WO2021006181A1 - 熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス - Google Patents

熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス Download PDF

Info

Publication number
WO2021006181A1
WO2021006181A1 PCT/JP2020/026066 JP2020026066W WO2021006181A1 WO 2021006181 A1 WO2021006181 A1 WO 2021006181A1 JP 2020026066 W JP2020026066 W JP 2020026066W WO 2021006181 A1 WO2021006181 A1 WO 2021006181A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cured film
thermosetting photosensitive
preferable
photosensitive composition
Prior art date
Application number
PCT/JP2020/026066
Other languages
English (en)
French (fr)
Inventor
雄一郎 榎本
青島 俊栄
健太 山▲ざき▼
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021530661A priority Critical patent/JP7261882B2/ja
Publication of WO2021006181A1 publication Critical patent/WO2021006181A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a thermosetting photosensitive composition, a cured film, a laminate, a method for producing a cured film, and a semiconductor device.
  • Resins such as polyimide and polybenzoxazole are applied to various applications because they have excellent heat resistance and insulating properties.
  • the above application is not particularly limited, and examples of a semiconductor device for mounting include use as a material for an insulating film or a sealing material, or as a protective film. It is also used as a base film and coverlay for flexible substrates.
  • thermosetting photosensitive compositions containing these resins or precursors thereof.
  • a thermosetting photosensitive composition is applied to a base material by, for example, coating, and then exposed, developed, heated, etc., if necessary, to form a cured resin on the base material.
  • the thermosetting photosensitive composition can be applied by a known coating method or the like, for example, there is a high degree of freedom in designing the shape, size, application position, etc. of the thermosetting photosensitive composition to be applied. It can be said that it has excellent manufacturing adaptability.
  • the industrial application of thermosetting photosensitive compositions containing these resins or their precursors is expanding. It is expected more and more.
  • Patent Document 1 describes a photosensitive resin composition containing (a) a polyimide resin or a precursor thereof, (b) a quinonediazide compound, (c) a solvent and (d) a surfactant, and (d). )
  • the surfactant contains (d1) a silicon-based surfactant and (d2) a surfactant having a fluorine atom, and the content of (d1) in the photosensitive resin composition is X% by mass, and (d2) is contained.
  • the amount is Y mass%, X> Y (Y ⁇ 0), and (d) the total amount of the surfactant is 0.005 mass% or more and 0.10 mass% or less in the photosensitive resin composition.
  • a photosensitive resin composition is described.
  • thermosetting photosensitive composition containing at least one resin selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole and polybenzoxazole precursor is applied to a substrate to prepare a cured film, it is obtained.
  • Other layers such as other thermosetting photosensitive layers may be further formed on the cured film.
  • a base material to which such a thermosetting photosensitive composition is applied a non-uniform base material having a step or the like may be used. Therefore, in the thermosetting photosensitive composition, when a cured film is prepared by applying it to a non-uniform substrate such as having a step, and another layer is further formed on the obtained cured film. Even if there is, it is desired to provide a thermosetting photosensitive composition in which defects are suppressed from occurring in other layers.
  • the present invention is applied to a non-uniform substrate to prepare a cured film, and even when another layer is further formed on the obtained cured film, the occurrence of defects in the other layer is suppressed.
  • Thermosetting photosensitive composition, a cured film obtained by curing the thermosetting photosensitive composition, a laminate containing the cured film, a method for producing the cured film, and the cured film or the laminate It is an object of the present invention to provide a semiconductor device including.
  • thermosetting photosensitive composition used for forming a thermosetting photosensitive layer.
  • the surface free energy of the cured film A and the surface of the cured film B calculated from the contact angle of water and the contact angle of diiodomethane with respect to the surface of the cured film A and the surface of the cured film B using the following formula (1).
  • the absolute value of the difference in surface free energy is 30% or less of the surface free energy of the cured film A below.
  • Thermosetting photosensitive composition Cured film A: When a coating film of the thermosetting photosensitive composition is formed on a flat support with a film thickness of 150% of the average thickness of the thermosetting photosensitive layer and then heated at 250 ° C. for 120 minutes.
  • ⁇ s d is the dispersion component of the surface free energy of the cured film
  • the gamma s h a polar component of surface free energy of the cured film
  • gamma L d is the variance of the surface free energy of water or diiodomethane
  • ⁇ L h represents the polar component of the surface free energy of water or diiodomethane
  • ⁇ L tl represents the surface free energy of water or diiodomethane
  • c technicallys ⁇ represents the contact angle of water or diiodomethane
  • the surface free energy is represented by the sum of the dispersion component and the polar component
  • the dispersion component of the surface free energy of water is 21.7 mJ / m 2
  • the polar component of the surface free energy of water is 50.8 mJ / m 2 .
  • thermosetting photosensitive composition according to ⁇ 1>, wherein the content of the surfactant is more than 0.1% by mass with respect to the total mass of the composition.
  • thermosetting photosensitive composition Described in any one of ⁇ 1> to ⁇ 4>, wherein the content of the hydrocarbon-based surfactant in the composition is 50% by mass or more with respect to the total content of the surfactant.
  • Thermosetting photosensitive composition ⁇ 6> The thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 5>, wherein the resin contains at least one resin selected from the group consisting of polyimide and a polyimide precursor.
  • thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 6> which is used for forming a thermosetting photosensitive layer by a slit coating method.
  • thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 6> which is used for forming a thermosetting photosensitive layer by a spin coating method.
  • thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 8> which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 10> A cured film obtained by curing the thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> A laminate containing two or more layers of the cured film according to ⁇ 10> and containing a metal layer between any of the cured films.
  • ⁇ 12> A method for producing a cured film, which comprises a film forming step of applying the thermosetting photosensitive composition according to any one of ⁇ 1> to ⁇ 9> to a substrate to form a film.
  • the method for producing a cured film according to ⁇ 12> which comprises an exposure step of exposing the film and a developing step of developing the film.
  • a semiconductor device comprising the cured film according to ⁇ 10> or the laminate according to ⁇ 11>.
  • thermosetting photosensitive composition in which the above is suppressed, a cured film obtained by curing the thermosetting photosensitive composition, a laminate containing the cured film, a method for producing the cured film, and the cured film or the above.
  • a semiconductor device including a laminate is provided.
  • the present invention is not limited to the specified embodiments.
  • the numerical range represented by using the symbol “ ⁇ ” means a range including the numerical values before and after “ ⁇ ” as the lower limit value and the upper limit value, respectively.
  • the term "process” means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the desired action of the process can be achieved.
  • the notation not describing substitution and non-substituent includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also exposure using particle beams such as an electron beam and an ion beam. Examples of the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacryl”, or
  • (meth) acryloyl means both “acryloyl” and “methacryloyl”, or either.
  • Me in the structural formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content means the total mass of all the components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene-equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise specified.
  • GPC measurement gel permeation chromatography
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) for example, HLC-8220GPC (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, and TSKgel are used as columns. It can be obtained by using Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation).
  • the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a photosensitive layer, the direction from the base material to the photosensitive layer is referred to as “upper”.
  • the opposite direction is referred to as "down”.
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to the component.
  • the content of each component in the composition means the total content of all the compounds corresponding to the component.
  • the temperature is 23 ° C. and the atmospheric pressure is 101,325 Pa (1 atm).
  • the combination of preferred embodiments is a more preferred embodiment.
  • thermosetting photosensitive composition of the present invention is a thermosetting photosensitive composition used for forming a thermosetting photosensitive layer, and is a group consisting of a polyimide, a polyimide precursor, polybenzoxazole and a polybenzoxazole precursor. Contains at least one resin (hereinafter, also referred to as “specific resin”), a photosensitizer, a surfactant, and a solvent selected from the above, and water for each of the surface of the following cured film A and the surface of the following cured film B.
  • the absolute value of the difference between the surface free energy of the following cured film A and the surface free energy of the following cured film B calculated from the contact angle and the contact angle of diiodomethane using the equation (1) is the surface free energy of the following cured film A. It is 30% or less.
  • Cured film A When a coating film of the heat-curable photosensitive composition is formed on a flat support with a thickness of 150% of the average thickness of the heat-curable photosensitive layer and then heated at 250 ° C. for 120 minutes.
  • Cured film of the heat-curable photosensitive composition obtained in the above B The coating film of the heat-curable photosensitive composition is flat with a thickness of 50% of the average thickness of the heat-curable photosensitive layer.
  • the thermosetting photosensitive composition of the present invention preferably contains a specific resin, a photopolymerization initiator as the photosensitive agent, a surfactant, and a solvent.
  • the thermosetting photosensitive composition of the present invention in the first aspect is preferably further containing a radical cross-linking agent.
  • the embodiment further containing a thermal cross-linking agent is preferable, and the embodiment further containing a thermal cross-linking agent and a thermal acid generator is also more preferable.
  • the thermosetting photosensitive composition of the present invention preferably contains a specific resin, a photoacid generator as the photosensitizer, a surfactant, and a solvent.
  • thermosetting photosensitive composition of the present invention in the second aspect is preferably further containing a thermosetting agent.
  • the thermosetting photosensitive composition of the present invention may be a negative type thermosetting photosensitive composition or a positive type thermosetting photosensitive composition.
  • the negative thermosetting photosensitive composition is a composition in which a non-exposed portion is removed by development when it is subjected to development after exposure.
  • the positive thermosetting photosensitive composition is a composition in which the exposed portion is removed by development when it is subjected to development after exposure.
  • thermosetting photosensitive composition of the present invention it is a case where a cured film is produced by applying it to a non-uniform substrate, and another layer is further formed on the obtained cured film.
  • a cured film is produced by applying it to a non-uniform substrate, and another layer is further formed on the obtained cured film.
  • the occurrence of defects in other layers is suppressed.
  • the mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
  • thermosetting photosensitive composition is used for applications such as forming a thermosetting photosensitive layer by applying it to a substrate or the like and then drying it if necessary, and then obtaining a cured film by heating or the like. .. Further, if necessary, patterning may be performed by exposure and development, for example, before heating. As a result of diligent studies, the present inventors formed a thermosetting photosensitive layer on a non-uniform substrate such as having a step, and after obtaining a cured film, further formed another layer on the cured film. It was found that if this is done, defects may occur in other layers.
  • thermosetting photosensitive layer Since the solvent is present in the thermosetting photosensitive layer before drying, at least a part of the components in the thermosetting photosensitive composition (for example, components that easily move in the composition film such as a surfactant). Is thought to move to the surface of the composition film.
  • a base material in which the physical shape of the surface of the base material is not uniform such as a base material having a step on the surface or a base material having an inclination on the surface, or one of the surfaces.
  • the thickness of the thermosetting photosensitive layer is uniform. It may not be.
  • thermosetting photosensitive layer in a substrate having a step on the surface, the thermosetting photosensitive layer is thin at the convex portion of the substrate surface, and the thermosetting photosensitive layer is thick at the concave portion of the substrate surface.
  • thermosetting photosensitive layer in a substrate having an inclination on the surface, the thermosetting photosensitive layer becomes thick at a portion where the inclination is low, and the thermosetting photosensitive layer becomes thick at a portion where the inclination is high.
  • the thermosetting photosensitive layer in a substrate in which only a part of the surface is difficult to be compatible with the composition, the thermosetting photosensitive layer is thin because the composition is easily spread in the portion that is easily compatible with the composition, and the composition is not compatible with the composition. The thermosetting photosensitive layer becomes thick because it is difficult to spread.
  • thermosetting photosensitive layer Since the components such as the surfactant move from the inside of the thermosetting photosensitive layer, many of the above components move to the surface in the portion where the thermosetting photosensitive layer is thick, and the surface in the portion where the thermosetting photosensitive layer is thin. It is considered that the above-mentioned component that moves to is small.
  • thermosetting photosensitive composition having a different distribution of components depending on its position on the surface is cured to form a cured film and another layer is formed on the cured film, it depends on the position on the surface of the cured film. Since the coatability and the like when forming the other layer are different, it is considered that defects occur in the other layer.
  • the composition of the present invention is a composition capable of obtaining a cured film having a small difference in surface free energy with respect to a change in film thickness. Therefore, it is presumed that the occurrence of defects in the other layers may be suppressed. The suppression of the occurrence of the above defects is considered to be particularly remarkable when the thermosetting photosensitive layer is formed by a method such as a slit coating method that takes a long time to dry after coating.
  • Patent Document 1 does not describe or suggest a thermosetting photosensitive composition in which the above-mentioned difference in surface free energy is a specific value.
  • thermosetting photosensitive composition of the present invention and the components contained therein will be described in detail.
  • the heat-curable photosensitive composition of the present invention is the cured film calculated from the contact angle of water and the contact angle of diiodomethane with respect to the surface of the cured film A and the surface of the cured film B, respectively, using the formula (1).
  • the surface free energy is a value calculated from the contact angle of water and the contact angle of diiodomethane using the formula (1).
  • the surface free energy is set as a value that satisfies the following formula for each contact angle by contacting 1 ⁇ l of water and diiodomethane with the cured film A or B and measuring their respective contact angles. It is the required energy. For example, it can be calculated using the functional integrated analysis software FAMAS (manufactured by Kyowa Surface Chemistry Co., Ltd.).
  • ⁇ s d is the dispersion component of the surface free energy of the cured film
  • the gamma s h a polar component of surface free energy of the cured film
  • gamma L d is the variance of the surface free energy of water or diiodomethane
  • ⁇ L h represents the polar component of the surface free energy of water or diiodomethane
  • ⁇ L tl represents the surface free energy of water or diiodomethane
  • c technicallys ⁇ represents the contact angle of water or diiodomethane
  • the surface free energy is represented by the sum of the dispersion component and the polar component
  • the dispersion component of the surface free energy of water is 21.7 mJ / m 2
  • the polar component of the surface free energy of water is 50.8 mJ / m 2 .
  • the average thickness of the thermosetting photosensitive layer is an average value of the thickness of the entire surface of the thermosetting photosensitive layer applied to the base material.
  • a thermosetting photosensitive layer having a thickness of T1 was formed.
  • the area where the thermosetting photosensitive layer having a thickness T2 is formed is S2
  • the sum of the areas S1 and S2 is the total area of the thermosetting photosensitive layer, it is calculated by the following formula.
  • Average thickness T1 x S1 / (S1 + S2) + T2 x S2 / (S1 + S2)
  • the area where the thermosetting photosensitive layer of n kinds of thickness Ti is formed is Si (i is an integer of 1 to n, and S1 + S2 + ...
  • thermosetting photosensitive layer is the total area of the thermosetting photosensitive layer.
  • the above average thickness is calculated by the following formula.
  • the thickness of the thermosetting photosensitive layer such as the thicknesses T1, T2, and Ti is measured using, for example, an ellipsometer (KT-22 manufactured by Foothill).
  • the surface free energy of the cured film A is preferably 10 to 50 mJ / m 2 , more preferably 15 to 40 mJ / m 2 , and even more preferably 20 to 35 mJ / m 2 .
  • the surface free energy of the cured film B is preferably 10 to 50 mJ / m 2 , more preferably 15 to 40 mJ / m 2 , and even more preferably 20 to 35 mJ / m 2 .
  • the absolute value of the difference between the surface free energy of the cured film A and the surface free energy of the cured film B is 30% or less, more preferably 20% or less of the surface free energy of the cured film A. It is more preferably% or less.
  • the lower limit is not particularly limited, and may be 0% or more.
  • the ratio of the absolute value of the difference between the surface free energy of the cured film A and the surface free energy of the cured film B to the surface free energy of the cured film A is a value determined by the composition of the thermosetting photosensitive composition. For example, it is considered to be determined by the amount of the surfactant in the thermosetting photosensitive composition, the type of the surfactant, and the like.
  • the method for producing the coating film in the cured film A and the cured film B is not particularly limited, but the method is the same as the method for producing the coating film in the formation of the thermosetting photosensitive layer using the thermosetting photosensitive composition of the present invention. It is preferably produced.
  • the thermosetting photosensitive layer is produced by the slit coating method, it is preferable that the coating films in the cured film A and the cured film B are also produced by the slit coating method.
  • the absolute value of the difference between the surface free energy of the cured film C below and the surface free energy of the cured film D below is 30% or less of the surface free energy of the cured film C below. It is preferably 20% or less, more preferably 10% or less.
  • the lower limit is not particularly limited and may be 0% or more.
  • Cured film C The thermosetting photosensitive composition obtained when a coating film of the thermosetting photosensitive composition is formed on a flat support with a film thickness of 45 ⁇ m and then heated at 250 ° C. for 120 minutes.
  • Cured film D The thermosetting photosensitive composition obtained when a coating film of the thermosetting photosensitive composition is formed on a flat support with a film thickness of 15 ⁇ m and then heated at 250 ° C. for 120 minutes.
  • the thermosetting photosensitive composition of the present invention contains at least one resin (specific resin) selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole and polybenzoxazole precursor.
  • the specific resin preferably contains at least one resin selected from the group consisting of polyimide and a polyimide precursor. Further, it is preferable that the resin contains a polymerizable group and the photosensitive resin composition contains a polymerizable compound.
  • the polyimide and polybenzoxazole contained in the resin layer in the laminate of the present invention preferably contain a partial structure represented by -Ar-L-Ar-.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, ⁇ CO ⁇ , —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • Ar is a phenylene group is preferably, L is an aliphatic hydrocarbon group having a fluorine atom in 1 carbon atoms which may be substituted or 2, -O -, - CO - , - S- or -SO 2 - is preferred .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • polyimide precursor The type of the polyimide precursor used in the present invention is not particularly specified, but it is preferable that the polyimide precursor contains a repeating unit represented by the following formula (2). Equation (2) In formula (2), A 1 and A 2 independently represent an oxygen atom or NH, R 111 represents a divalent organic group, R 115 represents a tetravalent organic group, and R 113. And R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in the formula (2) independently represent an oxygen atom or NH, and an oxygen atom is preferable.
  • R 111 in the formula (2) represents a divalent organic group.
  • the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group and a group containing an aromatic group, and a linear or branched aliphatic group having 2 to 20 carbon atoms and a carbon number of carbon atoms.
  • a cyclic aliphatic group of 6 to 20, an aromatic group having 6 to 20 carbon atoms, or a group composed of a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • a group represented by -Ar-L-Ar- is exemplified.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, ⁇ CO ⁇ , —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • R 111 is preferably derived from diamine.
  • the diamine used for producing the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one type of diamine may be used, or two or more types may be used. Specifically, a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 6 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a group consisting of a combination thereof. It is preferable that the diamine contains the above, and more preferably the diamine contains a group consisting of an aromatic group having 6 to 20 carbon atoms. Examples of groups containing aromatic groups include:
  • diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-Diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4-) Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4'- Or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl;
  • diamines (DA-1) to (DA-18) shown below are also preferable.
  • a diamine having at least two or more alkylene glycol units in the main chain is also mentioned as a preferable example. More preferably, it is a diamine containing two or more ethylene glycol chains, one or both of propylene glycol chains in one molecule, and more preferably, the above diamine, which does not contain an aromatic ring. Specific examples include Jeffamine® KH-511, ED-600, ED-900, ED-2003, EDR-148, EDR-176, D-200, D-400, D-2000, D-4000.
  • x, y, and z are average values.
  • R 111 is preferably represented by —Ar—L—Ar— from the viewpoint of the flexibility of the obtained cured film.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, ⁇ CO ⁇ , —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • Ar is a phenylene group is preferably, L is an aliphatic hydrocarbon group having a fluorine atom in 1 carbon atoms which may be substituted or 2, -O -, - CO - , - S- or -SO 2 - is preferred .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-ray transmittance.
  • a divalent organic group represented by the formula (61) is more preferable.
  • Equation (51) In formula (51), R 50 to R 57 are independently hydrogen atoms, fluorine atoms or monovalent organic groups, and at least one of R 50 to R 57 is a fluorine atom, a methyl group or trifluoro. It is a methyl group, and each of * independently represents a bond site with a nitrogen atom in the formula (2).
  • the monovalent organic group of R 50 to R 57 includes an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples thereof include an alkyl fluoride group.
  • R 58 and R 59 are independently fluorine atoms or trifluoromethyl groups, respectively.
  • Examples of the diamine compound giving the structure of the formula (51) or (61) include 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2'-. Examples thereof include bis (fluoro) -4,4'-diaminobiphenyl and 4,4'-diaminooctafluorobiphenyl. These may be used alone or in combination of two or more.
  • diamines can also be preferably used.
  • R 115 in the formula (2) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
  • 2- , -NHCO-, and a group selected from a combination thereof are preferable, and a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, -O-,- More preferably, it is a group selected from CO-, -S- and -SO 2- , -CH 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2- , -O-, More preferably, it is a divalent group selected from the group consisting of -CO-, -S- and -SO 2- .
  • R 115 examples include tetracarboxylic acid residues remaining after removal of the anhydride group from the tetracarboxylic dianhydride. Only one type of tetracarboxylic dianhydride may be used, or two or more types may be used.
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O). Equation (O) In formula (O), R 115 represents a tetravalent organic group.
  • a preferred range of R 115 has the same meaning as R 115 in formula (2), and preferred ranges are also the same.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-.
  • PMDA pyromellitic dianhydride
  • 3,3', 4,4'-biphenyltetracarboxylic dianhydride 3,3', 4,4'-.
  • DAA-1 to DAA-5 tetracarboxylic dianhydrides
  • DAA-5 tetracarboxylic dianhydrides
  • R 111 and R 115 has an OH group. More specifically, as R 111 , a residue of a bisaminophenol derivative can be mentioned.
  • R 113 and R 114 independently represent a hydrogen atom or a monovalent organic group, and the monovalent organic group includes a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy. It preferably contains a group, more preferably a polyalkyleneoxy group. Further, it is preferable that at least one of R 113 and R 114 contains a polymerizable group, and it is more preferable that both contain a polymerizable group. As the polymerizable group, a radically polymerizable group is preferable because it is a group capable of undergoing a cross-linking reaction by the action of heat, radicals and the like.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, a methylol group and an amino.
  • the group is mentioned.
  • a group having an ethylenically unsaturated bond is preferable.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, and a group represented by the following formula (III).
  • R200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, and a hydrogen atom or a methyl group is more preferable.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, -CH 2 CH (OH) CH 2- or a polyoxyalkylene group having 4 to 30 carbon atoms. Examples of suitable R 201 are ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butandyl group, 1,3-butandyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene group.
  • alkylene group -CH2CH (OH) CH2-
  • ethylene group propylene group, trimethylene group, -CH2CH (OH) CH2-
  • R 200 is a methyl group
  • R 201 is an ethylene group.
  • R 113 and R 114 are independently hydrogen atoms or monovalent organic groups.
  • the monovalent organic group include an aromatic group and an aralkyl group in which an acidic group is bonded to one, two or three carbons constituting the aryl group, preferably one.
  • Specific examples thereof include an aromatic group having an acidic group having 6 to 20 carbon atoms and an aralkyl group having an acidic group having 7 to 25 carbon atoms. More specifically, a phenyl group having an acidic group and a benzyl group having an acidic group can be mentioned.
  • the acidic group is preferably an OH group. It is also more preferable that R 113 or R 114 is a hydrogen atom, a 2-hydroxybenzyl group, a 3-hydroxybenzyl group and a 4-hydroxybenzyl group.
  • R 113 or R 114 is preferably a monovalent organic group.
  • the monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, or an aromatic group, and an alkyl group substituted with an aromatic group is more preferable.
  • the alkyl group preferably has 1 to 30 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • linear or branched alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and octadecyl group.
  • Isobutyl group isobutyl group, sec-butyl group, t-butyl group, 1-ethylpentyl group, 2-ethylhexyl group 2- (2- (2-methoxyethoxy) ethoxy) ethoxy group, 2- (2- (2) -Ethoxyethoxy) ethoxy) ethoxy) ethoxy group, 2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ethoxy group, and 2- (2- (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) Ethoxy group is mentioned.
  • the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
  • Examples of the monocyclic cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
  • Examples of the polycyclic cyclic alkyl group include an adamantyl group, a norbornyl group, a bornyl group, a phenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group and a pinenyl group. Can be mentioned. Of these, the cyclohexyl group is most preferable from the viewpoint of achieving both high sensitivity. Further, as the alkyl group substituted with an aromatic group, a linear alkyl group substituted with an aromatic group described later is preferable.
  • aromatic group examples include substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, inden ring, azulene ring, heptalene ring, indacene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, and anthracene.
  • the benzene ring is most preferable.
  • R 113 is a hydrogen atom or R 114 is a hydrogen atom
  • R 113 is a hydrogen atom
  • R 114 is a hydrogen atom
  • the polyimide precursor forms a salt with a tertiary amine compound having an ethylenically unsaturated bond.
  • the tertiary amine compound having such an ethylenically unsaturated bond include N, N-dimethylaminopropyl methacrylate.
  • the polyimide precursor has a fluorine atom in the structural unit.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (p-aminophenyl) octamethylpentasiloxane.
  • the repeating unit represented by the formula (2) is preferably the repeating unit represented by the formula (2-A). That is, it is preferable that at least one of the polyimide precursors used in the present invention is a precursor having a repeating unit represented by the formula (2-A). With such a structure, the width of the exposure latitude can be further widened. Equation (2-A) In formula (2-A), A 1 and A 2 represent oxygen atoms, R 111 and R 112 each independently represent a divalent organic group, and R 113 and R 114 each independently. Representing a hydrogen atom or a monovalent organic group, at least one of R 113 and R 114 is a group containing a polymerizable group, and it is preferable that both are groups containing a polymerizable group.
  • a 1, A 2, R 111 , R 113 and R 114 each independently have the same meaning as A 1, A 2, R 111 , R 113 and R 114 in formula (2), and preferred ranges are also the same .
  • R 112 has the same meaning as R 112 in formula (5), and preferred ranges are also the same.
  • the polyimide precursor may contain one type of repeating unit represented by the formula (2), but may contain two or more types. Further, it may contain a structural isomer of a repeating unit represented by the formula (2). Needless to say, the polyimide precursor may contain other types of repeating units in addition to the repeating unit of the above formula (2).
  • polyimide precursor in the present invention a polyimide precursor in which 50 mol% or more of all repeating units, more 70 mol% or more, particularly 90 mol% or more is a repeating unit represented by the formula (2) is used. Illustrated.
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 18,000 to 30,000, more preferably 20,000 to 27,000, and even more preferably 22,000 to 25,000.
  • the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, and even more preferably 9,200 to 11,200.
  • the degree of dispersion of the molecular weight of the polyimide precursor is preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more.
  • the upper limit of the dispersity of the molecular weight of the polyimide precursor is not particularly defined, but for example, 4.5 or less is preferable, 4.0 or less is more preferable, 3.8 or less is further preferable, and 3.2 or less is further preferable. Preferably, 3.1 or less is even more preferable, 3.0 or less is even more preferable, and 2.95 or less is particularly preferable.
  • the weight average molecular weight (Mw) is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 40,000. Is.
  • the number average molecular weight (Mn) is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
  • the degree of dispersion of the molecular weight of the polyimide precursor is preferably 1.8 or more, more preferably 2.0 or more, and further preferably 2.2 or more.
  • the upper limit of the dispersity of the molecular weight of the polyimide precursor is not particularly determined, but for example, it is preferably 7.0 or less, more preferably 6.5 or less, and further preferably 6.0 or less.
  • the degree of molecular weight dispersion is a value calculated by weight average molecular weight / number average molecular weight.
  • the polyimide used in the present invention may be an alkali-soluble polyimide or a polyimide that is soluble in a developing solution containing an organic solvent as a main component.
  • the alkali-soluble polyimide means a polyimide that dissolves 0.1 g or more at 23 ° C. in 100 g of a 2.38 mass% tetramethylammonium aqueous solution, and 0.5 g or more from the viewpoint of pattern forming property.
  • a polyimide that dissolves is preferable, and a polyimide that dissolves 1.0 g or more is more preferable.
  • the upper limit of the dissolved amount is not particularly limited, but is preferably 100 g or less.
  • the polyimide is preferably a polyimide having a plurality of imide structures in the main chain from the viewpoint of the film strength and the insulating property of the obtained cured film.
  • the "main chain” refers to the relatively longest binding chain among the molecules of the polymer compound constituting the resin, and the “side chain” refers to other binding chains.
  • the polyimide preferably has a fluorine atom.
  • the fluorine atom is preferably contained in, for example, R 132 in the repeating unit represented by the formula (4) described later, or R 131 in the repeating unit represented by the formula (4) described later, and is preferably contained in the formula (4) described later. It is more preferable that it is contained as an alkyl fluoride group in R 132 in the repeating unit represented by 4) or R 131 in the repeating unit represented by the formula (4) described later.
  • the amount of fluorine atoms with respect to the total mass of the polyimide is preferably 1 to 50 mol / g, and more preferably 5 to 30 mol / g.
  • the polyimide preferably has a silicon atom.
  • the silicon atom is preferably contained in R 131 in the repeating unit represented by the formula (4) described later, and is organically modified (poly) in R 131 in the repeating unit represented by the formula (4) described later. ) It is more preferable that it is contained as a siloxane structure. Further, the silicon atom or the organically modified (poly) siloxane structure may be contained in the side chain of the polyimide, but is preferably contained in the main chain of the polyimide.
  • the amount of silicon atoms with respect to the total mass of the polyimide is preferably 0.01 to 5 mol / g, more preferably 0.05 to 1 mol / g.
  • the polyimide preferably has an ethylenically unsaturated bond.
  • the polyimide may have an ethylenically unsaturated bond at the end of the main chain or at the side chain, but it is preferably provided at the side chain.
  • the ethylenically unsaturated bond preferably has radical polymerization property.
  • the ethylenically unsaturated bond is preferably contained in R 132 in the repeating unit represented by the formula (4) described later or in R 131 in the repeating unit represented by the formula (4) described later, and is preferably contained in the formula described later.
  • R 132 in the repeating unit represented by (4) or R 131 in the repeating unit represented by the formula (4) described later is contained as a group having an ethylenically unsaturated bond.
  • ethylenically unsaturated bond ethylene R 131 in the repeating unit represented by the preferably contained in R 131 in the repeating unit represented by the formula (4) described later, which will be described later Equation (4) It is more preferably contained as a group having a sex unsaturated bond.
  • Examples of the group having an ethylenically unsaturated bond include a group having an optionally substituted vinyl group directly bonded to an aromatic ring such as a vinyl group, an allyl group and a vinylphenyl group, a (meth) acrylamide group and a (meth) group. Examples thereof include an acryloyloxy group and a group represented by the following formula (III).
  • R200 represents a hydrogen atom or a methyl group, an ethyl group or a methylol group, and a hydrogen atom or a methyl group is more preferable.
  • (Poly) oxyalkylene group having 2 to 30 carbon atoms the alkylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3; the number of repetitions is preferably 1 to 12 and 1 ⁇ 6 is more preferable, and 1 to 3 are particularly preferable), or a group in which two or more of these are combined is represented.
  • the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group.
  • R 201 is preferably a group represented by any of the following formulas (R1) to (R3), and more preferably a group represented by the formula (R1).
  • L represents a single bond, an alkylene group having 2 to 12 carbon atoms, a (poly) oxyalkylene group having 2 to 30 carbon atoms, or a group in which two or more of these are bonded
  • X Indicates an oxygen atom or a sulfur atom
  • * represents a binding site with another structure
  • represents a binding site with an oxygen atom to which R 201 in the formula (III) is bonded.
  • a preferred embodiment of the alkylene group having 2 to 12 carbon atoms in L or the (poly) oxyalkylene group having 2 to 30 carbon atoms is the above-mentioned R 201 having 2 to 12 carbon atoms. This is the same as the preferred embodiment of the 12 alkylene group or the (poly) oxyalkylene group having 2 to 30 carbon atoms.
  • X is preferably an oxygen atom.
  • * is synonymous with * in formula (III), and the preferred embodiment is also the same.
  • the structure represented by the formula (R1) comprises, for example, a polyimide having a hydroxy group such as a phenolic hydroxy group and a compound having an isocyanato group and an ethylenically unsaturated bond (for example, 2-isocyanatoethyl methacrylate). Obtained by reacting.
  • the structure represented by the formula (R2) is obtained, for example, by reacting a polyimide having a carboxy group with a compound having a hydroxy group and an ethylenically unsaturated bond (for example, 2-hydroxyethyl methacrylate).
  • the structure represented by the formula (R3) is obtained by reacting, for example, a polyimide having a hydroxy group such as a phenolic hydroxy group with a compound having a glycidyl group and an ethylenically unsaturated bond (for example, glycidyl methacrylate). can get.
  • * represents a binding site with another structure, and is preferably a binding site with the main chain of polyimide.
  • the amount of the ethylenically unsaturated bond with respect to the total mass of the polyimide is preferably 0.05 to 10 mol / g, more preferably 0.1 to 5 mol / g.
  • the polyimide may have a crosslinkable group other than the ethylenically unsaturated bond.
  • the crosslinkable group other than the ethylenically unsaturated bond include a cyclic ether group such as an epoxy group and an oxetanyl group, an alkoxymethyl group such as a methoxymethyl group, and a methylol group.
  • the crosslinkable group other than the ethylenically unsaturated bond is preferably contained in R 131 in the repeating unit represented by the formula (4) described later, for example.
  • the amount of the crosslinkable group other than the ethylenically unsaturated bond with respect to the total mass of the polyimide is preferably 0.05 to 10 mol / g, and more preferably 0.1 to 5 mol / g.
  • the acid value of the polyimide is preferably 30 mgKOH / g or more, more preferably 50 mgKOH / g or more, and 70 mgKOH / g or more from the viewpoint of improving the developability. Is more preferable.
  • the acid value is preferably 500 mgKOH / g or less, more preferably 400 mgKOH / g or less, and even more preferably 200 mgKOH / g or less.
  • the acid value of the polyimide is preferably 2 to 35 mgKOH / g, and 3 to 30 mgKOH. / G is more preferable, and 5 to 20 mgKOH / g is further preferable.
  • the acid value is measured by a known method, for example, by the method described in JIS K 0070: 1992.
  • an acid group having a pKa of 0 to 10 is preferable, and an acid group having a pKa of 3 to 8 is more preferable, from the viewpoint of achieving both storage stability and developability.
  • the pKa is a dissociation reaction in which hydrogen ions are released from an acid, and its equilibrium constant Ka is expressed by its negative common logarithm pKa.
  • pKa is a value calculated by ACD / ChemSketch (registered trademark) unless otherwise specified.
  • the values published in "Revised 5th Edition Chemistry Handbook Basics" edited by the Chemical Society of Japan may be referred to.
  • the acid group is a polyvalent acid such as phosphoric acid
  • the above pKa is the first dissociation constant.
  • the polyimide preferably contains at least one selected from the group consisting of a carboxy group and a phenolic hydroxy group, and more preferably contains a phenolic hydroxy group.
  • the polyimide preferably has a phenolic hydroxy group.
  • the polyimide may have a phenolic hydroxy group at the end of the main chain or at the side chain.
  • the phenolic hydroxy group is preferably contained in, for example, R 132 in the repeating unit represented by the formula (4) described later, or R 131 in the repeating unit represented by the formula (4) described later.
  • the amount of the phenolic hydroxy group with respect to the total mass of the polyimide is preferably 0.1 to 30 mol / g, and more preferably 1 to 20 mol / g.
  • the polyimide used in the present invention is not particularly limited as long as it is a polymer compound having an imide ring, but preferably contains a repeating unit represented by the following formula (4), and is represented by the formula (4). It is more preferable that the compound contains a repeating unit and has a polymerizable group.
  • Equation (4) In formula (4), R 131 represents a divalent organic group and R 132 represents a tetravalent organic group. When having a polymerizable group, the polymerizable group may be located at at least one of R 131 and R 132 , or may be located at the end of the polyimide as shown in the following formula (4-1) or formula (4-2). It may be located in.
  • Equation (4-1) In formula (4-1), R 133 is a polymerizable group, and the other groups are synonymous with formula (4). Equation (4-2) At least one of R 134 and R 135 is a polymerizable group, when it is not a polymerizable group, it is an organic group, and the other group is synonymous with the formula (4).
  • the polymerizable group has the same meaning as the polymerizable group described in the above-mentioned polymerizable group possessed by the polyimide precursor and the like.
  • R 131 represents a divalent organic group. Examples of the divalent organic group include those similar to R 111 in the formula (2), and the preferred range is also the same. Further, as R 131 , a diamine residue remaining after removal of the amino group of diamine can be mentioned. Examples of the diamine include aliphatic, cyclic aliphatic or aromatic diamines. Specific examples include the example of R 111 in the formula (2) of the polyimide precursor.
  • R 131 is a diamine residue having at least two or more alkylene glycol units in the main chain from the viewpoint of more effectively suppressing the occurrence of warpage during firing. More preferably, it is a diamine residue containing two or more ethylene glycol chains, one or both of propylene glycol chains in one molecule, and more preferably, a diamine residue containing no aromatic ring.
  • diamines containing two or more ethylene glycol chains and / or both of propylene glycol chains in one molecule include Jeffamine® KH-511, ED-600, ED-900, ED-2003, and EDR. -148, EDR-176, D-200, D-400, D-2000, D-4000 (trade name, manufactured by HUNTSMAN Co., Ltd.), 1- (2- (2- (2-aminopropoxy) ethoxy) Examples thereof include, but are not limited to, propoxy) propane-2-amine and 1- (1- (1- (2-aminopropoxy) propan-2-yl) oxy) propan-2-amine.
  • R 132 represents a tetravalent organic group.
  • examples of the tetravalent organic group include those similar to R 115 in the formula (2), and the preferred range is also the same.
  • R 132 includes a tetracarboxylic acid residue remaining after removal of an anhydride group from the tetracarboxylic dianhydride.
  • Specific examples include an example of R 115 in the polyimide precursor formula (2).
  • R 132 is preferably an aromatic diamine residue having 1 to 4 aromatic rings.
  • R 131 and R 132 It is also preferable to have an OH group in at least one of R 131 and R 132 . More specifically, as R 131 , 2,2-bis (3-hydroxy-4-aminophenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) hexafluoropropane, 2,2- Bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, and (DA-1) to (DA-18) above are preferable examples. As R 132 , the above (DAA-1) to (DAA-5) are more preferable examples.
  • the polyimide has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyimide is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (p-aminophenyl) octamethylpentasiloxane.
  • the main chain end of polyimide may be sealed with an end-capping agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound.
  • an end-capping agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound.
  • monoamine acid anhydride
  • monocarboxylic acid monoacid chloride compound or monoactive ester compound.
  • monoactive ester compound preferable.
  • monoamine it is more preferable to use monoamine, and preferred compounds of monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, and 1-hydroxy-7.
  • the imidization rate (also referred to as "ring closure rate") of the polyimide is preferably 70% or more, more preferably 80% or more, from the viewpoint of the film strength, the insulating property, etc. of the obtained cured film. More preferably, it is 90% or more.
  • the upper limit of the imidization rate is not particularly limited, and may be 100% or less.
  • the imidization rate is measured by, for example, the following method. The infrared absorption spectrum of the polyimide is measured to determine the peak intensity P1 near 1377 cm -1, which is the absorption peak derived from the imide structure. Next, after heat-treating the polyimide at 350 ° C.
  • the polyimide may contain repeating units of the above formula (4), all containing one type of R 131 or R 132 , of the above formula (4) containing two or more different types of R 131 or R 132 . It may include repeating units. Further, the polyimide may contain other types of repeating units in addition to the repeating unit of the above formula (4).
  • the polyimide is, for example, a method of reacting a tetracarboxylic acid dianhydride with a diamine compound (partially replaced with a terminal capping agent which is monoamine) at a low temperature, or a tetracarboxylic acid dianhydride (partly an acid) at a low temperature.
  • a method of reacting a diamine compound with an anhydride or a monoacid chloride compound or a terminal capping agent which is a monoactive ester compound) a diester is obtained by tetracarboxylic acid dianhydride and an alcohol, and then diamine (partly monoamine) is obtained.
  • a polyimide precursor is obtained by using a method such as a method of reacting with an end-capping agent (replaced with an end-capping agent), which is completely imidized by a known imidization reaction method, or an imide in the middle.
  • Synthesis using a method of stopping the conversion reaction and introducing a partially imidized structure and further, a method of introducing a partially imidized structure by blending a completely imidized polymer with its polyimide precursor.
  • a method of introducing a partially imidized structure by blending a completely imidized polymer with its polyimide precursor.
  • Examples of commercially available polyimide products include Durimide (registered trademark) 284 (manufactured by FUJIFILM Corporation) and Matrimide5218 (manufactured by HUNTSMAN Co., Ltd.).
  • the weight average molecular weight (Mw) of the polyimide is preferably 5,000 to 70,000, more preferably 8,000 to 50,000, still more preferably 10,000 to 30,000. By setting the weight average molecular weight to 5,000 or more, the breakage resistance of the film after curing can be improved. In order to obtain a cured film having excellent mechanical properties, the weight average molecular weight is particularly preferably 20,000 or more. When two or more types of polyimide are contained, the weight average molecular weight of at least one type of polyimide is preferably in the above range. On the other hand, from the viewpoint of chemical resistance, the weight average molecular weight (Mw) of polyimide is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 15,000. It is 40,000.
  • the polybenzoxazole precursor used in the present invention is not particularly defined for its structure and the like, but preferably contains a repeating unit represented by the following formula (3).
  • Equation (3) R 121 represents a divalent organic group, R 122 represents a tetravalent organic group, and R 123 and R 124 independently represent a hydrogen atom or a monovalent organic group. Represent.
  • R 123 and R 124 are synonymous with R 113 in formula (2), respectively, and the preferred range is also the same. That is, at least one is preferably a polymerizable group.
  • R 121 represents a divalent organic group.
  • the divalent organic group a group containing at least one of an aliphatic group and an aromatic group is preferable.
  • the aliphatic group a linear aliphatic group is preferable.
  • R 121 is preferably a dicarboxylic acid residue. Only one type of dicarboxylic acid residue may be used, or two or more types may be used.
  • a dicarboxylic acid residue a dicarboxylic acid containing an aliphatic group and a dicarboxylic acid residue containing an aromatic group are preferable, and a dicarboxylic acid residue containing an aromatic group is more preferable.
  • a dicarboxylic acid containing an aliphatic group a dicarboxylic acid containing a linear or branched (preferably straight chain) aliphatic group is preferable, and a linear or branched (preferably straight chain) aliphatic group and two -COOH.
  • a dicarboxylic acid composed of is more preferable.
  • the number of carbon atoms of the linear or branched (preferably linear) aliphatic group is preferably 2 to 30, more preferably 2 to 25, further preferably 3 to 20, and 4 to 20. It is more preferably 15, and particularly preferably 5 to 10.
  • the linear aliphatic group is preferably an alkylene group.
  • dicarboxylic acid containing a linear aliphatic group examples include malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2, 2-Dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-Dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, pimelliic acid, 2,2,6,6-tetramethylpimelic acid, suberin Acid, dodecafluorosveric acid, azelaic acid, sebacic acid, hexa
  • Z is a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 1 to 6).
  • dicarboxylic acid containing an aromatic group a dicarboxylic acid having the following aromatic groups is preferable, and a dicarboxylic acid consisting of only a group having the following aromatic groups and two -COOH is more preferable.
  • A is -CH 2- , -O-, -S-, -SO 2- , -CO-, -NHCO-, -C (CF 3 ) 2- , and -C (CH 3 ) 2- Represents a divalent group selected from the group consisting of.
  • dicarboxylic acid containing an aromatic group examples include 4,4'-carbonyl dibenzoic acid, 4,4'-dicarboxydiphenyl ether, and terephthalic acid.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the above formula (2), and the preferable range is also the same.
  • R 122 is also preferably a group derived from a bisaminophenol derivative, and examples of the group derived from the bisaminophenol derivative include 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'.
  • bisaminophenol derivatives having the following aromatic groups are preferable.
  • X 1 represents -O-, -S-, -C (CF 3 ) 2- , -CH 2- , -SO 2- , -NHCO-.
  • R 1 is a hydrogen atom, alkylene, substituted alkylene, -O-, -S-, -SO 2- , -CO-, -NHCO-, single bond, or the following formula (A-). It is an organic group selected from the group of sc).
  • R 2 is any one of a hydrogen atom, an alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R 3 is any of a hydrogen atom, a linear or branched alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R 2 is an alkyl group and R 3 is an alkyl group has high transparency to i-rays and a high cyclization rate when cured at a low temperature. The effect can be maintained, which is preferable.
  • R 1 is an alkylene or a substituted alkylene.
  • Specific examples of the alkylene and the substituted alkylene according to R 1 include -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CH (CH 2 CH 3 )-, and -C.
  • the polybenzoxazole precursor may contain other types of repeating structural units in addition to the repeating unit of the above formula (3). It is preferable to include a diamine residue represented by the following formula (SL) as another type of repeating structural unit in that the occurrence of warpage due to ring closure can be suppressed.
  • SL diamine residue represented by the following formula
  • Z has an a structure and a b structure
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2s is a hydrocarbon group having 1 to 10 carbon atoms.
  • at least one of R 3s , R 4s , R 5s , and R 6s is an aromatic group
  • the rest are hydrogen atoms or organic groups having 1 to 30 carbon atoms, which may be the same or different.
  • the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
  • the mol% of the Z portion is 5 to 95 mol% for the a structure, 95 to 5 mol% for the b structure, and 100 mol% for a + b.
  • preferred Z includes those in which R 5s and R 6s in the b structure are phenyl groups.
  • the molecular weight of the structure represented by the formula (SL) is preferably 400 to 4,000, more preferably 500 to 3,000.
  • the tetracarboxylic acid residue remaining after removal of the anhydride group from the tetracarboxylic dianhydride is used as the repeating structural unit. It is also preferable to include it. Examples of such a tetracarboxylic acid residue include the example of R 115 in the formula (2).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is preferably 18,000 to 30,000, more preferably 20,000 to 29,000, and further, when used in the compositions described below. It is preferably 22,000 to 28,000.
  • the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, and even more preferably 9,200 to 11,200.
  • the degree of dispersion of the molecular weight of the polybenzoxazole precursor is preferably 1.4 or more, more preferably 1.5 or more, and further preferably 1.6 or more.
  • the upper limit of the dispersity of the molecular weight of the polybenzoxazole precursor is not particularly determined, but for example, it is preferably 2.6 or less, more preferably 2.5 or less, further preferably 2.4 or less, and 2.3 or less. Is more preferable, and 2.2 or less is even more preferable.
  • the polybenzoxazole is not particularly limited as long as it is a polymer compound having a benzoxazole ring, but is preferably a compound represented by the following formula (X), and a compound represented by the following formula (X). It is more preferable that the compound has a polymerizable group.
  • R 133 represents a divalent organic group and R 134 represents a tetravalent organic group.
  • the polymerizable group may be located at at least one of R 133 and R 134 , or polybenzoxazole as shown in the following formula (X-1) or formula (X-2). It may be located at the end of.
  • Equation (X-1) In formula (X-1), at least one of R 135 and R 136 is a polymerizable group, and if it is not a polymerizable group, it is an organic group, and the other group is synonymous with formula (X).
  • Equation (X-2) In formula (X-2), R 137 is a polymerizable group, the other is a substituent, and the other group is synonymous with formula (X).
  • the polymerizable group is synonymous with the polymerizable group described in the polymerizable group possessed by the polyimide precursor and the like described above.
  • R 133 represents a divalent organic group.
  • the divalent organic group include an aliphatic group and an aromatic group.
  • Specific examples include the example of R 121 in the formula (3) of the polybenzoxazole precursor. A preferred example thereof is the same as that of R 121 .
  • R 134 represents a tetravalent organic group.
  • the tetravalent organic group include R 122 in the formula (3) of the polybenzoxazole precursor. A preferred example thereof is the same as that of R 122 .
  • four conjugates of a tetravalent organic group exemplified as R 122 combine with a nitrogen atom and an oxygen atom in the above formula (X) to form a condensed ring.
  • R 134 when R 134 is the following organic group, it forms the following structure.
  • Polybenzoxazole preferably has an oxazoleization rate of 85% or more, and more preferably 90% or more.
  • the upper limit is not particularly limited and may be 100%.
  • the oxazoleization rate is 85% or more, the membrane shrinkage due to ring closure that occurs when oxazoled by heating is reduced, and the occurrence of warpage can be suppressed more effectively.
  • Polybenzoxazole everything may include repeating structural units of formula (X) comprising one of R 131 or R 132, 2 or more different types of R 131 or the formula comprising R 132 ( It may include the repeating unit of X). Further, the polybenzoxazole may contain other types of repeating structural units in addition to the repeating unit of the above formula (X).
  • the resulting polybenzoxazole for example, a bis-aminophenol derivative, a dicarboxylic acid or the dicarboxylic acid containing R 133, is reacted with a compound selected from such dicarboxylic acid dichloride and dicarboxylic acid derivatives, the polybenzoxazole precursor ,
  • a compound selected from such dicarboxylic acid dichloride and dicarboxylic acid derivatives the polybenzoxazole precursor .
  • This can be obtained by oxazole using a known oxazole reaction method.
  • an active ester-type dicarboxylic acid derivative obtained by reacting 1-hydroxy-1,2,3-benzotriazole or the like in advance may be used in order to increase the reaction yield or the like.
  • the weight average molecular weight (Mw) of polybenzoxazole is preferably 5,000 to 70,000, more preferably 8,000 to 50,000, and even more preferably 10,000 to 30,000. By setting the weight average molecular weight to 5,000 or more, the breakage resistance of the film after curing can be improved. In order to obtain a cured film having excellent mechanical properties, the weight average molecular weight is particularly preferably 20,000 or more. When two or more kinds of polybenzoxazole are contained, it is preferable that the weight average molecular weight of at least one kind of polybenzoxazole is in the above range.
  • a polyimide precursor or the like is obtained by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a diamine.
  • the dicarboxylic acid or the dicarboxylic acid derivative is obtained by halogenating it with a halogenating agent and then reacting it with a diamine.
  • an organic solvent in the reaction.
  • the organic solvent may be one kind or two or more kinds.
  • the organic solvent can be appropriately determined depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
  • the polyimide may be produced by synthesizing a polyimide precursor and then cyclizing it by a method such as thermal imidization or chemical imidization (for example, promotion of cyclization reaction by acting a catalyst), or directly. , Polyimide may be synthesized.
  • the end of the polyimide precursor or the like is used as an end sealant such as an acid anhydride, a monocarboxylic acid, a monoacid chloride compound or a monoactive ester compound. It is preferable to seal. It is more preferable to use monoalcohol, phenol, thiol, thiophenol, and monoamine as the terminal encapsulant.
  • Preferred compounds of monoalcohols include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, flufuryl alcohol, and isopropanol.
  • Preferred compounds of phenols include phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol and the like.
  • Preferred compounds of monoamine are aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene.
  • sealing agents for amino groups include carboxylic acid anhydride, carboxylic acid chloride, carboxylic acid bromide, sulfonic acid chloride, sulfonic acid anhydride, sulfonic acid carboxylic acid anhydride and the like, and carboxylic acid anhydride and carboxylic acid chloride are more preferable. preferable.
  • Preferred compounds of the carboxylic acid anhydride include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride and the like.
  • Preferred compounds for the carboxylic acid chloride include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, and 1-adamantancarbonyl chloride. , Heptafluorobutyryl chloride, stearate chloride, benzoyl chloride, and the like.
  • a step of precipitating a solid may be included in the production of the polyimide precursor or the like.
  • the polyimide precursor or the like in the reaction solution is precipitated in water, and the polyimide precursor or the like such as tetrahydrofuran is dissolved in a soluble solvent to cause solid precipitation.
  • the polyimide precursor or the like can be dried to obtain a powdery polyimide precursor or the like.
  • the content of the specific resin in the thermosetting photosensitive composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total solid content of the thermosetting photosensitive composition. It is more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the content of the specific resin in the thermosetting photosensitive composition of the present invention is preferably 99.5% by mass or less, preferably 99% by mass or less, based on the total solid content of the thermosetting photosensitive composition. It is more preferably 98% by mass or less, further preferably 97% by mass or less, and even more preferably 95% by mass or less.
  • the thermosetting photosensitive composition of the present invention may contain only one type of specific resin, or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
  • thermosetting photosensitive composition contains a photosensitizer.
  • photosensitizer when the thermosetting photosensitive layer is exposed to light, chemical changes such as generation of radicals and generation of acids occur, and the development solution of the thermosetting photosensitive layer changes with the above structural changes.
  • the compound is not particularly limited as long as it has an action of changing the solubility of the substance, and examples thereof include a photopolymerization initiator and a photoacid generator.
  • photopolymerization initiator examples include a photoradical polymerization initiator and a photocationic polymerization initiator, and a photoradical polymerization initiator is preferable.
  • thermosetting photosensitive composition of the present invention preferably contains a photoradical polymerization initiator.
  • a photoradical polymerization initiator by containing a photoradical polymerization initiator and a radical cross-linking agent described later, radical polymerization proceeds and the exposed portion of the thermosetting photosensitive layer becomes insoluble in a developing solution, thereby forming a negative pattern. can do.
  • the photoradical polymerization initiator is not particularly limited and may be appropriately selected from known compounds, for example.
  • a photoradical polymerization initiator having photosensitivity to light rays in the ultraviolet region to the visible region is preferable. Further, it may be an activator that produces an active radical by causing some action with the photoexcited sensitizer.
  • the photoradical polymerization initiator is a compound having at least a molar extinction coefficient of about 50 L ⁇ mol -1 ⁇ cm -1 with respect to light having a wavelength in the range of about 300 to 800 nm (preferably 330 to 500 nm). It is preferable that one type is contained.
  • the molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • a known compound can be arbitrarily used.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives and the like.
  • Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketooxime ethers, aminoacetophenone compounds, hydroxyacetophenones, azo compounds, azide compounds, metallocene compounds, organic boron compounds, iron arene complexes, etc. Can be mentioned.
  • paragraphs 0165 to 0182 of JP2016-027357 and paragraphs 0138 to 0151 of International Publication No. 2015/199219 can be referred to, and the contents thereof are incorporated in the present specification.
  • ketone compound for example, the compound described in paragraph 0087 of JP2015-087611A is exemplified, and the content thereof is incorporated in the present specification.
  • KayaCure DETX manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can also be preferably used. More specifically, for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can also be used.
  • IRGACURE 184 (IRGACURE is a registered trademark)
  • DAROCUR 1173 As the hydroxyacetophenone-based initiator, IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, and IRGACURE 127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all manufactured by BASF), Omnirad 907, Omnirad 369, and Omnirad 379 (all manufactured by IGM Resin). ) Can be used.
  • the compound described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source such as 365 nm or 405 nm, can also be used.
  • acylphosphine-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • commercially available products such as IRGACURE-819, IRGACURE-TPO (trade name: all manufactured by BASF), Omnirad 819 and Omnirad TPO (all manufactured by IGM Resins) can be used.
  • metallocene compound examples include IRGACURE-784 (manufactured by BASF).
  • An oxime compound is more preferable as the photoradical polymerization initiator.
  • the exposure latitude can be improved more effectively.
  • the oxime compound is particularly preferable because it has a wide exposure latitude (exposure margin) and also acts as a photocuring accelerator.
  • the compound described in JP-A-2001-233842 the compound described in JP-A-2000-080068, and the compound described in JP-A-2006-342166 can be used.
  • Preferred oxime compounds include, for example, compounds having the following structures, 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminovtan-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxy. Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropane-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2-one , And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one and the like.
  • thermosetting photosensitive composition of the present invention it is particularly preferable to use an oxime compound (oxime-based photoradical polymerization initiator) as the photoradical polymerization initiator.
  • IRGACURE OXE 01 IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), ADEKA PUTMER N-1919 (manufactured by ADEKA Corporation, Japanese Patent Application Laid-Open No. 2012-014052).
  • a radical polymerization initiator 2) is also preferably used.
  • TR-PBG-304 manufactured by Changshu Powerful Electronics New Materials Co., Ltd.
  • ADEKA ARCLUDS NCI-831 ADEKA ARCULDS NCI-930
  • DFI-091 manufactured by Daito Chemix Corp.
  • An oxime compound having the following structure can also be used.
  • an oxime compound having a fluorine atom examples include compounds described in JP-A-2010-262028, compounds 24, 36-40 described in paragraph 0345 of JP-A-2014-500852, and JP-A-2013. Examples thereof include the compound (C-3) described in paragraph 0101 of JP-A-164471.
  • Examples of the most preferable oxime compound include an oxime compound having a specific substituent shown in JP-A-2007-269779 and an oxime compound having a thioaryl group shown in JP-A-2009-191061.
  • the photoradical polymerization initiator includes a trihalomethyltriazine compound, a benzyldimethylketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, and a triaryl.
  • a trihalomethyltriazine compound Selected from the group consisting of imidazole dimer, onium salt compound, benzothiazole compound, benzophenone compound, acetophenone compound and its derivative, cyclopentadiene-benzene-iron complex and its salt, halomethyloxaziazole compound, 3-aryl substituted coumarin compound. Compounds are preferred.
  • More preferable photoradical polymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds and acetophenone compounds.
  • At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferable, and metallocene compounds or oxime compounds are even more preferable, and oxime compounds are even more preferable. Is even more preferable.
  • the photoradical polymerization initiator is N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl such as benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler ketone).
  • 2-benzyl such as benzophenone
  • -2-morpholino-aromatic ketones such as propanol-1, alkylanthraquinone, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkyl benzoin
  • benzyl derivatives such as benzyl dimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • RI00 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, and the like.
  • RI01 is a group represented by the formula (II). It is the same group as R I00, and R I02 to R I04 are independently alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, or halogen atoms.
  • R I05 to R I07 are the same as R I 02 to R I 04 of the above formula (I).
  • the compounds described in paragraphs 0048 to 0055 of International Publication No. 2015/1254669 can also be used.
  • the content of the photoradical polymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the thermosetting photosensitive composition of the present invention. Yes, more preferably 0.5 to 15% by mass, and even more preferably 1.0 to 10% by mass. Only one type of photoradical polymerization initiator may be contained, or two or more types may be contained. When two or more kinds of photoradical polymerization initiators are contained, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention may further contain a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator is a compound that generates radicals by heat energy to initiate or accelerate the polymerization reaction of a polymerizable compound. By adding the thermal radical polymerization initiator, the radical polymerization reaction further proceeds during heating, so that the crosslink density may be further improved.
  • thermal radical polymerization initiator examples include compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554.
  • thermoradical polymerization initiator When the thermoradical polymerization initiator is contained, the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 30% by mass, based on the total solid content of the thermosetting photosensitive composition of the present invention. It is 20% by mass, more preferably 5 to 15% by mass. Only one type of thermal radical polymerization initiator may be contained, or two or more types may be contained. When two or more kinds of thermal radical polymerization initiators are contained, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention preferably contains a photoacid generator.
  • a photoacid generator for example, acid is generated in the exposed portion of the thermosetting photosensitive layer, the solubility of the exposed portion in a developing solution (for example, an alkaline aqueous solution) is increased, and the exposed portion is developed. A positive relief pattern that is removed by the solution can be obtained.
  • the thermosetting photosensitive composition contains a photoacid generator and a heat-crosslinking agent described later, for example, the cross-linking reaction of the heat-crosslinking agent is promoted by the acid generated in the exposed part, and the exposed part is exposed. Can be made more difficult to be removed by the developing solution than the non-exposed portion. According to such an aspect, a negative type relief pattern can be obtained.
  • photoacid generator examples include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts and the like.
  • the quinonediazide compound includes a polyhydroxy compound in which quinonediazide sulfonic acid is ester-bonded, a polyamino compound in which quinonediazide sulfonic acid is conjugated with a sulfonamide, and a polyhydroxypolyamino compound in which quinonediazide sulfonic acid is ester-bonded and a sulfonamide bond.
  • Examples include those bound by at least one of the above. In the present invention, for example, it is preferable that 50 mol% or more of all the functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
  • the quinone diazide either a 5-naphthoquinone diazidosulfonyl group or a 4-naphthoquinone diazidosulfonyl group is preferably used.
  • the 4-naphthoquinone diazidosulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinone diazidosulfonyl ester compound has absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a 4-naphthoquinone diazidosulfonyl ester compound or a 5-naphthoquinone diazidosulfonyl ester compound depending on the wavelength to be exposed.
  • a naphthoquinone diazidosulfonyl ester compound having a 4-naphthoquinone diazidosulfonyl group and a 5-naphthoquinone diazidosulfonyl group may be contained in the same molecule, or a 4-naphthoquinone diazidosulfonyl ester compound and a 5-naphthoquinone diazidosulfonyl ester compound may be contained. It may be contained.
  • the naphthoquinone diazide compound can be synthesized by an esterification reaction between a compound having a phenolic hydroxy group and a quinone diazido sulfonic acid compound, and can be synthesized by a known method.
  • the resolution, sensitivity, and residual film ratio are further improved by using these naphthoquinone diazide compounds.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the thermosetting photosensitive composition of the present invention. It is by mass, more preferably 5 to 15% by mass. Only one type of photoacid generator may be contained, or two or more types may be contained. When two or more photoacid generators are contained, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention may contain a thermosetting agent.
  • the thermoacid generator is not particularly limited as long as it is a compound that generates an acid by heat, but for example, an onium salt such as a sulfonium salt, an ammonium salt, or a phosphonium salt, a carboxylic acid ester compound, a sulfonic acid ester compound, or a phosphoric acid. Examples thereof include ester compounds such as ester compounds.
  • Examples of the acid generated from the thermal acid generator by heating include sulfonic acid, phosphoric acid, and carboxylic acid, with sulfonic acid being preferable and aromatic sulfonic acid being more preferable.
  • the pKa of the acid generated from the thermoacid generator is preferably -15 to 3, more preferably -10 to 0.
  • the acid generation temperature of the thermoacid generator is preferably 40 to 300 ° C, more preferably 80 to 260 ° C, further preferably 120 to 220 ° C, and 120 ° C to 200 ° C. Is particularly preferable, and the temperature is most preferably 140 ° C to 180 ° C.
  • the acid generation temperature is determined as the peak temperature of the exothermic peak, which is the lowest temperature when the thermoacid generator is heated to 500 ° C. at 5 ° C./min in a pressure-resistant capsule. Examples of the device used for measuring the acid generation temperature include Q2000 (manufactured by TA Instruments). Further, the acid generation temperature of the thermosetting agent is preferably lower than the boiling point of the solvent contained in the thermosetting photosensitive composition.
  • thermoacid generators examples include Sun Aid SI series manufactured by Sanshin Kagaku Kogyo, CPI series manufactured by Sun Appro, and K-PURE TAG series manufactured by King. Further, Japanese Patent Application Laid-Open No. 2003-277353, Japanese Patent Application Laid-Open No. 2-001470, Japanese Patent Application Laid-Open No. 2-255646, Japanese Patent Application Laid-Open No. 3-011044, Japanese Patent Application Laid-Open No. 2003-183313, Japanese Patent Application Laid-Open No. 2003-277352, Japanese Patent Application Laid-Open No. 58-037003. No., known thermoacid generators described in JP-A-58-198532 and the like can also be used.
  • the content of the thermosetting agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the thermosetting photosensitive composition of the present invention. It is more preferably 0.5 to 15% by mass, and particularly preferably 1.0 to 10% by mass. Only one type of thermoacid generator may be contained, or two or more types may be contained. When two or more types of thermoacid generators are contained, the total is preferably in the above range.
  • the thermosetting photosensitive composition of the present invention contains a surfactant.
  • the surfactant include nonionic surfactants such as silicone-based surfactants, hydrocarbon-based surfactants, and fluorine-based surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • nonionic surfactants such as silicone-based surfactants, hydrocarbon-based surfactants, and fluorine-based surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • Various types of surfactants can be used, and nonionic surfactants are preferable from the viewpoint of insulating properties of the cured film.
  • the content of the surfactant is preferably more than 0.1% by mass with respect to the total mass of the composition.
  • the thermosetting photosensitive composition of the present invention comprises a group consisting of a hydrocarbon-based surfactant described later, a surfactant having a fluorine atom described later, and a surfactant having a silicon atom described later. It can contain at least one selected surfactant. When two or more kinds of surfactants are contained, the total is preferably in the above range.
  • the lower limit of the content is more preferably 0.101% by mass or more, and preferably 0.105% by mass or more.
  • the upper limit of the content is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • thermosetting photosensitive layer is a thin portion in a non-uniform substrate
  • the surface of the thermosetting photosensitive layer is subjected to a large amount of the surfactant. Is thought to be covered. Therefore, the difference in the amount of surfactant present on the surface of the thermosetting photosensitive layer becomes small between the thick portion and the thin portion of the thermosetting photosensitive layer, and the surface free energy of each of the cured film A and the cured film B becomes small.
  • the content of the surfactant is preferably less than 0.005% by mass with respect to the total mass of the composition.
  • the thermosetting photosensitive composition of the present invention comprises a group consisting of a hydrocarbon-based surfactant described later, a surfactant having a fluorine atom described later, and a surfactant having a silicon atom described later. It can contain at least one selected surfactant. When two or more kinds of surfactants are contained, the total is preferably in the above range.
  • the lower limit of the content is more preferably 0.0001% by mass or more, and preferably 0.0005% by mass or more.
  • the upper limit of the content is preferably 0.0045% by mass or less, and more preferably 0.0042% by mass or less.
  • the thermosetting photosensitive layer may be a thin portion or a thick portion, and may be thermosetting photosensitive. It is believed that the amount of surfactant that moves to the surface of the layer will be reduced. Therefore, the difference in the amount of surfactant present on the surface of the thermosetting photosensitive layer becomes small between the thick portion and the thin portion of the thermosetting photosensitive layer, and the surface free energy of each of the cured film A and the cured film B becomes small.
  • the thermosetting photosensitive composition of the present invention preferably contains a surfactant having no fluorine atom and silicon atom.
  • the surfactant having no fluorine atom and silicon atom include hydrocarbon-based surfactants described later.
  • a surfactant having a fluorine atom or a silicon atom moves to the surface of the thermosetting photosensitive layer, it is considered that the surface free energy of the cured film tends to decrease. Therefore, by including a surfactant having no fluorine atom and silicon atom as the surfactant, the amount of the surfactant present on the surface of the thermosetting photosensitive layer in the thick portion and the thin portion of the thermosetting photosensitive layer.
  • the content of the hydrocarbon-based surfactant in the composition is preferably 50% by mass or more with respect to the total content of the surfactant.
  • the thermosetting photosensitive composition of the present invention has at least one type of surfactant selected from the group consisting of a surfactant having a fluorine atom described later and a surfactant having a silicon atom described later.
  • the agent may be further included.
  • the content is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass.
  • the total is preferably in the above range. Details of the hydrocarbon-based surfactant will be described later. It is considered that the hydrocarbon-based surfactant does not easily reduce the surface free energy of the cured film even if it moves to the surface of the thermosetting photosensitive layer. Therefore, when the content of the hydrocarbon-based surfactant in the composition is 50% by mass or more with respect to the total content of the surfactant, the heat-curable photosensitive layer is formed in a thick portion and a thin portion. Even if there is a difference in the amount of surfactant present on the surface of the heat-curable photosensitive layer, it is considered that the difference in surface free energy between the cured film A and the cured film B is small. As a result, even when a cured film is produced by applying it to a non-uniform substrate and another layer is further formed on the obtained cured film, the generation of defects in the other layer is suppressed. It is considered easy.
  • the hydrocarbon-based surfactant may be a surfactant whose hydrophobic portion is a hydrocarbon group, and may be an acetylene-based surfactant, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, or polyoxyethylene stearyl ether, which will be described later.
  • Polyoxyethylene alkyl ethers such as, or esters such as phosphates thereof, polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether, polyoxyethylene stearate and the like.
  • Solbitan alkyl esters such as polyoxyethylene alkyl esters, sorbitan monolaurates, sorbitan monostearates, sorbitan distearates, sorbitan monooleates, sorbitans sesquioleates, sorbitan trioleates, glycerol monostearates, glycerol monooletes.
  • Monoglyceride alkyl esters such as ate, nonionic surfactants such as polynuclear phenol ethoxylates; Alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, alkylnaphthalene sulfonates such as sodium butylnaphthalene sulfonate, sodium pentylnaphthalene sulfonate, sodium hexylnaphthalene sulfonate, sodium octylnaphthalene sulfonate, alkyl sulphate such as sodium lauryl sulphate.
  • Anionic surfactants such as salts, alkyl sulfonates such as sodium dodecyl sulfonate, sulfosuccinate salts such as sodium dilauryl sulfosuccinate; Cationic surfactants such as quaternary ammonium salt type alkyl cations; Examples thereof include, but are not limited to, amphoteric surfactants such as alkyl betaines such as lauryl betaine and stearyl betaine.
  • the number of acetylene groups in the molecule in the acetylene-based surfactant is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and further 1 to 2. preferable.
  • the molecular weight of the acetylene-based surfactant is preferably relatively small, preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 1,000 or less. There is no particular lower limit, but it is preferably 200 or more.
  • the acetylene-based surfactant is preferably a compound represented by the following formula (9).
  • R 91 and R 92 are independently an alkyl group having 3 to 15 carbon atoms, an aromatic hydrocarbon group having 6 to 15 carbon atoms, or an aromatic heterocyclic group having 4 to 15 carbon atoms. ..
  • the number of carbon atoms of the aromatic heterocyclic group is preferably 1 to 12, more preferably 2 to 6, and even more preferably 2 to 4.
  • the aromatic heterocycle is preferably a 5-membered ring or a 6-membered ring.
  • the hetero atom contained in the aromatic heterocycle is preferably a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 91 and R 92 may each independently have a substituent, and examples of the substituent include the following substituent T.
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms
  • an arylalkyl group preferably 7 to 21 carbon atoms, more preferably 7 to 15 carbon atoms. , 7-11 is more preferable
  • an alkenyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable
  • an alkynyl group (2 to 12 carbon atoms is preferable, 2 to 6 is preferable).
  • 2 to 3 are more preferable), hydroxy group, amino group (preferably 0 to 24 carbon atoms, more preferably 0 to 12 and further preferably 0 to 6), thiol group, carboxy group, aryl group (carbon).
  • the number 6 to 22 is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), an alkoxyl group (1 to 12 carbon atoms is preferable, 1 to 6 is more preferable, 1 to 3 is more preferable), and aryloxy.
  • Group preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 10
  • acyl group preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 3
  • Acyloxy group preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 3 carbon atoms
  • allylloyl group preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, further preferably 7 to 11 carbon atoms).
  • allyloyloxy group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, further preferably 7 to 11), carbamoyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, 1).
  • ⁇ 3 is more preferable
  • sulfamoyl group preferably 0 to 12 carbon atoms, more preferably 0 to 6 and even more preferably 0 to 3
  • sulfo group, alkylsulfonyl group preferably 1 to 12 carbon atoms 6 is more preferable, 1 to 3 is more preferable
  • an arylsulfonyl group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable
  • a heterocyclic group (1 to 12 carbon atoms is more preferable).
  • RN is a hydrogen atom or an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), and a hydrogen atom, a methyl group, an ethyl group, or a propyl group is preferable.
  • the alkyl moiety, alkenyl moiety, and alkynyl moiety contained in each substituent may be chain or cyclic, and may be linear or branched.
  • the substituent T is a group capable of taking a substituent, it may further have a substituent T.
  • the alkyl group may be an alkyl halide group, a (meth) acryloyloxyalkyl group, an aminoalkyl group or a carboxyalkyl group.
  • the substituent is a group capable of forming a salt such as a carboxy group or an amino group, the group may form a salt.
  • the compound represented by the formula (9) is preferably a compound represented by the following formula (91).
  • R 93 to R 96 are each independently a hydrocarbon group having 1 to 24 carbon atoms, n9 is an integer of 1 to 6, m9 is an integer twice n9, and n10 is an integer of 1 to 6. It is an integer, m10 is an integer twice n10, and l9 and l10 are independently numbers of 0 or more and 12 or less.
  • R 93 to R 96 are hydrocarbon groups, among which alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and alkenyl groups (2 to 12 carbon atoms are preferable).
  • 2 to 6 are more preferable, 2 to 3 are more preferable), an alkynyl group (2 to 12 carbon atoms are preferable, 2 to 6 are more preferable, 2 to 3 are more preferable), and an aryl group (6 to 6 carbon atoms is more preferable).
  • 22 is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), and an arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable, and 7 to 11 is further preferable).
  • the alkyl group, alkenyl group, and alkynyl group may be linear or cyclic, and may be linear or branched.
  • R 93 to R 96 may have a substituent T as long as the effects of the present invention are exhibited. Further, R 93 to R 96 may be bonded to each other or form a ring via the above-mentioned linking group L. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the hydrocarbon group in the formula with or without the following linking group L to form a ring.
  • R 93 and R 94 are preferably alkyl groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms). Of these, a methyl group is preferable.
  • R 95 and R 96 are preferably alkyl groups (preferably 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 3 to 6 carbon atoms). Of these, ⁇ (C n11 R 98 m11 ) -R 97 is preferable. R 95 and R 96 are particularly preferably isobutyl groups. n11 is an integer of 1 to 6, and an integer of 1 to 3 is preferable. m11 is twice the number of n11. R 97 and R 98 are each independently preferably a hydrogen atom or an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms).
  • n9 is an integer of 1 to 6, and an integer of 1 to 3 is preferable.
  • m9 is an integer that is twice n9.
  • n10 is an integer of 1 to 6, and an integer of 1 to 3 is preferable.
  • m10 is an integer that is twice n10.
  • l9 and l10 are independently numbers from 0 to 12. However, l9 + l10 is preferably a number of 0 to 12, more preferably a number of 0 to 8, more preferably a number of 0 to 6, further preferably a number of more than 0 and less than 6, and more than 0. A number of 3 or less is even more preferable.
  • the compound of the formula (91) may be a mixture of compounds having different numbers, and in that case, the numbers of l9 and l10, or l9 + l10 are the numbers including the decimal point. You may.
  • the compound represented by the formula (91) is preferably a compound represented by the following formula (92).
  • R 93 , R 94 , and R 97 to R 100 are each independently a hydrocarbon group having 1 to 24 carbon atoms, and l11 and l12 are each independently a number of 0 or more and 12 or less.
  • R 93 , R 94 , and R 97 to R 100 are alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and alkenyl groups (preferably 2 to 12 carbon atoms).
  • alkyl group, alkenyl group, and alkynyl group may be chain or cyclic, and may be linear or branched.
  • R 93 , R 94 , and R 97 to R 100 may have a substituent T as long as the effects of the present invention are exhibited. Further, R 93 , R 94 , and R 97 to R 100 may be bonded to each other or form a ring via a linking group L. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the hydrocarbon group in the formula with or without the linking group L to form a ring.
  • R 93 , R 94 , and R 97 to R 100 are each independently preferably an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms).
  • a methyl group is preferable.
  • the number of l11 + l12 is preferably 0 to 12, more preferably 0 to 8, more preferably 0 to 6, more preferably more than 0 and less than 6, more preferably more than 0 and 5 or less.
  • the number of is even more preferable, the number of more than 0 and less than 4 is even more preferable, the number of more than 0 and less than 3 or more than 0 and less than or equal to 1.
  • l11 and l12 may be a mixture of compounds having different numbers in the compound of the formula (92), and in that case, the numbers of l11 and l12, or l11 + l12 are the numbers including the decimal point. May be good.
  • Surfynol 104 series (trade name, Nissin Chemical Industry Co., Ltd.), acetylenol E00, E40, E13T, 60 (trade name, Kawaken Fine Chemicals)
  • Surfinol 104 series, Acetyleneol E00, E40 and E13T are preferable, and Acetyleneol E40 and E13T are more preferable.
  • the Surfinol 104 series and acetylenol E00 are surfactants having the same structure.
  • hydrocarbon-based surfactant a commercially available product may be used, and as the commercially available product, Adecator LB, LA, OA, TN, TO, UA, LO, SO, SP, PC, Adecanol NK, AP, Adeka Estor OEG, TL, S, T, Adekasol CO, COA, Adeka Hope MS, YES, TR, Adeka Call TS, CS, PS, EC, Adekamin 4MAC, 4DAC, MT, Adeka Surfact PB, AB, etc. ) Made by ADEKA), etc., but is not limited to this.
  • surfactant with fluorine atom examples include a surfactant having a fluorocarbon chain and the like.
  • the PF series of Kitamura Chemical Industry Co., Ltd. the "Mega Fuck (registered trademark)” series of Dainippon Ink Industry Co., Ltd., the Florard series of Sumitomo 3M Ltd., and the "Surflon” of AGC Inc. (Registered Trademark) ”series,“ Asahi Guard (Registered Trademark) ”series, Mitsubishi Material Electronics Chemicals Co., Ltd. EF Series, Omniova Solution Co., Ltd. Polyfox Series, etc., but are not limited to these. ..
  • Examples of the surfactant having a silicon atom include a surfactant having a polysiloxane chain which may be modified.
  • silicone-based surfactants Toshiba Dow Corning Silicone Co., Ltd. SH series, SD series, ST series, Big Chemie Japan Co., Ltd. "BYK” series, Shinetsu Silicone Co., Ltd. KP series, KF Series, Disform series of Nippon Oil & Fats Co., Ltd., TSF series of Toshiba Silicone Co., Ltd., etc., but are not limited to these.
  • thermosetting photosensitive composition of the present invention may contain other surfactants as the surfactants.
  • Other surfactants include, but are limited to, acrylic / methacrylic resin-based surfactants such as Kyoeisha Chemical's Polyflow series and Kusumoto Kasei's "Disparon (registered trademark)" series. It's not a thing.
  • the thermosetting photosensitive composition of the present invention contains a solvent.
  • a solvent a known solvent can be arbitrarily used.
  • the solvent is preferably an organic solvent.
  • the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, and alcohols.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, and ⁇ -butyrolactone.
  • alkylalkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, Ethyl ethoxyacetate, etc.)
  • 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.) (eg, methyl 3-methoxypropionate, 3-methoxypropionate, etc.) Ethyl, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • 2-alkyloxypropionate alkyl esters eg, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, ethyl 2-alkyl
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol.
  • Suitable examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol ethyl methyl ether, and propylene glycol monopropyl ether acetate.
  • ketones for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone and the like are preferable.
  • cyclic hydrocarbons for example, aromatic hydrocarbons such as toluene, xylene and anisole, and cyclic terpenes such as limonene are preferable.
  • sulfoxides for example, dimethyl sulfoxide is preferable.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylisobutyramide, 3-methoxy-N, N- Dimethylpropionamide, 3-butoxy-N, N-dimethylpropionamide and the like are preferable.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, Examples thereof include ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, and diacetone alcohol.
  • the solvent is preferably a mixture of two or more types from the viewpoint of improving the properties of the coated surface.
  • the mixed solvent to be mixed is preferable.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid content concentration of the thermosetting photosensitive composition of the present invention is 5 to 80% by mass, and is 5 to 75% by mass.
  • the amount is more preferably 10 to 70% by mass, further preferably 20 to 70% by mass, and further preferably 40 to 70% by mass. More preferred.
  • the solvent content may be adjusted according to the desired thickness of the coating film and the coating method.
  • the solvent may contain only one type, or may contain two or more types. When two or more kinds of solvents are contained, the total is preferably in the above range.
  • the thermosetting photosensitive composition of the present invention preferably further contains a radical cross-linking agent.
  • the radical cross-linking agent is a compound having a radically polymerizable group.
  • a group containing an ethylenically unsaturated bond is preferable.
  • the group containing an ethylenically unsaturated bond include a group having an ethylenically unsaturated bond such as a vinyl group, an allyl group, a vinylphenyl group, and a (meth) acryloyl group.
  • the (meth) acryloyl group is preferable as the group containing the ethylenically unsaturated bond, and the (meth) acryloyl group is more preferable from the viewpoint of reactivity.
  • the radical cross-linking agent may be a compound having one or more ethylenically unsaturated bonds, but is more preferably a compound having two or more ethylenically unsaturated bonds.
  • the compound having two ethylenically unsaturated bonds is preferably a compound having two groups containing the above ethylenically unsaturated bonds.
  • the thermosetting photosensitive composition of the present invention preferably contains a compound having three or more ethylenically unsaturated bonds as a radical cross-linking agent.
  • the compound having 3 or more ethylenically unsaturated bonds a compound having 3 to 15 ethylenically unsaturated bonds is preferable, and a compound having 3 to 10 ethylenically unsaturated bonds is more preferable, and 3 to 6 compounds are more preferable.
  • the compound having is more preferable.
  • the compound having three or more ethylenically unsaturated bonds is preferably a compound having three or more groups containing the ethylenically unsaturated bond, and more preferably a compound having 3 to 15 ethylenically unsaturated bonds.
  • a compound having 3 to 10 is more preferable, and a compound having 3 to 6 is particularly preferable.
  • the thermosetting photosensitive composition of the present invention comprises a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds. It is also preferable to include and.
  • the radical cross-linking agent is particularly preferably a compound having two ethylenically unsaturated bonds.
  • the molecular weight of the radical cross-linking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical cross-linking agent is preferably 100 or more.
  • radical cross-linking agent examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides, and are preferable.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxy group, an amino group or a sulfanyl group with a monofunctional or polyfunctional isocyanate or an epoxy, or a monofunctional or polyfunctional group.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a parentionic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amines or thiols, and a halogeno group.
  • Substitution reactions of unsaturated carboxylic acid esters or amides having a releasable substituent such as tosyloxy group and monofunctional or polyfunctional alcohols, amines and thiols are also suitable.
  • radical cross-linking agent a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
  • examples are polyethylene glycol di (meth) acrylate, trimethyl ethanetri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • a compound obtained by adding ethylene oxide or propylene oxide to a functional alcohol and then (meth) acrylated, is described in JP-A-48-041708, JP-A-50-006034, and JP-A-51-0371993.
  • Urethane (meth) acrylates such as those described in JP-A-48-064183, JP-A-49-043191, and JP-A-52-030490, the polyester acrylates, epoxy resins and (meth) acrylics. Examples thereof include polyfunctional acrylates and methacrylates such as epoxy acrylates which are reaction products with acids, and mixtures thereof. Further, the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970 are also suitable.
  • a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a cyclic ether group such as glycidyl (meth) acrylate and a compound having an ethylenically unsaturated bond can also be mentioned.
  • a preferable radical cross-linking agent other than the above it has a fluorene ring and has an ethylenically unsaturated bond, which is described in JP-A-2010-160418, JP-A-2010-129825, Patent No. 4364216 and the like.
  • a compound having two or more groups having two or more groups and a cardo resin can also be used.
  • dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Nihon Kayaku Co., Ltd.) ), A-TMMT: Shin-Nakamura Chemical Industry Co., Ltd.), Dipentaerythritol penta (meth) acrylate (commercially available KAYARAD D-310; Nippon Kayaku Co., Ltd.), Dipentaerythritol hexa (meth) ) Acrylate (commercially available KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), and these (meth) acryloyl groups are mediated by ethylene glycol residues or propylene glycol residues. A structure that is bonded together is preferable
  • SR-494 which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartmer
  • SR-209 manufactured by Sartmer which is a bifunctional methacrylate having four ethyleneoxy chains.
  • DPCA-60 a hexafunctional acrylate having 6 pentyleneoxy chains manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 a trifunctional acrylate having 3 isobutyleneoxy chains
  • urethane oligomer UAS-10 are examples of the radical cross-linking agent.
  • UAB-140 (manufactured by Nippon Paper Co., Ltd.), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), DPHA-40H (Japan) Chemicals Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME400 (manufactured by Nichiyu Co., Ltd.), etc. Can be mentioned.
  • radical cross-linking agent examples include urethane acrylates as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Laid-Open No. 51-037193, Japanese Patent Application Laid-Open No. 02-032293, and Japanese Patent Application Laid-Open No. 02-016765.
  • Urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable.
  • radical cross-linking agent a compound having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238 is used. You can also do it.
  • the radical cross-linking agent may be a radical cross-linking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • the radical cross-linking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an acid group is obtained by reacting an unreacted hydroxy group of the aliphatic polyhydroxy compound with a non-aromatic carboxylic acid anhydride.
  • a radical cross-linking agent provided with is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. Is a compound.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the preferable acid value of the radical cross-linking agent having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
  • the acid value of the radical cross-linking agent is within the above range, it is excellent in manufacturing handleability and further excellent in developability. Moreover, the polymerizable property is good.
  • the acid value of the radical cross-linking agent having an acid group is preferably 0.1 to 300 mgKOH / g, and particularly preferably 1 to 100 mgKOH / g. The acid value is measured according to the description of JIS K 0070: 1992.
  • thermosetting photosensitive composition of the present invention it is preferable to use bifunctional methacrylate or acrylate from the viewpoint of pattern resolution and film elasticity.
  • the compound include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, and PEG200 diacrylate (polyethylene glycol diacrylate having a formula of polyethylene glycol chain).
  • a monofunctional radical cross-linking agent can be preferably used as the radical cross-linking agent.
  • the monofunctional radical cross-linking agent include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, and cyclohexyl (meth).
  • the content thereof is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the thermosetting photosensitive composition of the present invention.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 50% by mass or less, and further preferably 30% by mass or less.
  • One type of radical cross-linking agent may be used alone, or two or more types may be mixed and used. When two or more types are used in combination, the total amount is preferably in the above range.
  • the thermosetting photosensitive composition of the present invention preferably contains a thermosetting agent.
  • the thermal cross-linking agent is particularly limited as long as it is a compound having a plurality of groups in the molecule in which a reaction for forming a covalent bond with another compound in the composition or a reaction product thereof is promoted by the action of an acid.
  • a compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group is preferable, and at least one group selected from the group consisting of a methylol group and an alkoxymethyl group is directly bonded to a nitrogen atom.
  • Compounds having a structure are more preferable.
  • thermal cross-linking agent for example, an amino group-containing compound such as melamine, glycoluril, urea, alkyleneurea, or benzoguanamine is reacted with formaldehyde or formaldehyde and alcohol, and the hydrogen atom of the amino group is replaced with a methylol group or an alkoxymethyl group.
  • an amino group-containing compound such as melamine, glycoluril, urea, alkyleneurea, or benzoguanamine
  • formaldehyde or formaldehyde and alcohol examples thereof include compounds having the above-mentioned structure.
  • the method for producing these compounds is not particularly limited, and any compound having the same structure as the compound produced by the above method may be used. Further, it may be an oligomer formed by self-condensing the methylol groups of these compounds.
  • a thermal cross-linking agent using melamine is a melamine-based cross-linking agent
  • a thermal cross-linking agent using glycoluril, urea or alkylene urea is a urea-based cross-linking agent
  • a thermal cross-linking agent using alkylene urea is an alkylene.
  • Those using a urea-based cross-linking agent and benzoguanamine are called benzoguanamine-based cross-linking agents.
  • thermosetting photosensitive composition of the present invention preferably contains at least one compound selected from the group consisting of a urea-based cross-linking agent and a melamine-based cross-linking agent, and is preferably a glycoluril-based cross-linking agent described later. It is more preferable to contain at least one compound selected from the group consisting of the melamine-based cross-linking agent and the melamine-based cross-linking agent.
  • melamine-based cross-linking agent examples include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxybutyl melamine and the like.
  • urea-based cross-linking agent examples include monohydroxymethylated glycol uryl, dihydroxymethylated glycol uryl, trihydroxymethylated glycol uryl, tetrahydroxymethylated glycol uryl, monomethoxymethylated glycol uryl, and dimethoxymethylated glycol uryl.
  • Glycoluryl-based cross-linking agent such as bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, and bisbutoxymethylurea, Monohydroxymethylated ethyleneurea or dihydroxymethylated ethyleneurea, monomethoxymethylated ethyleneurea, dimethoxymethylated ethyleneurea, monoethoxymethylated ethyleneurea, diethoxymethylated ethyleneurea, monopropoxymethylated ethyleneurea, dipropoxymethyl
  • Ethyleneurea-based cross-linking agents such as ethyleneurea, monobutoxymethylated, or dibutoxymethylated ethyleneurea, Monohydroxymethylated propylene urea, dihydroxymethylated propylene urea, monomethoxymethylated propylene urea, dimethoxymethylated propylene urea, monodiethoxymethylated propylene urea, diethoxymethylated propylene urea, monopropoxymethylated propylene urea, dipropoxymethyl
  • benzoguanamine-based cross-linking agent examples include monohydroxymethylated benzoguanamine and dihydroxymethylated benzoguanamine. Trihydroxymethylated benzoguanamine, tetrahydroxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, trimethoxymethylated benzoguanamine, tetramethoxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, trimethoxymethylated Benzoguanamine, tetraethoxymethylated benzoguanamine, monopropoxymethylated benzoguanamine, dipropoxymethylated benzoguanamine, tripropoxymethylated benzoguanamine, tetrapropoxymethylated benzoguanamine, monobutoxymethylated benzoguanamine, dibutoxymethylated benzoguanamine, tributoxymethylated benzoguanamine, Examples thereof include tetrabutoxymethylated benzogu
  • a compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group at least one selected from the group consisting of a methylol group and an alkoxymethyl group on an aromatic ring (preferably a benzene ring).
  • a compound to which a group is directly bonded is also preferably used.
  • Specific examples of such compounds include benzenedimethanol, bis (hydroxymethyl) cresol, bis (hydroxymethyl) dimethoxybenzene, bis (hydroxymethyl) diphenyl ether, bis (hydroxymethyl) benzophenone, and hydroxymethylbenzoate hydroxymethylphenyl.
  • thermal cross-linking agent Commercially available products may be used as the thermal cross-linking agent, and suitable commercially available products include 46DMOC, 46DMOEP (all manufactured by Asahi Organic Materials Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, DML-OEP, etc.
  • thermosetting photosensitive composition of the present invention preferably contains at least one compound selected from the group consisting of an epoxy compound, an oxetane compound, and a benzoxazine compound as a thermosetting agent.
  • Epoxy compound (compound having an epoxy group)
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200 ° C. or lower, and the dehydration reaction derived from the cross-linking does not occur, so that film shrinkage is unlikely to occur. Therefore, the inclusion of the epoxy compound is effective in suppressing low-temperature curing and warpage of the thermosetting photosensitive composition.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
  • epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether. , Trimethylol propantriglycidyl ether and other alkylene glycol type epoxy resins or polyhydric alcohol hydrocarbon type epoxy resins; polypropylene glycol diglycidyl ether and other polyalkylene glycol type epoxy resins; polymethyl (glycidyloxypropyl) siloxane and other epoxy groups Examples include, but are not limited to, containing silicones.
  • an epoxy resin containing a polyethylene oxide group is preferable because it is excellent in suppressing warpage and heat resistance.
  • Epicron® EXA-4880, Epicron® EXA-4822, and Ricaresin® BEO-60E are preferred because they contain polyethylene oxide groups.
  • oxetane compound compound having an oxetanyl group
  • examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, and the like.
  • examples thereof include 3-ethyl-3- (2-ethylhexylmethyl) oxetane, 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester and the like.
  • the Aron Oxetane series manufactured by Toagosei Co., Ltd. (for example, OXT-121, OXT-221, OXT-191, OXT-223) can be preferably used, and these can be used alone. Alternatively, two or more types may be mixed.
  • benzoxazine compound examples include BA type benzoxazine, Bm type benzoxazine, Pd type benzoxazine, FA type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), poly.
  • examples thereof include a benzoxazine adduct of a hydroxystyrene resin and a phenol novolac type dihydrobenzoxazine compound. These may be used alone or in combination of two or more.
  • the content of the thermosetting agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the thermosetting photosensitive composition of the present invention. , 0.5 to 15% by mass is more preferable, and 1.0 to 10% by mass is particularly preferable. Only one type of thermal cross-linking agent may be contained, or two or more types may be contained. When two or more kinds of thermal cross-linking agents are contained, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention is selected from at least a group consisting of a compound having a sulfonamide structure and a compound having a thiourea structure. It is preferable to further contain one compound.
  • the sulfonamide structure is a structure represented by the following formula (S-1).
  • R represents a hydrogen atom or an organic group
  • R may be bonded to another structure to form a ring structure
  • * may independently form a binding site with another structure.
  • the R is preferably the same group as R 2 in the following formula (S-2).
  • the compound having a sulfonamide structure may be a compound having two or more sulfonamide structures, but a compound having one sulfonamide structure is preferable.
  • the compound having a sulfonamide structure is preferably a compound represented by the following formula (S-2).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and two or more of R 1 , R 2 and R 3 are bonded to each other. It may form a ring structure. It is preferable that R 1 , R 2 and R 3 are independently monovalent organic groups.
  • R 1 , R 2 and R 3 include hydrogen atoms, or alkyl groups, cycloalkyl groups, alkoxy groups, alkyl ether groups, alkylsilyl groups, alkoxysilyl groups, aryl groups, arylether groups, carboxy groups, Examples thereof include a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, or a group in which two or more of these are combined.
  • the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a 2-ethylhexyl group and the like.
  • a cycloalkyl group having 5 to 10 carbon atoms is preferable, and a cycloalkyl group having 6 to 10 carbon atoms is more preferable.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 5 carbon atoms is more preferable.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group.
  • As the alkoxysilyl group an alkoxysilyl group having 1 to 10 carbon atoms is preferable, and an alkoxysilyl group having 1 to 4 carbon atoms is more preferable.
  • Examples of the alkoxysilyl group include a methoxysilyl group, an ethoxysilyl group, a propoxysilyl group and a butoxysilyl group.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable.
  • the aryl group may have a substituent such as an alkyl group. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • heterocyclic group examples include a triazole ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isooxazole ring, an isothiazole ring, a tetrazole ring, a pyridine ring, a pyridazine ring and a piperidine ring.
  • R 1 is an aryl group and R 2 and R 3 are independently hydrogen atoms or alkyl groups are preferable.
  • Examples of compounds having a sulfonamide structure include benzenesulfonamide, dimethylbenzenesulfonamide, N-butylbenzenesulfonamide, sulfanylamide, o-toluenesulfonamide, p-toluenesulfonamide, hydroxynaphthalenesulfonamide, naphthalene-1.
  • the thiourea structure is a structure represented by the following formula (T-1).
  • R 4 and R 5 each independently represent a hydrogen atom or a monovalent organic group, and R 4 and R 5 may be combined to form a ring structure, where R 4 is.
  • the ring structure may be formed by combining with other structures to which * is bonded, R 5 may be combined with other structures to which * is bonded to form a ring structure, and * may be independently and others. Represents the site of connection with the structure of.
  • R 4 and R 5 are independently hydrogen atoms.
  • R 4 and R 5 include hydrogen atom, or alkyl group, cycloalkyl group, alkoxy group, alkyl ether group, alkylsilyl group, alkoxysilyl group, aryl group, arylether group, carboxy group, carbonyl group, Examples thereof include an allyl group, a vinyl group, a heterocyclic group, or a group in which two or more of these are combined.
  • the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a 2-ethylhexyl group and the like.
  • a cycloalkyl group having 5 to 10 carbon atoms is preferable, and a cycloalkyl group having 6 to 10 carbon atoms is more preferable.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 5 carbon atoms is more preferable.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group.
  • As the alkoxysilyl group an alkoxysilyl group having 1 to 10 carbon atoms is preferable, and an alkoxysilyl group having 1 to 4 carbon atoms is more preferable.
  • Examples of the alkoxysilyl group include a methoxysilyl group, an ethoxysilyl group, a propoxysilyl group and a butoxysilyl group.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable.
  • the aryl group may have a substituent such as an alkyl group. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • heterocyclic group examples include a triazole ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isooxazole ring, an isothiazole ring, a tetrazole ring, a pyridine ring, a pyridazine ring and a piperidine ring.
  • the compound having a thiourea structure may be a compound having two or more thiourea structures, but is preferably a compound having one thiourea structure.
  • the compound having a thiourea structure is preferably a compound represented by the following formula (T-2).
  • R 4 to R 7 independently represent a hydrogen atom or a monovalent organic group, and at least two of R 4 to R 7 are bonded to each other to form a ring structure. You may.
  • R 4 and R 5 have the same meanings as R 4 and R 5 in formula (T-1), a preferable embodiment thereof is also the same.
  • R 6 and R 7 are independently monovalent organic groups.
  • the preferred embodiment of the monovalent organic group in R 6 and R 7 is the same as the preferred embodiment of the monovalent organic group in R 4 and R 5 in the formula (T-1). ..
  • Examples of compounds having a thiourea structure include N-acetylthiourea, N-allyl thiourea, N-allyl-N'-(2-hydroxyethyl) thiourea, 1-adamantyl thiourea, N-benzoyl thiourea, N, N'-.
  • Diphenylthiourea 1-benzyl-phenylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1,3-dicyclohexylthiourea, 1- (3- (trimethoxysilyl) propyl) -3-methylthiourea, trimethyl Examples thereof include thiourea, tetramethylthiourea, N, N-diphenylthiourea, ethylenethiourea (2-imidazolinthione), carbimazole, and 1,3-dimethyl-2-thiohydranthin.
  • the total content of the compound having a sulfonamide structure and the compound having a thiourea structure is preferably 0.05 to 10% by mass, preferably 0.1 to 10% by mass, based on the total mass of the thermosetting photosensitive composition of the present invention. It is more preferably 5% by mass, and even more preferably 0.2 to 3% by mass.
  • the thermosetting photosensitive composition of the present invention may contain only one compound selected from the group consisting of a compound having a sulfonamide structure and a compound having a thiourea structure, or may contain two or more compounds. When only one type is contained, the content of the compound is preferably within the above range, and when two or more types are contained, the total amount thereof is preferably within the above range.
  • thermosetting photosensitive composition of the present invention preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it is possible to effectively suppress the movement of metal ions derived from the metal layer (metal wiring) into the thermosetting photosensitive composition layer.
  • the migration inhibitor is not particularly limited, but heterocycles (pyrazole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, etc.
  • triazole-based compounds such as 1,2,4-triazole and benzotriazole
  • tetrazole-based compounds such as 1H-tetrazole and 5-phenyltetrazole can be preferably used.
  • an ion trap agent that traps anions such as halogen ions can also be used.
  • Examples of other migration inhibitors include rust preventives described in paragraph 0094 of JP2013-015701, compounds described in paragraphs 0073 to 0076 of JP2009-283711, and JP2011-059656.
  • the compounds described in paragraph 0052, the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A, the compounds described in paragraph 0166 of International Publication No. 2015/199219, and the like can be used.
  • the migration inhibitor include the following compounds.
  • the content of the migration inhibitor shall be 0.01 to 5.0% by mass with respect to the total solid content of the thermocurable photosensitive composition. Is more preferable, 0.05 to 2.0% by mass is more preferable, and 0.1 to 1.0% by mass is further preferable.
  • the migration inhibitor may be only one type or two or more types. When there are two or more types of migration inhibitors, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention preferably contains a polymerization inhibitor.
  • polymerization inhibitor examples include hydroquinone, o-methoxyphenol, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butylcatechol, 1,4-benzoquinone, and diphenyl-p-benzoquinone.
  • the content of the polymerization inhibitor is, for example, 0.01 to 20 with respect to the total solid content of the thermosetting photosensitive composition of the present invention.
  • An embodiment of 0.0% by mass is mentioned, preferably 0.01 to 5% by mass, more preferably 0.02 to 3% by mass, and 0.05 to 2.5% by mass. Is more preferable.
  • the embodiment of 0.02 to 15.0% by mass is also preferably raised, and in that case, 0.05 to 10.0% by mass is more preferable. Is.
  • the polymerization inhibitor may be only one type or two or more types. When there are two or more types of polymerization inhibitors, the total is preferably in the above range.
  • the thermosetting photosensitive composition of the present invention preferably contains a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • the metal adhesion improver include silane coupling agents, aluminum-based adhesive aids, titanium-based adhesive aids, compounds having a sulfonamide structure and compounds having a thiourea structure, phosphoric acid derivative compounds, ⁇ -ketoester compounds, and amino compounds. And so on.
  • silane coupling agent examples include the compounds described in paragraph 0167 of International Publication No. 2015/199219, the compounds described in paragraphs 0062 to 0073 of JP-A-2014-191002, paragraphs of International Publication No. 2011/080992.
  • Examples include the compounds described in paragraph 0055. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP-A-2011-128358. Further, it is also preferable to use the following compounds as the silane coupling agent.
  • Et represents an ethyl group.
  • silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glyceride.
  • the compounds described in paragraphs 0046 to 0049 of JP2014-186186A and the sulfide compounds described in paragraphs 0032 to 0043 of JP2013-072935 can also be used. ..
  • Aluminum-based adhesive aid examples include aluminum tris (ethylacetacetate), aluminumtris (acetylacetoneate), ethylacetacetate aluminum diisopropirate, and the like.
  • the content of the metal adhesive improving agent is preferably in the range of 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, and further preferably 0. It is in the range of 5 to 5 parts by mass.
  • the metal adhesiveness improving agent may be only one kind or two or more kinds. When two or more types are used, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention can be used for various additives such as sensitizers such as N-phenyldiethanolamine, chain transfer agents, and higher fatty acids, if necessary, as long as the effects of the present invention can be obtained.
  • sensitizers such as N-phenyldiethanolamine
  • chain transfer agents such as N-phenyldiethanolamine
  • higher fatty acids if necessary, as long as the effects of the present invention can be obtained.
  • Derivatives, inorganic particles, curing agents, curing catalysts, fillers, antioxidants, ultraviolet absorbers, antiaggregating agents and the like can be blended.
  • the total blending amount is preferably 3% by mass or less of the solid content of the thermosetting photosensitive composition.
  • the thermosetting photosensitive composition of the present invention may contain a sensitizer.
  • the sensitizer absorbs specific active radiation and enters an electron-excited state.
  • the sensitizer in the electron-excited state comes into contact with the thermal radical polymerization initiator, the photoradical polymerization initiator, and the like, and acts such as electron transfer, energy transfer, and heat generation occur.
  • the thermal radical polymerization initiator and the photoradical polymerization initiator undergo a chemical change and decompose to generate radicals, acids or bases.
  • Examples of the sensitizer include sensitizers such as N-phenyldiethanolamine.
  • benzophenone type Michler's ketone type, coumarin type, pyrazole azo type, anilino azo type, triphenylmethane type, anthracene type, anthracene type, anthrapyridone type, benzylidene type, oxonor type, pyrazole triazole azo type, pyridone azo type, Compounds such as cyanine-based, phenothiazine-based, pyrrolopyrazoleazomethine-based, xanthene-based, phthalocyanine-based, penzopyran-based, and indigo-based compounds can be used.
  • sensitizing dye can be mentioned. Moreover, you may use a sensitizing dye as a sensitizer.
  • sensitizing dye the description in paragraphs 0161 to 0163 of JP-A-2016-0273557 can be referred to, and this content is incorporated in the present specification.
  • the content of the sensitizer is 0.01 to 20% by mass with respect to the total solid content of the heat-curable photosensitive composition of the present invention. , More preferably 0.1 to 15% by mass, and even more preferably 0.5 to 10% by mass.
  • the sensitizer may be used alone or in combination of two or more.
  • the thermosetting photosensitive composition of the present invention may contain a chain transfer agent.
  • Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pp. 683-684.
  • Examples of the chain transfer agent include RAFT (Reversible Addition Fragmentation chain Transfer), which is a group of compounds having -S-S-, -SO 2 -S-, -NO-, SH, PH, SiH, and GeH in the molecule.
  • Dithiobenzoate, trithiocarbonate, dithiocarbamate, xantate compound and the like having a thiocarbonylthio group used for polymerization are used. They can donate hydrogen to low-activity radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
  • a thiol compound can be preferably used.
  • the content of the chain transfer agent is 0.01 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the thermosetting photosensitive composition of the present invention. 20 parts by mass is preferable, 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is further preferable.
  • the chain transfer agent may be only one kind or two or more kinds. When there are two or more types of chain transfer agents, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention is thermoset in the process of drying after application by adding a higher fatty acid derivative such as behenic acid or behenic acid amide in order to prevent polymerization inhibition due to oxygen. It may be unevenly distributed on the surface of the photosensitive composition.
  • the content of the higher fatty acid derivative is 0.1 to 10 mass by mass with respect to the total solid content of the thermosetting photosensitive composition of the present invention. It is preferably%. Only one type of higher fatty acid derivative may be used, or two or more types may be used. When there are two or more higher fatty acid derivatives, the total is preferably in the above range.
  • thermosetting photosensitive composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and even more preferably less than 0.6% by mass from the viewpoint of coating surface properties.
  • the metal content of the thermosetting photosensitive composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, and further less than 0.5 mass ppm from the viewpoint of insulating properties.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are contained, it is preferable that the total of these metals is in the above range.
  • thermosetting photosensitive composition of the present invention a raw material having a low metal content is used as a raw material constituting the thermosetting photosensitive composition of the present invention.
  • the thermosetting photosensitive composition of the present invention preferably has a halogen atom content of less than 500 mass ppm, more preferably less than 300 mass ppm, from the viewpoint of wiring corrosiveness. More preferably less than 200 mass ppm.
  • those existing in the state of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total amount of chlorine atom and bromine atom, or chlorine ion and bromine ion is in the above range, respectively.
  • a conventionally known storage container can be used as the storage container for the thermosetting photosensitive composition of the present invention.
  • a multi-layer bottle in which the inner wall of the container is composed of 6 types and 6 layers of resin and 6 types of resins are used for the purpose of suppressing impurities from being mixed into the raw materials and the thermosetting photosensitive composition. It is also preferable to use a bottle having a 7-layer structure. Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
  • thermosetting photosensitive composition of the present invention is a composition used for forming a thermosetting photosensitive layer, and is more preferably used for forming a thermosetting photosensitive layer by a slit coating method.
  • the thermosetting photosensitive composition of the present invention is preferably applied to a non-uniform substrate.
  • the non-uniform base material may be a base material in which the thickness of the thermosetting photosensitive layer is not uniform when the thermosetting photosensitive layer is formed on the base material. For example, there is a step on the surface.
  • the surface of the base material is such that the physical shape of the surface of the base material is not uniform, such as a base material having Examples thereof include a base material having non-uniform chemical properties.
  • the base material having a step is a base material having a step on the surface, and may be a base material having a non-flat surface.
  • the base material having an inclination on the surface is a base material having an inclination on at least a part of the surface, and may be a base material having a non-flat surface.
  • a base material in which the chemical properties of the surface of the base material are not uniform, such that only a part of the surface is difficult to be compatible with the composition for example, a base material having a different material on the surface of the base material or a part of the surface Even if the surface is flat, it may be a base material on which a thermosetting photosensitive layer having a uniform thickness is not formed.
  • Examples of the base material in which a part of the material on the surface of the base material is different include the case where the surface of the base material has an insulating layer and conductor wiring.
  • the difference in height between the rearmost part and the lowest part of a base material having a non-uniform physical shape on the surface of the base material (a base material having a non-uniform surface height) is the average thickness of the thermosetting photosensitive layer. On the other hand, it is preferably 5 to 90%, more preferably 10 to 80%, and even more preferably 12 to 60%.
  • the physical shape of the surface of the base material is not particularly uniform.
  • the surface aspect of the base material is not particularly limited, and is rectangular parallelepiped, cubic, columnar, hemispherical, pyramidal, cone-shaped, sloped, or ridge-shaped. , Valley-shaped or saddle-shaped, high or low in the thickness direction, or any other shape that forms a height difference in the thickness direction.
  • the difference in height may be a difference due to the shape of the substrate, a difference formed by elements formed on the base material such as an electrode and an insulating film, and may be formed by anything. Is not limited.
  • thermosetting photosensitive composition of the present invention is preferably used for forming an interlayer insulating film for a rewiring layer. In addition, it can also be used for forming an insulating film of a semiconductor device, forming a stress buffer film, and the like.
  • thermosetting photosensitive composition of the present invention can be prepared by mixing each of the above components.
  • the mixing method is not particularly limited, and a conventionally known method can be used.
  • the filter pore diameter is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the filter pore diameter may be, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the filter may be one that has been pre-cleaned with an organic solvent. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel.
  • filters having different pore diameters or materials may be used in combination. Moreover, you may filter various materials a plurality of times. When filtering a plurality of times, circulation filtration may be used. Moreover, you may pressurize and perform filtration. When pressurizing and filtering, the pressure to be pressurized is, for example, 0.01 MPa or more and 1.0 MPa or less, preferably 0.03 MPa or more and 0.9 MPa or less, and more preferably 0.05 MPa or more and 0.7 MPa or less. , 0.05 MPa or more and 0.3 MPa or less is more preferable. In addition to filtration using a filter, impurities may be removed using an adsorbent.
  • Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the cured film of the present invention is obtained by curing the thermosetting photosensitive composition of the present invention.
  • the film thickness of the cured film of the present invention can be, for example, 0.5 ⁇ m or more, and can be 1 ⁇ m or more. Further, the upper limit value can be 100 ⁇ m or less, and can be 30 ⁇ m or less.
  • the cured film of the present invention may be laminated in two or more layers, and further in three to seven layers to form a laminated body. It is preferable that the laminate of the present invention contains two or more cured films and includes a metal layer between any of the cured films. For example, a laminate containing at least a layer structure in which three layers of a first cured film, a metal layer, and a second cured film are laminated in this order is preferable.
  • the first cured film and the second cured film are both cured films of the present invention.
  • both the first cured film and the second cured film are thermosetting the present invention.
  • a preferred embodiment is a film formed by curing a photosensitive composition.
  • thermosetting photosensitive composition of the present invention used for forming the first cured film and the thermosetting photosensitive composition of the present invention used for forming the second cured film have the same composition. It may be a composition of the above, or it may be a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
  • Examples of the applicable field of the cured film of the present invention include an insulating film for a semiconductor device, an interlayer insulating film for a rewiring layer, a stress buffer film, and the like.
  • a sealing film, a substrate material (base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above may be patterned by etching. For these applications, for example, Science & Technology Co., Ltd.
  • the cured film in the present invention can also be used for manufacturing plate surfaces such as offset plate surfaces or screen plate surfaces, for etching molded parts, and for manufacturing protective lacquers and dielectric layers in electronics, especially microelectronics.
  • the method for producing a cured film of the present invention is a film forming step of applying the thermosetting photosensitive composition of the present invention to a substrate to form a film. It is preferable to include it.
  • the method for producing a cured film of the present invention preferably includes the film forming step, an exposure step for exposing the film, and a developing step for developing the film. Further, it is more preferable that the method for producing a cured film of the present invention includes a heating step of heating the film. Specifically, it is also preferable to include the following steps (a) to (d).
  • thermosetting photosensitive composition layer (thermosetting photosensitive composition layer)
  • Heating step for heating the developed film
  • the resin layer cured by exposure can be further cured.
  • the above-mentioned thermal acid generator is decomposed, and the generated acid promotes the cross-linking of the thermal cross-linking agent, so that sufficient curability can be obtained.
  • the method for producing a laminate according to a preferred embodiment of the present invention includes the method for producing a cured film of the present invention.
  • the method for producing the laminated body of the present embodiment is the step (a), the steps (a) to (c), or (a) after the cured film is formed according to the above-mentioned method for producing the cured film. )-(D).
  • a laminated body can be obtained.
  • the production method includes a film forming step (layer forming step) in which a thermosetting photosensitive composition is applied to a substrate to form a film (layered).
  • the type of base material can be appropriately determined depending on the application, but semiconductor-made base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical film, ceramic material, and thin-film deposition film, There are no particular restrictions on magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, paper, SOG (Spin On Glass), TFT (thin film) array substrates, and electrode plates of plasma display panels (PDPs).
  • a semiconductor-made base material is particularly preferable, and a silicon base material and a molded resin base material are more preferable.
  • the base material for example, a plate-shaped base material (board) is used.
  • thermosetting photosensitive composition layer is formed on the surface of the resin layer or the surface of the metal layer, the resin layer or the metal layer serves as a base material.
  • Coating is preferable as a means for applying the thermosetting photosensitive composition to the base material.
  • the means to be applied include a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spray coating method, a spin coating method, and a slit coating method.
  • the inkjet method and the like are exemplified. From the viewpoint of the uniformity of the thickness of the thermosetting photosensitive composition layer, the spin coating method, the slit coating method, the spray coating method, and the inkjet method are more preferable, and from the viewpoint that the effect of the present invention can be easily obtained, the effect of the present invention can be easily obtained.
  • the slit coating method is preferable.
  • a resin layer having a desired thickness can be obtained by adjusting an appropriate solid content concentration and coating conditions according to the method.
  • the coating method can be appropriately selected depending on the shape of the base material.
  • a circular base material such as a wafer
  • a spin coating method, a spray coating method, an inkjet method, etc. are preferable, and for a rectangular base material, a slit coating method or a spray coating method is used.
  • the method, the inkjet method and the like are preferable.
  • the spin coating method for example, it may be applied at a rotation speed of 300 to 3,500 rpm for 10 to 180 seconds, and it may be applied at a rotation speed of 500 to 2,000 rpm for about 10 seconds to 1 minute. it can.
  • a plurality of rotation speeds can be combined and applied. Further, it is also possible to apply a method of transferring a coating film previously formed on a temporary support by the above-mentioned application method onto a substrate. Regarding the transfer method, the production method described in paragraphs 0023, 0036 to 0051 of JP-A-2006-023696 and paragraphs 096 to 0108 of JP-A-2006-047592 can be preferably used in the present invention.
  • the production method of the present invention may include a step of forming the film (thermosetting photosensitive composition layer), followed by a film forming step (layer forming step), and then drying to remove the solvent.
  • the preferred drying temperature is 50 to 150 ° C, more preferably 70 ° C to 130 ° C, still more preferably 90 ° C to 110 ° C.
  • the drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, and more preferably 3 minutes to 7 minutes. If the amount of solvent in the photosensitive resin composition solution is large, vacuum drying and heat drying can be combined.
  • a hot plate, a hot air oven, or the like is used for heat drying, and the heating and drying is not particularly limited.
  • the production method of the present invention may include an exposure step of exposing the film (thermosetting photosensitive composition layer).
  • the amount of exposure is not particularly determined as long as the thermosetting photosensitive composition can be cured, but for example, it is preferable to irradiate 100 to 10,000 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm, 200 to 8, It is more preferable to irradiate at 000 mJ / cm 2 .
  • the exposure wavelength can be appropriately determined in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
  • the exposure wavelengths are (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-ray (wavelength 436 nm), h.
  • Line (wavelength 405 nm), i-line (wavelength 365 nm), broad (3 wavelengths of g, h, i-line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer Examples include a laser (wavelength 157 nm), (5) extreme ultraviolet rays; EUV (wavelength 13.6 nm), (6) electron beam, etc., (7) a second harmonic of a YAG laser of 532 nm and a third harmonic of 355 nm.
  • thermosetting photosensitive composition of the present invention exposure with a high-pressure mercury lamp is particularly preferable, and exposure with i-ray is particularly preferable. As a result, particularly high exposure sensitivity can be obtained. From the viewpoint of handling and productivity, a broad (three wavelengths of g, h, and i rays) light source of a high-pressure mercury lamp and a semiconductor laser of 405 nm are also suitable.
  • the production method of the present invention may include a developing step of developing (developing the above-mentioned film) the exposed film (heat-curable photosensitive composition layer).
  • a developing step of developing developing the above-mentioned film
  • the exposed film heat-curable photosensitive composition layer
  • an unexposed portion non-exposed portion
  • the developing method is not particularly limited as long as a desired pattern can be formed, and for example, a developing method such as paddle, spray, immersion, or ultrasonic wave can be adopted.
  • development is performed using a developing solution.
  • the developing solution can be used without particular limitation as long as the unexposed portion (non-exposed portion) is removed.
  • alkaline development the case where an alkaline developer is used as the developer
  • solvent development the case where a developer containing 50% by mass or more of an organic solvent is used as the developer.
  • the developer preferably has an organic solvent content of 10% by mass or less based on the total mass of the developing solution, more preferably 5% by mass or less, and 1% by mass or less. Is more preferable, and a developer containing no organic solvent is particularly preferable.
  • the developing solution in alkaline development is more preferably an aqueous solution having a pH of 10 to 15.
  • Examples of the alkaline compound contained in the developing solution in alkaline development include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium silicate, potassium silicate, sodium metasilicate, and metasilicate. Examples include potassium silicate, ammonia or amine.
  • amines examples include ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, alkanolamine, dimethylethanolamine, triethanolamine, quaternary ammonium hydroxide, and tetramethylammonium hydroxide. (TMAH) or tetraethylammonium hydroxide and the like.
  • TMAH tetraethylammonium hydroxide
  • an alkaline compound containing no metal is preferable, and an ammonium compound is more preferable.
  • the alkaline compound may be only one kind or two or more kinds. When there are two or more alkaline compounds, the total is preferably in the above range.
  • the developer contains 90% by mass or more of an organic solvent.
  • the developer preferably contains an organic solvent having a ClogP value of -1 to 5, and more preferably contains an organic solvent having a ClogP value of 0 to 3.
  • the ClogP value can be obtained as a calculated value by inputting a structural formula in ChemBioDraw.
  • Organic solvents include, for example, ethyl acetate, -n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone.
  • alkylalkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, Ethyl ethoxyacetate, etc.)
  • 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • Ke Tons include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like, and cyclic hydrocarbons include, for example, aromatics such as toluene, xylene and anisole.
  • Dimethylsulfoxide is preferably mentioned as the sulfoxides such as hydrocarbons and cyclic terpenes such as limonene.
  • cyclopentanone and ⁇ -butyrolactone are particularly preferable, and cyclopentanone is more preferable.
  • the developing solution may contain a surfactant.
  • the development time is preferably 10 seconds to 5 minutes.
  • the temperature of the developing solution at the time of development is not particularly specified, but is usually 20 to 40 ° C.
  • rinsing After the treatment with the developing solution, further rinsing may be performed.
  • solvent development it is preferable to rinse with an organic solvent different from the developing solution.
  • organic solvent for example, propylene glycol monomethyl ether acetate can be mentioned.
  • the rinsing time is preferably 5 seconds to 5 minutes.
  • a step of applying both a developer and a rinse solution may be included between the development and the rinse.
  • the time of the above step is preferably 1 second to 5 minutes.
  • rinsing is preferably performed using pure water.
  • the rinsing time is preferably 5 seconds to 1 minute.
  • the production method of the present invention preferably includes a step (heating step) of heating the developed film.
  • the heating step is preferably included after the film forming step (layer forming step), the drying step, and the developing step.
  • the heating step for example, cyclization of a polyimide precursor or a polybenzoxazole precursor, cross-linking of an unreacted radical cross-linking agent, cross-linking of an unreacted thermal cross-linking agent, and the like can proceed.
  • the heating temperature (maximum heating temperature) of the layer in the heating step is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, further preferably 140 ° C. or higher, and 150 ° C. or higher.
  • the upper limit is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, further preferably 350 ° C. or lower, further preferably 250 ° C. or lower, and preferably 220 ° C. or lower. Even more preferable.
  • the heating is preferably performed at a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
  • a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
  • the temperature at the start of heating is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 130 ° C., and even more preferably 25 ° C. to 120 ° C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
  • the thermosetting photosensitive composition when applied onto a substrate and then dried, it is the temperature of the film (layer) after drying, for example, the temperature of the solvent contained in the thermosetting photosensitive composition. It is preferable to gradually raise the temperature from a temperature 30 to 200 ° C. lower than the boiling point.
  • the heating time (heating time at the maximum heating temperature) is preferably 10 to 360 minutes, more preferably 20 to 300 minutes, and even more preferably 30 to 240 minutes.
  • the heating temperature is preferably 180 ° C. to 320 ° C., more preferably 180 ° C. to 260 ° C. from the viewpoint of adhesion between layers of the cured film. The reason is not clear, but it is considered that the ethynyl groups of the specific resin between the layers are undergoing a cross-linking reaction at this temperature.
  • Heating may be performed in stages. As an example, the temperature is raised from 25 ° C. to 180 ° C. at 3 ° C./min and held at 180 ° C. for 60 minutes, the temperature is raised from 180 ° C. to 200 ° C. at 2 ° C./min, and held at 200 ° C. for 120 minutes. , Etc. may be performed.
  • the heating temperature as the pretreatment step is preferably 100 to 200 ° C., more preferably 110 to 190 ° C., and even more preferably 120 to 185 ° C. In this pretreatment step, it is also preferable to carry out the treatment while irradiating with ultraviolet rays as described in US Pat. No. 9,159,547.
  • the pretreatment step is preferably performed in a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps.
  • the pretreatment step 1 may be performed in the range of 100 to 150 ° C.
  • the pretreatment step 2 may be performed in the range of 150 to 200 ° C.
  • cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5 ° C./min.
  • the heating step is preferably performed in an atmosphere with a low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon, or by performing the heating step in a vacuum, in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
  • the production method of the present invention preferably includes a metal layer forming step of forming a metal layer on the surface of the developed film (thermosetting photosensitive composition layer).
  • metal layer existing metal types can be used without particular limitation, and copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold and tungsten are exemplified, copper and aluminum are more preferable, and copper is preferable. More preferred.
  • the method for forming the metal layer is not particularly limited, and an existing method can be applied.
  • the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, and JP-A-2004-101850 can be used.
  • photolithography, lift-off, electrolytic plating, electroless plating, etching, printing, and a method combining these can be considered. More specifically, a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electroplating can be mentioned.
  • the thickness of the metal layer is preferably 0.1 to 50 ⁇ m, more preferably 1 to 10 ⁇ m in the thickest portion.
  • the production method of the present invention preferably further includes a laminating step.
  • the laminating step means that (a) a film forming step (layer forming step), (b) an exposure step, (c) a developing step, and (d) a heating step are performed again on the surface of the cured film (resin layer) or the metal layer. , A series of steps including performing in this order. However, the mode may be such that only the film forming step (a) is repeated. Further, (d) the heating step may be performed collectively at the end or the middle of the lamination. That is, the steps (a) to (c) may be repeated a predetermined number of times, and then the heating of (d) may be performed to cure the laminated thermosetting photosensitive composition layers all at once. ..
  • the (c) developing step may be followed by the (e) metal layer forming step, and even if the heating is performed each time (d), the steps of (d) are collectively performed after laminating a predetermined number of times. Heating may be performed. Needless to say, the laminating step may further include the above-mentioned drying step, heating step, and the like as appropriate.
  • the surface activation treatment step may be further performed after the heating step, the exposure step, or the metal layer forming step.
  • An example of the surface activation treatment is plasma treatment.
  • the laminating step is preferably performed 2 to 5 times, more preferably 3 to 5 times.
  • the resin layer is 3 or more and 7 or less, such as a resin layer / metal layer / resin layer / metal layer / resin layer / metal layer, is preferable, and 3 or more and 5 or less are more preferable.
  • thermosetting photosensitive composition layer of the thermosetting photosensitive composition so as to cover the metal layer after providing the metal layer.
  • Examples thereof include an embodiment in which the steps, (b) exposure steps, (c) development steps, and (e) metal layer forming steps are repeated in this order, and (d) heating steps are collectively provided at the end or in the middle.
  • the present invention also discloses a semiconductor device containing the cured film or laminate of the present invention.
  • Specific examples of the semiconductor device in which the thermosetting photosensitive composition of the present invention is used to form the interlayer insulating film for the rewiring layer are described in paragraphs 0213 to 0218 and FIG. 1 of JP-A-2016-0273557. These contents are incorporated herein by reference.
  • PIP-1 Polyimide precursor PIP from oxydiphthalic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, and 2-hydroxyethyl methacrylate Synthesis of -1] 10.00 g (32.3 mmol) of oxydiphthalic dianhydride (dried at 140 ° C. for 12 hours) and 9.48 g (32.3 mmol) of 3,3', 4,4'-biphenyltetracarboxylic acid Dianoxide (dried at 140 ° C.
  • polyimide precursor was then precipitated in 5 liters of water and the water-polyimide precursor mixture was stirred at a rate of 5,000 rpm for 15 minutes.
  • the polyimide precursor was obtained by filtration, stirred again in 4 liters of water for 30 minutes and filtered again. Then, the obtained polyimide precursor was dried under reduced pressure at 45 ° C. for 3 days to obtain a polyimide precursor PIP-1.
  • PIP-2 Synthesis of polyimide precursor PIP-2 from oxydiphthalic dianhydride, 4,4'-diaminodiphenyl ether, and 2-hydroxyethyl methacrylate
  • PIP-1 10.00 g (32.3 mmol) of oxydiphthalic dianhydride and 9.48 g (32.3 mmol) of 3,3', 4,4'-biphenyl.
  • the polyimide precursor PIP-2 was prepared by the same method as for the synthesis of the polyimide precursor PIP-1, except that the tetracarboxylic dianhydride was changed to 20.01 g (64.5 mmol) of oxydiphthalic acid dianhydride. Synthesized.
  • PI-1 oxydiphthalic acid dianhydride, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane and 2-isocyanato Synthesis of Polyimide PI-1 from Ethyl Methacrylate] 65.56 g (179 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane while removing water in a drying reactor equipped with a flat bottom joint equipped with a stirrer, condenser and internal thermometer.
  • the precipitated polyimide resin was obtained by filtering, washed with 1.5 liters of water, mixed with 2 liters of methanol, stirred again for 30 minutes, and filtered again to obtain a polyimide.
  • the obtained polyimide was dried under reduced pressure at 40 ° C. for 1 day to obtain PI-1.
  • PI-2 Polyimide from oxydiphthalic dianhydride, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, and 1,3-bis (3-aminopropyl) tetramethyldisiloxane] Synthesis of PI-2]
  • polyimide PI-1 "After cooling the above reaction solution to 25 ° C., 0.005 g of p-methoxyphenol was added and dissolved. In this solution, 24.82 g (160 mmol) of 2-isocyanatoethyl methacrylate was added. The mixture was added dropwise, stirred at 25 ° C.
  • Polyimide PI-2 was synthesized by the same method as the synthesis of polyimide PI-1.
  • the precipitated polybenzoxazole was obtained by filtration, washed with 1.5 liters of water, mixed with 2 liters of methanol, stirred again for 30 minutes, and filtered again to obtain polybenzoxazole.
  • the obtained polybenzoxazole was dried under reduced pressure at 40 ° C. for 1 day to obtain polybenzoxazole PB-1.
  • Examples and Comparative Examples> the components shown in Table 1, Table 2 or Table 3 below were mixed to obtain each thermosetting photosensitive composition. Further, in each comparative example, the components shown in Table 2 below were mixed to obtain each comparative composition. Specifically, the content of the component shown in Table 1, Table 2 or Table 3 was the amount shown in "Mass part” of Table 1, Table 2 or Table 3. Further, in each composition, the solvent content was adjusted so that the solid content concentration of the composition was the value shown in Table 1, Table 2 or Table 3. The description in the column of "metal concentration" in Table 1, Table 2 or Table 3 represents the metal content (mass ppm) with respect to the total mass of the composition.
  • thermosetting photosensitive composition and comparative composition were pressure-filtered through a filter made of polytetrafluoroethylene having a pore width of 0.8 ⁇ m. Further, in Table 1, Table 2 or Table 3, the description of "-" indicates that the composition does not contain the corresponding component.
  • [Radical cross-linking agent] -B-1 Tetraethylene glycol dimethacrylate-B-2: Dipentaerythritol hexaacrylate-B-3: Light ester BP-6EM (manufactured by Kyoei Kagaku Co., Ltd.)
  • D-1 IRGACURE OXE 01 (manufactured by BASF)
  • D-2 ADEKA NCI-930 (manufactured by ADEKA Corporation)
  • D-3 Compounds with the following structures (2: 1 description represents the molar ratio of each structure) The above D-3 was synthesized according to the synthesis method described in International Publication No. 2017/217292.
  • ⁇ Silane coupling agent ⁇ -F-1 N- (3- (triethoxysilyl) propyl) phthalamic acid-F-2: IM-1000 (manufactured by JX Nippon Mining & Metals Co., Ltd.)
  • F-3 Benzophenone-3,3'-bis (N- (3-triethoxysilyl) propylamide) -4,4'-dicarboxylic acid
  • G-1 A compound having the following structure
  • thermosetting photosensitive composition or the comparative composition was applied to a flat 4-inch silicon wafer by a slit coating method, respectively, and on a hot plate.
  • the thermosetting photosensitive layer A having a film thickness of 150% of the thickness shown in the “Film thickness ( ⁇ m)” column of Table 1, Table 2 or Table 3 and the table after drying at 80 ° C. for 5 minutes. 1.
  • a thermosetting photosensitive layer B having a film thickness of 50% of the thickness described in the “Film thickness ( ⁇ m)” column of Table 2 or Table 3 was formed.
  • thermosetting photosensitive layer A was heated at 250 ° C. for 120 minutes to prepare a cured film A. Then, the contact angle of water of the cured film A and the contact angle of diiodomethane were measured, and the surface free energy A (mJ / m 2 ) was calculated from these contact angles using the formula (1). In each of the Examples and Comparative Examples, the surface free energy B (mJ / m 2 ) was calculated for the thermosetting photosensitive layer B by the same method as the surface free energy A.
  • a pattern consisting of OFPR is formed by forming a repeating pattern in which one step is arranged every 50 ⁇ m in both the vertical direction and the horizontal direction, and this pattern is dry-etched using an etching device (RIE-10N manufactured by SAMCO) as a mask.
  • thermosetting photosensitive composition or a comparative composition was applied onto the stepped substrate by a slit coating method to form a resin layer 1.
  • the thermosetting photosensitive composition was applied onto the stepped substrate by the spin coating method to form the resin layer 1, respectively.
  • the stepped substrate to which the obtained resin layer 1 was applied was dried on a hot plate at 80 ° C. for 5 minutes, and the average thickness was "film thickness ( ⁇ m)) of Table 1, Table 2 or Table 3 on the stepped substrate.
  • the thermosetting photosensitive layer 1 having the thickness described in the column of "" was obtained.
  • thermosetting photosensitive layer 1 was exposed to i-rays with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C).
  • the stepped substrate on which the thermosetting photosensitive layer 1 was formed after exposure was heated at 100 ° C. for 5 minutes on a hot plate.
  • the exposed thermosetting photosensitive layer 1 was heated at a heating rate of 10 ° C./min under a nitrogen atmosphere to reach the temperature described in the “Cure temperature” column of Table 1, Table 2 or Table 3. After that, during the "cure time” of Table 1, Table 2 or Table 3, the temperature was maintained at the temperature described in the "Cure temperature” column and heated to obtain a cured film 1.
  • thermosetting photosensitive composition used for forming the resin layer 1 or the same composition as the comparative composition was applied again to the surface of the obtained cured film 1 by the slit coating method to form the resin layer 2. ..
  • the stepped substrate to which the obtained resin layer 2 is applied is dried on a hot plate at 80 ° C. for 5 minutes, and described on the stepped substrate in the “Film thickness ( ⁇ m)” column of Table 1, Table 2 or Table 3.
  • a thermosetting photosensitive layer 2 having an average thickness of 2 was obtained.
  • the thermosetting photosensitive layer 2 was subjected to i-ray exposure and heating in the same manner as the thermosetting photosensitive layer 1 to obtain a cured film 2.
  • the surface roughness Ra of the cured film 2 was 50 ⁇ m ⁇ 50 ⁇ m of the surface including the portion having a step and the portion having no step in the vertical direction of the cured film 2 using an atomic force microscope Dimension FastScan AFM (manufactured by Bruker). It was obtained by measuring the range of.
  • the evaluation results are described in the column of "Substrate step suitability" in Table 1, Table 2 or Table 3. It can be said that the less the occurrence of striations and the smaller the surface roughness Ra, the more the occurrence of coating defects is suppressed.
  • thermosetting photosensitive composition or a comparative composition was applied onto the stepped substrate by a slit coating method to form a resin layer 1.
  • thermosetting photosensitive composition was applied onto the stepped substrate by the spin coating method to form the resin layer 1, respectively.
  • the stepped substrate on which the resin layer was formed was dried on a hot plate at 80 ° C. for 5 minutes, and the average thickness described in the “Film thickness ( ⁇ m)” column of Table 1, Table 2 or Table 3 on the stepped substrate.
  • the thermosetting photosensitive layer 1 was formed.
  • thermosetting photosensitive layer 1 was exposed to i-rays with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C).
  • the stepped substrate on which the thermosetting photosensitive layer 1 was formed after exposure was heated at 100 ° C. for 5 minutes on a hot plate.
  • the exposed thermosetting photosensitive layer 1 was heated at a heating rate of 10 ° C./min under a nitrogen atmosphere to reach the temperature described in the “Cure temperature” column of Table 1, Table 2 or Table 3. After that, during the "cure time” of Table 1, Table 2 or Table 3, the temperature was maintained at the temperature described in the "Cure temperature” column and heated to obtain a cured film 1.
  • thermosetting photosensitive composition used for forming the resin layer 1 or the same composition as the comparative composition was applied again to the surface of the obtained cured film 1 by the slit coating method to form the resin layer 2. ..
  • the stepped substrate to which the obtained resin layer 2 is applied is dried on a hot plate at 80 ° C. for 5 minutes, and described on the stepped substrate in the “Film thickness ( ⁇ m)” column of Table 1, Table 2 or Table 3.
  • a thermosetting photosensitive layer 2 having an average thickness of 2 was obtained.
  • the thermosetting photosensitive layer 2 was exposed to light using a stepper (Nikon NSR 2005 i9C) to obtain a thermosetting photosensitive layer after exposure.
  • the exposure was performed using i-rays, and the exposure amount at a wavelength of 365 nm was 400 mJ / cm 2 .
  • a photomask having a 1: 1 line-and-space pattern with a line width of 10 ⁇ m was used.
  • the exposure was performed so that the line and space pattern crossed the stepped portion.
  • the stepped substrate on which the thermosetting photosensitive layer 2 was formed after exposure was heated at 100 ° C. for 5 minutes on a hot plate.
  • cyclopentanone was used for 60 seconds.
  • a cured film containing at least one resin, photosensitizer, surfactant and solvent selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole and polybenzoxazole precursor according to the present invention Absolute difference between the surface free energy of the cured film A and the surface free energy of the cured film B calculated using the equation (1) from the contact angle of water and the contact angle of diiodomethane with respect to the surface of A and the surface of the cured film B, respectively.
  • thermosetting photosensitive composition whose value is 30% or less of the surface free energy of the cured film A
  • a cured film is prepared by applying it to a non-uniform substrate, and the cured film is formed on the obtained cured film. It can be seen that the occurrence of defects in the other layers is suppressed even when the other layers are further formed.
  • the thermosetting photosensitive composition according to Comparative Example 1 and Comparative Example 2 does not contain a surfactant.
  • the absolute value of the difference between the surface free energy of the cured film A and the surface free energy of the cured film B exceeds 30% of the surface free energy of the cured film A.
  • thermosetting photosensitive compositions according to Comparative Examples 1 to 3 are applied to a non-uniform substrate to prepare a cured film, and another layer is further formed on the obtained cured film. In this case, it can be seen that the occurrence of defects in the other layers is not suppressed.
  • thermosetting photosensitive composition used in Example 1 was applied in layers to the surface of the copper thin layer of the resin substrate having the copper thin layer formed on the surface by a spin coating method, and dried at 80 ° C. for 5 minutes. Then, a thermosetting photosensitive composition layer having a thickness of 30 ⁇ m was formed, and then exposed using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed at a wavelength of 365 nm via a mask (a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m). After exposure, it was developed with cyclopentanone for 60 seconds and rinsed with PGMEA for 20 seconds to obtain a layer pattern.
  • the temperature was raised at a heating rate of 10 ° C./min under a nitrogen atmosphere, and after reaching 180 ° C., the temperature was maintained at 180 ° C. for 120 minutes to form an interlayer insulating film for the rewiring layer.
  • the interlayer insulating film for the rewiring layer was excellent in insulating property. Moreover, when a semiconductor device was manufactured using these interlayer insulating films for the rewiring layer, it was confirmed that the semiconductor device operated without any problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

熱硬化性感光層の形成に用いられる熱硬化性感光性組成物であり、特定の樹脂、感光剤、界面活性剤、及び、溶剤を含み、特定の硬化膜Aの表面自由エネルギーと特定の硬化膜Bの表面自由エネルギーの差の絶対値が上記硬化膜Aの表面自由エネルギーの30%以下である、熱硬化性感光性組成物、上記熱硬化性感光性組成物を硬化してなる硬化膜、上記硬化膜を含む積層体、上記硬化膜の製造方法、及び、上記硬化膜又は上記積層体を含む半導体デバイス。

Description

熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
 本発明は、熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイスに関する。
 ポリイミド、ポリベンゾオキサゾール等の樹脂は、耐熱性及び絶縁性等に優れるため、様々な用途に適用されている。上記用途としては特に限定されないが、実装用の半導体デバイスを例に挙げると、絶縁膜や封止材の材料、又は、保護膜としての利用が挙げられる。また、フレキシブル基板のベースフィルムやカバーレイなどとしても用いられている。
 例えば上述した用途において、ポリイミド、ポリベンゾオキサゾール等の樹脂は、これらの樹脂又はその前駆体を含む熱硬化性感光性組成物の形態で用いられる。
 このような熱硬化性感光性組成物を、例えば塗布等により基材に適用し、その後、必要に応じて露光、現像、加熱等を行うことにより、硬化した樹脂を基材上に形成することができる。
 熱硬化性感光性組成物は、公知の塗布方法等により適用可能であるため、例えば、適用される熱硬化性感光性組成物の形状、大きさ、適用位置等の設計の自由度が高いなど、製造上の適応性に優れるといえる。ポリイミド、ポリベンゾオキサゾール等が有する高い性能に加え、このような製造上の適応性に優れる観点から、これらの樹脂又はその前駆体を含む熱硬化性感光性組成物の産業上の応用展開がますます期待されている。
 例えば、特許文献1には、(a)ポリイミド系樹脂又はその前駆体、(b)キノンジアジド化合物、(c)溶媒及び(d)界面活性剤を含有する感光性樹脂組成物であって、(d)界面活性剤が(d1)シリコン系界面活性剤及び(d2)フッ素原子を有する界面活性剤を含み、感光性樹脂組成物中の(d1)の含有量をX質量%、(d2)の含有量をY質量%とした場合、X>Y(Y≠0)であり、かつ、(d)界面活性剤の総量が感光性樹脂組成物中0.005質量%以上0.10質量%以下である感光性樹脂組成物が記載されている。
特開2010-243748号公報
 ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂を含む熱硬化性感光性組成物を基材に適用して硬化膜を作製する場合、得られる硬化膜上に、他の熱硬化性感光層等の他の層が更に形成される場合がある。
 また、このような熱硬化性感光性組成物を適用する基材として、段差を有するなど、一様でない基材が用いられる場合がある。
 そのため、熱硬化性感光性組成物において、段差を有するなど、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層に欠陥が発生することが抑制される熱硬化性感光性組成物の提供が望まれている。
 本発明は、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制される熱硬化性感光性組成物、上記熱硬化性感光性組成物を硬化してなる硬化膜、上記硬化膜を含む積層体、上記硬化膜の製造方法、及び、上記硬化膜又は上記積層体を含む半導体デバイスを提供することを目的とする。
 本発明の代表的な実施態様の例を以下に示す。
<1> 熱硬化性感光層の形成に用いられる熱硬化性感光性組成物であり、
 ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂、
 感光剤、
 界面活性剤、及び、
 溶剤を含み、
 下記硬化膜Aの表面及び下記硬化膜Bの表面それぞれに対する水の接触角とジヨードメタンの接触角から下記式(1)を用いて算出される下記硬化膜Aの表面自由エネルギーと下記硬化膜Bの表面自由エネルギーの差の絶対値が下記硬化膜Aの表面自由エネルギーの30%以下である、
 熱硬化性感光性組成物;
 硬化膜A:上記熱硬化性感光性組成物の塗布膜を上記熱硬化性感光層の平均厚さの150%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜;
 硬化膜B:上記熱硬化性感光性組成物の塗布膜を上記熱硬化性感光層の平均厚さの50%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜;
Figure JPOXMLDOC01-appb-M000002
 上記式(1)中、γ は硬化膜の表面自由エネルギーの分散成分を、γ は硬化膜の表面自由エネルギーの極性成分を、γL は水又はジヨードメタンの表面自由エネルギーの分散成分を、γL は水又はジヨードメタンの表面自由エネルギーの極性成分を、γL tоtalは水又はジヨードメタンの表面自由エネルギーを、cоsθは水又はジヨードメタンの接触角を、それぞれ表す;
 ここで、表面自由エネルギーは分散成分と極性成分の和で表され、水の表面自由エネルギーの分散成分は21.7mJ/m、水の表面自由エネルギーの極性成分は50.8mJ/m、ジヨードメタンの表面自由エネルギーの分散成分は48.1mJ/m、ジヨードメタンの表面自由エネルギーの極性成分は1.3mJ/mとする。
<2> 上記界面活性剤の含有量が組成物の全質量に対して0.1質量%超である、<1>に記載の熱硬化性感光性組成物。
<3> 上記界面活性剤の含有量が組成物の全質量に対して0.005質量%未満である、<1>に記載の熱硬化性感光性組成物。
<4> 上記界面活性剤がフッ素原子及びケイ素原子を有しない界面活性剤を含む、<1>~<3>のいずれか1つに記載の熱硬化性感光性組成物。
<5> 上記組成物中の炭化水素系界面活性剤の含有量が上記界面活性剤の総含有量に対して50質量%以上である、<1>~<4>のいずれか1つに記載の熱硬化性感光性組成物。
<6> 上記樹脂がポリイミド及びポリイミド前駆体よりなる群から選ばれた少なくとも一種の樹脂を含む、<1>~<5>のいずれか1つに記載の熱硬化性感光性組成物。
<7> スリットコート法による熱硬化性感光層の形成に用いられる、<1>~<6>のいずれか1つに記載の熱硬化性感光性組成物。
<8> スピンコート法による熱硬化性感光層の形成に用いられる、<1>~<6>のいずれか1つに記載の熱硬化性感光性組成物。
<9> 再配線層用層間絶縁膜の形成に用いられる、<1>~<8>のいずれか1つに記載の熱硬化性感光性組成物。
<10> <1>~<9>のいずれか1つに記載の熱硬化性感光性組成物を硬化してなる硬化膜。
<11> <10>に記載の硬化膜を2層以上含み、上記硬化膜同士のいずれかの間に金属層を含む積層体。
<12> <1>~<9>のいずれか1つに記載の熱硬化性感光性組成物を基板に適用して膜を形成する膜形成工程を含む、硬化膜の製造方法。
<13> 上記膜を露光する露光工程及び上記膜を現像する現像工程を含む、<12>に記載の硬化膜の製造方法。
<14> 上記膜を、50~450℃で加熱する加熱工程を含む、<12>又は<13>に記載の硬化膜の製造方法。
<15> <10>に記載の硬化膜又は<11>に記載の積層体を含む、半導体デバイス。
 本発明によれば、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制される熱硬化性感光性組成物、上記熱硬化性感光性組成物を硬化してなる硬化膜、上記硬化膜を含む積層体、上記硬化膜の製造方法、及び、上記硬化膜又は上記積層体を含む半導体デバイスが提供される。
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた露光も含む。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。また本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC測定)に従い、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、TSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。それらの分子量は特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。また、GPC測定における検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。また、特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、感光層がある場合には、基材から感光層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、特段の記載がない限り、組成物は、組成物に含まれる各成分として、その成分に該当する2種以上の化合物を含んでもよい。また、特段の記載がない限り、組成物における各成分の含有量とは、その成分に該当する全ての化合物の合計含有量を意味する。
 本明細書において、特に述べない限り、温度は23℃、気圧は101,325Pa(1気圧)である。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
(熱硬化性感光性組成物)
 本発明の熱硬化性感光性組成物は、熱硬化性感光層の形成に用いられる熱硬化性感光性組成物であり、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂(以下、「特定樹脂」ともいう。)、感光剤、界面活性剤、及び、溶剤を含み、下記硬化膜Aの表面及び下記硬化膜Bの表面それぞれに対する水の接触角とジヨードメタンの接触角から式(1)を用いて算出される下記硬化膜Aの表面自由エネルギーと下記硬化膜Bの表面自由エネルギーの差の絶対値が下記硬化膜Aの表面自由エネルギーの30%以下である。
 硬化膜A:上記熱硬化性感光性組成物の塗布膜を上記熱硬化性感光層の平均厚さの150%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜
 硬化膜B:上記熱硬化性感光性組成物の塗布膜を上記熱硬化性感光層の平均厚さの50%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜
 第一の態様として、本発明の熱硬化性感光性組成物は、特定樹脂と、上記感光剤として光重合開始剤と、界面活性剤と、溶剤とを含むことが好ましい。
 上記第一の態様における本発明の熱硬化性感光性組成物は、ラジカル架橋剤を更に含むことが好ましい。
 また、上記第一の態様において、熱架橋剤を更に含む態様も好ましく、熱架橋剤と熱酸発生剤とを更に含む態様もより好ましい。
 第二の態様として、本発明の熱硬化性感光性組成物は、特定樹脂と、上記感光剤として光酸発生剤と、界面活性剤と、溶剤とを含むことが好ましい。
 上記第二の態様における本発明の熱硬化性感光性組成物は、熱架橋剤を更に含むことが好ましい。
 本発明の熱硬化性感光性組成物は、ネガ型熱硬化性感光性組成物であってもよいし、ポジ型熱硬化性感光性組成物であってもよい。
 ネガ型熱硬化性感光性組成物は、露光後に現像に供された場合に非露光部が現像により除去される組成物である。
 ポジ型熱硬化性感光性組成物は、露光後に現像に供された場合に露光部が現像により除去される組成物である。
 本発明の熱硬化性感光性組成物によれば、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制される。
 上記効果が得られるメカニズムは不明であるが、下記のように推測される。
 熱硬化性感光性組成物は、基材等に適用した後に、必要に応じて乾燥等を行うことにより熱硬化性感光層を形成した後、加熱等により硬化膜を得る、という用途に用いられる。
また、必要に応じて、例えば加熱前に露光及び現像によりパターニングが行われてもよい。
 本発明者らは、鋭意検討した結果、段差を有するなど、一様でない基材上に熱硬化性感光層を形成し、硬化膜を得た後に、上記硬化膜上に他の層を更に形成した場合に、他の層に欠陥が発生する場合があることを見出した。
 乾燥前の熱硬化性感光層中には溶剤が存在するため、熱硬化性感光性組成物中の成分(例えば、界面活性剤等の、組成物膜中で移動しやすい成分)の少なくとも一部が組成物膜の表面に移動すると考えられる。
 ここで、一様でない基材(例えば、表面に段差を有する基材、表面に傾斜が存在する基材など、基材の表面の物理的な形状が一様でない基材、又は、表面の一部のみが組成物となじみにくいなど、基材の表面の化学的な性状が一様でない基材等)の上に熱硬化性感光層を形成した場合、熱硬化性感光層の厚さは均一とならない場合がある。例えば、表面に段差を有する基材においては、基板表面の凸部では熱硬化性感光層は薄く、基板表面の凹部では、熱硬化性感光層は厚くなる。
 また、例えば、表面に傾斜が存在する基材においては、傾斜において低い部分では熱硬化性感光層は厚く、傾斜において高い部分では熱硬化性感光層は厚くなる。
 更に、例えば、表面の一部のみが組成物となじみにくい基材においては、組成物となじみやすい部分では組成物が広がりやすいため熱硬化性感光層は薄く、組成物となじみにくい部分では組成物が広がりにくいため、熱硬化性感光層は厚くなる。
 上記界面活性剤等の成分は熱硬化性感光層の内部から移動するため、熱硬化性感光層が厚い部分においては表面に移動する上記成分が多く、熱硬化性感光層が薄い部分においては表面に移動する上記成分が少ないと考えられる。このような、表面における位置によって成分の分布が異なる熱硬化性感光性組成物を硬化して硬化膜とし、更にその硬化膜の上に他の層を形成した場合、硬化膜の表面における位置によって他の層を形成する際の塗布性等が異なるため、他の層に欠陥が発生すると考えられる。
 本発明の組成物は、膜厚の変化に対して表面自由エネルギーの差が小さい硬化膜が得られる組成物である。そのため、上記他の層における欠陥の発生が抑制されるのではないかと推測される。
 上記欠陥の発生の抑制は、例えば熱硬化性感光層を、スリットコート法等の、塗布後の乾燥に時間がかかる方法により形成した場合に、特に顕著であると考えられる。
 ここで、特許文献1には、上述の表面自由エネルギーの差が特定の値である熱硬化性感光性組成物については記載も示唆もない。
 以下、本発明の熱硬化性感光性組成物の特性及び含まれる成分について詳細に説明する。
<表面自由エネルギー>
 本発明の熱硬化性感光性組成物は、上記硬化膜Aの表面及び上記硬化膜Bの表面それぞれに対する水の接触角とジヨードメタンの接触角から式(1)を用いて算出される上記硬化膜Aの表面自由エネルギーと上記硬化膜Bの表面自由エネルギーの差の絶対値が上記硬化膜Aの表面自由エネルギーの30%以下となる組成物である。
 本発明において、表面自由エネルギーは水の接触角とジヨードメタンの接触角から式(1)を用いて算出される値である。
 具体的には、表面自由エネルギーは、硬化膜A又は硬化膜Bに対し、1μlの水及びジヨードメタンをそれぞれ接触させてそれぞれの接触角を測定し、各接触角に対して下記式を満たす値として求められるエネルギーである。例えば、機能統合解析ソフトウェア FAMAS(共和界面化学(株)製)を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000003
 上記式(1)中、γ は硬化膜の表面自由エネルギーの分散成分を、γ は硬化膜の表面自由エネルギーの極性成分を、γL は水又はジヨードメタンの表面自由エネルギーの分散成分を、γL は水又はジヨードメタンの表面自由エネルギーの極性成分を、γL tоtalは水又はジヨードメタンの表面自由エネルギーを、cоsθは水又はジヨードメタンの接触角を、それぞれ表す;
 ここで、表面自由エネルギーは分散成分と極性成分の和で表され、水の表面自由エネルギーの分散成分は21.7mJ/m、水の表面自由エネルギーの極性成分は50.8mJ/m、ジヨードメタンの表面自由エネルギーの分散成分は48.1mJ/m、ジヨードメタンの表面自由エネルギーの極性成分は1.3mJ/mとする。
 硬化膜の表面自由エネルギーは、分散成分γ とγ の和として求められ、具体的には、下記式(R1)及び式(R2)で表される連立方程式を解くことにより求められる。
Figure JPOXMLDOC01-appb-M000004
 ここで、θ1は水の接触角であり、θ2はジヨードメタンの接触角である。
 また、熱硬化性感光層の平均厚さとは、基材に適用された熱硬化性感光層の全面における厚さの平均値であり、例えば、厚さT1の熱硬化性感光層が形成された面積がS1であり、厚さT2の熱硬化性感光層が形成された面積がS2であり、面積S1とS2との和が熱硬化性感光層の全面積である場合、下記式により算出される。
 平均厚さ=T1×S1/(S1+S2)+T2×S2/(S1+S2)
 同様に、n種の厚さTiの熱硬化性感光層が形成された面積がそれぞれSiである(iは1~nの整数であり、S1+S2+・・・+Snは熱硬化性感光層の全面積である)場合、上記平均厚さは下記式により算出される。
Figure JPOXMLDOC01-appb-M000005
 上記厚さT1、T2、Ti等の熱硬化性感光層の厚さは、例えばエリプソメーター(Foothill社製KT-22)を用いて測定される。
 上記硬化膜Aの表面自由エネルギーは、10~50mJ/mであることが好ましく、15~40mJ/mであることがより好ましく、20~35mJ/mであることが更に好ましい。
 上記硬化膜Bの表面自由エネルギーは、10~50mJ/mであることが好ましく、15~40mJ/mであることがより好ましく、20~35mJ/mであることが更に好ましい。
 上記硬化膜Aの表面自由エネルギーと上記硬化膜Bの表面自由エネルギーの差の絶対値は、上記硬化膜Aの表面自由エネルギーの30%以下であり、20%以下であることがより好ましく、10%以下であることが更に好ましい。下限としては特に限定されず、0%以上であればよい。
 上記硬化膜Aの表面自由エネルギーと上記硬化膜Bの表面自由エネルギーの差の絶対値の、上記硬化膜Aの表面自由エネルギーに対する割合は、熱硬化性感光性組成物の組成により決定される値であり、例えば、熱硬化性感光性組成物中の界面活性剤の量、界面活性剤の種類等により決定されると考えられる。
 硬化膜A及び硬化膜Bにおける塗布膜の作製方法は特に限定されないが、本発明の熱硬化性感光性組成物を用いた熱硬化性感光層の形成における塗布膜の作製方法と同様の方法により作製されることが好ましい。
 例えば、熱硬化性感光層がスリットコート法により作製される場合、硬化膜A及び硬化膜Bにおける塗布膜もスリットコート法により作製することが好ましい。
 また、本発明の熱硬化性感光性組成物は、下記硬化膜Cの表面自由エネルギーと下記硬化膜Dの表面自由エネルギーの差の絶対値が下記硬化膜Cの表面自由エネルギーの30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましい。下限は特に限定されず、0%以上であればよい。
 硬化膜C:上記熱硬化性感光性組成物の塗布膜を45μmの膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜
 硬化膜D:上記熱硬化性感光性組成物の塗布膜を15μmの膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、上記熱硬化性感光性組成物の硬化膜
<特定樹脂>
 本発明の熱硬化性感光性組成物は、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂(特定樹脂)を含む。
 特定樹脂は、ポリイミド及びポリイミド前駆体よりなる群から選ばれた少なくとも一種の樹脂を含むことが好ましい。
 更に、上記樹脂は重合性基を含み、かつ、感光性樹脂組成物が重合性化合物を含むことが好ましい。このような構成とすることにより、露光部に3次元ネットワークが形成され、強固な架橋膜となり、表面活性化処理により感光性樹脂組成物層(樹脂層)がダメージを受けにくく、表面活性化処理により、密着性がより効果的に向上する。とりわけ上層との密着性において効果的である。更にまた、本発明の積層体における樹脂層が含むポリイミド及びポリベンゾオキサゾールは、-Ar-L-Ar-で表される部分構造を含むことが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。このような構成とすることにより、樹脂層が柔軟な構造となり、剥がれの発生をより効果的に抑制できる。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1又は2の脂肪族炭化水素基、-O-、-CO-、-S-又は-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。
〔ポリイミド前駆体〕
 本発明で用いるポリイミド前駆体は、その種類等特に定めるものではないが、下記式(2)で表される繰り返し単位を含むことが好ましい。
式(2)
Figure JPOXMLDOC01-appb-C000006
 式(2)中、A及びAは、それぞれ独立に、酸素原子又はNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表す。
 式(2)におけるA及びAは、それぞれ独立に、酸素原子又はNHを表し、酸素原子が好ましい。
 式(2)におけるR111は、2価の有機基を表す。2価の有機基としては、直鎖又は分岐の脂肪族基、環状の脂肪族基及び芳香族基を含む基が例示され、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数6~20の環状の脂肪族基、炭素数6~20の芳香族基、又は、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基を含む基がより好ましい。本発明の特に好ましい実施形態として、-Ar-L-Ar-で表される基であることが例示される。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。これらの好ましい範囲は、上述のとおりである。
 R111は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖又は分岐の脂肪族、環状の脂肪族又は芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数6~20の環状の脂肪族基、炭素数6~20の芳香族基、又は、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基からなる基を含むジアミンであることがより好ましい。芳香族基を含む基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式中、Aは、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-SO-、及び-NHCO-、ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、及び、-C(CH-からなる群から選択される2価の基であることが更に好ましい。
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン及び1,6-ジアミノヘキサン;1,2-又は1,3-ジアミノシクロペンタン、1,2-、1,3-又は1,4-ジアミノシクロヘキサン、1,2-、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン及びイソホロンジアミン;m-又はp-フェニレンジアミン、ジアミノトルエン、4,4’-又は3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-及び3,3’-ジアミノジフェニルメタン、4,4’-及び3,3’-ジアミノジフェニルスルホン、4,4’-及び3,3’-ジアミノジフェニルスルフィド、4,4’-又は3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-及び2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジン及び4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
 また、下記に示すジアミン(DA-1)~(DA-18)も好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 また、少なくとも2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましい例として挙げられる。より好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれか又は両方を一分子中にあわせて2つ以上含むジアミン、更に好ましくは、上記ジアミンであって、芳香環を含まないジアミンである。具体例としては、ジェファーミン(登録商標)KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN(株)製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。
 ジェファーミン(登録商標)KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 上記において、x、y、zは平均値である。
 R111は、得られる硬化膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1又は2の脂肪族炭化水素基、-O-、-CO-、-S-又は-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。
 また、R111は、i線透過率の観点から、下記式(51)又は式(61)で表される2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から、式(61)で表される2価の有機基であることがより好ましい。
 式(51)
Figure JPOXMLDOC01-appb-C000011
 式(51)中、R50~R57は、それぞれ独立に、水素原子、フッ素原子又は1価の有機基であり、R50~R57の少なくとも1つは、フッ素原子、メチル基又はトリフルオロメチル基であり、*はそれぞれ独立に、式(2)中の窒素原子との結合部位を表す。
 R50~R57の1価の有機基としては、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(61)中、R58及びR59は、それぞれ独立に、フッ素原子又はトリフルオロメチル基である。
 式(51)又は(61)の構造を与えるジアミン化合物としては、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらは1種で又は2種以上を組み合わせて用いてもよい。
 その他に以下のジアミンも好適に使用できる。
Figure JPOXMLDOC01-appb-C000013
 式(2)におけるR115は、4価の有機基を表す。4価の有機基としては、芳香環を含む4価の有機基が好ましく、下記式(5)又は式(6)で表される基がより好ましい。
式(5)
Figure JPOXMLDOC01-appb-C000014
 式(5)中、R112は、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、及び-NHCO-、ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-及び-SO-から選択される基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-及び-SO-からなる群から選択される2価の基であることが更に好ましい。
式(6)
Figure JPOXMLDOC01-appb-C000015
 R115は、具体的には、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。テトラカルボン酸二無水物は、1種のみ用いてもよいし、2種以上用いてもよい。
 テトラカルボン酸二無水物は、下記式(O)で表されることが好ましい。
式(O)
Figure JPOXMLDOC01-appb-C000016
 式(O)中、R115は、4価の有機基を表す。R115の好ましい範囲は式(2)におけるR115と同義であり、好ましい範囲も同様である。
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル及び炭素数1~6のアルコキシ誘導体が挙げられる。
 また、下記に示すテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000017
 R111とR115の少なくとも一方がOH基を有することも好ましい。より具体的には、R111として、ビスアミノフェノール誘導体の残基が挙げられる。
 R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表し、1価の有機基としては、直鎖又は分岐のアルキル基、環状アルキル基、芳香族基、又はポリアルキレンオキシ基を含むことが好ましく、ポリアルキレンオキシ基を含むことがより好ましい。また、R113及びR114の少なくとも一方が重合性基を含むことが好ましく、両方が重合性基を含むことがより好ましい。重合性基としては、熱、ラジカル等の作用により、架橋反応することが可能な基であって、ラジカル重合性基が好ましい。重合性基の具体例としては、エチレン性不飽和結合を有する基、アルコキシメチル基、ヒドロキシメチル基、アシルオキシメチル基、エポキシ基、オキセタニル基、ベンゾオキサゾリル基、ブロックイソシアネート基、メチロール基、アミノ基が挙げられる。ポリイミド前駆体等が有するラジカル重合性基としては、エチレン性不飽和結合を有する基が好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(III)において、R200は、水素原子、メチル基、エチル基又はメチロール基を表し、水素原子又はメチル基がより好ましい。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-又は炭素数4~30のポリオキシアルキレン基を表す。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基等のアルキレン基、-CH2CH(OH)CH2-が挙げられ、エチレン基、プロピレン基、トリメチレン基、-CH2CH(OH)CH2-がより好ましい。
 特に好ましくは、R200がメチル基で、R201がエチレン基である。
 R113及びR114は、それぞれ独立に、水素原子又は1価の有機基である。1価の有機基としては、アリール基を構成する炭素の1つ、2つ又は3つに、好ましくは1つに酸性基を結合している、芳香族基及びアラルキル基などが挙げられる。具体的には、酸性基を有する炭素数6~20の芳香族基、酸性基を有する炭素数7~25のアラルキル基が挙げられる。より具体的には、酸性基を有するフェニル基及び酸性基を有するベンジル基が挙げられる。酸性基は、OH基が好ましい。
 R113又はR114が、水素原子、2-ヒドロキシベンジル基、3-ヒドロキシベンジル基及び4-ヒドロキシベンジル基であることもより好ましい。
 有機溶剤への溶解度の観点からは、R113又はR114は、1価の有機基であることが好ましい。1価の有機基としては、直鎖又は分岐のアルキル基、環状アルキル基、芳香族基を含むことが好ましく、芳香族基で置換されたアルキル基がより好ましい。
 アルキル基の炭素数は1~30が好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。直鎖又は分岐のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、2-エチルヘキシル基2-(2-(2-メトキシエトキシ)エトキシ)エトキシ基、2-(2-(2-エトキシエトキシ)エトキシ)エトキシ)エトキシ基、2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エトキシ基、及び2-(2-(2-(2-エトキシエトキシ)エトキシ)エトキシ)エトキシ基が挙げられる。環状のアルキル基は、単環の環状のアルキル基であってもよく、多環の環状のアルキル基であってもよい。単環の環状のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基が挙げられる。多環の環状のアルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基及びピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が最も好ましい。また、芳香族基で置換されたアルキル基としては、後述する芳香族基で置換された直鎖アルキル基が好ましい。
 芳香族基としては、具体的には、置換又は無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インダセン環、ペリレン環、ペンタセン環、アセナフテン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環又はフェナジン環である。ベンゼン環が最も好ましい。
 式(2)において、R113が水素原子である場合、又は、R114が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。
 また、ポリイミド前駆体は、構造単位中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は、10質量%以上が好ましく、また、20質量%以下が好ましい。
 また、基板との密着性を向上させる目的で、ポリイミド前駆体は、シロキサン構造を有する脂肪族基と共重合していてもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
 式(2)で表される繰り返し単位は、式(2-A)で表される繰り返し単位であることが好ましい。すなわち、本発明で用いるポリイミド前駆体等の少なくとも1種が、式(2-A)で表される繰り返し単位を有する前駆体であることが好ましい。このような構造とすることにより、露光ラチチュードの幅をより広げることが可能になる。
式(2-A)
Figure JPOXMLDOC01-appb-C000019
 式(2-A)中、A及びAは、酸素原子を表し、R111及びR112は、それぞれ独立に、2価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表し、R113及びR114の少なくとも一方は、重合性基を含む基であり、両方が重合性基を含む基であることが好ましい。
 A、A、R111、R113及びR114は、それぞれ独立に、式(2)におけるA、A、R111、R113及びR114と同義であり、好ましい範囲も同様である。
112は、式(5)におけるR112と同義であり、好ましい範囲も同様である。
 ポリイミド前駆体は、式(2)で表される繰り返し単位を1種含んでいてもよいが、2種以上で含んでいてもよい。また、式(2)で表される繰り返し単位の構造異性体を含んでいてもよい。また、ポリイミド前駆体は、上記式(2)の繰り返し単位のほかに、他の種類の繰り返し単位をも含んでよいことはいうまでもない。
 本発明におけるポリイミド前駆体の一実施形態として、全繰り返し単位の50モル%以上、更には70モル%以上、特に90モル%以上が式(2)で表される繰り返し単位であるポリイミド前駆体が例示される。
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは18,000~30,000であり、より好ましくは20,000~27,000であり、更に好ましくは22,000~25,000である。また、数平均分子量(Mn)は、好ましくは7,200~14,000であり、より好ましくは8,000~12,000であり、更に好ましくは9,200~11,200である。
 上記ポリイミド前駆体の分子量の分散度は、2.5以上が好ましく、2.7以上がより好ましく、2.8以上であることが更に好ましい。ポリイミド前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、4.5以下が好ましく、4.0以下がより好ましく、3.8以下が更に好ましく、3.2以下が一層好ましく、3.1以下がより一層好ましく、3.0以下が更に一層好ましく、2.95以下が特に好ましい。
 一方、現像性の観点では重量平均分子量(Mw)は、好ましくは5,000~100,000であり、より好ましくは10,000~50,000であり、更に好ましくは15,000~40,000である。また、数平均分子量(Mn)は、好ましくは2,000~40,000であり、より好ましくは3,000~30,000であり、更に好ましくは4,000~20,000である。
 上記ポリイミド前駆体の分子量の分散度は、現像性の観点では、1.8以上が好ましく、2.0以上がより好ましく、2.2以上であることが更に好ましい。ポリイミド前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましい。
 本明細書において、分子量の分散度とは、重量平均分子量/数平均分子量により算出される値である。
〔ポリイミド〕
 本発明に用いられるポリイミドは、アルカリ可溶性ポリイミドであってもよく、有機溶剤を主成分とする現像液に対して可溶なポリイミドであってもよい。
 本明細書において、アルカリ可溶性ポリイミドとは、100gの2.38質量%テトラメチルアンモニウム水溶液に対し、23℃で0.1g以上溶解するポリイミドをいい、パターン形成性の観点からは、0.5g以上溶解するポリイミドであることが好ましく、1.0g以上溶解するポリイミドであることが更に好ましい。上記溶解量の上限は特に限定されないが、100g以下であることが好ましい。
 また、ポリイミドは、得られる硬化膜の膜強度及び絶縁性の観点からは、複数個のイミド構造を主鎖に有するポリイミドであることが好ましい。
 本明細書において、「主鎖」とは、樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖をいい、「側鎖」とはそれ以外の結合鎖をいう。
-フッ素原子-
 得られる硬化膜の膜強度の観点からは、ポリイミドは、フッ素原子を有することが好ましい。
 フッ素原子は、例えば、後述する式(4)で表される繰返し単位におけるR132、又は、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましく、後述する式(4)で表される繰返し単位におけるR132、又は、後述する式(4)で表される繰返し単位におけるR131にフッ化アルキル基として含まれることがより好ましい。
 ポリイミドの全質量に対するフッ素原子の量は、1~50mol/gであることが好ましく、5~30mol/gであることがより好ましい。
-ケイ素原子-
 得られる硬化膜の膜強度の観点からは、ポリイミドは、ケイ素原子を有することが好ましい。
 ケイ素原子は、例えば、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましく、後述する式(4)で表される繰返し単位におけるR131に後述する有機変性(ポリ)シロキサン構造として含まれることがより好ましい。
 また、上記ケイ素原子又は上記有機変性(ポリ)シロキサン構造はポリイミドの側鎖に含まれていてもよいが、ポリイミドの主鎖に含まれることが好ましい。
 ポリイミドの全質量に対するケイ素原子の量は、0.01~5mol/gであることが好ましく、0.05~1mol/gであることがより好ましい。
-エチレン性不飽和結合-
 得られる硬化膜の膜強度の観点からは、ポリイミドは、エチレン性不飽和結合を有することが好ましい。
 ポリイミドは、エチレン性不飽和結合を主鎖末端に有していてもよいし、側鎖に有していてもよいが、側鎖に有することが好ましい。
 上記エチレン性不飽和結合は、ラジカル重合性を有することが好ましい。
 エチレン性不飽和結合は、後述する式(4)で表される繰返し単位におけるR132、又は、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましく、後述する式(4)で表される繰返し単位におけるR132、又は、後述する式(4)で表される繰返し単位におけるR131にエチレン性不飽和結合を有する基として含まれることがより好ましい。
 これらの中でも、エチレン性不飽和結合は、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましく、後述する式(4)で表される繰返し単位におけるR131にエチレン性不飽和結合を有する基として含まれることがより好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、ビニルフェニル基等の芳香環に直接結合した、置換されていてもよいビニル基を有する基、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000020
 式(III)中、R200は、水素原子又はメチル基、エチル基又はメチロール基を表し、水素原子又はメチル基がより好ましい。
 式(III)中、R201は、炭素数2~12のアルキレン基、-O-CHCH(OH)CH-、-C(=O)O-、-O(C=O)NH-、炭素数2~30の(ポリ)オキシアルキレン基(アルキレン基の炭素数は2~12が好ましく、2~6がより好ましく、2又は3が特に好ましい;繰り返し数は1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、又はこれらを2以上組み合わせた基を表す。
 なお、(ポリ)オキシアルキレン基とは、オキシアルキレン基又はポリオキシアルキレン基を意味する。
 これらの中でも、R201は下記式(R1)~式(R3)のいずれかで表される基であることが好ましく、式(R1)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(R1)~(R3)中、Lは単結合、又は、炭素数2~12のアルキレン基、炭素数2~30の(ポリ)オキシアルキレン基若しくはこれらを2以上結合した基を表し、Xは酸素原子又は硫黄原子を表し、*は他の構造との結合部位を表し、●は式(III)中のR201が結合する酸素原子との結合部位を表す。
 式(R1)~(R3)中、Lにおける炭素数2~12のアルキレン基、又は、炭素数2~30の(ポリ)オキシアルキレン基の好ましい態様は、上述のR201における、炭素数2~12のアルキレン基、又は、炭素数2~30の(ポリ)オキシアルキレン基の好ましい態様と同様である。
 式(R1)中、Xは酸素原子であることが好ましい。
 式(R1)~(R3)中、*は式(III)中の*と同義であり、好ましい態様も同様である。
 式(R1)で表される構造は、例えば、フェノール性ヒドロキシ基等のヒドロキシ基を有するポリイミドと、イソシアナト基及びエチレン性不飽和結合を有する化合物(例えば、2-イソシアナトエチルメタクリレート等)とを反応することにより得られる。
 式(R2)で表される構造は、例えば、カルボキシ基を有するポリイミドと、ヒドロキシ基及びエチレン性不飽和結合を有する化合物(例えば、2-ヒドロキシエチルメタクリレート等)とを反応することにより得られる。
 式(R3)で表される構造は、例えば、フェノール性ヒドロキシ基等のヒドロキシ基を有するポリイミドと、グリシジル基及びエチレン性不飽和結合を有する化合物(例えば、グリシジルメタクリレート等)とを反応することにより得られる。
 式(III)中、*は他の構造との結合部位を表し、ポリイミドの主鎖との結合部位であることが好ましい。
 ポリイミドの全質量に対するエチレン性不飽和結合の量は、0.05~10mol/gであることが好ましく、0.1~5mol/gであることがより好ましい。
-エチレン性不飽和結合以外の架橋性基-
 ポリイミドは、エチレン性不飽和結合以外の架橋性基を有していてもよい。
 エチレン性不飽和結合以外の架橋性基としては、エポキシ基、オキセタニル基等の環状エーテル基、メトキシメチル基等のアルコキシメチル基、メチロール基等が挙げられる。
 エチレン性不飽和結合以外の架橋性基は、例えば、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましい。
 ポリイミドの全質量に対するエチレン性不飽和結合以外の架橋性基の量は、0.05~10mol/gであることが好ましく、0.1~5mol/gであることがより好ましい。
-酸価-
 ポリイミドがアルカリ現像に供される場合、現像性を向上する観点からは、ポリイミドの酸価は、30mgKOH/g以上であることが好ましく、50mgKOH/g以上であることがより好ましく、70mgKOH/g以上であることが更に好ましい。
 また、上記酸価は500mgKOH/g以下であることが好ましく、400mgKOH/g以下であることがより好ましく、200mgKOH/g以下であることが更に好ましい。
 また、ポリイミドが有機溶剤を主成分とする現像液を用いた現像(例えば、後述する「溶剤現像」)に供される場合、ポリイミドの酸価は、2~35mgKOH/gが好ましく、3~30mgKOH/gがより好ましく、5~20mgKOH/gが更に好ましい。
 上記酸価は、公知の方法により測定され、例えば、JIS K 0070:1992に記載の方法により測定される。
 また、ポリイミドに含まれる酸基としては、保存安定性及び現像性の両立の観点から、pKaが0~10である酸基が好ましく、3~8である酸基がより好ましい。
 pKaとは、酸から水素イオンが放出される解離反応を考え、その平衡定数Kaをその負の常用対数pKaによって表したものである。本明細書において、pKaは、特に断らない限り、ACD/ChemSketch(登録商標)による計算値とする。又は、日本化学会編「改定5版 化学便覧 基礎編」に掲載の値を参照してもよい。
 また、酸基が例えばリン酸等の多価の酸である場合、上記pKaは第一解離定数である。
 このような酸基として、ポリイミドは、カルボキシ基、及び、フェノール性ヒドロキシ基よりなる群から選ばれた少なくとも1種を含むことが好ましく、フェノール性ヒドロキシ基を含むことがより好ましい。
-フェノール性ヒドロキシ基-
 アルカリ現像液による現像速度を適切なものとする観点からは、ポリイミドは、フェノール性ヒドロキシ基を有することが好ましい。
 ポリイミドは、フェノール性ヒドロキシ基を主鎖末端に有してもよいし、側鎖に有してもよい。
 フェノール性ヒドロキシ基は、例えば、後述する式(4)で表される繰返し単位におけるR132、又は、後述する式(4)で表される繰返し単位におけるR131に含まれることが好ましい。
 ポリイミドの全質量に対するフェノール性ヒドロキシ基の量は、0.1~30mol/gであることが好ましく、1~20mol/gであることがより好ましい。
 本発明で用いるポリイミドとしては、イミド環を有する高分子化合物であれば、特に限定はないが、下記式(4)で表される繰り返し単位を含むことが好ましく、式(4)で表される繰り返し単位を含み、重合性基を有する化合物であることがより好ましい。
式(4)
Figure JPOXMLDOC01-appb-C000022
 式(4)中、R131は、2価の有機基を表し、R132は、4価の有機基を表す。
 重合性基を有する場合、重合性基は、R131及びR132の少なくとも一方に位置していてもよいし、下記式(4-1)又は式(4-2)に示すようにポリイミドの末端に位置していてもよい。
式(4-1)
Figure JPOXMLDOC01-appb-C000023
式(4-1)中、R133は重合性基であり、他の基は式(4)と同義である。
式(4-2)
Figure JPOXMLDOC01-appb-C000024
 R134及びR135の少なくとも一方は重合性基であり、重合性基でない場合は有機基であり、他の基は式(4)と同義である。
 重合性基は、上記のポリイミド前駆体等が有している重合性基で述べた重合性基と同義である。
 R131は、2価の有機基を表す。2価の有機基としては、式(2)におけるR111と同様のものが例示され、好ましい範囲も同様である。
 また、R131としては、ジアミンのアミノ基の除去後に残存するジアミン残基が挙げられる。ジアミンとしては、脂肪族、環式脂肪族又は芳香族ジアミンなどが挙げられる。
具体的な例としては、ポリイミド前駆体の式(2)中のR111の例が挙げられる。
 R131は、少なくとも2つ以上のアルキレングリコール単位を主鎖にもつジアミン残基であることが、焼成時における反りの発生をより効果的に抑制する点で好ましい。より好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれか又は両方を一分子中にあわせて2つ以上含むジアミン残基であり、更に好ましくは芳香環を含まないジアミン残基である。
 エチレングリコール鎖、プロピレングリコール鎖のいずれか又は両方を一分子中にあわせて2つ以上含むジアミンとしては、ジェファーミン(登録商標)KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN(株)製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。
 R132は、4価の有機基を表す。4価の有機基としては、式(2)におけるR115と同様のものが例示され、好ましい範囲も同様である。
 例えば、R115として例示される4価の有機基の4つの結合子が、上記式(4)中の4つの-C(=O)-の部分と結合して縮合環を形成する。
Figure JPOXMLDOC01-appb-C000025
 また、R132は、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。具体的な例としては、ポリイミド前駆体の式(2)中のR115の例が挙げられる。硬化膜の強度の観点から、R132は1~4つの芳香環を有する芳香族ジアミン残基であることが好ましい。
 R131とR132の少なくとも一方にOH基を有することも好ましい。より具体的には、R131として、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、上記の(DA-1)~(DA-18)が好ましい例として挙げられ、R132として、上記の(DAA-1)~(DAA-5)がより好ましい例として挙げられる。
 また、ポリイミドは、構造中にフッ素原子を有することも好ましい。ポリイミド中のフッ素原子の含有量は10質量%以上が好ましく、また、20質量%以下が好ましい。
 また、基板との密着性を向上させる目的で、ポリイミドは、シロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
 また、組成物の保存安定性を向上させるため、ポリイミドは主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。これらのうち、モノアミンを用いることがより好ましく、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
-イミド化率(閉環率)-
 ポリイミドのイミド化率(「閉環率」ともいう)は、得られる硬化膜の膜強度、絶縁性等の観点からは、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがより好ましい。
 上記イミド化率の上限は特に限定されず、100%以下であればよい。
 上記イミド化率は、例えば下記方法により測定される。
 ポリイミドの赤外吸収スペクトルを測定し、イミド構造由来の吸収ピークである1377cm-1付近のピーク強度P1を求める。次に、そのポリイミドを350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、1377cm-1付近のピーク強度P2を求める。得られたピーク強度P1、P2を用い、下記式に基づいて、ポリイミドのイミド化率を求めることができる。
 イミド化率(%)=(ピーク強度P1/ピーク強度P2)×100
 ポリイミドは、すべてが1種のR131又はR132を含む上記式(4)の繰り返し単位を含んでいてもよく、2つ以上の異なる種類のR131又はR132を含む上記式(4)の繰り返し単位を含んでいてもよい。また、ポリイミドは、上記式(4)の繰り返し単位のほかに、他の種類の繰り返し単位をも含んでいてもよい。
 ポリイミドは、例えば、低温中でテトラカルボン酸二無水物とジアミン化合物(一部をモノアミンである末端封止剤に置換)を反応させる方法、低温中でテトラカルボン酸二無水物(一部を酸無水物又はモノ酸クロリド化合物又はモノ活性エステル化合物である末端封止剤に置換)とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン(一部をモノアミンである末端封止剤に置換)と縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸を酸クロリド化し、ジアミン(一部をモノアミンである末端封止剤に置換)と反応させる方法などの方法を利用して、ポリイミド前駆体を得、これを、既知のイミド化反応法を用いて完全イミド化させる方法、又は、途中でイミド化反応を停止し、一部イミド構造を導入する方法、更には、完全イミド化したポリマーと、そのポリイミド前駆体をブレンドする事によって、一部イミド構造を導入する方法を利用して合成することができる。
 ポリイミドの市販品としては、Durimide(登録商標)284(富士フイルム(株)製)、Matrimide5218(HUNTSMAN(株)製)が例示される。
 ポリイミドの重量平均分子量(Mw)は、5,000~70,000が好ましく、8,000~50,000がより好ましく、10,000~30,000が更に好ましい。重量平均分子量を5,000以上とすることにより、硬化後の膜の耐折れ性を向上させることができる。機械特性に優れた硬化膜を得るため、重量平均分子量は、20,000以上が特に好ましい。また、ポリイミドを2種以上含有する場合、少なくとも1種のポリイミドの重量平均分子量が上記範囲であることが好ましい。
 一方、薬品耐性の観点では、ポリイミドの重量平均分子量(Mw)は、好ましくは5,000~100,000であり、より好ましくは10,000~50,000であり、更に好ましくは15,000~40,000である。
〔ポリベンゾオキサゾール前駆体〕
 本発明で用いるポリベンゾオキサゾール前駆体は、その構造等について特に定めるものではないが、好ましくは下記式(3)で表される繰り返し単位を含む。
式(3)
Figure JPOXMLDOC01-appb-C000026
 式(3)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123及びR124は、それぞれ独立に、水素原子又は1価の有機基を表す。
 式(3)において、R123及びR124は、それぞれ、式(2)におけるR113と同義であり、好ましい範囲も同様である。すなわち、少なくとも一方は、重合性基であることが好ましい。
 式(3)において、R121は、2価の有機基を表す。2価の有機基としては、脂肪族基及び芳香族基の少なくとも一方を含む基が好ましい。脂肪族基としては、直鎖の脂肪族基が好ましい。R121は、ジカルボン酸残基が好ましい。ジカルボン酸残基は、1種のみ用いてもよいし、2種以上用いてもよい。
 ジカルボン酸残基としては、脂肪族基を含むジカルボン酸及び芳香族基を含むジカルボン酸残基が好ましく、芳香族基を含むジカルボン酸残基がより好ましい。
 脂肪族基を含むジカルボン酸としては、直鎖又は分岐(好ましくは直鎖)の脂肪族基を含むジカルボン酸が好ましく、直鎖又は分岐(好ましくは直鎖)の脂肪族基と2つの-COOHからなるジカルボン酸がより好ましい。直鎖又は分岐(好ましくは直鎖)の脂肪族基の炭素数は、2~30であることが好ましく、2~25であることがより好ましく、3~20であることが更に好ましく、4~15であることが一層好ましく、5~10であることが特に好ましい。直鎖の脂肪族基はアルキレン基であることが好ましい。
 直鎖の脂肪族基を含むジカルボン酸としては、マロン酸、ジメチルマロン酸、エチルマロン酸、イソプロピルマロン酸、ジ-n-ブチルマロン酸、スクシン酸、テトラフルオロスクシン酸、メチルスクシン酸、2,2-ジメチルスクシン酸、2,3-ジメチルスクシン酸、ジメチルメチルスクシン酸、グルタル酸、ヘキサフルオログルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、2,2-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3-エチル-3-メチルグルタル酸、アジピン酸、オクタフルオロアジピン酸、3-メチルアジピン酸、ピメリン酸、2,2,6,6-テトラメチルピメリン酸、スベリン酸、ドデカフルオロスベリン酸、アゼライン酸、セバシン酸、ヘキサデカフルオロセバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコサン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸、更に下記式で表されるジカルボン酸等が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(式中、Zは炭素数1~6の炭化水素基であり、nは1~6の整数である。)
 芳香族基を含むジカルボン酸としては、以下の芳香族基を有するジカルボン酸が好ましく、以下の芳香族基を有する基と2つの-COOHのみからなるジカルボン酸がより好ましい。
Figure JPOXMLDOC01-appb-C000028
 式中、Aは-CH-、-O-、-S-、-SO-、-CO-、-NHCO-、-C(CF-、及び、-C(CH-からなる群から選択される2価の基を表す。
 芳香族基を含むジカルボン酸の具体例としては、4,4’-カルボニル二安息香酸及び4,4’-ジカルボキシジフェニルエーテル、テレフタル酸が挙げられる。
 式(3)において、R122は、4価の有機基を表す。4価の有機基としては、上記式(2)におけるR115と同義であり、好ましい範囲も同様である。
 R122は、また、ビスアミノフェノール誘導体由来の基であることが好ましく、ビスアミノフェノール誘導体由来の基としては、例えば、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス-(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス-(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、1,3-ジアミノ-4,6-ジヒドロキシベンゼンなどが挙げられる。これらのビスアミノフェノールは、単独にて、あるいは混合して使用してもよい。
 ビスアミノフェノール誘導体のうち、下記芳香族基を有するビスアミノフェノール誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000029
 式中、Xは、-O-、-S-、-C(CF-、-CH-、-SO-、-NHCO-を表す。
Figure JPOXMLDOC01-appb-C000030
 式(A-s)中、Rは、水素原子、アルキレン、置換アルキレン、-O-、-S-、-SO-、-CO-、-NHCO-、単結合、又は下記式(A-sc)の群から選ばれる有機基である。Rは、水素原子、アルキル基、アルコキシ基、アシルオキシ基、環状のアルキル基のいずれかであり、同一でも異なってもよい。Rは水素原子、直鎖又は分岐のアルキル基、アルコキシ基、アシルオキシ基、環状のアルキル基のいずれかであり、同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000031
(式(A-sc)中、*は上記式(A-s)で示されるビスアミノフェノール誘導体のアミノフェノール基の芳香環に結合することを示す。)
 上記式(A-s)中、フェノール性水酸基のオルソ位、すなわち、Rにも置換基を有することが、アミド結合のカルボニル炭素と水酸基の距離をより接近させると考えられ、低温で硬化した際に高環化率になる効果が更に高まる点で、特に好ましい。
 また、上記式(A-s)中、Rがアルキル基であり、かつRがアルキル基であることが、i線に対する高透明性と低温で硬化した際に高環化率であるという効果を維持することができ、好ましい。
 また、上記式(A-s)中、Rがアルキレン又は置換アルキレンであることが、更に好ましい。Rに係るアルキレン及び置換アルキレンの具体的な例としては、-CH-、-CH(CH)-、-C(CH-、-CH(CHCH)-、-C(CH)(CHCH)-、-C(CHCH)(CHCH)-、-CH(CHCHCH)-、-C(CH)(CHCHCH)-、-CH(CH(CH)-、-C(CH)(CH(CH)-、-CH(CHCHCHCH)-、-C(CH)(CHCHCHCH)-、-CH(CHCH(CH)-、-C(CH)(CHCH(CH)-、-CH(CHCHCHCHCH)-、-C(CH)(CHCHCHCHCH)-、-CH(CHCHCHCHCHCH)-、-C(CH)(CHCHCHCHCHCH)-等が挙げられるが、その中でも-CH-、-CH(CH)-、-C(CH-が、i線に対する高透明性と低温で硬化した際の高環化率であるという効果を維持しながら、溶剤に対して十分な溶解性を持つ、バランスに優れるポリベンゾオキサゾール前駆体を得ることができる点で、より好ましい。
 上記式(A-s)で示されるビスアミノフェノール誘導体の製造方法としては、例えば、特開2013-256506号公報の段落番号0085~0094及び実施例1(段落番号0189~0190)を参考にすることができ、これらの内容は本明細書に組み込まれる。
 上記式(A-s)で示されるビスアミノフェノール誘導体の構造の具体例としては、特開2013-256506号公報の段落番号0070~0080に記載のものが挙げられ、これらの内容は本明細書に組み込まれる。もちろん、これらに限定されるものではないことは言うまでもない。
 ポリベンゾオキサゾール前駆体は上記式(3)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでよい。
 閉環に伴う反りの発生を抑制できる点で、下記式(SL)で表されるジアミン残基を他の種類の繰り返し構造単位として含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(SL)中、Zは、a構造とb構造を有し、R1sは、水素原子又は炭素数1~10の炭化水素基であり、R2sは炭素数1~10の炭化水素基であり、R3s、R4s、R5s、R6sのうち少なくとも1つは芳香族基で、残りは水素原子又は炭素数1~30の有機基で、それぞれ同一でも異なっていてもよい。a構造及びb構造の重合は、ブロック重合でもランダム重合でもよい。Z部分のモル%は、a構造は5~95モル%、b構造は95~5モル%であり、a+bは100モル%である。
 式(SL)において、好ましいZとしては、b構造中のR5s及びR6sがフェニル基であるものが挙げられる。また、式(SL)で示される構造の分子量は、400~4,000であることが好ましく、500~3,000がより好ましい。上記分子量を上記範囲とすることで、より効果的に、ポリベンゾオキサゾール前駆体の脱水閉環後の弾性率を下げ、反りを抑制できる効果と溶剤溶解性を向上させる効果を両立することができる。
 他の種類の繰り返し構造単位として式(SL)で表されるジアミン残基を含む場合、更に、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基を繰り返し構造単位として含むことも好ましい。このようなテトラカルボン酸残基の例としては、式(2)中のR115の例が挙げられる。
 ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)は、例えば、後述する組成物に用いる場合、好ましくは18,000~30,000であり、より好ましくは20,000~29,000であり、更に好ましくは22,000~28,000である。また、数平均分子量(Mn)は、好ましくは7,200~14,000であり、より好ましくは8,000~12,000であり、更に好ましくは9,200~11,200である。
 上記ポリベンゾオキサゾール前駆体の分子量の分散度は、1.4以上であることが好ましく、1.5以上がより好ましく、1.6以上であることが更に好ましい。ポリベンゾオキサゾール前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、2.6以下が好ましく、2.5以下がより好ましく、2.4以下が更に好ましく、2.3以下が一層好ましく、2.2以下がより一層好ましい。
〔ポリベンゾオキサゾール〕
 ポリベンゾオキサゾールとしては、ベンゾオキサゾール環を有する高分子化合物であれば、特に限定はないが、下記式(X)で表される化合物であることが好ましく、下記式(X)で表される化合物であって、重合性基を有する化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(X)中、R133は、2価の有機基を表し、R134は、4価の有機基を表す。
 重合性基を有する場合、重合性基は、R133及びR134の少なくとも一方に位置していてもよいし、下記式(X-1)又は式(X-2)に示すようにポリベンゾオキサゾールの末端に位置していてもよい。
式(X-1)
Figure JPOXMLDOC01-appb-C000034
 式(X-1)中、R135及びR136の少なくとも一方は、重合性基であり、重合性基でない場合は有機基であり、他の基は式(X)と同義である。
式(X-2)
Figure JPOXMLDOC01-appb-C000035
 式(X-2)中、R137は重合性基であり、他は置換基であり、他の基は式(X)と同義である。
 重合性基は、上記のポリイミド前駆体等が有している重合性基で述べた重合性基と同義である。
 R133は、2価の有機基を表す。2価の有機基としては、脂肪族基又は芳香族基が挙げられる。具体的な例としては、ポリベンゾオキサゾール前駆体の式(3)中のR121の例が挙げられる。また、その好ましい例はR121と同様である。
 R134は、4価の有機基を表す。4価の有機基としては、ポリベンゾオキサゾール前駆体の式(3)中のR122の例が挙げられる。また、その好ましい例はR122と同様である。
 例えば、R122として例示される4価の有機基の4つの結合子が、上記式(X)中の窒素原子、酸素原子と結合して縮合環を形成する。例えば、R134が、下記有機基である場合、下記構造を形成する。
Figure JPOXMLDOC01-appb-C000036
 ポリベンゾオキサゾールはオキサゾール化率が85%以上であることが好ましく、90%以上であることがより好ましい。上限は特に限定されず、100%であってもよい。オキサゾール化率が85%以上であることにより、加熱によりオキサゾール化される時に起こる閉環に基づく膜収縮が小さくなり、反りの発生をより効果的に抑えることができる。
 ポリベンゾオキサゾールは、すべてが1種のR131又はR132を含む上記式(X)の繰り返し構造単位を含んでいてもよく、2つ以上の異なる種類のR131又はR132を含む上記式(X)の繰り返し単位を含んでいてもよい。また、ポリベンゾオキサゾールは、上記式(X)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでいてもよい。
 ポリベンゾオキサゾールは、例えば、ビスアミノフェノール誘導体と、R133を含むジカルボン酸又は上記ジカルボン酸の、ジカルボン酸ジクロライド及びジカルボン酸誘導体等から選ばれる化合物とを反応させて、ポリベンゾオキサゾール前駆体を得、これを既知のオキサゾール化反応法を用いてオキサゾール化させることで得られる。
 なお、ジカルボン酸の場合には反応収率等を高めるため、1-ヒドロキシ-1,2,3-ベンゾトリアゾール等を予め反応させた活性エステル型のジカルボン酸誘導体を用いてもよい。
 ポリベンゾオキサゾールの重量平均分子量(Mw)は、5,000~70,000が好ましく、8,000~50,000がより好ましく、10,000~30,000が更に好ましい。重量平均分子量を5,000以上とすることにより、硬化後の膜の耐折れ性を向上させることができる。機械特性に優れた硬化膜を得るため、重量平均分子量は、20,000以上が特に好ましい。また、ポリベンゾオキサゾールを2種以上含有する場合、少なくとも1種のポリベンゾオキサゾールの重量平均分子量が上記範囲であることが好ましい。
〔ポリイミド前駆体等の製造方法〕
 ポリイミド前駆体等は、ジカルボン酸又はジカルボン酸誘導体とジアミンとを反応させて得られる。好ましくは、ジカルボン酸又はジカルボン酸誘導体を、ハロゲン化剤を用いてハロゲン化させた後、ジアミンと反応させて得られる。
 ポリイミド前駆体等の製造方法では、反応に際し、有機溶剤を用いることが好ましい。
有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドン及びN-エチルピロリドンが例示される。
 ポリイミドは、ポリイミド前駆体を合成してから、熱イミド化、化学イミド化(例えば、触媒を作用させることによる環化反応の促進)等の方法により環化させて製造してもよいし、直接、ポリイミドを合成してもよい。
-末端封止剤-
 ポリイミド前駆体等の製造方法に際し、保存安定性をより向上させるため、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で、ポリイミド前駆体等の末端を封止することが好ましい。末端封止剤としては、モノアルコール、フェノール、チオール、チオフェノール、モノアミンを用いることがより好ましい。
 モノアルコールの好ましい化合物としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ドデシノール、ベンジルアルコール、2-フェニルエタノール、2-メトキシエタノール、2-クロロメタノール、フルフリルアルコール等の1級アルコール、イソプロパノール、2-ブタノール、シクロヘキシルアルコール、シクロペンタノール、1-メトキシ-2-プロパノール等の2級アルコール、t-ブチルアルコール、アダマンタンアルコール等の3級アルコール、などが挙げられる。フェノール類の好ましい化合物としては、フェノール、メトキシフェノール、メチルフェノール、ナフタレン-1-オール、ナフタレン-2-オールなどが挙げられる。
 モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 また、樹脂末端のアミノ基を封止する際、アミノ基と反応可能な官能基を有する化合物で封止することが可能である。アミノ基に対する好ましい封止剤は、カルボン酸無水物、カルボン酸クロリド、カルボン酸ブロミド、スルホン酸クロリド、無水スルホン酸、スルホン酸カルボン酸無水物などが好ましく、カルボン酸無水物、カルボン酸クロリドがより好ましい。カルボン酸無水物の好ましい化合物としては、無水酢酸、無水プロピオン酸、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸などが挙げられる。また、カルボン酸クロリドの好ましい化合物としては、塩化アセチル、アクリル酸クロリド、プロピオニルクロリド、メタクリル酸クロリド、ピバロイルクロリド、シクロヘキサンカルボニルクロリド、2-エチルヘキサノイルクロリド、シンナモイルクロリド、1-アダマンタンカルボニルクロリド、ヘプタフルオロブチリルクロリド、ステアリン酸クロリド、ベンゾイルクロリド、などが挙げられる。
-固体析出-
 ポリイミド前駆体等の製造に際し、固体を析出する工程を含んでいてもよい。具体的には、反応液中のポリイミド前駆体等を、水中に沈殿させ、テトラヒドロフラン等のポリイミド前駆体等が可溶な溶剤に溶解させることによって、固体析出することができる。
 その後、ポリイミド前駆体等を乾燥して、粉末状のポリイミド前駆体等を得ることができる。
〔含有量〕
 本発明の熱硬化性感光性組成物における特定樹脂の含有量は、熱硬化性感光性組成物の全固形分に対し20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが一層好ましい。また、本発明の熱硬化性感光性組成物における特定樹脂の含有量は、熱硬化性感光性組成物の全固形分に対し、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることが更に好ましく、97質量%以下であることが一層好ましく、95質量%以下であることがより一層好ましい。
 本発明の熱硬化性感光性組成物は、特定樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<感光剤>
 熱硬化性感光性組成物は、感光剤を含む。
 感光剤としては、熱硬化性感光層に対して露光を行った場合に、ラジカルを発生する、酸を発生する等の化学変化が起こり、上記構造変化に伴い熱硬化性感光層の現像液への溶解度を変化させる作用を有する化合物であれば特に限定されないが、光重合開始剤、光酸発生剤等が挙げられる。
〔光重合開始剤〕
 光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤等が挙げられ、光ラジカル重合開始剤が好ましい。
-光ラジカル重合開始剤-
 本発明の熱硬化性感光性組成物は、光ラジカル重合開始剤を含むことが好ましい。
 例えば、光ラジカル重合開始剤及び後述するラジカル架橋剤を含有することで、ラジカル重合が進行し、熱硬化性感光層の露光部が現像液に対して不溶化することで、ネガ型のパターンを形成することができる。
 光ラジカル重合開始剤としては、特に制限はなく、例えば、公知の化合物の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光ラジカル重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光ラジカル重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内の波長の光に対して、少なくとも約50L・mol-1・cm-1のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182、国際公開第2015/199219号の段落0138~0151の記載を参酌でき、この内容は本明細書に組み込まれる。
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。
 光ラジカル重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE 907、IRGACURE 369、及び、IRGACURE 379(商品名:いずれもBASF社製)、Omnirad 907、Omnirad 369、及び、Omnirad 379(いずれもIGM Resins社製)を用いることができる。
 アミノアセトフェノン系開始剤として、365nm又は405nm等の波長光源に吸収極大波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE-TPO(商品名:いずれもBASF社製)、Omnirad 819やOmnirad TPO(いずれもIGM Resins社製)を用いることができる。
 メタロセン化合物としては、IRGACURE-784(BASF社製)などが例示される。
 光ラジカル重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、光硬化促進剤としても働くため、特に好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。本発明の熱硬化性感光性組成物においては、特に光ラジカル重合開始剤としてオキシム化合物(オキシム系の光ラジカル重合開始剤)を用いることが好ましい。光ラジカル重合開始剤であるオキシム化合物は、分子内に >C=N-O-C(=O)- で表される連結基を有する。
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光ラジカル重合開始剤2)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831及びアデカアークルズNCI-930((株)ADEKA製)も用いることができる。また、DFI-091(ダイトーケミックス(株)製)を用いることができる。
 下記の構造のオキシム化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000037
 また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の段落0345に記載されている化合物24、36~40、特開2013-164471号公報の段落0101に記載されている化合物(C-3)などが挙げられる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
 光ラジカル重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物よりなる群から選択される化合物が好ましい。
 更に好ましい光ラジカル重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物よりなる群から選ばれる少なくとも1種の化合物が一層好ましく、メタロセン化合物又はオキシム化合物を用いるのがより一層好ましく、オキシム化合物が更に一層好ましい。
 また、光ラジカル重合開始剤は、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000038
 式(I)中、RI00は、炭素数1~20のアルキル基、1個以上の酸素原子によって中断された炭素数2~20のアルキル基、炭素数1~12のアルコキシ基、フェニル基、又は、炭素数1~20のアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2~12のアルケニル基、1個以上の酸素原子によって中断された炭素数2~18のアルキル基及び炭素数1~4のアルキル基の少なくとも1つで置換されたフェニル基、若しくは、ビフェニル基であり、RI01は、式(II)で表される基であるか、RI00と同じ基であり、RI02~RI04は各々独立に炭素数1~12のアルキル基、炭素数1~12のアルコキシ基又はハロゲン原子である。
Figure JPOXMLDOC01-appb-C000039
 式中、RI05~RI07は、上記式(I)のRI02~RI04と同じである。
 また、光ラジカル重合開始剤は、国際公開第2015/125469号の段落0048~0055に記載の化合物を用いることもできる。
 光ラジカル重合開始剤の含有量は、本発明の熱硬化性感光性組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、更に好ましくは0.5~15質量%であり、一層好ましくは1.0~10質量%である。光ラジカル重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光ラジカル重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
-熱ラジカル重合開始剤-
 本発明の熱硬化性感光性組成物は、熱ラジカル重合開始剤を更に含んでもよい。
 熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性を有する化合物の重合反応を開始又は促進させる化合物である。熱ラジカル重合開始剤を添加することによって、加熱時にラジカル重合反応が更に進行するため、より架橋密度を向上できる場合がある。
 熱ラジカル重合開始剤として、具体的には、特開2008-063554号公報の段落0074~0118に記載されている化合物が挙げられる。
 熱ラジカル重合開始剤を含む場合、その含有量は、本発明の熱硬化性感光性組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、更に好ましくは5~15質量%である。熱ラジカル重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。熱ラジカル重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
-光酸発生剤-
 本発明の熱硬化性感光性組成物は、光酸発生剤を含むことが好ましい。
 光酸発生剤を含有することで、例えば、熱硬化性感光層の露光部に酸が発生して、上記露光部の現像液(例えば、アルカリ水溶液)に対する溶解性が増大し、露光部が現像液により除去されるポジ型のレリーフパターンを得ることができる。
 また、熱硬化性感光性組成物が、光酸発生剤と、後述する熱架橋剤とを含有することにより、例えば、露光部に発生した酸により熱架橋剤の架橋反応が促進され、露光部が非露光部よりも現像液により除去されにくくなる態様とすることもできる。このような態様によれば、ネガ型のレリーフパターンを得ることができる。
 光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合及びスルホンアミド結合の少なくとも一方により結合したものなどが挙げられる。本発明においては、例えば、これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。
 本発明において、キノンジアジドは5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。
 上記ナフトキノンジアジド化合物は、フェノール性ヒドロキシ基を有する化合物と、キノンジアジドスルホン酸化合物とのエステル化反応によって合成可能であり、公知の方法により合成することができる。これらのナフトキノンジアジド化合物を使用することで解像度、感度、残膜率がより向上する。
 光酸発生剤を含む場合、その含有量は、本発明の熱硬化性感光性組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、更に好ましくは5~15質量%である。光酸発生剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光酸発生剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
-熱酸発生剤-
 本発明の熱硬化性感光性組成物は、熱酸発生剤を含んでもよい。
 熱酸発生剤としては、熱により酸を発生する化合物であれば特に限定されないが、例えば、スルホニウム塩、アンモニウム塩、ホスホニウム塩等のオニウム塩や、カルボン酸エステル化合物、スルホン酸エステル化合物、リン酸エステル化合物等のエステル化合物などが挙げられる。
 加熱により熱酸発生剤から発生する酸としては、スルホン酸、リン酸、カルボン酸などが例として挙げられ、スルホン酸が好ましく、芳香族スルホン酸がより好ましい。
 熱酸発生剤から発生する酸のpKaは、-15~3であることが好ましく、-10~0であることがより好ましい。
 熱酸発生剤の酸発生温度は、40~300℃であることが好ましく、80~260℃であることがより好ましく、120~220℃であることが更に好ましく、120℃~200℃であることが特に好ましく、140℃~180℃であることが最も好ましい。
 酸発生温度は、熱酸発生剤を耐圧カプセル中5℃/分で500℃まで加熱した場合に、最も温度が低い発熱ピークのピーク温度として求められる。
 酸発生温度を測定する際に用いられる機器としては、Q2000(TAインスツルメント社製)等が挙げられる。
 また、熱酸発生剤の酸発生温度は、熱硬化性感光性組成物に含まれる溶剤の沸点よりも低いことが好ましい。
 好適な熱酸発生剤の市販品としては、三新化学工業製サンエイドSIシリーズ、サンアプロ製CPIシリーズ及びキング社製K-PURE TAGシリーズなどが挙げられる。
また、特開2003-277353号、特開平2-001470号、特開平2-255646号、特開平3-011044号、特開2003-183313号、特開2003-277352号、特開昭58-037003号、特開昭58-198532号等の各公報などに記載されている公知の熱酸発生剤を用いることもできる。
 熱酸発生剤の含有量は、本発明の熱硬化性感光性組成物の全固形分に対し0.1~30質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~15質量%であることが更に好ましく、1.0~10質量%であることが特に好ましい。
熱酸発生剤は1種のみ含有していてもよいし、2種以上含有していてもよい。熱酸発生剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<界面活性剤>
 本発明の熱硬化性感光性組成物は、界面活性剤を含む。
 界面活性剤としては、シリコーン系界面活性剤、炭化水素系界面活性剤、フッ素系界面活性剤等のノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤などの各種類の界面活性剤を使用でき、硬化膜の絶縁性の観点からは、ノニオン系界面活性剤が好ましい。
 本発明の熱硬化性感光性組成物において、界面活性剤の含有量が、組成物の全質量に対して0.1質量%超であることが好ましい。
 上記態様において、本発明の熱硬化性感光性組成物は、後述する炭化水素系界面活性剤、後述するフッ素原子を有する界面活性剤、及び、後述するケイ素原子を有する界面活性剤よりなる群から選ばれた少なくとも1種の界面活性剤を含むことができる。
 界面活性剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
 上記含有量の下限は、0.101質量%以上であることがより好ましく、0.105質量%以上であることが好ましい。
 上記含有量の上限は、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 このような界面活性剤を多く含む態様とすることにより、例えば、一様でない基材における、熱硬化性感光層が薄い部分であっても、多量の界面活性剤により熱硬化性感光層の表面が覆われると考えられる。そのため、熱硬化性感光層が厚い部分と薄い部分とで、熱硬化性感光層の表面に存在する界面活性剤量の差が小さくなり、上記硬化膜Aと硬化膜Bのそれぞれの表面自由エネルギーの差が小さくなると考えられる。その結果、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制されやすいと考えられる。
 また、本発明の熱硬化性感光性組成物において、界面活性剤の含有量が、組成物の全質量に対して0.005質量%未満であることが好ましい。
 上記態様において、本発明の熱硬化性感光性組成物は、後述する炭化水素系界面活性剤、後述するフッ素原子を有する界面活性剤、及び、後述するケイ素原子を有する界面活性剤よりなる群から選ばれた少なくとも1種の界面活性剤を含むことができる。
 界面活性剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
 上記含有量の下限は、0.0001質量%以上であることがより好ましく、0.0005質量%以上であることが好ましい。
 上記含有量の上限は、0.0045質量%以下であることが好ましく、0.0042質量%以下であることがより好ましい。
 このような界面活性剤の含有量が少ない態様とすることにより、例えば、一様でない基材における、熱硬化性感光層が薄い部分であっても、厚い部分であっても、熱硬化性感光層の表面に移動する界面活性剤の量は少なくなると考えられる。そのため、熱硬化性感光層が厚い部分と薄い部分とで、熱硬化性感光層の表面に存在する界面活性剤量の差が小さくなり、上記硬化膜Aと硬化膜Bのそれぞれの表面自由エネルギーの差が小さくなると考えられる。その結果、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制されやすいと考えられる。
 本発明の熱硬化性感光性組成物は、フッ素原子及びケイ素原子を有しない界面活性剤を含むことが好ましい。フッ素原子及びケイ素原子を有しない界面活性剤としては、後述の炭化水素系界面活性剤等が挙げられる。
 フッ素原子又はケイ素原子を有する界面活性剤が熱硬化性感光層の表面に移動した場合、硬化膜の表面自由エネルギーが低下しやすいと考えられる。そのため、界面活性剤としてフッ素原子及びケイ素原子を有しない界面活性剤を含むことにより、熱硬化性感光層が厚い部分と薄い部分とで、熱硬化性感光層の表面に存在する界面活性剤量に差が生じたとしても、上記硬化膜Aと硬化膜Bのそれぞれの表面自由エネルギーの差は小さくなると考えられる。その結果、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制されやすいと考えられる。
 本発明の熱硬化性感光性組成物において、組成物中の炭化水素系界面活性剤の含有量が上記界面活性剤の総含有量に対して50質量%以上であることが好ましい。
 上記態様において、本発明の熱硬化性感光性組成物は、後述するフッ素原子を有する界面活性剤、及び、後述するケイ素原子を有する界面活性剤よりなる群から選ばれた少なくとも1種の界面活性剤を更に含んでもよい。
 上記含有量は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。上限は特に限定されず、100質量%であってもよい。
 炭化水素系界面活性剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
 炭化水素系界面活性剤の詳細については後述する。
 炭化水素系界面活性剤は、熱硬化性感光層の表面に移動したとしても、硬化膜の表面自由エネルギーを低下させにくいと考えられる。そのため、組成物中の炭化水素系界面活性剤の含有量が上記界面活性剤の総含有量に対して50質量%以上であることにより、熱硬化性感光層が厚い部分と薄い部分とで、熱硬化性感光層の表面に存在する界面活性剤量に差が生じたとしても、上記硬化膜Aと硬化膜Bのそれぞれの表面自由エネルギーの差は小さくなると考えられる。その結果、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥発生が抑制されやすいと考えられる。
〔炭化水素系界面活性剤〕
 炭化水素系界面活性剤としては、疎水部が炭化水素基である界面活性剤であればよく、後述するアセチレン系界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類、又はこれらのリン酸エステル等のエステル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンステアレート等のポリオキシエチレンアルキルエステル類、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート、ソルビタントリオレエート等のソルビタンアルキルエステル類、グリセロールモノステアレート、グリセロールモノオレエート等のモノグリセリドアルキルエステル類、多核フェノールエトキシレート類等のノニオン系界面活性剤;
 ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩類、ブチルナフタレンスルホン酸ナトリウム、ペンチルナフタレンスルホン酸ナトリウム、ヘキシルナフタレンスルホン酸ナトリウム、オクチルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸塩類、ドデシルスルホン酸ナトリウム等のアルキルスルホン酸塩類、ジラウリルスルホコハク酸ナトリウム等のスルホコハク酸エステル塩類等の、アニオン系界面活性剤;
 第4級アンモニウム塩型アルキルカチオン類等のカチオン系界面活性剤;
 ラウリルベタイン、ステアリルベタイン等のアルキルベタイン類等の両性界面活性剤が等が挙げられるが、これに限定されるものではない。
-アセチレン系界面活性剤-
 アセチレン系界面活性剤における、分子内のアセチレン基の数は、特に制限されないが、1~10個が好ましく、1~5個がより好ましく、1~3個が更に好ましく、1~2個が一層好ましい。
 アセチレン系界面活性剤の分子量は比較的小さいことが好ましく、2,000以下であることが好ましく、1,500以下であることがより好ましく、1,000以下であることが更に好ましい。下限値は特にないが、200以上であることが好ましい。
<<式(9)で表される化合物>>
 アセチレン系界面活性剤は下記式(9)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 式中、R91及びR92は、それぞれ独立に、炭素数3~15のアルキル基、炭素数6~15の芳香族炭化水素基、又は、炭素数4~15の芳香族複素環基である。芳香族複素環基の炭素数は、1~12が好ましく、2~6がより好ましく、2~4が更に好ましい。
芳香族複素環は5員環又は6員環が好ましい。芳香族複素環が含むヘテロ原子は窒素原子、酸素原子、又は硫黄原子が好ましい。
 R91及びR92は、それぞれ独立に、置換基を有していてもよく、置換基としては下記置換基Tが挙げられる。
 置換基Tとしては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が更に好ましい)、アリールアルキル基(炭素数7~21が好ましく、7~15がより好ましく、7~11が更に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、ヒドロキシ基、アミノ基(炭素数0~24が好ましく、0~12がより好ましく、0~6が更に好ましい)、チオール基、カルボキシ基、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アルコキシル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アシル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アシルオキシ基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリーロイル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)、アリーロイルオキシ基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)、カルバモイル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、スルファモイル基(炭素数0~12が好ましく、0~6がより好ましく、0~3が更に好ましい)、スルホ基、アルキルスルホニル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリールスルホニル基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、ヘテロ環基(炭素数1~12が好ましく、1~8がより好ましく、2~5が更に好ましい、5員環又は6員環を含むことが好ましい)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、オキソ基(=O)、イミノ基(=NR)、アルキリデン基(=C(R)などが挙げられる。Rは水素原子又はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であり、水素原子、メチル基、エチル基、又はプロピル基が好ましい。各置換基に含まれるアルキル部位、アルケニル部位、及びアルキニル部位は鎖状でも環状でもよく、直鎖でも分岐でもよい。上記置換基Tが置換基を取りうる基である場合には更に置換基Tを有してもよい。例えば、アルキル基はハロゲン化アルキル基となってもよいし、(メタ)アクリロイルオキシアルキル基、アミノアルキル基やカルボキシアルキル基になっていてもよい。置換基がカルボキシ基やアミノ基などの塩を形成しうる基の場合、その基が塩を形成していてもよい。
<<式(91)で表される化合物>>
 式(9)で表される化合物としては、下記式(91)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000041
 R93~R96は、それぞれ独立に、炭素数1~24の炭化水素基であり、n9は1~6の整数であり、m9はn9の2倍の整数であり、n10は1~6の整数であり、m10はn10の2倍の整数であり、l9及びl10は、それぞれ独立に、0以上12以下の数である。
 R93~R96は炭化水素基であるが、なかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であることが好ましい。アルキル基、アルケニル基、アルキニル基は直鎖状でも環状でもよく、直鎖でも分岐でもよい。R93~R96は本発明の効果を奏する範囲で置換基Tを有していてもよい。また、R93~R96は互いに結合して、又は上述の連結基Lを介して環を形成していてもよい。置換基Tは、複数あるときは互いに結合して、あるいは下記連結基Lを介して又は介さずに式中の炭化水素基と結合して環を形成していてもよい。
 R93及びR94はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。なかでもメチル基が好ましい。
 R95及びR96はアルキル基(炭素数1~12が好ましく、2~6がより好ましく、3~6が更に好ましい)であることが好ましい。なかでも、-(Cn1198 m11)-R97が好ましい。R95、R96はとくにイソブチル基であることが好ましい。
 n11は1~6の整数であり、1~3の整数が好ましい。m11はn11の2倍の数である。
 R97及びR98は、それぞれ独立に、水素原子又はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。
 n9は1~6の整数であり、1~3の整数が好ましい。m9はn9の2倍の整数である。
 n10は1~6の整数であり、1~3の整数が好ましい。m10はn10の2倍の整数である。
 l9及びl10は、それぞれ独立に、0~12の数である。ただし、l9+l10は0~12の数であることが好ましく、0~8の数であることがより好ましく、0~6の数が更に好ましく、0を超え6未満の数が一層好ましく、0を超え3以下の数がより一層好ましい。なお、l9、l10については、式(91)の化合物がその数において異なる化合物の混合物となる場合があり、そのときはl9及びl10の数、あるいはl9+l10が、小数点以下が含まれた数であってもよい。
<<式(92)で表される化合物>>
 式(91)で表される化合物は、下記式(92)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 R93、R94、R97~R100は、それぞれ独立に、炭素数1~24の炭化水素基であり、l11及びl12は、それぞれ独立に、0以上12以下の数である。
 R93、R94、R97~R100はなかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であることが好ましい。アルキル基、アルケニル基、アルキニル基は鎖状でも環状でもよく、直鎖でも分岐でもよい。R93、R94、R97~R100は本発明の効果を奏する範囲で置換基Tを有していてもよい。また、R93、R94、R97~R100は互いに結合して、又は連結基Lを介して環を形成していてもよい。置換基Tは、複数あるときは互いに結合して、あるいは連結基Lを介して又は介さずに式中の炭化水素基と結合して環を形成していてもよい。
 R93、R94、R97~R100は、それぞれ独立に、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。なかでもメチル基が好ましい。
 l11+l12は0~12の数であることが好ましく、0~8の数であることがより好ましく、0~6の数が更に好ましく、0を超え6未満の数が一層好ましく、0を超え5以下の数がより一層好ましく、0を超え4以下の数が更に一層好ましく、0を超え3以下の数であってもよく、0を超え1以下の数であってもよい。なお、l11、l12は、式(92)の化合物がその数において異なる化合物の混合物となる場合があり、そのときはl11及びl12の数、あるいはl11+l12が、小数点以下が含まれた数であってもよい。
 アセチレン系界面活性剤としては、サーフィノール(Surfynol)104シリーズ(商品名、日信化学工業株式会社)、アセチレノール(Acetyrenol)E00、同E40、同E13T、同60(いずれも商品名、川研ファインケミカル社製)が挙げられ、中でも、サーフィノール104シリーズ、アセチレノールE00、同E40、同E13Tが好ましく、アセチレノールE40、同E13Tがより好ましい。なお、サーフィノール104シリーズとアセチレノールE00とは同一構造の界面活性剤である。
 その他、炭化水素系界面活性剤としては、市販品を使用してもよく、市販品としてはアデカトールLB、LA、OA、TN、TO、UA、LO、SO、SP、PC、アデカノールNK、AP、アデカエストールOEG、TL、S、T、アデカソールCO、COA、アデカホープMS、YES、TR、アデカコールTS、CS、PS、EC、アデカミン4MAC、4DAC、MT、アデカアンホートPB、AB等のシリーズ(いずれも(株)ADEKA製)等が挙げられるが、これに限定されるものではない。
〔フッ素原子を有する界面活性剤〕
 フッ素原子を有する界面活性剤としては、例えば、フルオロカーボン鎖を有する界面活性剤等が挙げられる。
 具体的には、北村化学産業(株)のPFシリーズ、大日本インキ工業(株)の“メガファック(登録商標)”シリーズ、住友スリーエム(株)のフロラードシリーズ、AGC(株)の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、三菱マテリアル電子化成(株)のEFシリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズ等が挙げられるが、これに限定されるものではない。
〔ケイ素原子を有する界面活性剤〕
 ケイ素原子を有する界面活性剤(「シリコーン系界面活性剤」ともいう。)としては、例えば、変性していてもよいポリシロキサン鎖を有する界面活性剤等が挙げられる。
 具体的には、シリコーン系界面活性剤としては、東レダウコーニングシリコーン(株)のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン社の“BYK”シリーズ、信越シリコーン(株)のKPシリーズ、KFシリーズ、日本油脂(株)のディスフォームシリーズ、東芝シリコーン(株)のTSFシリーズなどが挙げられるが、これに限定されるものではない。
〔その他の界面活性剤〕
 本発明の熱硬化性感光性組成物は、界面活性剤として、その他の界面活性剤を含んでもよい。その他の界面活性剤としては、共栄社化学社のポリフローシリーズ、楠本化成社の“ディスパロン(登録商標)”シリーズ等の、アクリル/メタクリル樹脂系界面活性剤等
が挙げられるが、これに限定されるものではない。
<溶剤>
 本発明の熱硬化性感光性組成物は、溶剤を含む。
 溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、スルホキシド類、アミド類、アルコール類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸へキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル、ヘキサン酸エチル、ヘプタン酸エチル、マロン酸ジメチル、マロン酸ジエチル等が好適なものとして挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノプロピルエーテルアセテート等が好適なものとして挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、3-メチルシクロヘキサノン、レボグルコセノン、ジヒドロレボグルコセノン等が好適なものとして挙げられる。
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素、リモネン等の環式テルペン類が好適なものとして挙げられる。
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。
 アミド類として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド等が好適なものとして挙げられる。
 アルコール類として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコール、テトラエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノフェニルエーテル、メチルフェニルカルビノール、n-アミルアルコール、メチルアミルアルコール、および、ダイアセトンアルコール等が挙げられる。
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。
 本発明では、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、N-メチル-2-ピロリドン、プロピレングリコールメチルエーテル、及びプロピレングリコールメチルエーテルアセテートから選択される1種の溶剤、又は、2種以上で構成される混合溶剤が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。
 溶剤の含有量は、塗布性の観点から、本発明の熱硬化性感光性組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~75質量%となる量にすることがより好ましく、10~70質量%となる量にすることが更に好ましく、20~70質量%となる量にすることが一層好ましく、40~70質量%となるようにすることが更に一層好ましい。溶剤含有量は、塗膜の所望の厚さと塗布方法に応じて調節すればよい。
 溶剤は1種のみ含有していてもよいし、2種以上含有していてもよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<ラジカル架橋剤>
 本発明の熱硬化性感光性組成物は、ラジカル架橋剤を更に含むことが好ましい。
 ラジカル架橋剤は、ラジカル重合性基を有する化合物である。ラジカル重合性基としては、エチレン性不飽和結合を含む基が好ましい。上記エチレン性不飽和結合を含む基としては、ビニル基、アリル基、ビニルフェニル基、(メタ)アクリロイル基などのエチレン性不飽和結合を有する基が挙げられる。
 これらの中でも、上記エチレン性不飽和結合を含む基としては、(メタ)アクリロイル基が好ましく、反応性の観点からは、(メタ)アクリロキシ基がより好ましい。
 ラジカル架橋剤は、エチレン性不飽和結合を1個以上有する化合物であればよいが、2以上有する化合物であることがより好ましい。
 エチレン性不飽和結合を2個有する化合物は、上記エチレン性不飽和結合を含む基を2個有する化合物であることが好ましい。
 また、得られる硬化膜の膜強度の観点からは、本発明の熱硬化性感光性組成物は、ラジカル架橋剤として、エチレン性不飽和結合を3個以上有する化合物を含むことが好ましい。上記エチレン性不飽和結合を3個以上有する化合物としては、エチレン性不飽和結合を3~15個有する化合物が好ましく、エチレン性不飽和結合を3~10個有する化合物がより好ましく、3~6個有する化合物が更に好ましい。
 また、上記エチレン性不飽和結合を3個以上有する化合物は、上記エチレン性不飽和結合を含む基を3個以上有する化合物であることが好ましく、3~15個有する化合物であることがより好ましく、3~10個有する化合物であることが更に好ましく、3~6個有する化合物であることが特に好ましい。
 また、得られる硬化膜の膜強度の観点からは、本発明の熱硬化性感光性組成物は、エチレン性不飽和結合を2個有する化合物と、上記エチレン性不飽和結合を3個以上有する化合物とを含むことも好ましい。
 一方、現像性の観点からは、ラジカル架橋剤は、上記エチレン性不飽和結合を2個有する化合物であることが特に好ましい。
 ラジカル架橋剤の分子量は、2,000以下が好ましく、1,500以下がより好ましく、900以下が更に好ましい。ラジカル架橋剤の分子量の下限は、100以上が好ましい。
 ラジカル架橋剤の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、及び不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシ基やアミノ基、スルファニル基等の求核性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲノ基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、ラジカル架橋剤は、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48-041708号公報、特公昭50-006034号公報、特開昭51-037193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-064183号、特公昭49-043191号、特公昭52-030490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレート及びこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落0254~0257に記載の化合物も好適である。また、多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和結合を有する化合物を反応させて得られる多官能(メタ)アクリレートなども挙げることができる。
 また、上述以外の好ましいラジカル架橋剤として、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号公報等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物や、カルド樹脂も使用することが可能である。
 更に、その他の例としては、特公昭46-043946号公報、特公平01-040337号公報、特公平01-040336号公報に記載の特定の不飽和化合物や、特開平02-025493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61-022048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。更に日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光重合性モノマー及びオリゴマーとして紹介されているものも使用することができる。
 上記のほか、特開2015-034964号公報の段落0048~0051に記載の化合物、国際公開第2015/199219号の段落0087~0131に記載の化合物も好ましく用いることができ、これらの内容は本明細書に組み込まれる。
 また、特開平10-062986号公報において式(1)及び式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、ラジカル架橋剤として用いることができる。
 更に、特開2015-187211号公報の段落0104~0131に記載の化合物もラジカル架橋剤として用いることができ、これらの内容は本明細書に組み込まれる。
 ラジカル架橋剤としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製、A-TMMT:新中村化学工業(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A-DPH;新中村化学工業社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。
 ラジカル架橋剤の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるサートマー社製のSR-209、231、239、日本化薬(株)製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330、ウレタンオリゴマーUAS-10、UAB-140(日本製紙社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。
 ラジカル架橋剤としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、ラジカル架橋剤として、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。
 ラジカル架橋剤は、カルボキシ基、リン酸基等の酸基を有するラジカル架橋剤であってもよい。酸基を有するラジカル架橋剤は、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤がより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤において、脂肪族ポリヒドロキシ化合物がペンタエリスリトール又はジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成(株)製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有するラジカル架橋剤の好ましい酸価は、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。ラジカル架橋剤の酸価が上記範囲であれば、製造上の取扱性に優れ、更には、現像性に優れる。また、重合性が良好である。一方、アルカリ現像する場合の現像速度の観点では、酸基を有するラジカル架橋剤の好ましい酸価は、0.1~300mgKOH/gであり、特に好ましくは1~100mgKOH/gである。上記酸価は、JIS K 0070:1992の記載に準拠して測定される。
 本発明の熱硬化性感光性組成物は、パターンの解像性と膜の伸縮性の観点から、2官能のメタアクリレート又はアクリレートを用いることが好ましい。
 具体的な化合物としては、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、PEG200ジアクリレート(ポリエチレングリコールジアクリレートであって、ポリエチレングリコール鎖の式量が200程度のもの)、PEG200ジメタクリレート、PEG600ジアクリレート、PEG600ジメタクリレート、ポリテトラエチレングリコールジアクリレート、ポリテトラエチレングリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6ヘキサンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、ビスフェノールAのEO(エチレンオキサイド)付加物ジアクリレート、ビスフェノールAのEO付加物ジメタリレート、ビスフェノールAのPO付加物ジアクリレート、ビスフェノールAのEO付加物ジメタリレート、2-ヒドロキシー3-アクリロイロキシプロピルメタクリレート、イソシアヌル酸EO変性ジアクリレート、イソシアヌル酸変性ジメタクリレート、その他ウレタン結合を有する2官能アクリレート、ウレタン結合を有する2官能メタクリレートを使用することができる。これらは必要に応じ、2種以上を混合し使用することができる。
 その他、2官能以上のラジカル架橋剤としては、ジアリルフタレート、トリアリルトリメリテート等が挙げられる。
 硬化膜の弾性率制御に伴う反り抑制の観点から、ラジカル架橋剤として、単官能ラジカル架橋剤を好ましく用いることができる。単官能ラジカル架橋剤としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類等が好ましく用いられる。単官能ラジカル架橋剤としては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
 ラジカル架橋剤を含有する場合、その含有量は、本発明の熱硬化性感光性組成物の全固形分に対して、0質量%超60質量%以下であることが好ましい。下限は5質量%以上がより好ましい。上限は、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 ラジカル架橋剤は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
<熱架橋剤>
 本発明の熱硬化性感光性組成物は、熱架橋剤を含むことが好ましい。
 熱架橋剤としては、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が酸の作用によって促進される基を分子内に複数個有する化合物であれば特に限定されないが、メチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも一種の基を有する化合物が好ましく、メチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも一種の基が窒素原子に直接結合した構造を有する化合物がより好ましい。
 熱架橋剤としては、例えば、メラミン、グリコールウリル、尿素、アルキレン尿素、ベンゾグアナミンなどのアミノ基含有化合物にホルムアルデヒド又はホルムアルデヒドとアルコールを反応させ、上記アミノ基の水素原子をメチロール基又はアルコキシメチル基で置換した構造を有する化合物が挙げられる。これらの化合物の製造方法は特に限定されず、上記方法により製造された化合物と同様の構造を有する化合物であればよい。また、これらの化合物のメチロール基同士が自己縮合してなるオリゴマーであってもよい。
 上記のアミノ基含有化合物として、メラミンを用いた熱架橋剤をメラミン系架橋剤、グリコールウリル、尿素又はアルキレン尿素を用いた熱架橋剤を尿素系架橋剤、アルキレン尿素を用いた熱架橋剤をアルキレン尿素系架橋剤、ベンゾグアナミンを用いたものをベンゾグアナミン系架橋剤という。
 これらの中でも、本発明の熱硬化性感光性組成物は、尿素系架橋剤及びメラミン系架橋剤よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、後述するグリコールウリル系架橋剤及びメラミン系架橋剤よりなる群から選ばれた少なくとも1種の化合物を含むことがより好ましい。
 メラミン系架橋剤の具体例としては、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシブチルメラミンなどが挙げられる。
 尿素系架橋剤の具体例としては、例えばモノヒドロキシメチル化グリコールウリル、ジヒドロキシメチル化グリコールウリル、トリヒドロキシメチル化グリコールウリル、テトラヒドロキシメチル化グリコールウリル、モノメトキシメチル化グリコールウリル,ジメトキシメチル化グリコールウリル、トリメトキシメチル化グリコールウリル、テトラメトキシメチル化グリコールウリル、モノメトキシメチル化グリコールウリル、ジメトキシメチル化グリコールウリル、トリメトキシメチル化グリコールウリル、テトラエトキシメチル化グリコールウリル、モノプロポキシメチル化グリコールウリル、ジプロポキシメチル化グリコールウリル、トリプロポキシメチル化グリコールウリル、テトラプロポキシメチル化グリコールウリル、モノブトキシメチル化グリコールウリル、ジブトキシメチル化グリコールウリル、トリブトキシメチル化グリコールウリル、又は、テトラブトキシメチル化グリコールウリルなどのグリコールウリル系架橋剤;
 ビスメトキシメチル尿素、ビスエトキシメチル尿素、ビスプロポキシメチル尿素、ビスブトキシメチル尿素等の尿素系架橋剤、
 モノヒドロキシメチル化エチレン尿素又はジヒドロキシメチル化エチレン尿素、モノメトキシメチル化エチレン尿素、ジメトキシメチル化エチレン尿素、モノエトキシメチル化エチレン尿素、ジエトキシメチル化エチレン尿素、モノプロポキシメチル化エチレン尿素、ジプロポキシメチル化エチレン尿素、モノブトキシメチル化エチレン尿素、又は、ジブトキシメチル化エチレン尿素などのエチレン尿素系架橋剤、
 モノヒドロキシメチル化プロピレン尿素、ジヒドロキシメチル化プロピレン尿素、モノメトキシメチル化プロピレン尿素、ジメトキシメチル化プロピレン尿素、モノジエトキシメチル化プロピレン尿素、ジエトキシメチル化プロピレン尿素、モノプロポキシメチル化プロピレン尿素、ジプロポキシメチル化プロピレン尿素、モノブトキシメチル化プロピレン尿素、又は、ジブトキシメチル化プロピレン尿素などのプロピレン尿素系架橋剤、
 1,3-ジ(メトキシメチル)4,5-ジヒドロキシ-2-イミダゾリジノン、1,3-ジ(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリジノンなどが挙げられる。
 ベンゾグアナミン系架橋剤の具体例としては、例えばモノヒドロキシメチル化ベンゾグアナミン、ジヒドロキシメチル化ベンゾグアナミン。トリヒドロキシメチル化ベンゾグアナミン、テトラヒドロキシメチル化ベンゾグアナミン、モノメトキシメチル化ベンゾグアナミン、ジメトキシメチル化ベンゾグアナミン、トリメトキシメチル化ベンゾグアナミン、テトラメトキシメチル化ベンゾグアナミン、モノメトキシメチル化ベンゾグアナミン、ジメトキシメチル化ベンゾグアナミン、トリメトキシメチル化ベンゾグアナミン、テトラエトキシメチル化ベンゾグアナミン、モノプロポキシメチル化ベンゾグアナミン、ジプロポキシメチル化ベンゾグアナミン、トリプロポキシメチル化ベンゾグアナミン、テトラプロポキシメチル化ベンゾグアナミン、モノブトキシメチル化ベンゾグアナミン、ジブトキシメチル化ベンゾグアナミン、トリブトキシメチル化ベンゾグアナミン、テトラブトキシメチル化ベンゾグアナミンなどが挙げられる。
 その他、メチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも一種の基を有する化合物としては、芳香環(好ましくはベンゼン環)にメチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも一種の基が直接結合した化合物も好適に用いられる。
 このような化合物の具体例としては、ベンゼンジメタノール、ビス(ヒドロキシメチル)クレゾール、ビス(ヒドロキシメチル)ジメトキシベンゼン、ビス(ヒドロキシメチル)ジフェニルエーテル、ビス(ヒドロキシメチル)ベンゾフェノン、ヒドロキシメチル安息香酸ヒドロキシメチルフェニル、ビス(ヒドロキシメチル)ビフェニル、ジメチルビス(ヒドロキシメチル)ビフェニル、ビス(メトキシメチル)ベンゼン、ビス(メトキシメチル)クレゾール、ビス(メトキシメチル)ジメトキシベンゼン、ビス(メトキシメチル)ジフェニルエーテル、ビス(メトキシメチル)ベンゾフェノン、メトキシメチル安息香酸メトキシメチルフェニル、ビス(メトキシメチル)ビフェニル、ジメチルビス(メトキシメチル)ビフェニル、4,4’,4’’-エチリデントリス[2,6-ビス(メトキシメチル)フェノール]、5,5’-[2,2,2‐トリフルオロ‐1‐(トリフルオロメチル)エチリデン]ビス[2‐ヒドロキシ‐1,3‐ベンゼンジメタノール]、3,3’,5,5’-テトラキス(メトキシメチル)-1,1’-ビフェニル-4,4’-ジオール等が挙げられる。
 熱架橋剤としては市販品を用いてもよく、好適な市販品としては、46DMOC、46DMOEP(以上、旭有機材工業社製)、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DMLBisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、本州化学工業社製)、ニカラック(登録商標、以下同様)MX-290、ニカラックMX-280、ニカラックMX-270、ニカラックMX-279、ニカラックMW-100LM、ニカラックMX-750LM(以上、三和ケミカル社製)などが挙げられる。
 また、本発明の熱硬化性感光性組成物は、熱架橋剤として、エポキシ化合物、オキセタン化合物、及び、ベンゾオキサジン化合物よりなる群から選ばれた少なくとも1種の化合物を含むことも好ましい。
〔エポキシ化合物(エポキシ基を有する化合物)〕
 エポキシ化合物としては、一分子中にエポキシ基を2以上有する化合物であることが好ましい。エポキシ基は、200℃以下で架橋反応し、かつ、架橋に由来する脱水反応が起こらないため膜収縮が起きにくい。このため、エポキシ化合物を含有することは、熱硬化性感光性組成物の低温硬化及び反りの抑制に効果的である。
 エポキシ化合物は、ポリエチレンオキサイド基を含有することが好ましい。これにより、より弾性率が低下し、また反りを抑制することができる。ポリエチレンオキサイド基は、エチレンオキサイドの繰返し単位数が2以上のものを意味し、繰返し単位数が2~15であることが好ましい。
 エポキシ化合物の例としては、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ブチレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等のアルキレングリコール型エポキシ樹脂又は多価アルコール炭化水素型エポキシ樹脂;ポリプロピレングリコールジグリシジルエーテル等のポリアルキレングリコール型エポキシ樹脂;ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン(登録商標)850-S、エピクロン(登録商標)HP-4032、エピクロン(登録商標)HP-7200、エピクロン(登録商標)HP-820、エピクロン(登録商標)HP-4700、エピクロン(登録商標)EXA-4710、エピクロン(登録商標)HP-4770、エピクロン(登録商標)EXA-859CRP、エピクロン(登録商標)EXA-1514、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4850-150、エピクロンEXA-4850-1000、エピクロン(登録商標)EXA-4816、エピクロン(登録商標)EXA-4822、エピクロン(登録商標)EXA-830LVP、エピクロン(登録商標)EXA-8183、エピクロン(登録商標)EXA-8169、エピクロン(登録商標)N-660、エピクロン(登録商標)N-665-EXP-S、エピクロン(登録商標)N-740、リカレジン(登録商標)BEO-20E(以上商品名、DIC(株)製)、リカレジン(登録商標)BEO-60E、リカレジン(登録商標)HBE-100、リカレジン(登録商標)DME-100、リカレジン(登録商標)L-200(商品名、新日本理化(株))、EP-4003S、EP-4000S、EP-4088S、EP-3950S(以上商品名、(株)ADEKA製)、セロキサイド(登録商標)2021P、セロキサイド(登録商標)2081、セロキサイド(登録商標)2000、EHPE3150、エポリード(登録商標)GT401、エポリード(登録商標)PB4700、エポリード(登録商標)PB3600(以上商品名、(株)ダイセル製)、NC-3000、NC-3000-L、NC-3000-H、NC-3000-FH-75M、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000L、NC-7300L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、BREN-10S(以上商品名、日本化薬(株)製)などが挙げられる。この中でも、ポリエチレンオキサイド基を含有するエポキシ樹脂が、反りの抑制及び耐熱性に優れる点で好ましい。例えば、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4822、リカレジン(登録商標)BEO-60Eは、ポリエチレンオキサイド基を含有するので好ましい。
〔オキセタン化合物(オキセタニル基を有する化合物)〕
 オキセタン化合物としては、一分子中にオキセタン環を2つ以上有する化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシルメチル)オキセタン、1,4-ベンゼンジカルボン酸-ビス[(3-エチル-3-オキセタニル)メチル]エステル等を挙げることができる。具体的な例としては、東亞合成(株)製のアロンオキセタンシリーズ(例えば、OXT-121、OXT-221、OXT-191、OXT-223)が好適に使用することができ、これらは単独で、又は2種以上混合してもよい。
〔ベンゾオキサジン化合物(ベンゾオキサゾリル基を有する化合物)〕
 ベンゾオキサジン化合物は、開環付加反応に由来する架橋反応のため、硬化時に脱ガスが発生せず、更に熱収縮を小さくして反りの発生が抑えられることから好ましい。
 ベンゾオキサジン化合物の好ましい例としては、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン、P-d型ベンゾオキサジン、F-a型ベンゾオキサジン(以上、商品名、四国化成工業社製)、ポリヒドロキシスチレン樹脂のベンゾオキサジン付加物、フェノールノボラック型ジヒドロベンゾオキサジン化合物が挙げられる。これらは単独で用いるか、又は2種以上混合してもよい。
 熱架橋剤の含有量は、本発明の熱硬化性感光性組成物の全固形分に対し0.1~30質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~15質量%であることが更に好ましく、1.0~10質量%であることが特に好ましい。熱架橋剤は1種のみ含有していてもよいし、2種以上含有していてもよい。熱架橋剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<スルホンアミド構造を有する化合物、チオウレア構造を有する化合物>
 得られる硬化膜の基材への密着性を向上する観点からは、本発明の熱硬化性感光性組成物は、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物よりなる群から選ばれた少なくとも1種の化合物を更に含むことが好ましい。
〔スルホンアミド構造を有する化合物〕
 スルホンアミド構造とは、下記式(S-1)で表される構造である。
Figure JPOXMLDOC01-appb-C000043
 式(S-1)中、Rは水素原子又は有機基を表し、Rは他の構造と結合して環構造を形成してもよく、*はそれぞれ独立に、他の構造との結合部位を表す。
 上記Rは、下記式(S-2)におけるRと同様の基であることが好ましい。
 スルホンアミド構造を有する化合物は、スルホンアミド構造を2以上有する化合物であってもよいが、スルホンアミド構造を1つ有する化合物であることが好ましい。
 スルホンアミド構造を有する化合物は、下記式(S-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 式(S-2)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R、R及びRのうち2つ以上が互いに結合して環構造を形成していてもよい。
 R、R及びRはそれぞれ独立に、1価の有機基であることが好ましい。
 R、R及びRの例としては、水素原子、又は、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシ基、カルボニル基、アリル基、ビニル基、複素環基、若しくはこれらを2以上組み合わせた基などが挙げられる。
 上記アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、2-エチルへキシル基等が挙げられる。
 上記シクロアルキル基としては、炭素数5~10のシクロアルキル基が好ましく、炭素数6~10のシクロアルキル基がより好ましい。上記シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 上記アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びペントキシ基等が挙げられる。
 上記アルコキシシリル基としては、炭素数1~10のアルコキシシリル基が好ましく、炭素数1~4のアルコキシシリル基がより好ましい。上記アルコキシシリル基としては、メトキシシリル基、エトキシシリル基、プロポキシシリル基及びブトキシシリル基等が挙げられる。
 上記アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。上記アリール基は、アルキル基等の置換基を有していてもよい。上記アリール基としては、フェニル基、トリル基、キシリル基及びナフチル基等が挙げられる。
 上記複素環基としては、トリアゾール環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジジン環、ピラジン環、ピペリジン環、ピペリジン、ピペラジン環、モルホリン環、ジヒドロピラン環、テトラヒドロピラン基、トリアジン環等の複素環構造から水素原子を1つ除いた基などが挙げられる。
 これらの中でも、Rがアリール基であり、かつ、R及びRがそれぞれ独立に、水素原子又はアルキル基である化合物が好ましい。
 スルホンアミド構造を有する化合物の例としては、ベンゼンスルホンアミド、ジメチルベンゼンスルホンアミド、N-ブチルベンゼンスルホンアミド、スルファニルアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、ヒドロキシナフタレンスルホンアミド、ナフタレン-1-スルホンアミド、ナフタレン-2-スルホンアミド、m-ニトロベンゼンスルホンアミド、p-クロロベンゼンスルホンアミド、メタンスルホンアミド、N,N-ジメチルメタンスルホンアミド、N,N-ジメチルエタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、N-メトキシメタンスルホンアミド、N-ドデシルメタンスルホンアミド、N-シクロヘキシル-1-ブタンスルホンアミド、2-アミノエタンスルホンアミドなどが挙げられる。
〔チオウレア構造を有する化合物〕
 チオウレア構造とは、下記式(T-1)で表される構造である。
Figure JPOXMLDOC01-appb-C000045
 式(T-1)中、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、R及びRは結合して環構造を形成してもよく、Rは*が結合する他の構造と結合して環構造を形成してもよく、Rは*が結合する他の構造と結合して環構造を形成してもよく、*はそれぞれ独立に、他の構造との結合部位を表す。
 R及びRはそれぞれ独立に、水素原子であることが好ましい。
 R及びRの例としては、水素原子、又は、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシ基、カルボニル基、アリル基、ビニル基、複素環基、若しくは、これらを2以上組み合わせた基などが挙げられる。
 上記アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、2-エチルへキシル基等が挙げられる。
 上記シクロアルキル基としては、炭素数5~10のシクロアルキル基が好ましく、炭素数6~10のシクロアルキル基がより好ましい。上記シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 上記アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びペントキシ基等が挙げられる。
 上記アルコキシシリル基としては、炭素数1~10のアルコキシシリル基が好ましく、炭素数1~4のアルコキシシリル基がより好ましい。上記アルコキシシリル基としては、メトキシシリル基、エトキシシリル基、プロポキシシリル基及びブトキシシリル基等が挙げられる。
 上記アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。上記アリール基は、アルキル基等の置換基を有していてもよい。上記アリール基としては、フェニル基、トリル基、キシリル基及びナフチル基等が挙げられる。
 上記複素環基としては、トリアゾール環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジジン環、ピラジン環、ピペリジン環、ピペリジン、ピペラジン環、モルホリン環、ジヒドロピラン環、テトラヒドロピラン基、トリアジン環等の複素環構造から水素原子を1つ除いた基などが挙げられる。
 チオウレア構造を有する化合物は、チオウレア構造を2以上有する化合物であってもよいが、チオウレア構造を1つ有する化合物であることが好ましい。
 チオウレア構造を有する化合物は、下記式(T-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式(T-2)中、R~Rはそれぞれ独立に、水素原子又は1価の有機基を表し、R~Rのうち少なくとも2つは互いに結合して環構造を形成していてもよい。
 式(T-2)中、R及びRは式(T-1)中のR及びRと同義であり、好ましい態様も同様である。
 式(T-2)中、R及びRはそれぞれ独立に、1価の有機基であることが好ましい。
 式(T-2)中、R及びRにおける1価の有機基の好ましい態様は、式(T-1)中のR及びRにおける1価の有機基の好ましい態様と同様である。
 チオウレア構造を有する化合物の例としては、N-アセチルチオウレア、N-アリルチオウレア、N-アリル-N’-(2-ヒドロキシエチル)チオウレア、1-アダマンチルチオウレア、N-ベンゾイルチオウレア、N,N’-ジフェニルチオウレア、1-ベンジル-フェニルチオウレア、1,3-ジブチルチオウレア、1,3-ジイソプロピルチオウレア、1,3-ジシクロヘキシルチオウレア、1-(3-(トリメトキシシリル)プロピル)-3-メチルチオウレア、トリメチルチオウレア、テトラメチルチオウレア、N,N-ジフェニルチオウレア、エチレンチオウレア(2-イミダゾリンチオン)、カルビマゾール、1,3-ジメチル-2-チオヒダントインなどが挙げられる。
〔含有量〕
 本発明の熱硬化性感光性組成物の全質量に対する、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物の合計含有量は、0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましく、0.2~3質量%であることが更に好ましい。
 本発明の熱硬化性感光性組成物は、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物よりなる群から選ばれる化合物を、1種のみ含んでもよいし、2種以上を含んでもよい。1種のみ含む場合にはその化合物の含有量が、2種以上を含む場合にはその合計量が、上記の範囲となることが好ましい。
<マイグレーション抑制剤>
 本発明の熱硬化性感光性組成物は、マイグレーション抑制剤を更に含むことが好ましい。マイグレーション抑制剤を含むことにより、金属層(金属配線)由来の金属イオンが熱硬化性感光性組成物層内へ移動することを効果的に抑制可能となる。
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環及び6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類及びスルファニル基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、1,2,4-トリアゾール、ベンゾトリアゾール、等のトリアゾール系化合物、1H-テトラゾール、5-フェニルテトラゾール等のテトラゾール系化合物が好ましく使用できる。
 又はハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。
 その他のマイグレーション抑制剤としては、特開2013-015701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-059656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116及び0118に記載の化合物、国際公開第2015/199219号の段落0166に記載の化合物などを使用することができる。
 マイグレーション抑制剤の具体例としては、下記化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000047
 熱硬化性感光性組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、熱硬化性感光性組成物の全固形分に対して、0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましく、0.1~1.0質量%であることが更に好ましい。
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<重合禁止剤>
 本発明の熱硬化性感光性組成物は、重合禁止剤を含むことが好ましい。
 重合禁止剤としては、例えば、ヒドロキノン、o-メトキシフェノール、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、p-tert-ブチルカテコール、1,4-ベンゾキノン、ジフェニル-p-ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩、N-ニトロソ-N-フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N-ニトロソジフェニルアミン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-4-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルホプロピルアミノ)フェノール、N-ニトロソ-N-(1-ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-tert-ブチル)フェニルメタン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、4‐ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、フェノチアジン、1,1-ジフェニル-2-ピクリルヒドラジル、ジブチルジチオカーバネート銅(II)、ニトロベンゼン、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩などが好適に用いられる。また、特開2015-127817号公報の段落0060に記載の重合禁止剤、及び、国際公開第2015/125469号の段落0031~0046に記載の化合物を用いることもできる。
 また、下記化合物を用いることができる(Meはメチル基である)。
Figure JPOXMLDOC01-appb-C000048
 本発明の熱硬化性感光性組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、本発明の熱硬化性感光性組成物の全固形分に対して、例えば0.01~20.0質量%である態様が挙げられ、0.01~5質量%であることが好ましく、0.02~3質量%であることがより好ましく、0.05~2.5質量%であることが更に好ましい。また、感光性樹脂組成物溶液の保存安定性が要求される場合には0.02~15.0質量%である態様も好ましく上げられ、その場合により好ましくは0.05~10.0質量%である。
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<金属接着性改良剤>
 本発明の熱硬化性感光性組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤としては、シランカップリング剤、アルミニウム系接着助剤、チタン系接着助剤、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物、リン酸誘導体化合物、β-ケトエステル化合物、アミノ化合物等などが挙げられる。
 シランカップリング剤の例としては、国際公開第2015/199219号の段落0167に記載の化合物、特開2014-191002号公報の段落0062~0073に記載の化合物、国際公開第2011/080992号の段落0063~0071に記載の化合物、特開2014-191252号公報の段落0060~0061に記載の化合物、特開2014-041264号公報の段落0045~0052に記載の化合物、国際公開第2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000049
 他のシランカップリング剤としては、例えが、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。これらは1種単独または2種以上を組み合わせて使用することができる。
 また、金属接着性改良剤としては、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもできる。
〔アルミニウム系接着助剤〕
 アルミニウム系接着助剤としては、例えば、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等を挙げることができる。
 金属接着性改良剤の含有量は特定樹脂100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.5~15質量部の範囲であり、更に好ましくは0.5~5質量部の範囲である。上記下限値以上とすることで硬化工程後の硬化膜と金属層との接着性が良好となり、上記上限値以下とすることで硬化工程後の硬化膜の耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<その他の添加剤>
 本発明の熱硬化性感光性組成物は、本発明の効果が得られる範囲で、必要に応じて、各種の添加物、例えば、N-フェニルジエタノールアミンなどの増感剤、連鎖移動剤、高級脂肪酸誘導体、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は熱硬化性感光性組成物の固形分の3質量%以下とすることが好ましい。
〔増感剤〕
 本発明の熱硬化性感光性組成物は、増感剤を含んでいてもよい。増感剤は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱ラジカル重合開始剤、光ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸又は塩基を生成する。
 増感剤としては、N-フェニルジエタノールアミン等の増感剤が挙げられる。他には、ベンゾフェノン系、ミヒラーズケトン系、クマリン系、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アントラセン系、アンスラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ペンゾピラン系、インジゴ系等の化合物を使用することができる。
 例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン(7-(ジエチルアミノ)クマリン-3-カルボン酸エチル)、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン、ジフェニルアセトアミド、ベンズアニリド、N-メチルアセトアニリド、3‘,4’-ジメチルアセトアニリド等が挙げられる。
 また、増感剤としては、増感色素を用いてもよい。
 増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の熱硬化性感光性組成物が増感剤を含む場合、増感剤の含有量は、本発明の熱硬化性感光性組成物の全固形分に対し、0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.5~10質量%であることが更に好ましい。増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
〔連鎖移動剤〕
 本発明の熱硬化性感光性組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内に-S-S-、-SO-S-、-N-O-、SH、PH、SiH、及びGeHを有する化合物群、RAFT(Reversible Addition Fragmentation chain Transfer)重合に用いられるチオカルボニルチオ基を有するジチオベンゾアート、トリチオカルボナート、ジチオカルバマート、キサンタート化合物等が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、若しくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物を好ましく用いることができる。
 また、連鎖移動剤は、国際公開第2015/199219号の段落0152~0153に記載の化合物を用いることもできる。
 本発明の熱硬化性感光性組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、本発明の熱硬化性感光性組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、1~10質量部がより好ましく、1~5質量部が更に好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
〔高級脂肪酸誘導体〕
 本発明の熱硬化性感光性組成物は、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で熱硬化性感光性組成物の表面に偏在させてもよい。
 また、高級脂肪酸誘導体は、国際公開第2015/199219号の段落0155に記載の化合物を用いることもできる。
 本発明の熱硬化性感光性組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、本発明の熱硬化性感光性組成物の全固形分に対して、0.1~10質量%であることが好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
<その他の含有物質についての制限>
 本発明の熱硬化性感光性組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がより好ましく、0.6質量%未満が更に好ましい。
 本発明の熱硬化性感光性組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、本発明の熱硬化性感光性組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の熱硬化性感光性組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の熱硬化性感光性組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフルオロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
 本発明の熱硬化性感光性組成物は、半導体材料としての用途を考慮すると、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が更に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。ハロゲン原子としては、塩素原子及び臭素原子が挙げられる。塩素原子及び臭素原子、又は塩素イオン及び臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
 本発明の熱硬化性感光性組成物の収容容器としては従来公知の収容容器を用いることができる。また、収容容器としては、原材料や熱硬化性感光性組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
<熱硬化性感光性組成物の用途>
 本発明の熱硬化性感光性組成物は、熱硬化性感光層の形成に用いられる組成物であり、スリットコート法による熱硬化性感光層の形成に用いられることがより好ましい。
 本発明の熱硬化性感光性組成物は、一様でない基材に適用されることが好ましい。
 一様でない基材としては、基材上に熱硬化性感光層を形成した場合に、熱硬化性感光層の厚さが均一な厚さとならない基材であればよいが、例えば、表面に段差を有する基材、表面に傾斜が存在する基材など、基材の表面の物理的な形状が一様でない基材、又は、表面の一部のみが組成物となじみにくいなど、基材の表面の化学的な性状が一様でない基材等が挙げられる。
 段差を有する基材とは、表面に段差を有する基材であり、表面が平坦ではない基材であればよい。
 表面に傾斜が存在する基材とは、表面の少なくとも一部に傾斜が存在する基材であり、表面が平坦でない基材であればよい。
 表面の一部のみが組成物となじみにくいなど、基材の表面の化学的な性状が一様でない基材としては、例えば、基材表面の一部の材質が異なる基材、表面の一部にのみ表面処理が施された等が挙げられ、表面が平坦であったとしても、均一な厚さの熱硬化性感光層が形成されない基材であればよい。基材表面の一部の材質が異なる基材としては、基材の表面に絶縁層と導体配線を有する場合等が挙げられる。
 基材の表面の物理的な形状が一様でない基材(表面の高さが一様でない基材)における、最後部と最低部との高さの差は、熱硬化性感光層の平均厚さに対して5~90%であることが好ましく、10~80%であることがより好ましく、12~60%であることが更に好ましい。
 基材の表面の物理的な形状が一様でない基材における表面の態様は特に限定されず、直方体状、立方体上、円柱状、半球状、錐体状、錐穴状、斜面状、尾根状、谷状又は鞍状の、厚さ方向に高い形状又は低い形状など、厚さ方向に高さの差が形成される形状であればよい。
 上記高さの差は、基板の形状による差であってもよいし、電極、絶縁膜等の基材上に形成される要素により形成される差であってもよく、いかなるものにより形成されるかは限定されない。
 本発明の熱硬化性感光性組成物は、再配線層用層間絶縁膜の形成に用いられることが好ましい。
 また、その他、半導体デバイスの絶縁膜の形成、又は、ストレスバッファ膜の形成等にも用いることができる。
<熱硬化性感光性組成物の調製>
 本発明の熱硬化性感光性組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 また、熱硬化性感光性組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下が更に好ましい。
 フィルター孔径は、例えば5μm以下である態様が挙げられ、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下が更に好ましい。フィルターの材質は、ポリテトラフルオロエチレン、ポリエチレン又はナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列又は並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は例えば0.01MPa以上1.0MPa以下である態様が挙げられ、0.03MPa以上0.9MPa以下が好ましく、0.05MPa以上0.7MPa以下がより好ましく、0.05MPa以上0.3MPa以下が更に好ましい。フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
(硬化膜、積層体、半導体デバイス、及びそれらの製造方法)
 次に、硬化膜、積層体、半導体デバイス、及びそれらの製造方法について説明する。
 本発明の硬化膜は、本発明の熱硬化性感光性組成物を硬化してなる。本発明の硬化膜の膜厚は、例えば、0.5μm以上とすることができ、1μm以上とすることができる。また、上限値としては、100μm以下とすることができ、30μm以下とすることもできる。
 本発明の硬化膜を2層以上、更には、3~7層積層して積層体としてもよい。本発明の積層体は、硬化膜を2層以上含み、上記硬化膜同士のいずれかの間に金属層を含む態様が好ましい。例えば、第一の硬化膜、金属層、第二の硬化膜の3つの層がこの順に積層された層構造を少なくとも含む積層体が好ましいものとして挙げられる。上記第一の硬化膜及び上記第二の硬化膜は、いずれも本発明の硬化膜であり、例えば、上記第一の硬化膜及び上記第二の硬化膜のいずれもが、本発明の熱硬化性感光性組成物を硬化してなる膜である態様が好ましいものとして挙げられる。上記第一の硬化膜の形成に用いられる本発明の熱硬化性感光性組成物と、上記第二の硬化膜の形成に用いられる本発明の熱硬化性感光性組成物とは、組成が同一の組成物であってもよいし、組成が異なる組成物であってもよい。本発明の積層体における金属層は、再配線層などの金属配線として好ましく用いられる。
 本発明の硬化膜の適用可能な分野としては、半導体デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜などが挙げられる。そのほか、封止フィルム、基板材料(フレキシブルプリント基板のベースフィルムやカバーレイ、層間絶縁膜)、又は上記のような実装用途の絶縁膜をエッチングでパターン形成することなどが挙げられる。これらの用途については、例えば、サイエンス&テクノロジー(株)「ポリイミドの高機能化と応用技術」2008年4月、柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行、日本ポリイミド・芳香族系高分子研究会/編「最新ポリイミド 基礎と応用」エヌ・ティー・エス,2010年8月等を参照することができる。
 また、本発明における硬化膜は、オフセット版面又はスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特に、マイクロエレクトロニクスにおける保護ラッカー及び誘電層の製造などにも用いることもできる。
 本発明の硬化膜の製造方法(以下、単に「本発明の製造方法」ともいう。)は、本発明の熱硬化性感光性組成物を基材に適用して膜を形成する膜形成工程を含むことが好ましい。
 本発明の硬化膜の製造方法は、上記膜形成工程、並びに、上記膜を露光する露光工程及び上記膜を現像する現像工程を含むことが好ましい。
 また、本発明の硬化膜の製造方法は、上記膜を加熱する加熱工程を含むことがより好ましい。
 具体的には、以下の(a)~(d)の工程を含むことも好ましい。
(a)熱硬化性感光性組成物を基材に適用して膜(熱硬化性感光性組成物層)を形成する膜形成工程
(b)膜形成工程の後、膜を露光する露光工程
(c)露光された上記膜を現像する現像工程
(d)現像された上記膜を加熱する加熱工程
 上記加熱工程において加熱することにより、露光で硬化した樹脂層を更に硬化させることができる。この加熱工程で、例えば上述の熱酸発生剤が分解し、発生した酸により熱架橋剤の架橋が促進されることにより、十分な硬化性が得られる。
 本発明の好ましい実施形態に係る積層体の製造方法は、本発明の硬化膜の製造方法を含む。本実施形態の積層体の製造方法は、上記の硬化膜の製造方法に従って、硬化膜を形成後、更に、再度、(a)の工程、又は(a)~(c)の工程、又は(a)~(d)の工程を行う。特に、上記各工程を順に、複数回、例えば、2~5回(すなわち、合計で3~6回)行うことが好ましい。このように硬化膜を積層することにより、積層体とすることができる。本発明では特に硬化膜を設けた部分の上又は硬化膜の間、又はその両者に金属層を設けることが好ましい。なお、積層体の製造においては、(a)~(d)の工程をすべて繰り返す必要はなく、上記のとおり、少なくとも(a)、好ましくは(a)~(c)又は(a)~(d)の工程を複数回行うことで硬化膜の積層体を得ることができる。
<膜形成工程(層形成工程)>
 本発明の好ましい実施形態に係る製造方法は、熱硬化性感光性組成物を基材に適用して膜(層状)にする、膜形成工程(層形成工程)を含む。
 基材の種類は、用途に応じて適宜定めることができるが、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基材、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基材、紙、SOG(Spin On Glass)、TFT(薄膜トランジスタ)アレイ基材、プラズマディスプレイパネル(PDP)の電極板など特に制約されない。本発明では、特に、半導体作製基材が好ましく、シリコン基材、モールド樹脂基材がより好ましい。
 また、基材としては、例えば板状の基材(基板)が用いられる。
 また、樹脂層の表面や金属層の表面に熱硬化性感光性組成物層を形成する場合は、樹脂層や金属層が基材となる。
 熱硬化性感光性組成物を基材に適用する手段としては、塗布が好ましい。
 具体的には、適用する手段としては、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スプレーコート法、スピンコート法、スリットコート法、及びインクジェット法などが例示される。熱硬化性感光性組成物層の厚さの均一性の観点から、より好ましくはスピンコート法、スリットコート法、スプレーコート法、インクジェット法であり、本発明の効果が得られやすい観点からは、スリットコート法が好ましい。方法に応じて適切な固形分濃度や塗布条件を調整することで、所望の厚さの樹脂層を得ることができる。また、基材の形状によっても塗布方法を適宜選択でき、ウェハ等の円形基材であればスピンコート法やスプレーコート法、インクジェット法等が好ましく、矩形基材であればスリットコート法やスプレーコート法、インクジェット法等が好ましい。スピンコート法の場合は、例えば、300~3,500rpmの回転数で、10~180秒適用することが挙げられ、500~2,000rpmの回転数で、10秒~1分程度適用することができる。また膜厚の均一性を得るために、複数の回転数を組み合わせて塗布することもできる。
 また、あらかじめ仮支持体上に上記付与方法によって付与して形成した塗膜を、基材上に転写する方法を適用することもできる。
 転写方法に関しては特開2006-023696号公報の段落0023、0036~0051や、特開2006-047592号公報の段落0096~0108に記載の作製方法を本発明においても好適に用いることができる。
<乾燥工程>
 本発明の製造方法は、上記膜(熱硬化性感光性組成物層)を形成後、膜形成工程(層形成工程)の後に、溶剤を除去するために乾燥する工程を含んでいてもよい。
 好ましい乾燥温度は50~150℃で、70℃~130℃がより好ましく、90℃~110℃が更に好ましい。乾燥時間としては、30秒~20分が例示され、1分~10分が好ましく、3分~7分がより好ましい。感光性樹脂組成物溶液の溶剤量が多い場合、真空乾燥と加熱乾燥を組み合わせることもできる。加熱乾燥はホットプレート、熱風式オーブン等が用いられ、特に制限されない。
<露光工程>
 本発明の製造方法は、上記膜(熱硬化性感光性組成物層)を露光する露光工程を含んでもよい。露光量は、熱硬化性感光性組成物を硬化できる限り特に定めるものではないが、例えば、波長365nmでの露光エネルギー換算で100~10,000mJ/cm照射することが好ましく、200~8,000mJ/cm照射することがより好ましい。
 露光波長は、190~1,000nmの範囲で適宜定めることができ、240~550nmが好ましい。
 露光波長は、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、F2エキシマレーザー(波長 157nm)、(5)極端紫外線;EUV(波長 13.6nm)、(6)電子線等、(7)YAGレーザーの第二高調波532nmで、第三高調波355nm、が挙げられる。本発明の熱硬化性感光性組成物については、特に高圧水銀灯による露光が好ましく、中でも、i線による露光が好ましい。これにより、特に高い露光感度が得られうる。また取り扱いと生産性の観点では、高圧水銀灯のブロード(g,h,i線の3波長)光源や半導体レーザー405nmも好適である。
<現像工程>
 本発明の製造方法は、露光された膜(熱硬化性感光性組成物層)に対して、現像を行う(上記膜を現像する)現像工程を含んでもよい。現像を行うことにより、例えばネガ型の感光性樹脂組成物の場合、露光されていない部分(非露光部)が除去される。現像方法は、所望のパターンを形成できれば特に制限は無く、例えば、パドル、スプレー、浸漬、超音波等の現像方法が採用可能である。
 現像は現像液を用いて行う。現像液は、例えばネガ型の感光性樹脂組成物の場合、露光されていない部分(非露光部)が除去されるのであれば、特に制限なく使用できる。
 本発明において、現像液としてアルカリ現像液を用いる場合をアルカリ現像、現像液として有機溶剤を50質量%以上含む現像液を用いる場合を溶剤現像という。
 アルカリ現像において、現像液としては、有機溶剤の含有量が現像液の全質量に対して10質量%以下である現像液が好ましく、5質量%以下である現像液がより好ましく、1質量%以下である現像液が更に好ましく、有機溶剤を含まない現像液が特に好ましい。
 アルカリ現像における現像液は、pHが10~15である水溶液がより好ましい。
 アルカリ現像における現像液に含まれるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、アンモニア又はアミンなどが挙げられる。アミンとしては、例えば、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、アルカノールアミン、ジメチルエタノールアミン、トリエタノールアミン、四級アンモニウム水酸化物、水酸化テトラメチルアンモニウム(TMAH)又は水酸化テトラエチルアンモニウムなどが挙げられる。なかでも金属を含まないアルカリ化合物が好ましく、アンモニウム化合物がより好ましい。
 アルカリ化合物は1種のみでもよいし、2種以上であってもよい。アルカリ化合物が2種以上の場合は、その合計が上記範囲であることが好ましい。
 溶剤現像において、現像液は、有機溶剤を90質量%以上含むことがより好ましい。本発明では、現像液は、ClogP値が-1~5の有機溶剤を含むことが好ましく、ClogP値が0~3の有機溶剤を含むことがより好ましい。ClogP値は、ChemBioDrawにて構造式を入力して計算値として求めることができる。
 有機溶剤は、エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例:アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例:3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例:2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、並びに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等、並びに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等、並びに、環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類等、スルホキシド類としてジメチルスルホキシドが好適に挙げられる。
 本発明では、特にシクロペンタノン、γ-ブチロラクトンが好ましく、シクロペンタノンがより好ましい。
 また現像液中には界面活性剤を含んでいてもよい。
 現像時間としては、10秒~5分が好ましい。現像時の現像液の温度は、特に定めるものではないが、通常、20~40℃で行うことができる。
 現像液を用いた処理の後、更に、リンスを行ってもよい。
 溶剤現像の場合、リンスは、現像液とは異なる有機溶剤で行うことが好ましい。例えば、プロピレングリコールモノメチルエーテルアセテートが挙げられる。リンス時間は5秒~5分が好ましい。また現像とリンスの間に、現像液とリンス液の両方を適用する工程を含んでいても良い。上記工程の時間は1秒~5分が好ましい。
 アルカリ現像の場合、リンスは、純水を用いて行うことが好ましい。
 リンス時間は、5秒~1分が好ましい。
<加熱工程>
 本発明の製造方法は、現像された上記膜を加熱する工程(加熱工程)を含むことが好ましい。
 加熱工程は、膜形成工程(層形成工程)、乾燥工程、及び現像工程の後に含まれることが好ましい。加熱工程では、例えば、ポリイミド前駆体、又は、ポリベンゾオキサゾール前駆体の環化、未反応のラジカル架橋剤の架橋、未反応の熱架橋剤の架橋等を進行させることができる。加熱工程における層の加熱温度(最高加熱温度)としては、50℃以上であることが好ましく、80℃以上であることがより好ましく、140℃以上であることが更に好ましく、150℃以上であることが一層好ましく、160℃以上であることがより一層好ましく、170℃以上であることが更に一層好ましい。上限としては、500℃以下であることが好ましく、450℃以下であることがより好ましく、350℃以下であることが更に好ましく、250℃以下であることが一層好ましく、220℃以下であることがより一層好ましい。
 加熱は、加熱開始時の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましく、2~10℃/分がより好ましく、3~10℃/分が更に好ましい。昇温速度を1℃/分以上とすることにより、生産性を確保しつつ、酸又は溶剤の過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、硬化膜の残存応力を緩和することができる。
 加熱開始時の温度は、20℃~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃が更に好ましい。加熱開始時の温度は、最高加熱温度まで加熱する工程を開始する際の温度のことをいう。例えば、熱硬化性感光性組成物を基材の上に適用した後、乾燥させる場合、この乾燥後の膜(層)の温度であり、例えば、熱硬化性感光性組成物に含まれる溶剤の沸点よりも、30~200℃低い温度から徐々に昇温させることが好ましい。
 加熱時間(最高加熱温度での加熱時間)は、10~360分であることが好ましく、20~300分であることがより好ましく、30~240分であることが更に好ましい。
 特に多層の積層体を形成する場合、硬化膜の層間の密着性の観点から、加熱温度は180℃~320℃で加熱することが好ましく、180℃~260℃で加熱することがより好ましい。その理由は定かではないが、この温度とすることで、層間の特定樹脂のエチニル基同士が架橋反応を進行しているためと考えられる。
 加熱は段階的に行ってもよい。例として、25℃から180℃まで3℃/分で昇温し、180℃にて60分保持し、180℃から200℃まで2℃/分で昇温し、200℃にて120分保持する、といった前処理工程を行ってもよい。前処理工程としての加熱温度は100~200℃が好ましく、110~190℃であることがより好ましく、120~185℃であることが更に好ましい。この前処理工程においては、米国特許第9159547号明細書に記載のように紫外線を照射しながら処理することも好ましい。このような前処理工程により膜の特性を向上させることが可能である。前処理工程は10秒間~2時間程度の短い時間で行うとよく、15秒~30分間がより好ましい。前処理は2段階以上のステップとしてもよく、例えば100~150℃の範囲で前処理工程1を行い、その後に150~200℃の範囲で前処理工程2を行ってもよい。
 更に、加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す、真空下で行う等により、低酸素濃度の雰囲気で行うことが特定樹脂の分解を防ぐ点で好ましい。酸素濃度は、50ppm(体積比)以下が好ましく、20ppm(体積比)以下がより好ましい。
<金属層形成工程>
 本発明の製造方法は、現像後の膜(熱硬化性感光性組成物層)の表面に金属層を形成する金属層形成工程を含むことが好ましい。
 金属層としては、特に限定なく、既存の金属種を使用することができ、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金及びタングステンが例示され、銅及びアルミニウムがより好ましく、銅が更に好ましい。
 金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報に記載された方法を使用することができる。例えば、フォトリソグラフィ、リフトオフ、電解メッキ、無電解メッキ、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィ及びエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解メッキを組み合わせたパターニング方法が挙げられる。
 金属層の厚さとしては、最も厚肉の部分で、0.1~50μmが好ましく、1~10μmがより好ましい。
<積層工程>
 本発明の製造方法は、更に、積層工程を含むことが好ましい。
 積層工程とは、硬化膜(樹脂層)又は金属層の表面に、再度、(a)膜形成工程(層形成工程)、(b)露光工程、(c)現像工程、(d)加熱工程を、この順に行うことを含む一連の工程である。ただし、(a)の膜形成工程のみを繰り返す態様であってもよい。また、(d)加熱工程は積層の最後又は中間に一括して行う態様としてもよい。すなわち、(a)~(c)の工程を所定の回数繰り返し行い、その後に(d)の加熱をすることで、積層された熱硬化性感光性組成物層を一括で硬化する態様としてもよい。また、(c)現像工程の後には(e)金属層形成工程を含んでもよく、このときにも都度(d)の加熱を行っても、所定回数積層させた後に一括して(d)の加熱を行ってもよい。積層工程には、更に、上記乾燥工程や加熱工程等を適宜含んでいてもよいことは言うまでもない。
 積層工程後、更に積層工程を行う場合には、上記加熱工程後、上記露光工程後、又は、上記金属層形成工程後に、更に、表面活性化処理工程を行ってもよい。表面活性化処理としては、プラズマ処理が例示される。
 上記積層工程は、2~5回行うことが好ましく、3~5回行うことがより好ましい。
 例えば、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層のような、樹脂層が3層以上7層以下の構成が好ましく、3層以上5層以下が更に好ましい。
 本発明では特に、金属層を設けた後、更に、上記金属層を覆うように、上記熱硬化性感光性組成物の硬化膜(樹脂層)を形成する態様が好ましい。具体的には、(a)膜形成工程、(b)露光工程、(c)現像工程、(e)金属層形成工程、(d)加熱工程の順序で繰り返す態様、又は、(a)膜形成工程、(b)露光工程、(c)現像工程、(e)金属層形成工程の順序で繰り返し、最後又は中間に一括して(d)加熱工程を設ける態様が挙げられる。熱硬化性感光性組成物層(樹脂層)を積層する積層工程と、金属層形成工程を交互に行うことにより、熱硬化性感光性組成物層(樹脂層)と金属層を交互に積層することができる。
 本発明は、本発明の硬化膜又は積層体を含む半導体デバイスも開示する。本発明の熱硬化性感光性組成物を再配線層用層間絶縁膜の形成に用いた半導体デバイスの具体例としては、特開2016-027357号公報の段落0213~0218の記載及び図1の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。
<合成例1>
〔PIP-1:オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-ジアミノジフェニルエーテル、及び、2-ヒドロキシエチルメタクリレートからのポリイミド前駆体PIP-1の合成〕
 10.00g(32.3ミリモル)のオキシジフタル酸二無水物(140℃で12時間乾燥した)と、9.48g(32.3ミリモル)の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(140℃で12時間乾燥した)と、16.8g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、20.4g(258ミリモル)のピリジンと、100gのダイグライム(ジエチレングリコールジメチルエーテル)を混合し、60℃の温度で18時間撹拌して、ピロメリット酸と2-ヒドロキシエチルメタクリレートのジエステル、及び、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物のジエステルを製造した。反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら16.12g(135.5ミリモル)のSOClを10分かけて加えた。SOClを加えている間、粘度が増加した。50mLのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mLのN-メチルピロリドンに11.08g(58.7ミリモル)の4,4’-ジアミノジフェニルエーテルを溶解させた溶液を、温度を-5~0℃に保ちながら20分かけて反応混合物に滴下した。次いで、溶液と反応混合物を0℃で1時間反応させたのち、エタノールを70g加えて、室温で1晩撹拌した。次いで、5リットルの水の中でポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5,000rpmの速度で15分間撹拌した。ポリイミド前駆体をろ過して取得し、4リットルの水の中で再度30分間撹拌し再びろ過した。次いで、得られたポリイミド前駆体を減圧下で、45℃で3日間乾燥し、ポリイミド前駆体PIP-1を得た。
<合成例2>
〔PIP-2:オキシジフタル酸二無水物、4,4’-ジアミノジフェニルエーテル、及び、2-ヒドロキシエチルメタクリレートからのポリイミド前駆体PIP-2の合成〕
 上記ポリイミド前駆体PIP-1の合成において、10.00g(32.3ミリモル)のオキシジフタル酸二無水物、及び、9.48g(32.3ミリモル)の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、20.01g(64.5ミリモル)のオキシジフタル酸二無水物に変更した以外は、ポリイミド前駆体PIP-1の合成と同様の方法により、ポリイミド前駆体PIP-2を合成した。
<合成例3>
〔PI-1:オキシジフタル酸二無水物、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン及び2-イソシアナトエチルメタクリレートからのポリイミドPI-1の合成〕
 撹拌機、コンデンサー及び内部温度計を取りつけた平底ジョイントを備えた乾燥反応器中で水分を除去しながら、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン 65.56g(179mmol)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン 2.48g(10mmol)をN-メチルピロリドン(NMP) 300gに溶解させた。続いて、オキシジフタル酸二無水物 62.04g(200mmol)を添加し、40℃の温度で2時間撹拌した。次いで、トルエン 50mL及び3-アミノフェノール 2.18g(10mmol)を添加し、40℃で2時間撹拌した。撹拌後、200ml/minの流量の窒素をフローしながら、温度を180℃に昇温し、6時間撹拌した。
 上記反応液を25℃まで冷却した後、p-メトキシフェノール0.005gを加え、溶解した。この溶液に、2-イソシアナトエチルメタクリレート 24.82g(160mmol)を滴下し、25℃で2時間撹拌した後、更に60℃で3時間撹拌した。これを25℃に冷却し、酢酸10gを加えて25℃で1時間撹拌した。撹拌後、2リットルの水/メタノール=75/25(体積比)中で沈殿させ、2,000rpmの速度で30分間撹拌した。析出したポリイミド樹脂を濾過して取得し、1.5リットルの水でかけ洗いした後、濾物を2リットルのメタノールに混合して再度30分間撹拌し再び濾過し、ポリイミドを得た。得られたポリイミドを減圧下で、40℃で1日間乾燥し、PI-1を得た。
<合成例4>
〔PI-2:オキシジフタル酸二無水物、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンからのポリイミドPI-2の合成〕
 ポリイミドPI-1の合成において、「上記反応液を25℃まで冷却した後、p-メトキシフェノール0.005gを加え、溶解した。この溶液に、2-イソシアナトエチルメタクリレート 24.82g(160mmol)を滴下し、25℃で2時間撹拌した後、更に60℃で3時間撹拌した。これを25℃に冷却し、酢酸10gを加えて25℃で1時間撹拌した。」という作業を行わない以外は、ポリイミドPI-1の合成と同様の方法により、ポリイミドPI-2を合成した。
<合成例5>
〔4,4’-オキシジベンゾイルクロリド、及び、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンからのポリベンゾオキサゾール前駆体PBP-1の合成〕
 2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン 28.0g(76.4ミリモル)をN-メチルピロリドン200gに撹拌溶解した。続いて、ピリジン12.1g(153ミリモル)を加え、温度を-10~0℃に保ちながら、N-メチルピロリドン75gに4,4’-オキシジベンゾイルクロリド 20.7g(70.1ミリモル)を溶解させた溶液を1時間かけて滴下した。30分間撹拌した後、塩化アセチル 1.00g(12.7ミリモル)を加え、更に60分間撹拌した。次いで、6リットルの水の中でポリベンゾオキサゾール前駆体樹脂を沈殿させ、水-ポリベンゾオキサゾール前駆体樹脂混合物を500rpmの速度で15分間撹拌した。ポリベンゾオキサゾール前駆体樹脂を濾過して取得し、6リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリベンゾオキサゾール前駆体PBP-1を減圧下で、45℃で3日間乾燥した。
<合成例6>
〔4,4’-オキシジベンゾイルクロリド、及び、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンからのポリベンゾオキサゾールPB-1の合成〕
 上記ポリベンゾオキサゾール前駆体PBP-1をN-メチルピロリドン(NMP) 300gに溶解し、200ml/minの流量の窒素をフローしながら、温度を180℃に昇温し、6時間撹拌した。撹拌後、2リットルの水/メタノール=75/25(体積比)中で沈殿させ、2,000rpmの速度で30分間撹拌した。析出したポリベンゾオキサゾールを濾過して取得し、1.5リットルの水でかけ洗いした後、濾物を2リットルのメタノールに混合して再度30分間撹拌し再び濾過し、ポリベンゾオキサゾールを得た。得られたポリベンゾオキサゾールを減圧下で、40℃で1日間乾燥し、ポリベンゾオキサゾールPB-1を得た。
<実施例及び比較例>
 各実施例において、それぞれ、下記表1、表2又は表3に記載の成分を混合し、各熱硬化性感光性組成物を得た。また、各比較例において、それぞれ、下記表2に記載の成分を混合し、各比較用組成物を得た。
 具体的には、表1、表2又は表3に記載の成分の含有量は、表1、表2又は表3の「質量部」に記載の量とした。また、各組成物において、溶剤の含有量は、組成物の固形分濃度が表1、表2又は表3に記載の値となるようにした。
 表1、表2又は表3中「メタル濃度」の欄の記載は、組成物の全質量に対する金属含有量(質量ppm)を表す。
 表1、表2又は表3中、例えば、界面活性剤の欄の「C-1/C-3」「0.07/0.03」の記載は、C-1を0.07質量部、C-3を0.03質量部用いたことを示している。
 得られた熱硬化性感光性組成物及び比較用組成物を、細孔の幅が0.8μmのポリテトラフルオロエチレン製フィルターを通して加圧ろ過した。
 また、表1、表2又は表3中、「-」の記載は該当する成分を組成物が含有していないことを示している。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 表1表2又は表3に記載した各成分の詳細は下記の通りである。
〔特定樹脂〕
・PIP-1~PIP-2:上記で合成したPIP-1~PIP-2
・PI-1~PI-2:上記で合成したPI-1~PI-2
・PBP-1:上記で合成したPBP-1
・PB-1:上記で合成したPB-1
〔ラジカル架橋剤〕
・B-1:テトラエチレングリコールジメタクリレート
・B-2:ジペンタエリスリトールヘキサアクリレート
・B-3:ライトエステルBP-6EM(共栄化学(株)製)
〔界面活性剤〕
・C-1:PF-6320(北村化学産業(株)製)
・C-2:KF-6048(信越シリコーン(株)製)
・C-3:アセチレノールE00(川研ファインケミカル(株)製)
・C-4:アデカトールLA-775((株)ADEKA製)
・C-5:アデカエストールS-20((株)ADEKA製)
・C-6:アデカコールPS-440E((株)ADEKA製)
・C-7:アデカトールPC-6((株)ADEKA製)
〔感光剤〕
・D-1:IRGACURE OXE 01(BASF社製)
・D-2:ADEKA NCI-930((株)ADEKA製)
・D-3:下記構造の化合物(2:1の記載は各構造の含有モル比を表す。)
Figure JPOXMLDOC01-appb-C000053
 上記D-3は、国際公開第2017/217292号に記載の合成方法に従い合成した。
〔熱架橋剤〕
・E-1:二カラックMX-270((株)三和ケミカル製)
〔シランカップリング剤〕
・F-1:N-(3-(トリエトキシシリル)プロピル)フタルアミド酸
・F-2:IM-1000(JX金属(株)製)
・F-3:ベンゾフェノン-3,3’-ビス(N-(3-トリエトキシシリル)プロピルアミド)-4,4’-ジカルボン酸
〔熱塩基発生剤〕
・G-1:下記構造の化合物
Figure JPOXMLDOC01-appb-C000054
〔重合禁止剤〕
・H-1:2-ニトロソ-1-ナフトール
・H-2:4-メトキシ-1-ナフトール
・H-3:ベンゾキノン
〔添加剤〕
・I-1:N-フェニルジエタノールアミン
・I-2:1,3-ジブチルチオ尿素
・I-3:1H-テトラゾール
〔溶剤〕
・J-1:N-メチル-2-ピロリドン
・J-2:γ-ブチロラクトン
・J-3:乳酸エチル
・J-4:ジメチルスルホキシド
 表1、表2又は表3中、「溶剤中比率」の欄の記載は、溶剤の全質量に対する各溶剤の含有量(質量%)を示している。
<評価>
〔表面自由エネルギーの測定〕
 実施例23及び24以外の各実施例及び比較例において、それぞれ、熱硬化性感光性組成物又は比較用組成物をスリットコート法で平坦な4インチシリコンウェハ上に適用し、ホットプレート上で、80℃で5分間乾燥して、表1、表2又は表3の「膜厚(μm)」の欄に記載の厚さの150%の膜厚である熱硬化性感光層A、及び、表1、表2又は表3の「膜厚(μm)」の欄に記載の厚さの50%の膜厚である熱硬化性感光層B、を形成した。
 実施例23及び24においては、塗布方法をスリットコート法からスピンコート法に変更して、実施例1~22と同様の熱硬化性感光層A及び熱硬化性感光層Bを形成した。
 各実施例及び比較例において、それぞれ、上記熱硬化性感光層Aに対し、250℃で120分間加熱し、硬化膜Aを作製した。その後、上記硬化膜Aの水の接触角とジヨードメタンの接触角を測定し、これらの接触角から式(1)を用いて、表面自由エネルギーA(mJ/m)を算出した。
 各実施例及び比較例において、それぞれ、上記熱硬化性感光層Bに対し、上記表面自由エネルギーAと同様の方法により、表面自由エネルギーB(mJ/m)を算出した。
 表1、表2又は表3の「表面自由エネルギー差の絶対値」の欄には、上記表面自由エネルギーAと上記表面自由エネルギーBとの差の絶対値(mJ/m)を記載した。
 表1、表2又は表3の「硬化膜Aの表面自由エネルギー」の欄には、上記表面自由エネルギーAの値(mJ/m)を記載した。
 表1、表2又は表3の「絶対値/硬化膜Aの表面自由エネルギー」の欄には、上記表面自由エネルギーAの値に対する、上記表面自由エネルギーAと上記表面自由エネルギーBとの差の絶対値の割合(百分率、%)を記載した。
〔基板段差適性の評価〕
 8インチ丸形シリコンウェハ上にフォトレジストであるOFPR(商品名、東京応化工業(株)製)膜を形成し、フォトリソグラフィ法を用いて、縦30μm、横30μm、深さ4μmの溝状の段差を縦方向、横方向ともに50μmごとに1つを配置する形で繰り返したパターンを形成し、このパターンをマスクとしてエッチング装置(サムコ製RIE-10N)を用いてドライエッチングし、OFPRからなるパターンをアセトンで剥離して、深さ4μmの段差を形成して、段差基板とした。
 実施例23及び24以外の各実施例及び比較例において、それぞれ、熱硬化性感光性組成物又は比較用組成物をスリットコート法で上記段差基板上に適用して樹脂層1を形成した。
 実施例23及び24においては、それぞれ、熱硬化性感光性組成物をスピンコート法で上記段差基板上に適用して樹脂層1を形成した。
 得られた樹脂層1を適用した段差基板を、ホットプレート上で、80℃で5分間乾燥し、段差基板上に、平均厚さが表1、表2又は表3の「膜厚(μm)」の欄に記載の厚さである熱硬化性感光層1を得た。
 その後、得られた熱硬化性感光層1の全面に対して、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーでi線露光した。露光後の熱硬化性感光層1が形成された段差基板を、ホットプレート上で、100℃で5分間加熱した。
 露光した熱硬化性感光層1を、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表1、表2又は表3の「キュア温度」の欄に記載の温度に達した後、表1、表2又は表3の「キュア時間」の間上記「キュア温度」の欄に記載の温度に維持して加熱し、硬化膜1を得た。
 樹脂層1の形成に用いた熱硬化性感光性組成物又は比較用組成物と同様の組成物を、得られた硬化膜1の表面にスリットコート法で再度適用して樹脂層2を形成した。
 得られた樹脂層2を適用した段差基板を、ホットプレート上で、80℃で5分間乾燥し、段差基板上に表1、表2又は表3の「膜厚(μm)」の欄に記載の平均厚さの熱硬化性感光層2を得た。熱硬化性感光層2に対し、熱硬化性感光層1と同様のi線露光及び加熱を行い、硬化膜2を得た。
 得られた硬化膜2の、硬化膜1とは反対側の表面について、ストリエーション(筋状のムラ)の有無の確認、及び、表面粗さRaの測定を行い、下記評価基準に従って評価した。
 硬化膜2の表面粗さRaは、原子間力顕微鏡Dimension FastScan AFM(Bruker製)を用
いて、硬化膜2の鉛直方向下に段差がある部位と段差がない部位とを含む表面の50μm×50μmの範囲を測定して求めた。
 評価結果は表1、表2又は表3の「基板段差適性」の欄に記載した。
 ストリエーションの発生が認められず、かつ、表面粗さRaが小さいほど、塗布欠陥の発生が抑制されているといえる。
-評価基準-
 A:ストリエーションの発生が認められず、かつ、上記表面粗さRaが3μm未満であった。
 B:ストリエーションの発生が認められず、かつ、上記表面粗さRaが3μm以上であった。
 C:ストリエーションの発生が認められた。
〔パターン形成性の評価〕
 実施例23及び24以外の各実施例及び比較例において、それぞれ、熱硬化性感光性組成物又は比較用組成物をスリットコート法で上記段差基板上に適用して樹脂層1を形成した。
 実施例23及び24においては、それぞれ、熱硬化性感光性組成物をスピンコート法で上記段差基板上に適用して樹脂層1を形成した。
 上記樹脂層が形成された段差基板をホットプレート上で、80℃で5分間乾燥し、段差基板上に表1、表2又は表3の「膜厚(μm)」の欄に記載の平均厚さである熱硬化性感光層1を形成した。
 その後、得られた熱硬化性感光層1の全面に対して、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーでi線露光した。露光後の熱硬化性感光層1が形成された段差基板を、ホットプレート上で、100℃で5分間加熱した。
 露光した熱硬化性感光層1を、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表1、表2又は表3の「キュア温度」の欄に記載の温度に達した後、表1、表2又は表3の「キュア時間」の間上記「キュア温度」の欄に記載の温度に維持して加熱し、硬化膜1を得た。
 樹脂層1の形成に用いた熱硬化性感光性組成物又は比較用組成物と同様の組成物を、得られた硬化膜1の表面にスリットコート法で再度適用して樹脂層2を形成した。
 得られた樹脂層2を適用した段差基板を、ホットプレート上で、80℃で5分間乾燥し、段差基板上に表1、表2又は表3の「膜厚(μm)」の欄に記載の平均厚さの熱硬化性感光層2を得た。
 上記熱硬化性感光層2を、ステッパー(Nikon NSR 2005 i9C)を用いて露光し、露光後の熱硬化性感光層を得た。露光はi線を用いて行い、波長365nmにおける露光量を400mJ/cmとした。また、線幅10μmの1:1ラインアンドスペースパターンが形成されたフォトマスクを使用して行った。露光は、ラインアンドスペースパターンが、段差部を横切るように行った。
 露光後の熱硬化性感光層2が形成された段差基板を、ホットプレート上で、100℃で5分間加熱した。
 上記露光後の熱硬化性感光層2に対し、表1、表2又は表3の「現像液」の欄に「K-1」と記載された例については、シクロペンタノンを用いて60秒間現像し、PGMEAで20秒間リンスして、層のパターンを得た。表1、表2又は表3の「現像液」の欄に「K-2」と記載された例については、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて5分間現像し、純水で20秒間リンスして、層のパターンを得た。
 上記現像後の層のパターン(ラインパターン)を走査型電子顕微鏡(SEM)を用いて観察し、下記評価基準に従い評価した。
 パターン倒れ又は残渣が発生せず、かつ、パターンが矩形に近いほど、パターン形成性に優れるといえる。
-評価基準-
 A:パターン倒れ及び残渣は発生せず、矩形パターンが得られた。
 B:パターン倒れ及び残渣は発生しなかったが、パターンが矩形でなかった。
 C:パターン倒れ又は残渣が発生した。
 以上の結果から、本発明に係る、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂、感光剤、界面活性剤及び溶剤を含み、硬化膜Aの表面及び硬化膜Bの表面それぞれに対する水の接触角とジヨードメタンの接触角から式(1)を用いて算出される硬化膜Aの表面自由エネルギーと硬化膜Bの表面自由エネルギーの差の絶対値が硬化膜Aの表面自由エネルギーの30%以下である熱硬化性感光性組成物によれば、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合であっても、他の層における欠陥の発生が抑制されることが分かる。
 比較例1及び比較例2に係る熱硬化性感光性組成物は、界面活性剤剤を含有しない。
 比較例3に係る熱硬化性感光性組成物は、硬化膜Aの表面自由エネルギーと硬化膜Bの表面自由エネルギーの差の絶対値が硬化膜Aの表面自由エネルギーの30%を超える。
 この比較例1~比較例3に係る熱硬化性感光性組成物は、一様でない基材に適用して硬化膜を作製し、かつ、得られた硬化膜上に他の層が更に形成された場合に、上記他の層における欠陥の発生が抑制されないことが分かる。
<実施例101>
 実施例1において使用した熱硬化性感光性組成物を、表面に銅薄層が形成された樹脂基材の銅薄層の表面にスピンコート法により層状に適用して、80℃で5分間乾燥し、膜厚30μmの熱硬化性感光性組成物層を形成した後、ステッパー((株)ニコン製、NSR1505 i6)を用いて露光した。露光はマスク(パターンが1:1ラインアンドスペースであり、線幅が10μmであるバイナリマスク)を介して、波長365nmで行った。露光の後、シクロペンタノンを用いて60秒間現像し、PGMEAで20秒間リンスして、層のパターンを得た。
 次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、180℃に達した後、180℃に120分間維持して、再配線層用層間絶縁膜を形成した。この再配線層用層間絶縁膜は、絶縁性に優れていた。
 また、これらの再配線層用層間絶縁膜を使用して半導体デバイスを製造したところ、問題なく動作することを確認した。

Claims (15)

  1.  熱硬化性感光層の形成に用いられる熱硬化性感光性組成物であり、
     ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体よりなる群から選ばれた少なくとも一種の樹脂、
     感光剤、
     界面活性剤、及び、
     溶剤を含み、
     下記硬化膜Aの表面及び下記硬化膜Bの表面それぞれに対する水の接触角とジヨードメタンの接触角から下記式(1)を用いて算出される下記硬化膜Aの表面自由エネルギーと下記硬化膜Bの表面自由エネルギーの差の絶対値が下記硬化膜Aの表面自由エネルギーの30%以下である、
     熱硬化性感光性組成物;
     硬化膜A:前記熱硬化性感光性組成物の塗布膜を前記熱硬化性感光層の平均厚さの150%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、前記熱硬化性感光性組成物の硬化膜;
     硬化膜B:前記熱硬化性感光性組成物の塗布膜を前記熱硬化性感光層の平均厚さの50%の膜厚で平坦な支持体上に形成した後に250℃で120分間加熱した場合に得られる、前記熱硬化性感光性組成物の硬化膜;
    Figure JPOXMLDOC01-appb-M000001
     上記式(1)中、γ は硬化膜の表面自由エネルギーの分散成分を、γ は硬化膜の表面自由エネルギーの極性成分を、γL は水又はジヨードメタンの表面自由エネルギーの分散成分を、γL は水又はジヨードメタンの表面自由エネルギーの極性成分を、γL
    tоtalは水又はジヨードメタンの表面自由エネルギーを、cоsθは水又はジヨードメタンの接触角を、それぞれ表す;
     ここで、表面自由エネルギーは分散成分と極性成分の和で表され、水の表面自由エネルギーの分散成分は21.7mJ/m、水の表面自由エネルギーの極性成分は50.8mJ/m、ジヨードメタンの表面自由エネルギーの分散成分は48.1mJ/m、ジヨードメタンの表面自由エネルギーの極性成分は1.3mJ/mとする。
  2.  前記界面活性剤の含有量が組成物の全質量に対して0.1質量%超である、請求項1に記載の熱硬化性感光性組成物。
  3.  前記界面活性剤の含有量が組成物の全質量に対して0.005質量%未満である、請求項1に記載の熱硬化性感光性組成物。
  4.  前記界面活性剤がフッ素原子及びケイ素原子を有しない界面活性剤を含む、請求項1~3のいずれか1項に記載の熱硬化性感光性組成物。
  5.  前記組成物中の炭化水素系界面活性剤の含有量が前記界面活性剤の総含有量に対して50質量%以上である、請求項1~4のいずれか1項に記載の熱硬化性感光性組成物。
  6.  前記樹脂がポリイミド及びポリイミド前駆体よりなる群から選ばれた少なくとも一種の樹脂を含む、請求項1~5のいずれか1項に記載の熱硬化性感光性組成物。
  7.  スリットコート法による熱硬化性感光層の形成に用いられる、請求項1~6のいずれか1項に記載の熱硬化性感光性組成物。
  8.  スピンコート法による熱硬化性感光層の形成に用いられる、請求項1~6のいずれか1項に記載の熱硬化性感光性組成物。
  9.  再配線層用層間絶縁膜の形成に用いられる、請求項1~8のいずれか1項に記載の熱硬化性感光性組成物。
  10.  請求項1~9のいずれか1項に記載の熱硬化性感光性組成物を硬化してなる硬化膜。
  11.  請求項10に記載の硬化膜を2層以上含み、前記硬化膜同士のいずれかの間に金属層を含む積層体。
  12.  請求項1~9のいずれか1項に記載の熱硬化性感光性組成物を基板に適用して膜を形成する膜形成工程を含む、硬化膜の製造方法。
  13.  前記膜を露光する露光工程及び前記膜を現像する現像工程を含む、請求項12に記載の硬化膜の製造方法。
  14.  前記膜を、50~450℃で加熱する加熱工程を含む、請求項12又は13に記載の硬化膜の製造方法。
  15.  請求項10に記載の硬化膜又は請求項11に記載の積層体を含む、半導体デバイス。
PCT/JP2020/026066 2019-07-05 2020-07-02 熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス WO2021006181A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021530661A JP7261882B2 (ja) 2019-07-05 2020-07-02 熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126114 2019-07-05
JP2019-126114 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021006181A1 true WO2021006181A1 (ja) 2021-01-14

Family

ID=74115296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026066 WO2021006181A1 (ja) 2019-07-05 2020-07-02 熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Country Status (3)

Country Link
JP (1) JP7261882B2 (ja)
TW (1) TW202110955A (ja)
WO (1) WO2021006181A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196804A1 (ja) * 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022202486A1 (ja) * 2021-03-23 2022-09-29 東レ株式会社 ネガ型感光性樹脂組成物、ネガ型感光性樹脂組成物フィルム、硬化物、硬化物の製造方法、中空構造体、および電子部品
WO2024004462A1 (ja) * 2022-06-30 2024-01-04 Jsr株式会社 ネガ型感光性樹脂組成物、パターンを有する樹脂膜の製造方法、パターンを有する樹脂膜、および半導体回路基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122929A1 (ja) * 2006-03-30 2007-11-01 Jsr Corporation 感放射線性絶縁樹脂組成物
JP2012073600A (ja) * 2010-08-31 2012-04-12 Fujifilm Corp 感光性組成物、並びに、感光性フィルム、永久パターン、永久パターン形成方法、及びプリント基板
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
WO2015087830A1 (ja) * 2013-12-11 2015-06-18 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2018159920A (ja) * 2017-03-22 2018-10-11 Jnc株式会社 感光性組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122929A1 (ja) * 2006-03-30 2007-11-01 Jsr Corporation 感放射線性絶縁樹脂組成物
JP2012073600A (ja) * 2010-08-31 2012-04-12 Fujifilm Corp 感光性組成物、並びに、感光性フィルム、永久パターン、永久パターン形成方法、及びプリント基板
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
WO2015087830A1 (ja) * 2013-12-11 2015-06-18 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2018159920A (ja) * 2017-03-22 2018-10-11 Jnc株式会社 感光性組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196804A1 (ja) * 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022202486A1 (ja) * 2021-03-23 2022-09-29 東レ株式会社 ネガ型感光性樹脂組成物、ネガ型感光性樹脂組成物フィルム、硬化物、硬化物の製造方法、中空構造体、および電子部品
WO2024004462A1 (ja) * 2022-06-30 2024-01-04 Jsr株式会社 ネガ型感光性樹脂組成物、パターンを有する樹脂膜の製造方法、パターンを有する樹脂膜、および半導体回路基板

Also Published As

Publication number Publication date
TW202110955A (zh) 2021-03-16
JP7261882B2 (ja) 2023-04-20
JPWO2021006181A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP7261882B2 (ja) 熱硬化性感光性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7008732B2 (ja) 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
JP7259141B1 (ja) 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
WO2021172420A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021172421A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021045126A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、樹脂、及び、樹脂の製造方法
JP2023153860A (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、樹脂
JP2021123652A (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7470790B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7492003B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7335964B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、樹脂、及び、樹脂の製造方法
JP7331155B2 (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021246457A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021002383A1 (ja) 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021039841A1 (ja) 硬化膜の製造方法、光硬化性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
WO2021002395A1 (ja) ネガ型硬化性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2023157911A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
JP7367049B2 (ja) パターン形成方法、感光性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
JP7196121B2 (ja) パターン形成方法、感光性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
WO2022172996A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス、並びに、塩基発生剤
WO2022145355A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022145136A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス、並びに、化合物
WO2022050041A1 (ja) 硬化物の製造方法、積層体の製造方法、及び、電子デバイスの製造方法
WO2021157571A1 (ja) 硬化性樹脂組成物、樹脂膜、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021157306A1 (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530661

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20836018

Country of ref document: EP

Kind code of ref document: A1