WO2021007765A1 - 引擎的气门传动机构 - Google Patents

引擎的气门传动机构 Download PDF

Info

Publication number
WO2021007765A1
WO2021007765A1 PCT/CN2019/096116 CN2019096116W WO2021007765A1 WO 2021007765 A1 WO2021007765 A1 WO 2021007765A1 CN 2019096116 W CN2019096116 W CN 2019096116W WO 2021007765 A1 WO2021007765 A1 WO 2021007765A1
Authority
WO
WIPO (PCT)
Prior art keywords
follower
valve
exhaust
seat
intake
Prior art date
Application number
PCT/CN2019/096116
Other languages
English (en)
French (fr)
Inventor
赵秀雄
Original Assignee
赵秀雄
赵领暹
赵子旭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵秀雄, 赵领暹, 赵子旭 filed Critical 赵秀雄
Priority to PCT/CN2019/096116 priority Critical patent/WO2021007765A1/zh
Publication of WO2021007765A1 publication Critical patent/WO2021007765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve

Definitions

  • the invention relates to a valve transmission structure of an engine, in particular to a valve transmission mechanism that can be installed on a reciprocating internal combustion engine.
  • a typical four-stroke reciprocating internal combustion engine generally includes a cylinder body and a cylinder head mounted on the cylinder body, and is equipped with a cooling system and a combustion system; the cylinder body is provided with cylinders, connecting rods, pistons, crankshafts, etc. Components; The cylinder head is provided with intake valves, exhaust valves and other components.
  • the operating principle of the engine is usually divided into the action strokes of the four pistons: intake, compression, combustion and exhaust, and they are completed after the piston moves back and forth twice.
  • the top of the cylinder of most engines which is traditionally called the cylinder head, is usually provided with two holes, an intake port and an exhaust port, and two valves for opening and closing the intake
  • the intake valve When the intake valve is opened, the air or mixed oil gas is allowed to enter the cylinder.
  • the exhaust valve When the exhaust valve is opened, the burned gas, that is, exhaust gas, is allowed to be discharged from the cylinder.
  • the intake valve and exhaust valve are closed most of the time, and only open during intake and exhaust strokes.
  • camshaft Traditional intake valves or exhaust valves are mostly driven by a camshaft.
  • the camshaft is driven synchronously by a timing belt or chain. Generally, when the crankshaft rotates one revolution, the camshaft rotates only half a revolution.
  • the camshaft usually drives the intake valve and the exhaust valve through a spring-type valve mechanism, that is, the camshaft pushes the intake valve or the exhaust valve through the cam on it to open the intake port or The exhaust port, but the compression spring will be compressed synchronously during the downward pushing process. Therefore, when the downward pressure of the cam disappears, the elastic restoring force of the compression spring can drive the intake valve and exhaust valve to close the intake Port and exhaust port.
  • the disadvantage is that as the engine speed increases, it will gradually approach and exceed the limit of the rebound speed of the compression spring, making the valve unable to fully close before the piston reaches the top dead center, and causing the following problems: First, the piston may hit To the valve that has not been closed. Second, because the valve has not yet returned to the valve seat, and the intake port has not been completely closed, the upward compression stroke of the piston will cause the mixed oil and gas to squeeze out the combustion chamber, causing the engine compression ratio to decrease. It can cause loss of power and damage to the valve.
  • the elastic strength of the compression spring is strengthened to solve the problem that the valve cannot be closed quickly, but at the same time, the camshaft must exert more thrust to open the intake or exhaust port by pressing the transmission valve, not only the timing belt or chain Increased resistance to rotation will also consume more engine output power to rotate the camshaft, but it still cannot ensure that the above problems are effectively solved. Increased resistance or friction will also increase the temperature of the transmission components and increase wear .
  • the present invention provides a valve transmission mechanism of an engine, which can be installed on the cylinder head of the engine, and the cylinder head has at least one intake valve seat and at least one exhaust valve seat.
  • the intake valve seat is formed with an intake valve seat.
  • An air port and an intake passage communicating with the intake port, the exhaust valve seat is formed with an exhaust port and an exhaust passage communicating with the exhaust port;
  • the valve transmission mechanism includes: a drive shaft, Is pivotally connected to the cylinder head to be driven; a cam assembly, including a first cam and a second cam, which can be fixed to the drive shaft; a driven assembly, including a first follower and a second follower The moving part can be respectively driven by the first cam and the second cam, and is restricted to linearly reciprocate between the first position and the second position;
  • the valve assembly includes at least one intake valve and at least one exhaust valve , Can be respectively installed on the intake valve seat and the exhaust valve seat, and each has a rod portion, and a valve portion extending from one end of the rod portion,
  • valve transmission mechanism provided by the present invention can be directly pulled by the driven assembly through the cam assembly to close or push to open the intake valve and exhaust valve of the valve assembly, therefore, time delay and excessive power can be effectively avoided
  • the phenomenon of loss makes the intake and exhaust achieve better results, thereby enhancing the engine power output efficiency.
  • FIG. 1 is a perspective view of an assembled state of a valve transmission mechanism of a preferred embodiment of the present invention installed on a cylinder head.
  • FIG 2 is another perspective view of the assembled state of the valve transmission mechanism installed on the cylinder head of the first embodiment of the present invention.
  • Fig. 3 is an exploded perspective view of the valve transmission mechanism and the cylinder head of the first embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the three-dimensional appearance of the cylinder head of the first embodiment of the present invention.
  • Fig. 5 is a partial three-dimensional cross-sectional view of the cylinder head of the first embodiment of the present invention.
  • FIG. 6 is a perspective cross-sectional view along the axial direction of the drive shaft in the assembled state of the valve transmission mechanism of the first embodiment of the present invention installed on the cylinder head.
  • Fig. 7 is a side sectional view along the axial direction of the intake valve in the assembled state of the valve transmission mechanism of the first embodiment of the present invention installed on the cylinder head.
  • Fig. 8 is a side sectional view along the axial direction of the exhaust valve in an assembled state in which the valve transmission mechanism of the first embodiment of the present invention is installed on the cylinder head.
  • Fig. 9 is a partial enlarged schematic diagram of Fig. 7 of the present invention.
  • Fig. 10 is a partial enlarged schematic diagram of Fig. 8 of the present invention.
  • the present invention provides a preferred embodiment of a valve transmission mechanism of an engine.
  • the valve transmission mechanism 1 is for mounting on a cylinder head 9 of the engine, and the cylinder head 9 has at least one intake air
  • the valve seat 91 and at least one exhaust valve seat 92 as shown in FIGS. 4 and 5, this embodiment is provided with two intake valve seats 91 and two exhaust valve seats 92, and each of the intake valve seats 91 is formed There is an intake port 911.
  • the intake valve seat 91 is provided with an intake passage 912 to communicate with the intake port 911;
  • the exhaust valve seat 92 is each formed with an exhaust port 921, and at the same time, the exhaust The valve seat 92 is provided with an exhaust passage 922 connected to the exhaust port 921;
  • the valve transmission mechanism 1 includes a drive shaft 10, a cam assembly 20, a driven assembly 30, and a valve assembly 40, wherein:
  • the drive shaft 10 is pivotally connected to the cylinder head 9 such that it can be driven, as shown in FIGS. 3 and 6.
  • the cylinder head 9 of this embodiment has a base portion 9a and two wall portions 9b extending upward from the base portion 9a; the intake valve seat 91 and the exhaust valve seat 92 are formed on the base portion 9a, The air inlet 911 and the air outlet 921 are formed on the bottom wall surface of the base part 9a, and the air inlet channel 912 and the exhaust channel 922 are formed inside the base part 9a; the wall part 9b A accommodating space 93 is defined together; the drive shaft 10 is accommodated in the accommodating space 93, and two ends are pivotally connected to the wall portion 9b.
  • the cam assembly 20 includes a first cam 21 and a second cam 22, and the first cam 21 and the second cam 22 are fixed to the drive shaft 10 together at an appropriate distance. In this embodiment, it can be clearly seen that the cam assembly 20 is located in the receiving space 93.
  • the driven assembly 30, as shown in Figures 7 and 8, includes a first follower 31 and a second follower 32, which can be driven by the first cam 21 and the second cam 22, respectively, and are restricted to The first position P1 and the second position P2 perform linear reciprocating motion.
  • first follower 31 is located at the first position P1
  • first position P1 is also the upper dead center of the upper and lower displacement strokes of the first follower 31.
  • second follower 32 is located at the second position P2, and the second position P2 is also the bottom dead center of the upper and lower displacement strokes of the second follower 32.
  • the valve assembly 40 includes at least one intake valve 41 and at least one exhaust valve 42, which can be installed on the intake valve seat 2a and the exhaust valve seat 2b, respectively. And each has a rod portion 43 and a valve portion 44 extending from one end of the rod portion 43.
  • the rod portion 43 is respectively connected to the first follower 31 and the second follower 32 opposite to each other.
  • the valve The portion 44 can respectively open or close the opposite air inlet 911 and the air outlet 921.
  • the respective intake valve 41 and the exhaust valve 42 can be linked to each other to close each opposite The intake port 911 and the exhaust port 921; when the first follower 31 and the second follower 32 are respectively displaced to the second position P2, each of the opposed intake valves 41 and exhaust can be respectively linked
  • the valve 42 opens each of the opposite intake port 911 and exhaust port 921.
  • two intake valves 41 are installed on the two intake valve seats 91 respectively, and two exhaust valves 42 are installed on the exhaust valve seats 92 respectively.
  • the first cam 21 and the second cam 22 are groove-shaped cams, each of which is formed with a cam groove 23, as shown in Figures 3, 7 and 8;
  • the driven assembly 30 also includes Two rotating components 33 are respectively installed and fixed on the first follower 31 and the second follower 32.
  • the rotating component 33 includes a rotating component 331, which rotatably accommodates the opposite first cam 21 In the cam groove 23 of the second cam 22 and the cam groove 23 of the second cam 22, the first follower 31 and the second follower 32 can be linked with the rotation of the first cam 21 and the second cam 22 .
  • the first follower 31 and the second follower 32 are restricted to only move linearly up and down, when the first cam 21 and the second cam 22 follow the drive shaft 10 When rotating, the non-circular cam groove 23 on the track can be used to drive the first follower 31 and the second follower 32 to slide up and down along the linear track through the rotating member 331 Displacement, the top dead center of the up and down sliding displacement is the first position P1, and the bottom dead center is the second position P2.
  • the rotating assembly 33 further includes a spindle 332, as shown in FIGS. 6 to 8, one end of which is fixedly connected to the first follower 31 or the second follower 32, and the other end is connected to the
  • the rotating members 331 are pivotally connected to each other, so that while the rotating members 331 move relative to each other in the relative cam grooves 23, the spindle 332 can also be used as the axis of rotation to rotate in the respective cam grooves 23, thus reducing rotation
  • the rotating member 331 can be a bearing, such as a common ball bearing, needle bearing, self-lubricating bearing, and the like.
  • the valve transmission mechanism 1 further includes two guide sliding assemblies 50, as shown in FIGS. 3, 7 and 8.
  • the guide sliding assemblies 50 each include two guide sliding blocks 51, which are arranged at relatively intervals in the The cylinder head 9 can be used to form a guide groove 52 between each other, so that the first follower 31 and the second follower 32 can be restricted in the guide groove 52 for linear reciprocating motion.
  • the guide slider 51 of each guide slide assembly 50 is respectively locked on the inner wall surface of each opposed wall part 9b of the cylinder head 9, but it is not limited to this, and can also be directly connected to each wall part 9b.
  • the inner wall surface is integrally formed.
  • the inner side of the top end and the bottom end of the guide slider 51 of each guide slide assembly 50 are each protruded with a limiting protrusion 511 to displace the first follower 31 and the second follower 32
  • the top end can be resisted and restricted by the relative limit protrusions 511, and will not continue to move upward.
  • the first follower 31 and the second follower 31 When the follower 32 is displaced to the second position P2, its bottom end can also be resisted and restricted by the respective relative limit protrusions 511, and will not continue to move downward.
  • the purpose is to reduce or Prevent the inertial force generated when the first follower 31 and the second follower 32 move toward the first position P1 or the second position P2 from being transmitted to the rotating member 331, causing the rotation
  • the member 331 or the mandrel 332 is damaged, especially the damage caused by the collision between the rotating member 331 and the opposing cam grooves 23.
  • the structure that can be restricted when the first follower 31 and the second follower 32 are forced to move up to the first position P1 or move down to the second position P2 can have various implementations, but not It is limited to the limiting structure formed between the above-mentioned limiting protrusion 511 and the opposing parts of each follower.
  • a concave-convex structure or a mutual embedding structure formed between the guide slider 51 and each follower can also achieve the same
  • the valve transmission mechanism 1 further includes two first elastic buffer members 60, as shown in FIGS. 3 and 6, which are fixed on the cylinder head 9 and respectively communicate with the first driven member.
  • 31 and the second follower 32 are opposed to each other, and can receive the opposing first follower 31 when the first follower 31 and the second follower 32 move toward the second position P2. Compresses against the second follower 32 elastically, so that the elastic buffering effect required by the first follower 31 and the second follower 32 during the transmission process can be provided.
  • the cylinder head 9 has two positioning seats 94, and each positioning seat 94 has a spring accommodating slot 941, as shown in FIGS. 3 and 6;
  • the first elastic buffer 60 is a compression spring, One end is respectively accommodated and positioned in the spring accommodating groove 941, and the other end can be used for the opposing first follower 31 and the second follower 32 to press against.
  • the positioning seat 94 of this embodiment is assembled and locked on the inner wall surface of each wall portion 9b of the cylinder head 9, but it is not limited to this, and the inner wall surface of each wall portion 9b may be integrally formed.
  • the first elastic buffer member 60 is made to produce elastic buffer effect only in the last stroke of the movement of the first follower 31 and the second follower 32 toward the second position P2. This means that the first elastic buffer member 60 will not affect the first follower 31 and the first follower 31 and the second follower 31 during most of the strokes before the end of the first follower 31 and the second follower 32.
  • the displacement and sliding of the two followers 32 generates any resistance. Therefore, it can be ensured that the power from the drive shaft 10 will not suffer too much loss.
  • the top end of the positioning seat 94 also forms a limit wall 942, so that when the first follower 31 and the second follower 32 move to the second position P2, in addition to elastic compression of the In addition to the first elastic buffer 60, the bottom end of the first elastic buffer member 60 can also be pushed and limited by the respective relative limiting walls 942, so as not to continue to move downward.
  • the purpose is to reduce or avoid the The inertial force generated when the moving member 31 and the second driven member 32 move to the second position P2 is transmitted to the rotating member 331, causing damage to the rotating member 331 or the spindle 332, especially when rotating Damage caused by the collision between the member 331 and each of the opposing cam grooves 23.
  • the structure that can be restricted when the first follower 31 and the second follower 32 are displaced downward to the second position P2 can have various implementations, and is not limited to the aforementioned restricting wall 942 and each
  • the limiting structure formed between the opposing parts of the follower, for example, using the concave-convex structure or the mutual embedded sliding structure between the positioning seat 94 and each follower, etc., can also achieve the same limiting effect, and these embodiments should include Within the technical scope of the present invention.
  • the above-mentioned limiting wall 942 and the limiting protrusion 511 on the inner side of the bottom end of the guide slider 51 have the same function and purpose. Therefore, the limiting wall 942 and the guide can also be selectively provided.
  • the limiting protrusion 511 at the bottom end of the slider 51 may be provided at the same time to perform the required functions together.
  • the first follower 31 and the second follower 32 are each provided with a shaft seat 34.
  • the shaft seat 34 has a first seat wall 341, respectively. Relative to the first cam 21 and the second cam 32, and each has a second seat wall 342 opposite to the intake valve seat 2a or the exhaust valve seat 2b, and on the first of each shaft seat 34 A shaft hole 343 is respectively penetrated between the seat wall 341 and the second seat wall 342, through which the free ends of the rods 43 opposite to the intake valve 41 and the exhaust valve 42 can penetrate and protrude.
  • the valve assembly 40 also includes at least two first fixed ring sleeves 45 and at least two second fixed ring sleeves 46.
  • the first fixed ring sleeves 45 are respectively connected to the intake valve 41 and the exhaust valve 42 through The rod 43 penetrates through the end 431 and is opposite to the first seat wall 341; the second fixed ring sleeve 46 is respectively connected to the intake valve 41 and exhaust valve 42 where the rod 43 does not penetrate. 432, opposite to the second seat wall 342; when the first follower 31 and the second follower 32 respectively move to the first position P1, they can pass through the first seat wall 341 respectively.
  • the first fixed ring sleeve 45 facing each other is linked to the intake valve 41 and the exhaust valve 42 facing each other to close the respective intake ports 911 and exhaust ports 921; when the first driven When the member 31 and the second driven member 32 respectively move to the second position P2, the second seat wall 342 can be used to press against the opposite second fixed ring sleeve 46 to link the opposite The intake valve 41 and the exhaust valve 42 open the opposite intake port 911 and exhaust port 921 respectively.
  • first fixing ring sleeve 45 and the second fixing ring sleeve 46 are respectively inserted and set in the radial direction by the positioning pin 47 at the passing end 431 and the non-piercing part 432 of each opposite rod 43. , So that each other can be accurately and firmly connected to each other through assembly.
  • the valve transmission mechanism 1 further includes at least two elastic support members 70, as shown in FIGS. 7 to 10, which are respectively disposed on the first fixed ring sleeves of the intake valve 41 and the exhaust valve 42 45, and between the first seat walls 341 of the first follower 31 and the second follower 32 that are opposed to each other, so that the first follower 31 and the second follower 32 are displaced to the first
  • the elastic restoring force of the elastic top support member 70 can act on each of the opposed first fixing ring sleeves 45, forcing the valve portions 44 of the intake valve 41 and exhaust valve 42 to elastically press against
  • the intake valve seat 91 and the exhaust valve seat 92 that are opposed to each other closely close the intake port 911 and the exhaust port 921 that are opposed to each other.
  • each of the first fixing ring sleeve 45 is formed with a spring positioning portion 451;
  • the elastic top support 70 is a compression spring, which can be inserted and positioned on the spring positioning portion 451.
  • the spring positioning portion 451 is substantially cylindrical, except that the elastic top support 70 can be inserted and positioned, when the first follower 31 or the second follower 32 moves toward the first When the position P1 moves in conjunction with the first seat wall 341, the bottom wall surface 452 of the spring positioning portion 451 can also press against each other opposite first seat wall 341.
  • the first fixed ring sleeve 45 and each opposite first seat wall 341 are formed with A first gap S1
  • a second gap S2 is formed between the second fixed ring sleeve 46 and each of the opposing second seat walls 342, as shown in FIG. 9; the first follower 31 and the second follower
  • a third gap S3 is formed between the first fixing ring sleeve 45 and each opposite first seat wall 341, as shown in FIG.
  • the third The gap S3 is just the sum of the first gap S1 and the second gap S2, and the second fixing ring sleeve 46 abuts against each of the opposing second seat walls 342, so there is no gap between them.
  • the purpose of setting the first gap S1 is to ensure that after the first follower 31 and the second follower 32 move from the second position P2 to the first position P1, they can still pass through the elastic
  • the elastic restoring force of the top support member 70 acts on each opposed first seat wall 341, so that the valve portion 44 of each opposed intake valve 41 or exhaust valve 42 can be elastically displaced upward slightly, for example, upward
  • the elastic displacement is 0.5 mm, and the elastically fits against each of the opposite intake valve seat 91 or exhaust valve seat 92, thereby ensuring that the intake port 911 and the exhaust port 921 are tightly closed.
  • the first seat wall 341 is still against the first fixed ring sleeve 45. If there is no design of the first gap S1, the valve portion 44 of the intake valve 41 or the exhaust valve 42 and the opposite intake valve seat 91 or the exhaust valve seat 92 may collide with each other rigidly and be damaged. At the same time, the impact force generated by the aforementioned collision may also be indirectly transmitted to the rotating assembly 33 through the first follower 31 or the second follower 32, thereby causing damage to the rotating element 331, the spindle 332 and other components.
  • the design of the first gap S1 can cleverly avoid the occurrence of the above-mentioned collision situation, and can also allow the elastic support member 70 to automatically play the role of elastic support during the final stroke of the follower, so that the valve The portion 44 can elastically abut against the respective intake valve seat 91 or the exhaust valve seat 92, and through this appropriate elastic force, the valve portion 44 is sufficiently resistant to the vacuum suction force from the combustion chamber, and Will not produce uncontrolled opening.
  • the purpose of setting the second gap S2 is to ensure that the valve portion 44 of the intake valve 41 or the exhaust valve 42 is worn after the valve portion 44, the intake valve seat 91, and the exhaust valve seat 92 , It can still be kept in a sealed state with the air inlet 911 and the air outlet 921.
  • valve portion 44 can still be connected to the opposite air inlet 911 or exhaust port within a certain wear range. 921 is kept in a sealed state.
  • the valve portion 44 of the respective intake valve 41 or the exhaust valve 42 may also be allowed to be pressed by the elastic The elastic restoring force of the support member 70 moves upward and lifts it slightly by 0.3 mm, thereby ensuring that the valve portion 44 and the opposite air inlet 911 or the air outlet 921 are kept in a sealed state.
  • the second gap S2 will be reduced from 1 mm by 0.3 mm to 0.7 mm at this time, and the first gap S1 will be increased by 0.3 mm to 0.8 mm from the original 0.5 mm. It can be seen from the above that if the second gap S2 is set to 1 mm, the maximum wear amount allowed in this embodiment is 1 mm, that is, in principle, the normal sealing state can be maintained within this maximum wear amount.
  • the valve transmission mechanism 1 further includes at least two second elastic buffer members 80, as shown in FIGS. 7 to 10, which are respectively arranged on the second fixing rings of the intake valve 41 and the exhaust valve 42
  • the sleeve 46, and the opposite intake valve seat 91 and the exhaust valve seat 92 can be elastic when the first follower 31 and the second follower 32 move to the second position P2. Abutting against each of the opposite second fixed ring sleeves 46 makes the intake valve 41 and the exhaust valve 42 have an elastic buffering effect during the opening process.
  • the bottom end of the second elastic buffer member 90 of this embodiment abuts between the top wall surface 913 of the intake valve seat 91 and the top wall surface 923 of the exhaust valve seat 92, and the top wall surface 913
  • a rod penetrating hole 914, 924 is respectively provided between the, 923 and each of the opposing intake channels 912 and the exhaust channel 922, through which the rods 43 of the opposing intake valve 41 and exhaust valve 42 can pass through.
  • the top wall surface 913 and the top wall surface 923 are respectively formed on different positions on the same wall surface.
  • the second elastic buffer member 80 is a compression spring, and is respectively sleeved and positioned on the rod portions 43 of the intake valve 41 and the exhaust valve 42 opposite to each other.
  • the second fixed ring sleeve 46 is opposite to each of the second elastic buffer members 80.
  • the end is separated by a distance d2, as shown in Figure 9, the second elastic buffer member 80 is only at the end of the movement of the first follower 31 and the second follower 32 toward the second position P2.
  • the elastic buffering effect is generated during the first stroke, which means that the second elastic buffer 80 will not be affected during most of the strokes before the last stroke of the first follower 31 and the second follower 32.
  • the displacement and sliding of the first follower 31 and the second follower 32 generate any resistance. Therefore, it can be ensured that the power from the drive shaft 10 will not suffer too much loss.
  • the first follower 31 and the second follower 32 move toward the second position P2, that is, the distance between the intake valve 41 and the exhaust valve 42 In the head, about half of the stroke is idle stroke, and the other half of the stroke is elastic buffer stroke.
  • the idle stroke can reduce power loss.
  • the elastic buffer stroke can not only exert the elastic buffer function, but also reduce or eliminate the inertia effect.
  • the force can also be converted into an auxiliary force for the return stroke, that is, an auxiliary force is provided when the first follower 31 and the second follower 32 move toward the first position P1, so as to reduce the rotation assembly 33
  • an auxiliary force is provided when the first follower 31 and the second follower 32 move toward the first position P1, so as to reduce the rotation assembly 33
  • the resistance encountered when the intake valve 41 and the exhaust valve 42 are pulled by the transmission makes the transmission more labor-saving, thereby reducing wear and damage.
  • the first elastic buffer member 60 can also achieve the same effect as the second elastic buffer member 80.
  • the third gap S3 is the sum of the first gap S1 and the second gap S2.
  • the first gap S1 is 0.5 mm and the second gap is 1 mm
  • the The third gap S3 is 1.5 mm.
  • this embodiment only discloses the cylinder head 9 and the valve transmission mechanism 1 installed on the cylinder head 9, and does not disclose other components, such as spark plugs and fuel injectors commonly installed on the cylinder head 9.
  • the cylinder, the piston installed in the cylinder, the crankshaft connecting the piston and other components are not disclosed. Because these components are not the structural features to be improved by the present invention, and are roughly the same as the traditional structure and function, they will not be repeated here.
  • the structure of the cylinder head 9 of this embodiment only shows the general structure to be improved, and is not an actual complete or precise structure.
  • the valve transmission mechanism 1 of this embodiment uses a four-stroke two-in-two-out internal combustion engine as a schematic structure, so it has two intake valves 41 and two exhaust valves 42. Similarly, the cylinder head 9 There are also two intake valve seats 91 and two exhaust valve seats 92. We know that the operation of a four-stroke internal combustion engine is divided into four strokes: intake, compression, power, and exhaust. Therefore, the two intake valves 41 in this embodiment will synchronously open the intake during the above intake stroke.
  • the air port 911 allows air or gas mixed with oil to enter the combustion chamber of the cylinder through the intake passage 912 and the intake port 911, and close the intake port 911 at the end of the intake stroke; the other two
  • the exhaust valve 42 simultaneously opens the exhaust port 921 during the exhaust stroke, so that exhaust gas in the combustion chamber can be discharged from the exhaust port 921 through the exhaust passage 922.
  • the opening degree of the intake valve 41 and the exhaust valve 42 when they are opened, and the timing of the opening and closing are pre-designed by the cam grooves 23 of the first cam 21 and the second cam 22 of the cam assembly 20, The first follower 31 and the second follower 32 of the matched follower assembly 30 are controlled by mutual linkage.
  • the opening or head of the intake valve 41 and the exhaust valve 42 is not the technical focus of the present invention.
  • the opening and closing timing or valve timing of the intake valve 41 and the exhaust valve 42 is also This is not the technical focus of the present invention.
  • valve transmission mechanism 1 of the engine of the present invention can summarize the following features and advantages:
  • the present invention uses the structure in which the traditional crankshaft drives the camshaft through a timing belt or chain as the main drive structure.
  • the cams on the traditional camshaft are integrally formed.
  • the first cam is assembled on the drive shaft 10. 21 and the second cam 22 constitute.
  • the first cam 21 and the second cam 22 of the present invention are grooved cams, which can drive the intake valve 41 and the exhaust valve 42 to open and close through the driven assembly 30 up and down in both directions.
  • the traditional cams can only Provides a unidirectional downward pressing force. Therefore, the present invention appropriately retains the characteristics of the traditional drive structure without adding a new or different power source and drive structure, so that the overall structure is still quite streamlined and the cost of improvement can be reduced. , And improve the possibility of modification or implementation.
  • the present invention retains the traditional power source and drive structure, which can ensure the reliability and stability of the power source. Especially, compared with power sources such as electric motors or solenoid valves, mechanical drives have relatively better reliability and stability. degree.
  • the cam assembly 20 of the present invention can open and close the valve assembly 40 directly and rigidly through the rotating assembly 33 and the driven assembly 30 through the cam groove 23 on the cam assembly 20. Therefore, it can prevent the traditional valve assembly from being affected by the spring when it is opened.
  • the large elastic resistance and the limited elastic restoring force of the spring when it is closed the time lag is caused. Therefore, in the high-speed state of the traditional spring-type valve mechanism, it is easy to cause the piston to hit the valve that has not been closed, and Since the valve has not yet returned to the valve seat, the shortcomings of engine compression ratio reduction and power loss, and even valve damage, can indeed be effectively solved in the present invention.
  • the present invention is provided with springs, such as the first buffer member 60, the second buffer member 80 and the elastic top support member 70, the first buffer member 60 and the second buffer member 80 are only in the end stroke of the valve It is used to provide elastic buffering effect, therefore, the opening action of the valve will not produce excessive resistance or cause any hysteresis, that is to say, most of the valve still maintains a free stroke without resistance during the opening process.
  • the elastic top support member 70 does not produce any damping effect during the closing stroke of the valve, but only uses its elastic restoring force at the moment of closing to keep the valve tight to ensure that the valve has sufficient top sealing. Therefore, there is no resistance to the closing stroke of the valve or any hysteresis. Therefore, the valve transmission mechanism 1 of the present invention can ensure that the valve opens and closes quickly and accurately, and fully meets the requirements of the engine in a high-speed state. For the demand on valve drive.
  • valve of the present invention since the valve of the present invention is mostly in idle stroke during the opening and closing process, and is not affected by spring resistance, the rotation resistance of its timing belt or chain is small, and it does not consume too much engine output power. Therefore, the power output efficiency of the engine can be effectively improved.
  • the present invention uses the design of the first gap S1 and the second gap S2 to reserve a proper dimensional margin to eliminate manufacturing tolerances, and it can also maintain normal operation when subsequent wear between the valve and the valve seat occurs , Without affecting the efficiency of the valve switch.
  • the guide slider 51 of the present invention and each follower, and between the positioning seat 94 and each follower, there are up and down limit structures, such as the limit protrusions on the guide slider 51 511.
  • the limit wall 942 on the positioning seat 94 can be designed in this way to effectively avoid the inertial force generated when the follower and other linkage members are sliding up and down, causing damage to the rotating member 331 or the spindle 332. Therefore, the service life of related components such as the rotating member 331 and the spindle 332 can be extended.
  • the present invention has excellent creative practicability among similar products.
  • searching the global related technical materials or patent documents it is not found that the same structure is disclosed first. Therefore, the present invention has the requirements for invention patents. Therefore, an application was filed in accordance with the law.
  • the above are only part of the feasible embodiments of the present invention. Any equivalent structural changes made by applying the description of the present invention and the defined protection scope should be included in the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

一种引擎的气门传动机构(1),供安装于引擎的汽缸盖(9)上,主要包括驱动轴(10)、凸轮组件(20)、从动组件(30)及气门组件(40);驱动轴(10)可被驱转地枢接于汽缸盖(9)上,以连动凸轮组件(20),并通过凸轮组件(20)连动从动组件(30),再通过从动组件(30)连动气门组件(40),其中,从动组件(30)被限制在第一位置(P1)及第二位置(P2)间作线性式往复运动,在第一位置(P1)时,可连动气门组件(40)的进气门(41)或排气门(42)封闭汽缸盖(9)上各相对的进气口(911)或排气口(921),在第二位置(P2)时,则连动进气门(41)或排气门(42)开启各相对的进气口(911)或排气口(921)。由于气门传动机构(1)直接拉动关闭或推动开启进气门(41)或排气门(42),可有效地避免产生时间延迟与动力过度损耗,使进、排气获得较佳效果,进而提升引擎动力输出效能。

Description

引擎的气门传动机构 技术领域
本发明涉及一种引擎的气门传动构造,具体是指一种可供安装于往复式内燃机引擎上的气门传动机构。
背景技术
众所周知,典型的四行程往复式内燃机引擎,大致包括汽缸本体及一个安装于该汽缸本体上的汽缸盖,并搭配有冷却系统与燃烧系统;该汽缸本体设置有汽缸、连杆、活塞、曲轴等构件;该汽缸盖设置有进气门、排气门等构件。该引擎作用原理通常分成吸气、压缩、燃烧及排气四个活塞的动作行程,并在该活塞上下来回二次后完成。
大部分引擎的汽缸顶部,也就是传统上所称的汽缸盖,通常设置有两个洞,分别为一进气口及一排气口,并设置有二气门用以开启及关闭所述进气口与排气口,当进气门开启时,允许空气或混合油料的气体进入汽缸,当排气门开启时,允许燃烧过的气体,也就是废气,从汽缸内排出。所述进气门与排气门大部分的时间处于关闭状态,只有在进气与排气行程时会开启。
传统进气门或排气门大多利用凸轮轴带动,该凸轮轴则是利用曲轴通过正时皮带或链条同步带动,一般曲轴旋转一圈时,凸轮轴只旋转半圈。所述凸轮轴通常通过弹簧式气门机构带动进气门与排气门,也就是说,该凸轮轴通过其上的凸轮下压推动该进气门或排气门,以开启该进气口或排气口,但在下压推动过程中会同步压缩压缩弹簧,因此,当凸轮的下压力量消失后,便可通过该压缩弹簧的弹性回复力带动该进气门与排气门关闭该进气口与排气口。缺点是,随着引擎转速提高,会渐渐地逼近并超过该压缩弹簧回弹速度的极限,使得气门无法在活塞到达上死点之前完全关闭,并导致以下问题:第一,活塞有可能会撞击到尚未关紧的气门。第二,由于气门尚未回到气门座,而未完全关闭进气口,造成活塞在往上的压缩行程,会将混合油气挤出燃烧室,造成引擎压缩比降低,该压缩比不足的情形会导致动力流失,也可能造成气门损坏。
传统利用加强压缩弹簧的弹性强度来解决气门无法快速关闭的问题,但也同时造成凸轮轴必须施加更大的推力才能下压传动气门开启进气口或排气口,不但正时皮带或链条的转动阻力变大,也会消耗掉更多的引擎输出动力来转动该凸轮轴,却仍然无法确保上述问题获得有效解决,加大的阻力或摩擦力也会造成传动的机件温度升高,磨损加剧。
发明内容
本发明提供一种引擎的气门传动机构,可供安装于该引擎的汽缸盖上,且该汽缸盖具有至少一进气气门座及至少一排气气门座,所述进气气门座形成有一进气口及一个连通所述进气口的进气通道,所述排气气门座形成有一排气口及一个连通所述排气口的排气通道;所述气门传动机构包括:驱动轴,可被驱转地枢接于所述汽缸盖上;凸轮组件,包括第一凸轮及第二凸轮,可被固接于所述驱动轴上;从动组件,包括第一从动件及第二从动件,可分别受所述第一凸轮及第二凸轮所带动,并被限制在第一位置及第二位置间作线性式往复运动;气门组件,包括至少一进气门及至少一排气门,可分别安装于所述进气气门座与排气气门座上,且各具有杆部,以及一个自所述杆部一端延伸的阀部,所述杆部分别连接于各相对的第一从动件与第二从动件,所述阀部可分别开启或封闭各相对的进气口与排气口;当所述第一从动件与第二从动件分别位移至所述第一位置时,可分别连动各相对的进气门与排气门封闭各相对的进气口与排气口;当所述第一从动件与第二从动件分别位移至所述第二位置时,可分别连动各相对的进气门与排气门开启各相对的进气口与排气口。
本发明提供的气门传动机构,由于可以直接通过该凸轮组件由该从动组件拉动关闭或推动开启该气门组件的进气门与排气门,因此,可以有效地避免产生时间延迟,以及动力过度损耗的现象,使进、排气达到较佳的效果,进而提升引擎动力输出效能。
附图说明
图1为本发明较佳实施例的气门传动机构安装于汽缸盖的组装状态的立体外观图。
图2为本发明第一实施例的气门传动机构安装于汽缸盖的组装状态另一立体外观图。
图3为本发明第一实施例的气门传动机构及汽缸盖的立体分解图。
图4为本发明第一实施例的汽缸盖立体外观示意图。
图5为本发明第一实施例的汽缸盖局部立体剖面示意图。
图6为本发明第一实施例的气门传动机构安装于汽缸盖的组装状态下沿着驱动轴的轴向立体剖视图。
图7为本发明第一实施例的气门传动机构安装于汽缸盖的组装状态下沿着进气门的轴向侧视剖面图。
图8为本发明第一实施例的气门传动机构安装于汽缸盖的组装状态下沿着排气门的轴向 侧视剖面图。
图9为本发明图7的局部放大示意图。
图10为本发明图8的局部放大示意图。
附图标记
1 气门传动机构
10  驱动轴
20  凸轮组件
21  第一凸轮
22  第二凸轮
23  凸轮槽
30  从动组件
31  第一从动件
32  第二从动件
33  转动组件
331 转动件
332 心轴
34  轴座
341 第一座壁
342 第二座壁
343 轴孔
40  气门组件
41  进气门
42  排气门
43  杆部
431 穿出端
432 未穿出部位
44  阀部
45  第一固定环套
451 弹簧定位部
452 底端壁面
46  第二固定环套
47  定位销
50  导滑组件
51  导滑块
511 限位突部
52  导槽
60  第一缓冲件
70  弹性顶撑件
80  第二缓冲件
9   汽缸盖
9a  底座部位
9b  壁墙部位
91  进气气门座
911 进气口
912 进气通道
913 顶壁面
914 杆部穿伸孔
92  排气气门座
921 排气口
922 排气通道
923 顶壁面
924 杆部穿伸孔
93  容纳空间
94  定位座
941 弹簧容槽
942 限位壁
P1  第一位置
P2  第二位置
d1  距离
d2  距离
P2  距离
S1  第一间隙
S2  第二间隙
S3  第三间隙
S4  第四间隙
具体实施方式
如图1至3所示,本发明提供一种引擎的气门传动机构的较佳实施例,该气门传动机构1供安装于该引擎的汽缸盖9上,且该汽缸盖9具有至少一进气气门座91及至少一排气气门座92,如图4、5所示,本实施例共设置有二进气气门座91与二排气气门座92,且所述进气气门座91各形成有进气口911,同时,所述进气气门座91共同设置有进气通道912连通所述进气口911;所述排气气门座92各形成有排气口921,同时,所述排气气门座92共同设置有排气通道922连通所述排气口921;所述气门传动机构1包括驱动轴10、凸轮组件20、从动组件30及气门组件40,其中:
所述驱动轴10,如图3、6所示,可被驱转地枢接于所述汽缸盖9上。本实施例的汽缸盖9具有底座部位9a及二个自所述底座部位9a往上延伸的壁墙部位9b;所述进气气门座91及排气气门座92形成于所述底座部位9a,并于该底座部位9a的底壁面上形成所述进气口911与排气口921,在所述底座部位9a的内部形成所述进气信道912与排气信道922;所述壁墙部位9b间共同界定出容纳空间93;所述驱动轴10容纳于所述容纳空间93内,且二端分别枢接于所述壁墙部位9b上。
所述凸轮组件20,包括第一凸轮21及第二凸轮22,所述第一凸轮21与第二凸轮22以适当地间隔距离一起被固接于所述驱动轴10上。在本实施例中可以清楚看到所述凸轮组件20位于所述容纳空间93内。
所述从动组件30,如图7、8所示,包括第一从动件31及第二从动件32,可分别受所述第一凸轮21及第二凸轮22所带动,被限制在第一位置P1及第二位置P2间作线性式往复运动。从图7可以清楚看到,该第一从动件31位于第一位置P1,该第一位置P1也是该第一从动件31上、下位移行程的上死点。从图8可以清楚看到,该第二从动件32位于第二位置P2, 该第二位置P2也是该第二从动件32上、下位移行程的下死点。
所述气门组件40,如图3、7及8所示,包括至少一进气门41及至少一排气门42,可分别安装于所述进气气门座2a与排气气门座2b上,且各具有杆部43,以及一个自所述杆部43一端延伸的阀部44,所述杆部43分别连接于各相对的第一从动件31与第二从动件32,所述阀部44可分别开启或封闭各相对的进气口911与排气口921。据此,当所述第一从动件31与第二从动件32分别位移至所述第一位置P1时,可分别连动各相对的进气门41与排气门42封闭各相对的进气口911与排气口921;当所述第一从动件31与第二从动件32分别位移至所述第二位置P2时,可分别连动各相对的进气门41与排气门42开启各相对的进气口911与排气口921。本实施例共设置有二进气门41分别安装于二个所述进气气门座91上,以及二排气门42分别安装于所述排气气门座92上。
在本实施例中,所述第一凸轮21与第二凸轮22皆为槽型凸轮,其上各形成有凸轮槽23,如图3、7及8所示;所述从动组件30还包括二转动组件33,分别安装固定于所述第一从动件31与第二从动件32上,所述转动组件33包括转动件331,可转动地容纳定位于相对的所述第一凸轮21的凸轮槽23与第二凸轮22的凸轮槽23内,并可随着所述第一凸轮21与第二凸轮22的转动,连动所述第一从动件31与第二从动件32。
换句话说,由于所述第一从动件31与第二从动件32被限制只能沿着上、下线性移动,因此,当第一凸轮21与第二凸轮22随着所述驱动轴10转动时,即可通过其上非圆形的凸轮槽23轨迹,通过所述转动件331来带动各相对的第一从动件31与第二从动件32沿着线性轨迹上、下滑动位移,该上、下滑动位移的上死点即为所述第一位置P1,下死点即为所述第二位置P2。
在本实施例中,所述转动组件33还包括一心轴332,如图6至8所示,其一端固接于所述第一从动件31或第二从动件32,另一端与所述转动件331相互枢接,使所述转动件331在各相对凸轮槽23内作相对移动的同时,还可以该心轴332为转动轴心在各凸轮槽23内转动,如此,可降低转动件331与凸轮槽23彼此间在相对运动时产生的摩擦阻力,进而使凸轮组件20与从动组件30彼此间的传动更为平稳顺畅。
可轻易想到的是,所述转动件331可为轴承,例如常见的滚珠轴承、滚针轴承、自润轴承等。
在本实施例中,该气门传动机构1还包括二导滑组件50,如图3、7及8所示;所述导滑组件50各包括二导滑块51,并相对间隔设置于所述汽缸盖9上,可用以在彼此间形成导 槽52,使所述第一从动件31与第二从动件32可被限制在所述导槽52内作线性式往复运动。本实施例各导滑组件50的导滑块51分别被锁固于所述汽缸盖9各相对壁墙部位9b的内壁面上,但不以此为限,也可以直接由各壁墙部位9b的内壁面一体成型而成。
在本实施例中,所述各导滑组件50的导滑块51顶端及底端内侧各突设有一限位突部511,使所述第一从动件31与第二从动件32位移至所述第一位置P1时,其顶端可分别受到各相对限位突部511予以抵顶限位,而不至于继续往上位移,同理,当所述第一从动件31与第二从动件32位移至所述第二位置P2时,其底端同样可分别受到各相对限位突部511予以抵顶限位,而不至于继续往下位移,其目的在于:可由此减轻或避免当所述第一从动件31与第二从动件32等构件往所述第一位置P1或第二位置P2方向移动时产生的惯性力传递于所述转动件331,造成所述转动件331或心轴332等损坏,特别是转动件331与各相对凸轮槽23间因相互碰撞所造成的损坏。
显而易见地,迫使第一从动件31与第二从动件32往上位移至第一位置P1或往下位移至第二位置P2时能够被限位的结构可以有多种实施方式,并不局限于上述限位突部511与各从动件相对部位间所形成的限位结构,例如,利用导滑块51与各从动件间设置凹凸结构或相互嵌滑结构等,也可以达到相同的限位效果,这些实施方式均应包含于本发明的技术范畴内。
在本实施例中,该气门传动机构1还包括二第一弹性缓冲件60,如图3、6所示,其被固定于所述汽缸盖9上,且分别与所述第一从动件31及第二从动件32相对,并可在所述第一从动件31与第二从动件32往所述第二位置P2方向移动时,受到相对的所述第一从动件31与第二从动件32弹性抵顶压缩,如此,即可提供所述第一从动件31与第二从动件32在传动过程中所需的弹性缓冲作用。
在本实施例中,所述汽缸盖9上具有二定位座94,每一定位座94上具有弹簧容槽941,如图3、6所示;所述第一弹性缓冲件60为压缩弹簧,其一端分别容纳定位于所述弹簧容槽941内,另一端可供相对的所述第一从动件31与第二从动件32抵顶作用。本实施例的定位座94被组装锁固于所述汽缸盖9各壁墙部位9b内壁面上,但不以此为限,也可由各壁墙部位9b内壁面一体成型而成。
在本实施例中,所述第一从动件31与第二从动件32位于所述第一位置P1时,其与相对的第一弹性缓冲件60相对端相隔有一段距离d1,如图7所示,使所述第一弹性缓冲件60只在所述第一从动件31与第二从动件32往所述第二位置P2方向移动的末段行程中产生弹性缓冲作用,其意味着,该第一弹性缓冲件60在所述第一从动件31与第二从动件32末段行程前 的大部分行程中,都不会对于所述第一从动件31与第二从动件32的位移滑动产生任何阻力,因此,可以确保来自于该驱动轴10的动力不会受到太大的损耗。
在本实施例中,所述定位座94顶端还形成有限位壁942,使所述第一从动件31与第二从动件32位移至所述第二位置P2时,除了弹性压缩所述第一弹性缓冲件60外,其底端还可以分别受到各相对限位壁942予以抵顶限位,而不至于继续往下位移,其目的在于:可由此减轻或避免当所述第一从动件31与第二从动件32等构件往所述第二位置P2方向移动时产生的惯性力传递于所述转动件331,造成所述转动件331或心轴332等损坏,特别是转动件331与各相对凸轮槽23间相互碰撞所造成的损坏。
同样地,使第一从动件31与第二从动件32往下位移至第二位置P2时能够被限位的结构可以有多种实施方式,并不局限于上述限位壁942与各从动件相对部位间所形成的限位结构,例如,利用定位座94与各从动件间设置凹凸结构或相互嵌滑结构等,也可以达到相同的限位效果,这些实施方式均应包含于本发明的技术范畴内。
需特别说明的是,上述限位壁942与所述导滑块51底端内侧的限位突部511具有相同的功能与目的,因此,也可以选择性地设置所述限位壁942与导滑块51底端的限位突部511,或同时设置以共同发挥所需功能。
在本实施例中,所述第一从动件31与第二从动件32上各设置有一轴座34,如图7至10所示,所述轴座34各具有第一座壁341分别相对于所述第一凸轮21与第二凸轮32,以及各具有一第二座壁342分别相对于所述进气气门座2a或排气气门座2b,并在每一轴座34的第一座壁341与第二座壁342间分别贯设有一轴孔343,可供各相对进气门41与排气门42的杆部43自由端由此穿过突出。所述气门组件40还包括至少二第一固定环套45及至少二第二固定环套46,所述第一固定环套45分别穿套连结于所述进气门41与排气门42的杆部43穿出端431,与所述第一座壁341相对;所述第二固定环套46分别穿套连接于所述进气门41与排气门42的杆部43未穿出部位432,与所述第二座壁342相对;当所述第一从动件31与第二从动件32分别往所述第一位置P1位移时,可分别通过所述第一座壁341抵顶各相对的所述第一固定环套45,连动各相对的所述进气门41与排气门42封闭各相对的进气口911与排气口921;当所述第一从动件31与第二从动件32分别往所述第二位置P2位移时,可分别通过所述第二座壁342抵顶各相对的所述第二固定环套46,连动各相对的所述进气门41与排气门42开启各相对的进气口911与排气口921。
在本实施例中,所述第一固定环套45及第二固定环套46分别通过定位销47沿着径向插 设定位于各相对的杆部43穿出端431及未穿出部位432,使彼此可以通过组装精准且牢固地相互连接在一起。
在本实施例中,该气门传动机构1还包括至少二弹性顶撑件70,如图7至10所示,分别被设置于所述进气门41与排气门42的第一固定环套45,以及各相对的所述第一从动件31与第二从动件32的第一座壁341间,使所述第一从动件31与第二从动件32位移至所述第一位置P1时,可以通过所述弹性顶撑件70的弹性回复力作用于各相对的第一固定环套45,迫使所述进气门41与排气门42的阀部44弹性迫紧于各相对的所述进气气门座91及排气气门座92,进而紧密地关闭各相对的所述进气口911与排气口921。
在本实施例中,所述第一固定环套45上各形成有弹簧定位部451;所述弹性顶撑件70为压缩弹簧,可供穿套定位于所述弹簧定位部451。需特别说明的是,该弹簧定位部451大致呈圆柱状,除了可供所述弹性顶撑件70穿套定位外,当所述第一从动件31或第二从动件32往第一位置P1移动连动该第一座壁341时,还可以通过该弹簧定位部451的底端壁面452与各相对的第一座壁341相互抵顶作用。
在本实施例中,所述第一从动件31与第二从动件32位于所述第一位置P1时,所述第一固定环套45与各相对的第一座壁341间形成有第一间隙S1,所述第二固定环套46与各相对的第二座壁342间形成有第二间隙S2,如图9所示;所述第一从动件31与第二从动件32位于所述第二位置P2时,所述第一固定环套45与各相对的第一座壁341间形成有第三间隙S3,如图10所示,可轻易理解的是,该第三间隙S3刚好为所述第一间隙S1与第二间隙S2的总合,且所述第二固定环套46因与各相对的第二座壁342相互抵顶,所以彼此间没有任何间隙产生。
所述第一间隙S1的设置目的在于:确保所述第一从动件31与第二从动件32从所述第二位置P2移动至所述第一位置P1后,还可以通过所述弹性顶撑件70的弹性回复力作用于各相对的第一座壁341,使各相对的进气门41或排气门42的阀部44得以再略微的往上弹性位移提升,例如再往上弹性位移0.5mm,弹性贴合抵紧于各相对的进气气门座91或排气气门座92,由此,即可确保所述进气口911与排气口921被紧密地封闭。
换句话说,当所述第一从动件31或第二从动件32移动至所述第一位置P1的瞬间,由于其第一座壁341仍抵顶于所述第一固定环套45,若没有所述第一间隙S1的设计,可能导致所述进气门41或排气门42的阀部44与相对的进气气门座91或排气气门座92彼此间产生刚性碰撞而损坏,同时,上述碰撞产生的撞击力,也可能通过所述第一从动件31或第二从动件 32间接传递至所述转动组件33,进而造成转动件331、心轴332等构件损坏,因此,第一间隙S1的设计,可以巧妙地避免上述碰撞情形发生,还可以允许所述弹性顶撑件70在所述从动件的最终行程时自动地发挥弹性顶撑作用,使所述阀部44得以弹性贴合抵紧于各相对的所述进气气门座91或排气气门座92,并通过该适当的弹力,使所述阀部44足以抵抗来自于燃烧室的真空吸力,而不至于产生不受控制的开启。
所述第二间隙S2的设置目的在于:确保所述进气门41或排气门42的阀部44在其阀部44或进气气门座91、排气气门座92因使用一段时间磨耗后,仍能够与进气口911、排气口921保持在密封状态。
更进一步说,若没有上述第二间隙S2的设计,当所述进气门41或排气门42的阀部44产生磨耗后,或进气气门座91、排气气门座92产生磨耗后,由于所述第二固定环套46已经与各相对的第二座壁342相互抵顶,不允许所述进气门41或排气门42的阀部44再往上些微移动提升,因此,所述阀部44与各相对的进气气门座91或排气气门座92间将产生间隙,无法达到完全密封效果。
所以,通过所述第二间隙S2的设计,将可以有效地解决上述因磨耗所产生无法密封的问题,使阀部44在一定的磨耗范围内仍能与相对的进气口911或排气口921保持在密封状态,例如,当所述第二间隙S2被设置为1mm,且所述阀部44与各相对的进气口911或排气口921彼此间的磨耗量达到0.3mm,同时,在第一从动件31或第二从动件32移动至所述第一位置P1时,还可以允许各相对的所述进气门41或排气门42的阀部44因所述弹性顶撑件70的弹性回复力作用,再往上略微移动提升0.3mm,由此,即可确保阀部44与各相对的进气口911或排气口921保持在密封状态。
可轻易理解的是,此时的第二间隙S2将从1mm缩减0.3mm至0.7mm,而第一间隙S1将从原0.5mm增加0.3mm至0.8mm。由上可知,若第二间隙S2被设置为1mm,则本实施例允许的最大磨耗量为1mm,也就是,原则上在此最大磨耗量内皆可保持在正常的密封状态。
在本实施例中,该气门传动机构1还包括至少二第二弹性缓冲件80,如图7至10所示,分别被设置于所述进气门41与排气门42的第二固定环套46,以及相对的所述进气气门座91及排气气门座92间,可分别在所述第一从动件31与第二从动件32往所述第二位置P2位移时,弹性抵顶于各相对的第二固定环套46,使所述进气门41与排气门42在开启过程中具有弹性缓冲作用。更进一步说,本实施例的第二弹性缓冲件90底端抵顶于所述进气气门座91的顶壁面913与所述排气气门座92的顶壁面923间,且所述顶壁面913、923与各相对进气 信道912、排气信道922间分别设置有一杆部穿伸孔914、924,可分别供相对的进气门41、排气门42杆部43由此穿过。在本实施例中,所述顶壁面913与顶壁面923分别形成于同一壁面的不同位置上。
在本实施例中,所述第二弹性缓冲件80为压缩弹簧,且分别穿套定位于各相对的所述进气门41与排气门42的杆部43上。
在本实施例中,所述第一从动件31与第二从动件32位移至所述第一位置P1时,所述第二固定环套46与各相对的第二弹性缓冲件80相对端相隔有一段距离d2,如图9所示,使所述第二弹性缓冲件80只在所述第一从动件31与第二从动件32往所述第二位置P2方向移动的末段行程中产生弹性缓冲作用,其意味着,所述第二弹性缓冲件80在所述第一从动件31与第二从动件32末段行程前的大部分行程中,都不会对于所述第一从动件31与第二从动件32的位移滑动产生任何阻力,因此,可以确保来自于该驱动轴10的动力不会受到太大的损耗。
更进一步说,通过上述距离d2的设计,可以使第一从动件31与第二从动件32往所述第二位置P2方向移动的行程,也就是进气门41与排气门42的扬程中,大约有一半的行程为空行程,另外一半的行程为弹性缓冲行程,利用所述空行程可以减少动力损耗,利用该弹性缓冲行程,除了发挥弹性缓冲作用,以降低或消弥惯性作用力,还可以转换成回程的辅助力,也就是提供所述第一从动件31与第二从动件32往所述第一位置P1方向移动时的辅助力,以减轻所述转动组件33在传动拉拽所述进气门41与排气门42时所受到的阻力,使传动更为省力,进而降低磨耗与损坏。同理,所述第一弹性缓冲件60也可以达到相同于所述第二弹性缓冲件80的效果。
关于上述第三间隙S3,由于所述第一从动件31与第二从动件32位移至所述第二位置P2时,其第二座壁342分别抵顶于各相对的第二固定环套46,同时,各第二固定环套46抵顶压缩各相对的第二弹性缓冲件80,因此,自然会在所述第一座壁341与第一固定环套45间形成所述第三间隙S3,换句话说,所述第三间隙S3即所述第一间隙S1与第二间隙S2的总合,例如,当第一间隙S1为0.5mm,第二间隙为1mm时,则所述第三间隙S3为1.5mm。
需特别说明的是,本实施例仅揭露汽缸盖9与安装于汽缸盖9上的气门传动机构1,并未揭露其他组件,例如常见安装于汽缸盖9上的火星塞与喷油嘴,也未揭露汽缸及安装于汽缸内部的活塞、连接活塞的曲轴等组件,因为这些组件非本发明所要改良的结构特征,且与传统构造与功能大致相同,故在此不多所赘述。本实施例的汽缸盖9结构也仅示意出想要改 良的大致结构,并非实际完整或精确的构造。
其次,本实施例的气门传动机构1以四行程二进二出内燃机引擎作为示意构造,故具有二个所述进气门41与二个所述排气门42,同样地,汽缸盖9上也具有二个所述进气气门座91与二个所述排气气门座92。我们知道,四行程内燃机引擎的运转分成进气、压缩、动力及排气四个行程,因此,本实施例的二个所述进气门41会同步地在上述进气行程时开启所述进气口911,使空气或混有油料的气体得以通过进气通道912及所述进气口911进入汽缸的燃烧室内,并在进气行程结束时关闭所述进气口911;另二个所述排气门42则同步地在上述排气行程时开启所述排气口921,使燃烧室内的废气得以从所述排气口921通过所述排气通道922排出,可轻易想到的是,所述进气门41与排气门42被开启时的开度,以及开关的时点,通过所述凸轮组件20第一凸轮21与第二凸轮22各凸轮槽23被预先设计的轮廓曲线,搭配从动组件30的第一从动件31与第二从动件32相互连动来控制。同时,上述进气门41与排气门42的开度或扬程大小,并非本发明探讨的技术重点,同样地,上述进气门41与排气门42的开关时点或气门正时,也非本发明要探讨的技术重点。
通过以上说明可知,本发明引擎的气门传动机构1可归纳出以下数个特色与优点:
第一,本发明沿用传统曲轴通过正时皮带或链条带动凸轮轴的结构作为主要驱动架构,差异仅在于传统凸轮轴上的凸轮为一体成型,本发明实施例由驱动轴10上组装第一凸轮21与第二凸轮22构成。其次,本发明的第一凸轮21与第二凸轮22为槽形凸轮,可以通过从动组件30上、下双向带动所述进气门41与排气门42开与关,但传统凸轮只能提供单向往下压抵的作用力,因此,本发明适当地保留了传统驱动结构的特色,而未增加新的或不同的动力源与驱动结构,使得整体构造仍然相当精简,可以降低改良的成本,并提高改装或实施具体化的可能性。
第二,本发明保留传统的动力源及驱动构造,可以确保动力来源的可靠性与稳定度,特别是相对于电动马达或电磁阀等动力源,机械式驱动具有相对较佳的可靠性与稳定度。
第三,本发明的凸轮组件20可以通过其上的凸轮槽23通过转动组件33、从动组件30直接刚性传动气门组件40开启与关闭,因此,可避免产生传统气门组件开启时,受到弹簧较大弹性阻力作用,以及关闭时,受限于弹簧有限的弹性回复力作用,产生时间迟滞现象,因此,关于传统弹簧式气门机构在高转速状态下,容易产生活塞撞击到尚未关紧的气门,以及由于气门尚未回到气门座,导致引擎压缩比降低及动力流失,甚至造成气门损坏的缺点,在本发明中确实能够获得有效解决。
第四,本发明虽然设置有弹簧,例如第一缓冲件60、第二缓冲件80及弹性顶撑件70,但该第一缓冲件60与第二缓冲件80仅在气门的末段行程中用以提供弹性缓冲作用,因此,对于气门的开启动作不至于产生过大的阻力或造成任何迟滞现象,也就是说,气门在开启的过程中大部分仍维持不受阻力的空行程。另外,弹性顶撑件70在气门的关闭行程中并不会产生任何阻尼作用,而只是在关闭瞬间藉其弹性回复力,使气门保持一定的迫紧力,以确保气门具有足够的抵顶密封效果,因此,也不会对气门的关闭行程产生阻力或造成任何迟滞现象,所以,本发明的气门传动机构1可确保气门快速及准确地开与关,而充分地满足引擎在高转速状态下对于气门传动上的需求。
第五,由于本发明的气门在开关过程中大部分处于空行程,而未受到弹簧阻力作用,因此,其正时皮带或链条的转动阻力较小,也不致消耗掉太多的引擎输出动力,故可由此有效地提升引擎动力输出效能。
第六,本发明利用第一间隙S1与第二间隙S2的设计,可以预留适当尺寸裕度用以消弥制造公差,也可以在后续气门与气门座间产生磨耗时,仍能够保持正常运作,而不至于影响气门开关的效能。
第七,本发明的导滑块51与各从动件间,以及定位座94与各从动件间设置有上、下滑移的限位结构,例如导滑块51上的限位突部511、定位座94上的限位壁942,这样设计均可有效避免各从动件等连动构件在上、下滑动位移时产生的惯性力,对转动件331或心轴332等造成损坏,因此,可以延长转动件331、心轴332等相关构件的使用寿命。
综上所述,本发明在同类产品中实具极佳的创作实用性,同时遍查全球相关技术资料或专利文献,也未发现相同构造揭示在先,所以,本发明已具备发明专利所需的条件,于是,依法提出申请。同时,以上所述仅本发明部分可行实施例而已,举凡应用本发明说明书及所界定的保护范围所做的等效结构变化,理应包含在本发明的保护范围内。

Claims (16)

  1. 一种引擎的气门传动机构,其特征在于,供安装于所述的引擎的汽缸盖上,且所述的汽缸盖具有至少一进气气门座及至少一排气气门座,所述进气气门座各形成有一进气口,并设置有一进气通道连通所述进气口,所述排气气门座各形成有一排气口,并设置有一排气通道连通所述排气口;所述气门传动机构包括:
    驱动轴,被驱转地枢接于所述汽缸盖上;
    凸轮组件,包括第一凸轮及第二凸轮,所述的第一凸轮及第二凸轮分别被固接于所述驱动轴上;
    从动组件,包括第一从动件及第二从动件,所述的第一从动件及第二从动件分别受所述第一凸轮及第二凸轮带动,被限制在第一位置及第二位置间作线性式往复运动;
    气门组件,包括至少一进气门及至少一排气门,所述的进气门与排气门分别对应的安装于所述进气气门座与排气气门座上,且各具有杆部,以及一个自所述杆部一端延伸的阀部,所述杆部分别连接于各相对的第一从动件与第二从动件,所述阀部分别开启或封闭各相对的进气口与排气口;当所述第一从动件与第二从动件分别位移至所述第一位置时,分别连动各相对的进气门与排气门封闭各相对的进气口与排气口;当所述第一从动件与第二从动件分别位移至所述第二位置时,分别连动各相对的进气门与排气门开启各相对的进气口与排气口。
  2. 根据权利要求1所述的引擎的气门传动机构,其特征在于,所述第一凸轮与第二凸轮皆为槽型凸轮,其上各形成有凸轮槽;所述从动组件还包括二转动组件,分别安装固定于所述第一从动件与第二从动件上,所述转动组件各包括转动件,转动地容纳定位于各相对的第一凸轮与第二凸轮的凸轮槽内,并随着所述第一凸轮与第二凸轮的转动,连动各相对的第一从动件与第二从动件。
  3. 根据权利要求2所述的引擎的气门传动机构,其特征在于,所述转动件为轴承。
  4. 根据权利要求1所述的引擎的气门传动机构,其特征在于,所述的气门传动机构还包括二导滑组件;所述导滑组件各包括二导滑块,并相对间隔设置于所述汽缸盖上,用以在彼此间形成导槽,使所述第一从动件与第二从动件被限制在所述导槽内作线性式往复运动。
  5. 根据权利要求4所述的引擎的气门传动机构,其特征在于,所述导滑块与相对的第一从动件或第二从动件间设置有限位结构,使所述第一从动件或第二从动件位移至所述第一位置或第二位置时,得以受到所述的限位结构的限位,所述的限位结构包括所述导滑块上形成的至少一限位突部,以及所述第一从动件或第二从动件上的相对抵顶部位。
  6. 根据权利要求1所述的引擎的气门传动机构,其特征在于,所述的气门传动机构还包括二第一弹性缓冲件,其被固定于所述汽缸盖上,且分别与所述第一从动件及第二从动件相对,并在所述第一从动件与第二从动件往所述第二位置方向移动时,弹性抵顶于各相对的第一从动件与第二从动件,使所述第一从动件与第二从动件往所述第二位置方向移动时具有弹性缓冲作用。
  7. 根据权利要求6所述的引擎的气门传动机构,其特征在于,所述汽缸盖上具有二定位座,所述定位座各具有弹簧容槽;所述第一弹性缓冲件为压缩弹簧,其一端分别容纳定位于各相对定位座的弹簧容槽内,另一端供各相对的第一从动件与第二从动件抵顶作用。
  8. 根据权利要求7所述的引擎的气门传动机构,其特征在于,所述定位座与相对的第一从动件或第二从动件间设置有限位结构,使所述第一从动件或第二从动件位移至所述第二位置时得以受到所述的限位结构的限位,所述的限位结构包括所述定位座上形成的限位壁,以及所述第一从动件或第二从动件上的相对抵顶部位。
  9. 根据权利要求6所述的引擎的气门传动机构,其特征在于,所述第一从动件与第二从动件位于所述第一位置时,所述第一从动件与第二从动件与相对的第一弹性缓冲件相对端相隔有一段距离,使所述第一弹性缓冲件只在所述第一从动件与第二从动件往所述第二位置方向移动的末段行程中产生弹性缓冲作用。
  10. 根据权利要求1所述的引擎的气门传动机构,其特征在于,所述第一从动件与第二从动件上分别设置有轴座,所述轴座各具有第一座壁,并分别相对于所述第一凸轮与第二凸轮,且所述轴座各具有第二座壁,并分别相对于所述进气气门座与排气气门座,且所述轴座的第一座壁与第二座壁间各贯设有轴孔,供各相对进气门与排气门的杆部自由端由所述的轴孔穿过突出;所述气门组件还包括至少二第一固定环套及至少二第二固定环套,所述第一固定环套分别穿套连结于所述进气门与排气门的杆部穿出端,与所述第一座壁相对;所述第二固定环套分别穿套连接于所述进气门与排气门的杆部未穿出部位,与所述第二座壁相对;当所述第一从动件与第二从动件分别往所述第一位置位移时,分别通过所述第一座壁抵顶各相对的第一固定环套,连动各相对的进气门与排气门封闭各相对的进气口与排气口;当所述第一从动件与第二从动件分别往所述第二位置位移时,分别通过所述第二座壁抵顶各相对的第二固定环套,连动各相对的进气门与排气门开启各相对的进气口与排气口。
  11. 根据权利要求10所述的引擎的气门传动机构,其特征在于,所述的气门传动机构还包括至少二弹性顶撑件,分别被设置于所述进气门与排气门的第一固定环套,以及各相对的 第一从动件与第二从动件的第一座壁间,使所述第一从动件与第二从动件位移至所述第一位置时,得以通过所述弹性顶撑件的弹性回复力作用于各相对的第一固定环套,迫使所述进气门与排气门的阀部弹性迫紧于各相对的进气气门座及排气气门座,进而紧密地关闭各相对的进气口与排气口。
  12. 根据权利要求11所述的引擎的气门传动机构,其特征在于,所述第一固定环套上各形成有弹簧定位部,所述的弹簧定位部还具有底端壁面,与各相对的第一座壁相互抵顶作用;所述弹性顶撑件为压缩弹簧,供穿套定位于所述弹簧定位部。
  13. 根据权利要求11所述的引擎的气门传动机构,其特征在于,所述第一从动件与第二从动件位于所述第一位置时,所述第一固定环套与各相对的第一座壁间形成有第一间隙,所述第二固定环套与各相对的第二座壁间形成有第二间隙;所述第一从动件与第二从动件位于所述第二位置时,所述第一固定环套与各相对的第一座壁间形成有第三间隙,所述的第三间隙为所述第一间隙与第二间隙的总合,且所述第二固定环套与各相对的第二座壁相互抵顶。
  14. 根据权利要求10所述的引擎的气门传动机构,其特征在于,所述的气门传动机构还包括至少二第二弹性缓冲件,分别被设置于所述进气门与排气门的第二固定环套,以及各相对的进气气门座及排气气门座间,所述的第二弹性缓冲件分别在所述第一从动件与第二从动件往所述第二位置位移时,用以弹性抵顶各相对的第二固定环套,使所述进气门与排气门于开启过程中具有弹性缓冲作用。
  15. 根据权利要求14所述的引擎的气门传动机构,其特征在于,所述第一从动件与第二从动件位于所述第一位置时,所述第二固定环套与各相对的第二弹性缓冲件相对端相隔有一段距离,使所述第二弹性缓冲件只在所述第一从动件与第二从动件往所述第二位置方向移动的末段行程中产生弹性缓冲作用。
  16. 根据权利要求14所述的引擎的气门传动机构,其特征在于,各个所述第二弹性缓冲件均为压缩弹簧,且分别穿套定位于各相对进气门与排气门的杆部上。
PCT/CN2019/096116 2019-07-16 2019-07-16 引擎的气门传动机构 WO2021007765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096116 WO2021007765A1 (zh) 2019-07-16 2019-07-16 引擎的气门传动机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096116 WO2021007765A1 (zh) 2019-07-16 2019-07-16 引擎的气门传动机构

Publications (1)

Publication Number Publication Date
WO2021007765A1 true WO2021007765A1 (zh) 2021-01-21

Family

ID=74209694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096116 WO2021007765A1 (zh) 2019-07-16 2019-07-16 引擎的气门传动机构

Country Status (1)

Country Link
WO (1) WO2021007765A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1238175A (en) * 1917-04-09 1917-08-28 Hulbert S Clark Elastic puppet-valve.
DE3700715A1 (de) * 1986-01-22 1987-07-23 Volkswagen Ag Zwangssteuerung fuer ein ventil
US20040177821A1 (en) * 2001-04-09 2004-09-16 Stefan Battlogg Desmodromic valve drive
US20050224029A1 (en) * 2004-04-09 2005-10-13 Mobley George W Lobe-less cam for use in a springless poppet valve system
CN101852108A (zh) * 2009-06-10 2010-10-06 周先明 气门无弹簧发动机
CN102425466A (zh) * 2011-09-28 2012-04-25 上海交通大学 无气门弹簧内燃机气门机构
CN108590801A (zh) * 2018-03-05 2018-09-28 中国北方发动机研究所(天津) 一种无气门弹簧发动机液压式可变气门升程机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1238175A (en) * 1917-04-09 1917-08-28 Hulbert S Clark Elastic puppet-valve.
DE3700715A1 (de) * 1986-01-22 1987-07-23 Volkswagen Ag Zwangssteuerung fuer ein ventil
US20040177821A1 (en) * 2001-04-09 2004-09-16 Stefan Battlogg Desmodromic valve drive
US20050224029A1 (en) * 2004-04-09 2005-10-13 Mobley George W Lobe-less cam for use in a springless poppet valve system
CN101852108A (zh) * 2009-06-10 2010-10-06 周先明 气门无弹簧发动机
CN102425466A (zh) * 2011-09-28 2012-04-25 上海交通大学 无气门弹簧内燃机气门机构
CN108590801A (zh) * 2018-03-05 2018-09-28 中国北方发动机研究所(天津) 一种无气门弹簧发动机液压式可变气门升程机构

Similar Documents

Publication Publication Date Title
EP2625393B1 (en) Positive control (desmodromic) valve systems for internal combustion engines
CA1102642A (en) Variable valve timing mechanism
RU2451190C2 (ru) Двигатель с разделенным циклом
JP4057976B2 (ja) 圧縮比可変エンジン
CN107100686B (zh) 一种单凸轮轴开关支点式变模式气门驱动系统
JPH0874524A (ja) Ohcエンジン
KR101244845B1 (ko) 엔진의 가변밸브 리프트 장치
WO2021007765A1 (zh) 引擎的气门传动机构
US8360395B2 (en) Sliding valve assembly
CA2186548C (en) Internal combustion engine
JP3198772B2 (ja) 内燃機関の動弁装置におけるカム切替機構
US8161922B2 (en) Link type variable stroke engine
TW202033879A (zh) 引擎的汽門作動機構
US6814039B2 (en) Valve-actuating devices for internal combustion engines having changeable stroke functions
KR101836240B1 (ko) 엔진의 실린더 휴지 장치 및 실린더 휴지 방법
US6732693B2 (en) Valve-operating assembly of driven rotation member and cam
CA2451944A1 (en) Internal combustion engine
US6827058B1 (en) Internal combustion engine having co-axial pistons on a central yoke
JP4724009B2 (ja) エンジンの吸気制御装置
JPH08177416A (ja) Ohcエンジンにおける動弁用カムシャフト
JP3319883B2 (ja) 内燃機関の動弁装置
US6725820B2 (en) Valve-operating mechanism in engine
CN210919173U (zh) 压缩释放式发动机缸内制动装置
US6964252B2 (en) Valve lifter for internal combustion engine
RU2136902C1 (ru) Одноклапанный механизм газораспределения двигателя внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937837

Country of ref document: EP

Kind code of ref document: A1