置有固定机构。该固定机构用于在星体100飞行过程中将折叠帆300维持为折叠状态。固定机构能够响应于离轨指令自动解除非折叠帆200与折叠帆300的固接作用,以使得折叠帆300能够开始绕非折叠帆200的第一侧边转动。离轨指令可以是来自于地面控制中心,其通过通讯设备传递固定机构的执行设备,执行设备对固定机构进行解锁,以释放折叠帆300。例如,该固定机构包括连接线和熔断电阻。连接线的一端与熔断电阻在接收到离轨命令之前是处于固接状态。连接线的另一端与折叠帆300固定连接。熔断电阻通过螺钉固定在非折叠帆200上。熔断电阻在导电后,产生热量将连接线熔断,解除对折叠帆300的固定作用,从而使其能够转动。熔断电阻的电阻至优选为5~20欧姆。特别优选为10欧姆。优选地,该连接线可以是鱼线。在固定机构受到离轨指令后,熔断电阻通电升温,熔断鱼线,以解除非折叠帆200与折叠帆300之间的固定作用。优选地,熔断电阻可以是功率电阻,其能够在通电的情况下发热,从而将热量传递至熔断线将其熔断。优选地,熔断线可以是鱼线。优选地,熔断电阻可以按照如下方式通电:主星100上的微处理器在接收到地面离轨指令时向与熔断电阻串联的电磁开关发出闭合指令,电磁开关闭合通电产生电流I。优选地,熔断电阻的电源是主星100上的电源设备。卫星上设置有电源设备是本领域的公知常识。地面指令与卫星的通信方式也是本领域的公知常识。微处理器与电磁开关的通信方式也是泵领域的公知常识。因此,本领域的技术人员能够采用公知常识实现熔断电阻熔断熔断线的步骤。
根据一个可行方式,本发明公开一种至少能够用于前述离轨帆展开装置的优选的折叠帆300。该折叠帆包括了至少一个第一骨架300a以及帆体。优选地,其还可以包括第二骨架300b。帆体可以是铝膜帆。其可以采用棉线缝制于各个骨架上。帆体可以是一张独立的帆体,也可以是多张分别拼合于两两第一骨架300a之间的。帆体在折叠帆300折叠时,能够基于第一骨架300a和第二骨架300b处于折叠状态。帆体在折叠帆300展开时,能够基于第一骨架300a和第二骨架300b的支撑作用处于展开状态。
如图1-3所示,折叠帆300包括两根第一骨架I300a-1和一根第一骨 架II300a-2。两根第一骨架I300a-1分别对称地排设于第一骨架II300a-2的两侧。两根第一骨架I300a-1和一根第一骨架II300a-2均通过扭转弹簧与第二骨架300b连接,能够使得第二骨架300b能够分别绕对应的两根第一骨架I300a-1和一根第一骨架II300a-2转动。两根第一骨架I300a-1也通过扭转弹簧与连接板400连接,能够使得两根第一骨架I300a-1均能绕折叠帆300转动。
本发明公开的折叠帆300,其能够在绕与连接在星体100上的非折叠帆200转动的过程中展开并与非折叠帆200形成离轨帆。非折叠帆200在形成离轨帆的过程中相对于星体100是固定的。
第一骨架300a在折叠帆300在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的。为了区分不同的第一骨架300a,本发明将第一骨架300a按照其各自不同的运动和功能命名了第一骨架I300a-1和第一骨架II300a-2。如图2和3所示,第一骨架I300a-1在折叠帆300转动过程中还要绕折叠帆300转动以形成展开后的折叠帆300的一条底边的一部分。而第一骨架II300a-2在折叠帆300转动过程中始终与折叠帆无相对运动,以形成展开后的折叠帆300的一条高。
在折叠帆300相对非折叠帆200的第一侧边转动至折叠帆300与非折叠帆200的第一夹角α为第一临界值的情况下,第一骨架I300a-1按照其能够与第一侧边并行的方式开始绕折叠帆300转动,并且折叠帆300相对非折叠帆200的第一侧边继续转动,从而第一夹角α继续增大至能够使得折叠帆300与非折叠帆200形成离轨帆的第二临界值。此过程中,第一骨架II300a-2始终与折叠帆300相对无运动。
根据一个可行方式,如图1-5所示,该离轨帆展开装置包括非折叠帆200和折叠帆300。非折叠帆200和折叠帆300之间通过连接板400连接。连接板400上设置有铰链400a。用于使得折叠帆300绕非折叠帆200转动。非折叠帆200设置有该连接板400一端的相对端设置有固定机构。例如,该固定机构包括连接线和熔断电阻。连接线的一端与熔断电阻在接收到离轨命令之前是处于固接状态。连接线的另一端与折叠帆300固定连接。熔断电阻通过螺钉固定在非折叠帆200上。熔断电阻在导电后,产生热量将连接线熔断,解除对折叠帆300的固定作用,从而使其能够转动。熔断电阻的电阻 至优选为5~20欧姆。特别优选为10欧姆。优选地,该连接线可以是鱼线。优选地,熔断线可以是鱼线。优选地,熔断电阻可以按照如下方式通电:主星100上的微处理器在接收到地面离轨指令时向与熔断电阻串联的电磁开关发出闭合指令,电磁开关闭合通电产生电流I。优选地,熔断电阻的电源是主星100上的电源设备。卫星上设置有电源设备是本领域的公知常识。地面指令与卫星的通信方式也是本领域的公知常识。微处理器与电磁开关的通信方式也是泵领域的公知常识。因此,本领域的技术人员能够采用公知常识实现熔断电阻熔断熔断线的步骤。
如图2-3所示,折叠帆300包括两根第一骨架I300a-1和一根第一骨架II300a-2。两根第一骨架I300a-1分别对称地排设于第一骨架II300a-2的两侧。两根第一骨架I300a-1和一根第一骨架II300a-2均通过扭转弹簧与第二骨架300b连接,能够使得第二骨架300b能够分别绕对应的两根第一骨架I300a-1和一根第一骨架II300a-2转动。两根第一骨架I300a-1也通过扭转弹簧与连接板400连接,能够使得两根第一骨架I300a-1均能绕折叠帆300转动。
优选地,第一骨架300a(两根第一骨架I300a-1和一根第一骨架II300a-2)面向第一帆面200a的一侧均设置有扣合体300d。该扣合体300d是圆柱形。第一帆面200a上设置有与该扣合体300d彼此配合的扣合孔200b。在第一帆面200a与第二帆面300c相对时,扣合体300d与扣合孔200b相互配合。
优选地,本发明中第一夹角α的第一临界值为6°。在α小于6°,扣合体300d与扣合孔200b滑动接触,两根第一骨架I300a-1不饶折叠帆300转动。在α等于6°,扣合体300d与扣合孔200b刚好脱离。因而,在α大于或等于6°,两根第一骨架I300a-1基于扭转弹簧的作用绕折叠帆300转动。优选地,第一夹角α的第二临界值为180°。即折叠帆300和非折叠帆200能够按照同平面的形式形成离轨帆。
如图2所示是该离轨装置在展开过程中的一种状态示意图。连接板400上的铰链400a带动折叠帆300绕非折叠帆200转动。折叠帆300上的第一骨架II300a-2在非折叠帆200上的俯视投影小于其真实的长度,即折叠帆300与非折叠帆200形成了第一夹角α。而折叠帆300上的第二骨架 II300a-1绕折叠帆300上转动,而与非折叠帆200的第二侧边形成第二夹角β。第二夹角β的取值范围为0~90°。第二夹角β与第一夹角的对应关系为:第一夹角α小于第一临界值时,β为0度,即两根第一骨架I300a-1不饶折叠帆300转动。第一夹角α等于第一临界值,β趋近于0度,两根第一骨架I300a-1开始饶折叠帆300转动。如图2所示,第一夹角α等于第二临界值时,第二夹角β等于90°,此时两根第一骨架I300a-1与设置有连接板的第一侧边并行,折叠帆300完全展开并与非折叠帆200形成离轨帆。
优选地,在该离轨帆完全展开的情况下,其呈等腰三角形。第一骨架II300a-2及其上的第二骨架300b组成该等腰三角形的高。折叠帆300在完全展开形成三角形的结构至少有利于该离轨帆在抵抗空气阻力时具有稳定的形态。
根据一个可行方式,本发明提供一种优选的具体的展开方法如下:
首先,在第一夹角α小于第一临界值时,折叠帆300绕非折叠帆200的第一侧边转动,第一骨架I300a-1上的扣合体300d与非折叠帆200上的扣合孔200b滑动摩擦;
第二,折叠帆300绕非折叠帆200转动至第一夹角α等于第一临界值,第一骨架I300a-1上的扣合体300d与非折叠帆200上的扣合孔200b完全脱离接触,使得第一骨架I300a-1基于其连接的扭转弹簧绕折叠帆300转动,并与非折叠帆200的第二侧边200呈第二夹角β;
第三,第一骨架300a上各自的第二骨架300b在折叠帆300绕非折叠帆200过程中能够自动地与非折叠帆200脱离,从而也能够基于其连接的扭转弹簧绕第一骨架300a转动。第一骨架300a与其各自的第二骨架300b会在折叠帆300展开过程中呈现出第三夹角γ。第三夹角γ的最大值为180°,即在折叠帆300完全展开后,第一骨架300a和第二骨架300b共线。
该展开方法具有如下优势:能够将离轨帆外置于星体,而不占据星体的内部空间。现有技术是将离轨帆内置于星体的,这需要占据星内部分空间,且内置于星体内部容易在需要离轨时不容易展开。而本发明的折叠帆200折叠于非折叠帆300上。在发射前,折叠帆就折叠于非折叠帆上,以尽量减小 体积;星体任务完成后,能够顺利展开,展开后能够保持固定的展开状态;展开后的框架应有足够的强度和刚度,在保证支撑能力的同时尽量减小对姿控的影响;离轨帆展开状态下有足够大的面质比。
根据一个可行方式,本发明公开一种离轨帆,包括非折叠帆200和折叠帆300。非折叠帆200与折叠帆300可转动连接以形成驱使星体100离轨的离轨帆。折叠帆300包括在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的骨架,骨架中的至少一个能够在折叠帆300脱离非折叠帆200的部分约束的情况下以固定于折叠帆300的方式绕非折叠帆200转动,并且剩余部分的骨架以能够绕折叠帆300转动的方式相对非折叠帆200转动。
优选的,折叠帆300包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的至少一个第一骨架300a。在折叠帆300相对非折叠帆200的第一侧边转动至折叠帆300与非折叠帆200的第一夹角α为第一临界值的情况下,第一骨架300a中的一个或多个按照其能够与第一侧边并行的方式开始绕折叠帆300转动,并且折叠帆300相对非折叠帆200的第一侧边继续转动,从而第一夹角α继续增大至能够使得折叠帆300与非折叠帆200形成离轨帆的第二临界值。
优选的,折叠帆300包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑帆体的至少一个第二骨架300b。第二骨架300b至少一部分基于其与非折叠帆200的接触力按照能够绕第一骨架300a转动的方式折叠于第一骨架300a内,以使得在折叠帆300相对非折叠帆200的第一侧边转动的过程中,第二骨架300b按照能够增加离轨帆的展开面积的方式绕第一骨架300a转动。
优选的,在折叠帆300展开过程中,折叠帆300的转动速度大于或等于第一骨架300a的转动速度。
优选的,在折叠帆300展开过程中,折叠帆300的转动速度大于或等于第二骨架300b的转动速度。
优选的,折叠帆300包括第一骨架II300a-2和均布排列于第一骨架II300a-2两侧的至少两个第一骨架I300a-1。其中,第一骨架II300a-2始终不绕折叠帆300转动,而至少两个第一骨架I300a-1在折叠帆300与非折 叠帆200的第一夹角α大于第一临界值的情况下绕折叠帆300同转速转动,以使得第一骨架II300a-2和第一骨架I300a-1能够在星体100飞行的过程中且在折叠帆300展开的过程中形成能够支撑帆体的支撑结构。
优选的,非折叠帆200的第一帆面200a具有能够与第一骨架300a的扣合体300d相配合的扣合孔200b。在折叠帆300相对非折叠帆200的第一侧边转动至折叠帆300与非折叠帆200的第一夹角α小于第一临界值的情况下,扣合体300d与扣合孔200b彼此作用,以使得第一骨架300a不能绕折叠帆300转动。
优选的,在折叠帆300处于折叠状态的情况下,呈折叠状态的折叠帆300的第二帆面300c与第一帆面200a彼此相对。
优选的,在非折叠帆200处于完全展开状态的情况下,呈完全展开状态的第二帆面300c与第一帆面200a形成迎风面或者被风面。
优选的,折叠帆300在其展开过程中至少具有如下的中间姿态:
在第一夹角α小于第一临界值时,第一骨架I300a-1与非折叠帆200的第二侧边形成的第二夹角β为0°;或
在第一夹角α大于第一临界值且小于第二临界值时,第二夹角β按照其最大值小于90°的方式随第一夹角α的增大而增大;
在第一夹角α等于第二临界值时,第二夹角β等于90°。
优选的,当第二夹角β随第一夹角α的增大而增大的过程中,第一骨架II300a-2内的第二骨架II300b-2的自由端能够以不触碰非折叠帆200的方式绕第一骨架II300a-2转动。
优选的,非折叠帆200与折叠帆300之间设置有固定机构,用于在星体100飞行过程中将折叠帆300维持为折叠状态。
优选的,设置于非折叠帆200与折叠帆300之间的固定机构能够响应于离轨指令自动解除非折叠帆200与折叠帆300的固接作用,以使得折叠帆300能够开始绕非折叠帆200的第一侧边转动。
虽然已经详细描述了本发明,但是在本发明的精神和范围内的修改对于本领域技术人员将是显而易见的。这样的修改也被认为是本公开的一部分。鉴于前面的讨论、本领域的相关知识以及上面结合背景讨论的参考或信息 (均通过引用并入本文),进一步的描述被认为是不必要的。此外,应该理解,本发明的各个方面和各个实施方式的各部分均可以整体或部分地组合或互换。而且,本领域的普通技术人员将会理解,前面的描述仅仅是作为示例,并不意图限制本发明。

Claims (15)

  1. 一种离轨帆展开装置,包括非折叠帆(200)和折叠帆(300),所述非折叠帆(200)与所述折叠帆(300)可转动连接以形成驱使星体(100)离轨的离轨帆;
    其特征在于,
    所述折叠帆(300)包括在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的骨架,所述骨架中的至少一个能够在所述折叠帆(300)脱离所述非折叠帆(200)的部分约束的情况下以固定于折叠帆(300)的方式绕所述非折叠帆(200)转动,并且剩余部分的骨架以能够绕所述折叠帆(300)转动的方式相对所述非折叠帆(200)转动。
  2. 根据权利要求1所述的展开装置,其特征在于,所述折叠帆(300)包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的至少一个第一骨架(300a),
    在所述折叠帆(300)相对所述非折叠帆(200)的第一侧边转动至所述折叠帆(300)与所述非折叠帆(200)的第一夹角(α)为第一临界值的情况下,所述第一骨架(300a)中的一个或多个按照其能够与第一侧边并行的方式开始绕所述折叠帆(300)转动,并且所述折叠帆(300)相对所述非折叠帆(200)的第一侧边继续转动,从而所述第一夹角(α)继续增大至能够使得所述折叠帆(300)与所述非折叠帆(200)形成所述离轨帆的第二临界值。
  3. 根据权利要求1或2所述的展开装置,其特征在于,所述折叠帆(300)包括能够在其呈折叠状态时用于折叠所述帆体的且在其呈展开状态用于支撑所述帆体的至少一个第二骨架(300b),
    所述第二骨架(300b)至少一部分基于其与所述非折叠帆(200)的接触力按照能够绕所述第一骨架(300a)转动的方式折叠于所述第一骨架(300a)内,以使得在所述折叠帆(300)相对所述非折叠帆(200)的第 一侧边转动的过程中,所述第二骨架(300b)按照能够增加所述离轨帆的展开面积的方式绕所述第一骨架(300a)转动。
  4. 根据前述权利要求之一所述的展开装置,其特征在于,在所述折叠帆(300)展开过程中,所述折叠帆(300)的转动速度大于或等于所述第一骨架(300a)的转动速度。
  5. 根据前述权利要求之一所述的展开装置,其特征在于,在所述折叠帆(300)展开过程中,所述折叠帆(300)的转动速度大于或等于所述第二骨架(300b)的转动速度。
  6. 根据前述权利要求之一所述的展开装置,其特征在于,所述折叠帆(300)包括第一骨架II(300a-2)和均布排列于所述第一骨架II(300a-2)两侧的至少两个第一骨架I(300a-1),
    其中,所述第一骨架II(300a-2)始终不绕所述折叠帆(300)转动,而所述至少两个第一骨架I(300a-1)在所述折叠帆(300)与所述非折叠帆(200)的第一夹角(α)大于第一临界值的情况下绕所述折叠帆(300)同转速转动,以使得所述第一骨架II(300a-2)和所述第一骨架I(300a-1)能够在所述星体(100)飞行的过程中且在所述折叠帆(300)展开的过程中形成能够支撑所述帆体的支撑结构。
  7. 根据前述权利要求之一所述的展开装置,其特征在于,所述非折叠帆(200)的第一帆面(200a)具有能够与所述第一骨架(300a)的扣合体(300d)相配合的扣合孔(200b),
    在所述折叠帆(300)相对所述非折叠帆(200)的第一侧边转动至所述折叠帆(300)与所述非折叠帆(200)的第一夹角(α)小于所述第一临界值的情况下,所述扣合体(300d)与所述扣合孔(200b)彼此作用,以使得所述第一骨架(300a)不能绕所述折叠帆(300)转动。
  8. 根据前述权利要求之一所述的展开装置,其特征在于,在所述折叠 帆(300)处于折叠状态的情况下,呈折叠状态的所述折叠帆(300)的第二帆面(300c)与所述第一帆面(200a)彼此相对。
  9. 根据前述权利要求之一所述的展开装置,其特征在于,在所述非折叠帆(200)处于完全展开状态的情况下,呈完全展开状态的所述第二帆面(300c)与所述第一帆面(200a)形成迎风面或者被风面。
  10. 根据前述权利要求之一所述的展开装置,其特征在于,所述折叠帆(300)在其展开过程中至少具有如下的中间姿态:
    在所述第一夹角(α)小于第一临界值时,所述第一骨架I(300a-1)与所述非折叠帆(200)的第二侧边形成的第二夹角(β)为0°;或
    在所述第一夹角(α)大于第一临界值且小于第二临界值时,所述第二夹角(β)按照其最大值小于90°的方式随所述第一夹角(α)的增大而增大;
    在所述第一夹角(α)等于第二临界值时,所述第二夹角(β)等于90°。
  11. 根据前述权利要求之一所述的展开装置,其特征在于,当第二夹角(β)随第一夹角(α)的增大而增大的过程中,第一骨架II(300a-2)内的第二骨架II(300b-2)的自由端能够以不触碰所述非折叠帆(200)的方式绕所述第一骨架II(300a-2)转动。
  12. 根据前述权利要求之一所述的展开装置,其特征在于,所述非折叠帆(200)与所述折叠帆(300)之间设置有固定机构,用于在所述星体(100)飞行过程中将所述折叠帆(300)维持为折叠状态。
  13. 根据前述权利要求之一所述的展开装置,其特征在于,设置于所述非折叠帆(200)与所述折叠帆(300)之间的固定机构能够响应于离轨指令自动解除所述非折叠帆(200)与所述折叠帆(300)的固接作用,以使得所述折叠帆(300)能够开始绕所述非折叠帆(200)的所述第一侧边转动。
  14. 一种用于离轨帆展开的折叠帆(300),其能够在绕与连接在星体(100)上的非折叠帆(200)转动的过程中展开并与所述非折叠帆(200)形成离轨帆,其特征在于,
    所述折叠帆(300)包括在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的骨架,所述骨架中的至少一个能够在所述折叠帆(300)脱离所述非折叠帆(200)的部分约束的情况下以固定于折叠帆(300)的方式绕所述非折叠帆(200)转动,并且剩余部分的骨架以能够绕所述折叠帆(300)转动的方式相对所述非折叠帆(200)转动。
  15. 一种离轨帆,包括非折叠帆(200)和折叠帆(300),所述非折叠帆(200)与所述折叠帆(300)可转动连接以形成驱使星体(100)离轨的所述离轨帆;其特征在于,
    所述折叠帆(300)包括能够在其呈折叠状态时用于折叠帆体的且在其呈展开状态用于支撑所述帆体的至少一个第一骨架(300a)和至少一个第二骨架(300b),
    所述第二骨架(300b)至少一部分基于其与所述非折叠帆(200)的接触力按照能够绕所述第一骨架(300a)转动的方式折叠于所述第一骨架(300a)内,以使得在所述折叠帆(300)相对所述非折叠帆(200)的第一侧边转动的过程中,所述第二骨架(300b)按照能够增加所述离轨帆的展开面积的方式绕所述第一骨架(300a)转动。
PCT/CN2019/121955 2019-07-12 2019-11-29 一种离轨帆展开方法及其装置 WO2021008063A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980086648.6A CN113474255B (zh) 2019-07-12 2019-11-29 一种离轨帆展开方法及其装置
US17/045,338 US20230131485A1 (en) 2019-07-12 2019-11-29 Method and device for deploying deorbit sail

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910633220.0 2019-07-12
CN201910633220.0A CN110525687B (zh) 2019-07-12 2019-07-12 一种离轨帆展开方法及其装置

Publications (1)

Publication Number Publication Date
WO2021008063A1 true WO2021008063A1 (zh) 2021-01-21

Family

ID=68659781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121955 WO2021008063A1 (zh) 2019-07-12 2019-11-29 一种离轨帆展开方法及其装置

Country Status (3)

Country Link
US (1) US20230131485A1 (zh)
CN (2) CN110525687B (zh)
WO (1) WO2021008063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132528A (zh) * 2021-11-30 2022-03-04 北京卫星制造厂有限公司 一种柔性帆展开装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756980B (zh) * 2020-07-20 2021-08-17 中星乾景数据技术(北京)有限公司 一种具有折叠能力的新型卫星遥感相机
CN115771625A (zh) * 2022-12-14 2023-03-10 哈尔滨工业大学 一种二折式半刚性机械展开减速机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358438A (zh) * 2011-08-31 2012-02-22 北京空间飞行器总体设计部 一种适用于低轨任务后航天器离轨的增阻型装置
CN102656090A (zh) * 2009-12-07 2012-09-05 Phs航天有限公司 用于航天器的设备
CN103863580A (zh) * 2014-03-10 2014-06-18 中国空间技术研究院 一种适于分块方形支撑杆型太阳帆帆面的折叠方法
WO2016051141A1 (en) * 2014-09-29 2016-04-07 Oxford Space Systems Limited Deployable structure
CN105799956A (zh) * 2016-03-18 2016-07-27 南京理工大学 立方体卫星制动帆离轨装置
CN207292479U (zh) * 2017-09-01 2018-05-01 南京理工大学 一种立方体卫星制动帆离轨装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530469A (en) * 1968-06-26 1970-09-22 North American Rockwell Energy impingement device
US3635425A (en) * 1969-10-01 1972-01-18 Us Navy Deployment method for a telescoping solar array
DE19825785C2 (de) * 1998-06-10 2000-04-27 Deutsch Zentr Luft & Raumfahrt Solarsegler mit Segelfolie und Faltrohren
US6550720B2 (en) * 1999-07-09 2003-04-22 Aeroastro Aerobraking orbit transfer vehicle
US6264144B1 (en) * 1999-08-03 2001-07-24 Lockheed Martin Corporation Material assembly for an inflatable aerodynamic braking device for spacecraft deceleration and the like
DE10109529B4 (de) * 2001-02-28 2005-10-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung mit einem im Querschnitt flach zusammengedrückten und der Länge nach aufgerollten Mast
US6830222B1 (en) * 2002-03-21 2004-12-14 Global Aerospace Corporation Balloon device for lowering space object orbits
DE202004009814U1 (de) * 2004-06-22 2005-11-10 Structurelab Gmbh Auf- und zusammenfaltbares Sonnensegel/Überdachungselement mit textiler Segelfläche
FR2897843B1 (fr) * 2006-02-27 2009-03-06 Eads Space Transp Sas Soc Par Voilure d'aerofreinage de satellite
US8905357B1 (en) * 2009-10-02 2014-12-09 MMA Design, LLC Thin membrane structure
US9550584B1 (en) * 2010-09-30 2017-01-24 MMA Design, LLC Deployable thin membrane apparatus
US9555904B2 (en) * 2012-08-09 2017-01-31 Analytical Mechanics Associates, Inc. Gossamer apparatus and systems for use with spacecraft
US9637248B2 (en) * 2013-03-15 2017-05-02 The Boeing Company Component deployment system
US9522747B2 (en) * 2014-06-03 2016-12-20 Analytical Mechanics Associates, Inc. Inflatable deceleration apparatus
FR3032182B1 (fr) * 2015-02-03 2018-06-22 Arianegroup Sas Systeme de desorbitation de satellite
FR3032183B1 (fr) * 2015-02-03 2018-06-22 Arianegroup Sas Systeme d'aerofreinage pour desorbitation de satellite
CN205589529U (zh) * 2016-03-18 2016-09-21 南京理工大学 立方体卫星制动帆离轨装置
WO2017193091A1 (en) * 2016-05-05 2017-11-09 L'garde, Inc. Solar sail for orbital maneuvers
CN105836162B (zh) * 2016-05-25 2018-03-09 南京理工大学 一种微纳卫星制动帆离轨装置
CN107539500B (zh) * 2017-09-01 2024-05-03 南京理工大学 一种立方体卫星制动帆离轨装置
CN108177801B (zh) * 2017-11-24 2020-04-07 西安电子科技大学 基于太阳帆的空间碎片清理装置及方法
JP2021513933A (ja) * 2018-02-15 2021-06-03 ルギャルド, インク.L’Garde, Inc. スペースデブリ係合および軌道離脱システム
WO2019210286A1 (en) * 2018-04-27 2019-10-31 Roccor, Llc Furlable sail devices, systems, and methods
US11420775B2 (en) * 2018-10-04 2022-08-23 The Aerospace Corporation Systems and methods for deploying a deorbiting device
US11142350B2 (en) * 2018-10-24 2021-10-12 Purdue Research Foundation Compact scalable drag sail deployment assembly
CN113631481A (zh) * 2019-01-15 2021-11-09 诺思路·格鲁曼系统公司 航天器服务装置及相关组件、系统和方法
WO2020150735A1 (en) * 2019-01-18 2020-07-23 M.M.A. Design, LLC Deployable system with flexible membrane
US11958637B2 (en) * 2020-04-22 2024-04-16 Geoshade Corporal Gyromesh solar sail spacecraft and sail panel assemblies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656090A (zh) * 2009-12-07 2012-09-05 Phs航天有限公司 用于航天器的设备
CN102358438A (zh) * 2011-08-31 2012-02-22 北京空间飞行器总体设计部 一种适用于低轨任务后航天器离轨的增阻型装置
CN103863580A (zh) * 2014-03-10 2014-06-18 中国空间技术研究院 一种适于分块方形支撑杆型太阳帆帆面的折叠方法
WO2016051141A1 (en) * 2014-09-29 2016-04-07 Oxford Space Systems Limited Deployable structure
CN105799956A (zh) * 2016-03-18 2016-07-27 南京理工大学 立方体卫星制动帆离轨装置
CN207292479U (zh) * 2017-09-01 2018-05-01 南京理工大学 一种立方体卫星制动帆离轨装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132528A (zh) * 2021-11-30 2022-03-04 北京卫星制造厂有限公司 一种柔性帆展开装置
CN114132528B (zh) * 2021-11-30 2023-12-19 北京卫星制造厂有限公司 一种柔性帆展开装置

Also Published As

Publication number Publication date
US20230131485A1 (en) 2023-04-27
CN113474255B (zh) 2024-05-07
CN113474255A (zh) 2021-10-01
CN110525687B (zh) 2021-02-09
CN110525687A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021008063A1 (zh) 一种离轨帆展开方法及其装置
US9555904B2 (en) Gossamer apparatus and systems for use with spacecraft
CN109592031B (zh) 单侧单节点的仿生扑翼飞行器
US8324545B2 (en) Foldable and deployable panel
US8616502B1 (en) Deployable solar panel assembly for spacecraft
CN107539500B (zh) 一种立方体卫星制动帆离轨装置
CN110994118B (zh) 一种绳索驱动的伞状卡塞格伦天线主副面平稳展开机构
CN109592032B (zh) 单侧多节点的仿生扑翼飞行器
CN104058105A (zh) 一种利用太阳光压力驱动的深空太阳帆航天器
CN102923303A (zh) 一种自主起飞和着陆的扑翼飞行器及其控制方法
WO2020134857A1 (zh) 一种充气天线
Wilkie et al. The heliogyro reloaded
CN109278981B (zh) 一种微型可折叠三维实景建模无人机
CN113525724A (zh) 微纳卫星制动帆装置
JPH07223597A (ja) 二次元展開構造物
CN114771885A (zh) 一种末子级离轨装置
CN113636108B (zh) 一种可重复折展的板式空间结构
CN114132528B (zh) 一种柔性帆展开装置
CN210761370U (zh) 一种离轨帆装置
CN106945850B (zh) 卫星载荷包裹式预应力薄壁锥形重力梯度杆
CN218477634U (zh) 一种可变夹角的飞行器机翼结构及无人飞行器
JP2020183159A (ja) 飛行機及びその展開切離方法並びに収納具
CN108657443A (zh) 可自动校准的航拍飞行器
Firth Deployment Mechanisms for Rollable Spacecraft Booms
JPH04143198A (ja) ソーラセイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937836

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 16.09.2022

122 Ep: pct application non-entry in european phase

Ref document number: 19937836

Country of ref document: EP

Kind code of ref document: A1