WO2021006003A1 - 膜型表面応力センサ、およびそれを用いた分析方法 - Google Patents

膜型表面応力センサ、およびそれを用いた分析方法 Download PDF

Info

Publication number
WO2021006003A1
WO2021006003A1 PCT/JP2020/024068 JP2020024068W WO2021006003A1 WO 2021006003 A1 WO2021006003 A1 WO 2021006003A1 JP 2020024068 W JP2020024068 W JP 2020024068W WO 2021006003 A1 WO2021006003 A1 WO 2021006003A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mss
aptamer
type surface
membrane
Prior art date
Application number
PCT/JP2020/024068
Other languages
English (en)
French (fr)
Inventor
賢司 宮崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021530565A priority Critical patent/JP7367762B2/ja
Priority to GB2200241.4A priority patent/GB2599858B/en
Priority to US17/625,388 priority patent/US20220260568A1/en
Publication of WO2021006003A1 publication Critical patent/WO2021006003A1/ja
Priority to JP2023147993A priority patent/JP2023165765A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/552Glass or silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96433Serine endopeptidases (3.4.21)

Definitions

  • the present invention relates to a film type surface stress sensor and an analysis method using the same.
  • Target detection is important in a wide variety of fields such as food and medical care, and various methods have been proposed.
  • a film-type surface stress sensor has attracted attention (see Patent Document 1).
  • the film-type surface stress sensor can analyze the presence or absence and amount of a target by deforming the film by binding the target to a film such as a silicon film and measuring the fluctuation of electrical resistance due to the deformation. ..
  • the method of binding the target to the membrane is required to be further improved from the viewpoint of, for example, improvement of analysis accuracy and expansion of the applicable target.
  • an object of the present invention is to provide a film-type surface stress sensor that takes a new form for coupling a target.
  • the film type surface stress sensor of the present invention can be used. Includes aptamer, membrane, and sensor substrate,
  • the aptamer is a nucleic acid molecule that binds to the target and is immobilized on the membrane.
  • the membrane is a membrane that deforms due to the binding of the target to the aptamer.
  • the sensor substrate has a support area and The support region supports the film and has a piezoresistive element.
  • the piezoresistive element is an element that detects deformation of the film.
  • the target analysis method of the present invention is The step of immersing the film-type surface stress sensor of the present invention in the sample liquid, and The process of applying a voltage to the film-type surface stress sensor in the liquid phase, It is characterized by including a step of analyzing a target in the sample liquid by measuring a stress change of the piezoresistive element in the film type surface stress sensor.
  • the present invention as a form for binding a target, by newly immobilizing an aptamer on the film, for example, application to a target different from the conventional film-type surface stress sensor, or so far. It is possible to expand the possibility of modification, etc., which is different from the film type surface stress sensor of.
  • FIG. 1 is a schematic diagram showing a general configuration of an MSS.
  • FIG. 2 is a schematic diagram showing the structure of the MSS in Example 2 and a graph showing the voltage of the MSS.
  • the "Membrane-type Surface-stress Sensor” is also referred to as an MSS.
  • MSS a film having a binding property to a target is supported by a support having a piezoresistive element. Then, when the target is bound to the film, the film is stressed by the binding, and the film is deformed (strain is generated) due to the occurrence of strain or the like, and the amount of deformation of the film. A stress is generated in the piezoresistive element of the support that supports the film, and the resistance value of the piezoresistive element changes in proportion to the stress. Therefore, a voltage is applied to the MSS.
  • the present invention is characterized in that an aptamer that binds to a target is used in such an MSS, specifically, the aptamer is immobilized on the membrane and the target is bound to the MSS. Therefore, in the present invention, other configurations other than immobilizing the aptamer on the film are not particularly limited, and existing configurations can be used, and future configurations having similar functions can also be used.
  • the "aptamer” is a nucleic acid molecule having binding property to a target.
  • the aptamer can also be, for example, a nucleic acid molecule that specifically binds to a target.
  • the building blocks of the aptamer are, for example, nucleotide residues and non-nucleotide residues. Examples of the nucleotide residue include a deoxyribonucleotide residue and a ribonucleotide residue, and the nucleotide residue may be modified or unmodified, for example.
  • the aptamer examples include a DNA aptamer composed of a deoxyribonucleotide residue, an RNA aptamer composed of a ribonucleotide residue, an aptamer containing both, an aptamer containing a modified nucleotide residue, and the like.
  • the length of the aptamer is not particularly limited, and is, for example, 10 to 200 bases.
  • an existing aptamer may be used, or, depending on the target, for example, a newly acquired aptamer using the SELEX method or the like may be used.
  • the "target” is not particularly limited and may be set arbitrarily, for example, any substance that can come into contact with the aptamer in a liquid.
  • the target include microorganisms including bacteria such as anthrax, Escherichia coli, Salmonella, and Escherichia coli; viruses such as influenza virus; allergens; and the like.
  • the allergen include grains such as wheat, eggs, meat, fish, shellfish, vegetables, fruits, milk, beans such as peanuts, and pollen such as cedar and hinoki.
  • the type of the target is not particularly limited, and examples thereof include high molecular weight compounds such as proteins, sugar chains, nucleic acids, and polymers; low molecular weight compounds; and the like.
  • the "liquid sample” may be a liquid.
  • the collected sample may be used as it is as a liquid sample, or it may be a liquid sample prepared by diluting, suspending, dispersing or the like with a liquid solvent.
  • the collected sample is a solid, for example, it may be a liquid sample prepared by dissolving, suspending, dispersing or the like with a liquid solvent.
  • the collected sample is a gas, for example, it may be a liquid sample in which the aerosol in the gas is concentrated, or a liquid sample prepared by dissolving, suspending, dispersing, etc. with a liquid solvent.
  • the type of the liquid solvent is not particularly limited, and is, for example, a solvent that does not easily affect the binding between the aptamer and the target, and specific examples thereof include water and a buffer solution.
  • Examples of the collected sample include food, blood, urine, saliva, body fluid, soil, wastewater, tap water, pond, river, air and the like.
  • the MSS of the present embodiment includes an aptamer, a membrane, and a sensor substrate.
  • the aptamer is a nucleic acid molecule that binds to a target and is immobilized on the membrane, and the membrane is the aptamer.
  • a film that is deformed by the coupling of the target to, the sensor substrate has a support region, the support region supports the film, has a piezo resistance element, and the piezo resistance element is the film. It is characterized in that it is an element that detects deformation of.
  • the film is also referred to as an MSS film.
  • the MSS film is not particularly limited as long as it is deformed by the coupling of the target and stress is applied to the piezoresistive element by the deformation.
  • the film is, for example, a thin film, and the thickness thereof and the area of each surface are not particularly limited, and are the same as, for example, the MSS film used in a commercially available MSS.
  • the planar shape of the film is, for example, a circle, and specifically, for example, a perfect circle.
  • the material of the film is not particularly limited, and is, for example, a silicon film, and specific examples thereof include n-type Si (100).
  • the aptamer is immobilized on the MSS film.
  • the aptamer may be immobilized on one surface of the MSS film, or may be immobilized on both surfaces, for example.
  • the aptamer on one surface and the aptamer on the other surface are, for example, the same aptamer that binds to the same target.
  • the surface of the MSS film may be, for example, one surface or both sides.
  • the method for immobilizing the aptamer on the MSS film is not particularly limited, and the aptamer may be directly immobilized on the MSS film or indirectly immobilized on the MSS film.
  • the MSS membrane and the aptamer can be chemically treated to be immobilized by a covalent bond or the like.
  • Examples of the direct fixing method include a method using photolithography, and as a specific example, US Pat. No. 5,424,186 and the like can be referred to.
  • a method of synthesizing the sensor on the MSS film can be mentioned. Examples of this method include the so-called spot method, and as a specific example, US Pat. No.
  • the aptamer can be immobilized on the MSS membrane via a linker.
  • the type of the linker is not limited in any way, and examples thereof include a combination of biotin or a biotin derivative (hereinafter referred to as biotins) and avidin or an avidin derivative (hereinafter referred to as avidins).
  • biotins include, for example, biocithin
  • avidin derivative includes, for example, streptavidin.
  • the length of the linker is, for example, the length of the shortest molecular chain (main chain length) from the functional group on the MSS film (for example, the oxygen atom of the silanol group on the silicon film) to the affinity tag such as avidin or the aptamer. ) Can be expressed.
  • the main chain length of the linker is 1 to 20, and the sensitivity of MSS can be improved. Therefore, preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11, 1 ⁇ 10, 3 ⁇ 10, 1 ⁇ 8, 3 ⁇ 8, 1 ⁇ 5, 1 ⁇ 3, 1 or 2.
  • the immobilization method will be illustrated below, but the present invention is not limited thereto.
  • the biotins are bound to either one of the MSS membrane and the aptamer, and the avidins are bound to the other. Then, by binding the biotins and the avidins, the aptamer can be indirectly immobilized on the MSS membrane.
  • the aptamer was indirectly fixed to the MSS membrane by utilizing the specific binding between avidins and biotins, that is, the affinity of biotins to avidins.
  • affinity tags other than avidins-biotins may be used.
  • the affinity tag include His tag (His ⁇ 6 tag) -nickel ion, glutathione-S-transferase-glutathione, maltose-binding protein-maltose, epitope tag (myc tag, FLAG tag, HA (hemaglutinin) tag)-.
  • Antibodies or antigen binding fragments are available. The point that other affinity tags may be used is the same in the second to fourth examples described later.
  • the aptamer may be immobilized on the MSS membrane, for example, via an intervening membrane.
  • the intervening membrane is formed on the MSS membrane, and the biotins are bound to either the intervening membrane or the aptamer, and the avidins are bound to the other, as in the first example.
  • the intervening film is, for example, a film of a metal such as gold, and can be formed by depositing the metal on the MSS film.
  • the thickness of the intervening membrane is not particularly limited, and is, for example, 10 to 100 nm.
  • the intervening membrane may be, for example, one layer or two or more layers.
  • the intervening film is formed into, for example, two layers, and a metal film (adhesive film) for adhesion is provided with respect to the MSS film from the viewpoint of improving the adhesiveness of the gold film. It is preferable to form the gold film through the film.
  • the metal of the adhesive film include titanium and chromium.
  • the thickness of the adhesive film is, for example, 0.1 to 10 nm, and the thickness of the gold film is, for example, 0.1 to 100 nm.
  • a self-assembled monolayers (SAM) of the thiolalkane is formed on the surface of the intervening membrane by using the thiolalkane to which the biotins are bound.
  • SAM self-assembled monolayers
  • the aptamer may be immobilized by contacting the aptamer formed and bound with the biotins and binding the biotins with the avidins.
  • a method of binding the streptavidins by binding an amino group to the MSS membrane and further binding glutaraldehyde That is, a silane coupling agent having an amino group is reacted with the MSS membrane, and an amino group is bonded onto the MSS membrane.
  • the reaction can be carried out, for example, by applying a solution containing a silane coupling agent having an amino group to the MSS membrane.
  • a cross-linking agent capable of binding an amino group and an amino acid main chain or side chain to the MSS film, or a linker between the amino group and the amino acid main chain or side chain to the MSS film.
  • a cross-linking agent such as glutaraldehyde
  • one end of the cross-linking agent such as glutaraldehyde is bonded to the amino group on the MSS film.
  • a cross-linking agent such as glutaraldehyde
  • the surface of the MSS film after silane coupling is washed, a solution containing a cross-linking agent is applied to the MSS film, and the amino group and the cross-linking agent are bonded.
  • the conditions of the cross-linking reaction can be appropriately determined, for example, depending on the type of the cross-linking agent.
  • the avidins are bound to the other end of the cross-linking agent such as glutaraldehyde.
  • the surface of the crosslinked MSS membrane is washed, a solution containing avidins is applied, and the other end of the crosslinking agent is bound to the main chain or side chain of the amino acids of the avidins. Then, the biotin-bound aptamer is brought into contact with the MSS membrane thus treated, and the aptamer can be immobilized by binding the biotins and the avidins.
  • the silane coupling agent is represented by, for example, Y—Si (CH 3 ) 3-n (OR) n .
  • n, R, and Y include, for example, the following examples.
  • the "n" is 2 or 3.
  • R include an alkyl group such as a methyl group and an ethyl group; an acyl group such as an acetyl group and a propyl group; and the like.
  • Y is a reactive functional group having an amino group at the end.
  • the silane coupling agent having an amino group includes, for example, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (for example, KBM-602 (manufactured by Shinetsu Silicone Co., Ltd.)) and N- (2-aminoethyl).
  • the cross-linking agent can be appropriately determined depending on the functional group of the main chain or side chain of the amino acid to be bound to the linker.
  • the functional group include an amino group (-NH 2 ), a thiol group (-SH), a carboxyl group (-COOH) and the like.
  • the amino group is contained, for example, in the N-terminal of a protein or peptide or in the side chain of lysine.
  • the thiol group is contained in, for example, the side chain of cysteine.
  • the carboxyl group is contained, for example, in the C-terminal of a protein or peptide or in the side chain of aspartic acid or glutamic acid.
  • the cross-linking agent for example, a cross-linking agent having an aldehyde group such as glutaaldehyde at both ends; bis (sulfosuccinimidyl) sverate (BS3), Discusin imidazole glutarate (DSG), discusin isomerate (DSS), dithiobis (succinimidyl propionate), dithiobis (sulfosuccinimidyl propionate) (DSP), dithiobis (succinimidyl propionate) (DTSP) , Dithiobis (sulfosuccinimidyl propionate) (DTSSP), dissuccinimidyl tartrate (DST), ethylene glycol bis (succinimidyl succinate) (ESG), ethylene glycol bis (sulfosuccinimidyl succinate) ) (Sulfo-ESG
  • examples of the cross-linking agent include N- (6-maleimide caproyloxy) succinimide (EMCS) and N- (6-maleimide caproyloxy) sulfosuccinimide (Sulfo).
  • N-EMCS N- (8-maleimidoacet-oxysuccinimide ester (AMAS), N- ⁇ -maleimidopropyl-oxysuccinimideester (BMPS), N- ⁇ -maleimidobutyryl-oxysuccinimideester (GMBS), N- ⁇ -maleimidobutyryl-oxysulfosuccinimideester (Sulfo-GMBS), m-maleimidobenzoyl-N-hydroxysuccinimidemester (MBS), mmal -N-hydroxysulfosuccinimideester (Sulfo-MBS), succinimidyl 4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), sulfosuccinimidyl 4- (N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC), succinimidyl 4- (p-maleimidopheny
  • N-hydroxysuccinimide such as succinimidyl iodoacetate (SIA), succinimidyl 3- (bromoacetamido) propionate (SBAP), succinimidyl (4-iodoacetyl) aminobenzoate (SIAB), sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB)
  • Cross-linking agent having an active ester and a haloacetyl reactive group at both ends
  • examples of the cross-linking agent include Dicyclohexylcarbodiimide (DCC), 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), and N-hydroxysuccinimide (NHS). ), N-hydroxysulfosuccinimide (Sulfo-NHS), anhydrous acetic acid and the like. Since DCC, EDC, NHS, Sulfo-NHS, and acetic anhydride directly bond an amino group and a carboxyl group, for example, they do not remain between the carboxyl group and the amino group, and the linker region derived from the cross-linking agent is used. (Group) does not occur.
  • DCC Dicyclohexylcarbodiimide
  • EDC 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • NHS N-hydroxysuccinimide
  • Sulfo-NHS N-hydroxysulfosuccinimi
  • the cross-linking agent is preferably a cross-linking agent in which self-condensation does not substantially occur because the length of the linker can be made substantially constant or constant.
  • the constant length of the linker means, for example, that the length of the linker of each aptamer is substantially the same or the same in the linkers of a plurality of aptamers.
  • the length of the linker can be made substantially the same or the same, for example, by making the structure of the linker substantially the same or the same.
  • the sensitivity of MSS can be improved by using such a cross-linking agent. The improvement in sensitivity is presumed to be due to the following reasons.
  • the present invention is not limited to the following estimation.
  • a target When a target binds to an aptamer, a steric obstacle due to the target occurs around the aptamer bound to the target. If the aptamer is immobilized at different distances to the MSS membrane, the target is likely to come into contact with the aptamer located distal to the MSS membrane. Therefore, it is presumed that the target preferentially binds to the aptamer distal to the MSS membrane. In this case, even if a steric disorder caused by the target occurs around the aptamer to which the target is bound, other aptamers are present on the MSS film side as compared with the aptamer to which the target is bound. Since there are many, it is difficult to receive a three-dimensional obstacle caused by the target.
  • the target binds to the aptamer, it is unlikely that the surrounding aptamer will move due to the influence of the steric obstacle. Therefore, when the aptamer is immobilized at different distances with respect to the MSS film, the possibility that the MSS film is distorted due to the movement of the position of the surrounding aptamer on the MSS film is also relative. Low. That is, it is unlikely that the surrounding aptamers will move due to the binding of the aptamers and the distortion of the MSS film will be amplified.
  • the aptamer when the aptamer is immobilized at substantially the same distance to the MSS membrane, when the target binds to the aptamer, the surrounding aptamer is affected by the steric damage caused by the target. Therefore, there is a high possibility that the position of the surrounding aptamer will move, and there is a relatively high possibility that the MSS film will be distorted due to the movement of the position of the surrounding aptamer. That is, when the aptamer is immobilized at substantially the same distance with respect to the MSS membrane, the position of the surrounding aptamer also moves on the MSS membrane due to the binding of one aptamer and the target. The strain of the MSS film will be amplified. Therefore, when the aptamer is immobilized at substantially the same distance with respect to the MSS film, that is, when the length of the linker is substantially constant, it is estimated that the sensitivity of the MSS film is improved. To.
  • a cross-linking agent having an active ester at both ends of the molecule a cross-linking agent having an N-hydroxysuccinimide active ester and a haloacetyl reactive group at both ends, a cross-linking agent having an N-hydroxysuccinimide active ester and a pyridyldithiol reactive group at both ends, Examples thereof include DCC, EDC, NHS, Sulfo-NHS, and anhydrous acetic acid.
  • the linker is represented by, for example, the following formula (1).
  • M 1 represents an atom bonded to the silane coupling agent on the MSS film
  • L 1 represents a region (group) derived from the silane coupling agent
  • L 2 is a crosslink.
  • M 1 represents an atom bonded to the silane coupling agent on the MSS film
  • L 1 represents a region (group) derived from the silane coupling agent
  • L 2 is a crosslink.
  • L 2 may or may not be present
  • M 2 represents an atom attached to the cross-linking agent or NH in the affinity tag.
  • NH represents an amine derived from an amino group of a silane coupling agent having an amino group.
  • L 1 is, for example, (M 1 ) -Si (CH 3 ) 2-m (OR 4 ) m- R 1- (NH) or (M 1 ) -Si (CH 3 ) 2-m (OR 4 ) m. It is represented by -R 2- NH-R 3- (NH).
  • R 1 is a linear or branched alkyl group having 1 to 5 carbon atoms.
  • R 2 and R 3 are, for example, independently linear or branched alkyl groups having 1 to 5 carbon atoms, and may be the same or different. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and the like.
  • R 4 is, for example, a hydrogen atom or a bond.
  • m is 1 or 2.
  • L 1 is represented by, for example, (M 1 ) -Si (OR 4 ) 2- (CH 2 ) 3- (NH). .. R 4 is, for example, a hydrogen atom or a bond.
  • the length of the linker is, for example, the length of the shortest molecular chain (main chain length) from the functional group on the MSS film (for example, the oxygen atom of the silanol group on the silicon film) to the affinity tag such as avidin or the aptamer. ) Can be expressed.
  • the main chain length of the linker is 1 to 20, and the sensitivity of MSS can be improved. Therefore, preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11, 1 ⁇ 10, 3 ⁇ 10, 1 ⁇ 8, 3 ⁇ 8, 1 ⁇ 5, 1 ⁇ 3, 1 or 2.
  • the bond between avidins and biotins is used, but the third example is not limited to this, and the linker is directly bonded to the hydroxyl group or phosphoric acid group of the aptamer. May be good.
  • the aptamer can be immobilized on the MSS membrane by amididing the phosphate group at the 3'end and reacting with the linker.
  • a method of binding the streptavidins via the above can be mentioned. That is, a silane coupling agent having a methacrylic group is reacted with the MSS membrane to bind an amino group on the MSS membrane. The reaction can be carried out, for example, by applying a solution containing a silane coupling agent having a methacrylic group to the MSS membrane.
  • a linker is formed between the main chain or side chain of the amino acid derivative and the main chain or side chain of the amino acid of avidins. It reacts with a possible cross-linking agent to bind one end of the cross-linking agent to the amino acid derivative on the MSS membrane. Specifically, the surface of the MSS membrane after the amino acid derivative treatment is washed, a solution containing a cross-linking agent is applied to the MSS membrane, and the amino acid derivative and the cross-linking agent are bound to each other.
  • the conditions of the cross-linking reaction can be appropriately determined, for example, depending on the type of the cross-linking agent.
  • the avidins are bound to the other end of the cross-linking agent. Specifically, the surface of the crosslinked MSS membrane is washed, a solution containing avidins is applied, and the other end of the crosslinking agent is bound to the main chain or side chain of the amino acids of the avidins. Then, the biotin-bound aptamer is brought into contact with the MSS membrane thus treated, and the aptamer can be immobilized by binding the biotins and the avidins.
  • the bond between avidins and biotins is used, but the fourth example is not limited to this, and the linker is directly bonded to the hydroxyl group or phosphoric acid group of the aptamer. May be good.
  • the silane coupling agent is represented by, for example, Y—Si (CH 3 ) 3-n (OR) n .
  • n, R, and Y include, for example, the following examples.
  • the "n" is 2 or 3.
  • R include an alkyl group such as a methyl group and an ethyl group; an acyl group such as an acetyl group and a propyl group; and the like.
  • Y is a reactive functional group having a methacrylic group at the end.
  • silane coupling agent having a methacryl group examples include 3- (methacryloyloxy) propylmethyldimethoxysilane (for example, KBM-502 (manufactured by Shinetsu Silicone Co., Ltd.)) and 3- (methacryloyloxy) propyltrimethoxysilane (for example,).
  • KBM-503 (manufactured by Shinetsu Silicone), GENIOSIL (registered trademark) GF31 (manufactured by Asahi Kasei Wacker Silicone)), 3- (methacryloyloxy) propylmethyldimethoxysilane (for example, KBE-502 (manufactured by Shinetsu Silicone)), ( 3-methacryloyloxypropyl) triethoxysilane (for example, KBE-503 (manufactured by Shinetsu Silicone Co., Ltd.)) and the like can be mentioned.
  • GENIOSIL registered trademark
  • GF31 manufactured by Asahi Kasei Wacker Silicone
  • 3- (methacryloyloxy) propylmethyldimethoxysilane for example, KBE-502 (manufactured by Shinetsu Silicone)
  • 3-methacryloyloxypropyl) triethoxysilane for example, KBE-503 (manufactured
  • the amino acid or amino acid derivative has, for example, a functional group capable of reacting with a methacrylic group and a carboxyl group.
  • the functional group capable of reacting with the methacrylic group include a thiol group (-SH) and the like.
  • the amino acid or amino acid derivative having a thiol group include cysteine; cysteine modified with an amino group such as N-acetylcysteine; and the like.
  • the cross-linking agent can be appropriately determined depending on, for example, the functional group of the amino acid derivative used for cross-linking and the functional group of the amino acid of the avidins used for cross-linking.
  • the cross-linking agent can be referred to the description of the cross-linking agent in the case of utilizing the amino group of the main chain or side chain of the amino acid in the third example.
  • the cross-linking agent will be described when the thiol group of the side chain of the amino acid in the third example is used. Can be used.
  • the cross-linking agent uses the carboxyl group of the main chain or side chain of the amino acid in the third example. The description of the agent can be used.
  • the cross-linking agent is preferably a cross-linking agent in which self-condensation does not substantially occur because the length of the linker can be made constant.
  • the sensitivity of MSS can be improved by a mechanism similar to the mechanism described in the third example described above.
  • Specific examples of the cross-linking agent in which self-condensation does not substantially occur include, for example, a cross-linking agent having N-hydroxysuccinimide active esters at both ends, a cross-linking agent having imide ester reactive groups at both ends, and maleimide group and N-hydroxysuccinimide activity.
  • the linker is represented by, for example, the following formula (2).
  • M 1 represents an atom bonded to the silane coupling agent on the MSS film
  • L 1 represents a region (group) derived from the silane coupling agent
  • A is an amino acid derivative
  • L 2 represents a region (group) derived from the cross-linking agent, L 2 may or may not be present
  • M 2 represents an atom bonded to the cross-linking agent or NH in the affinity tag.
  • R 4 is, for example, a hydrogen atom or a bond.
  • R 5 is a linear or branched alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and the like.
  • m is 1 or 2.
  • l is 0 or 1.
  • R 4 is, for example, a hydrogen atom or a bond.
  • acetic anhydride is used as the cross-linking agent, L 2 does not exist, for example.
  • the length of the linker may be represented by, for example, the length of the functional group on the MSS membrane (for example, the silanol group on the silicon membrane) and the shortest molecular chain length (main chain length) to the affinity tag such as avidin. it can.
  • the main chain length of the linker is 1 to 20, and the sensitivity of MSS can be improved. Therefore, preferably 1 to 15, 1 to 13, 1 to 11, 1 to 10, 1 to 8, 1 to 5, 1 ⁇ 3, 1 or 2.
  • the bond between avidins and biotins is used, but the fourth example is not limited to this, and the linker is directly bonded to the hydroxyl group or phosphoric acid group of the aptamer. May be good.
  • the aptamer can be immobilized on the MSS membrane by amididing the phosphate group at the 3'end and reacting with the linker.
  • the site of immobilization of the aptamer on the MSS membrane is not particularly limited, and examples thereof include a 3'end and a 5'end.
  • the sensor substrate has a support region that supports the MSS film, and the support region has a piezoresistive element.
  • the sensor substrate supports the MSS film by the support region.
  • the aptamer is immobilized on one or both surfaces facing each other as described above, and the aptamer is supported on the side surface by the sensor substrate.
  • the sensor substrate preferably partially supports, for example, the MSS film, and specifically, it preferably partially supports the side surface of the MSS film.
  • the number of portions (supporting portions) supported by the supporting region of the sensor substrate is not particularly limited, and is, for example, four points. It should be noted that this is an example and is not limited in any way.
  • the support region is, for example, a silicon film, and the p-typed region (p-type Si) is formed by p-typening an arbitrary region of the silicon film by doping with impurities. It can function as the piezoresistive element.
  • the support region has, for example, the piezoresistive element at or near a portion supporting the MSS film.
  • the sensor substrate may be entirely made of silicon, or only the support region may be a silicon film, and the material other than the support region including the piezoresistive element is not particularly limited.
  • the sensor board has a circuit for applying a voltage.
  • the circuit has a plurality of piezoresistive elements in the support region.
  • Wheatstone bridge circuit including.
  • the electrical signal accompanying the change in the resistance value in the piezoresistive element can be measured.
  • the sensor substrate may have a plurality of the support regions, and the plurality of support regions may each support the MSS film.
  • the number of the support regions and the number of the MSS films supported are not particularly limited, and may be one or two or more, respectively.
  • the plurality of MSS membranes may be, for example, an MSS membrane in which an aptamer for the same target is immobilized, or an MSS membrane in which an aptamer for a different target is immobilized.
  • the "aptamer for the same target” may be, for example, an aptamer having the same sequence for the same target, or an aptamer having a different sequence for the same target.
  • MSS of the present embodiment has a plurality of MSS films in which aptamers for the same target are immobilized, for example, a plurality of analyzes for the same target can be performed simultaneously with one MSS. Further, when the MSS of the present embodiment has a plurality of MSS films on which aptamers for different targets are immobilized, for example, analysis for different targets can be performed simultaneously with one MSS.
  • the MSS of the present embodiment may be, for example, a form in which the MSS film is arranged on the sensor substrate at the time of use, and the sensor substrate and the MSS film may be separately independent before use.
  • the MSS of the present invention may be, for example, a kit containing the sensor substrate and the MSS film separately and independently.
  • the change in the resistance value accompanying the stress change of the piezoresistive element in the MSS can be measured as an electronic signal by using an existing measurement module. ..
  • the target analysis method of the present embodiment includes a step of immersing the film-type surface stress sensor (MSS) of the present invention in the sample liquid and a step of applying a voltage to the MSS in the liquid phase. It is characterized by including a step of analyzing a target in the sample liquid by measuring a stress change of the piezoresistive element in the MSS.
  • the analysis method of the present invention is characterized by using an MSS on which an aptamer is immobilized as described above, and other steps and conditions are not particularly limited.
  • the support region including the piezoresistive element in the sensor substrate and the MSS film supported by the support region may be immersed in the sample liquid.
  • the conditions for immersing the MSS in the sample solution are not particularly limited, and examples thereof include 0.1 to 120 minutes at a temperature of 20 to 35 ° C. and 0.1 to 120 minutes at a temperature of 50 to 60 ° C.
  • the MSS has a plurality of MSS films, for example, the plurality of MSS films in the MSS may be immersed in the same sample solution at the same time.
  • a voltage is applied to the film-type surface stress sensor in the liquid phase.
  • the conditions for applying the voltage are not particularly limited, and for example, the same conditions as those of a commercially available MSS can be exemplified.
  • the liquid phase may be, for example, the sample liquid in the dipping step or another solvent. In the latter case, the MSS after the dipping step may be taken out from the sample solution, immersed in a new solvent, and a voltage may be applied. After the step of immersing the sample solution, the MSS is immersed in a new solvent in this way, such as when the MSS is washed in order to remove a substance that has not bound to the aptamer in the sample, and the voltage is increased. Is preferably applied.
  • the solvent is not particularly limited, and examples thereof include buffer solutions such as PBS and Tris-HCl, water and the like.
  • the target in the sample liquid is analyzed by measuring the stress change of the piezoresistive element in the MSS.
  • the stress change can be measured, for example, by measuring an electric signal, and a commercially available measurement module (for example, MSS-8RM, NANOSENSOR) or the like can be used.
  • Example 1 It was confirmed that the aptamer was immobilized on the MSS membrane in a commercially available MSS and the target could be analyzed.
  • the sensor substrate 10 has an electrode 11, an aluminum wire 12, an MSS film 13 and a piezoresistive element 14, and the MSS film 13 has an aluminum wire 12 via a piezoresistive element 14.
  • the aluminum wire 12 has a structure in which each of the aluminum wires 12 is connected to the electrode 11.
  • Acrylic resin (trade name: Mr. COLOR 62, manufactured by GSI Creos) and epoxy resin (trade name: PM165-R Hi, manufactured by Cemedine) are applied to the aluminum wire on the sensor substrate to make it waterproof. Processed. Then, the processed sensor substrate was connected to a substrate with a connector (trade name: IFB-FFC- (0.5) 4P-B, manufactured by AITENDO) so that the electrode could be inserted. Further, the entire connector of the substrate with the connector was waterproofed by applying and filling the same resin as described above in the exposed metal portion and the gap connected to the metal portion.
  • a connector trade name: IFB-FFC- (0.5) 4P-B, manufactured by AITENDO
  • the streptavidin solution was dropped onto the back surface of the MSS film of the sensor substrate (the surface opposite to the surface on which the aluminum wire was formed), and the streptavidin solution was dropped under a water vapor atmosphere (100% (relative)). Humidity)), room temperature (about 25 ° C.), allowed to stand for 1 hour.
  • the streptavidin solution was prepared by suspending it in 1 ⁇ PBS (pH 7.4) so that the streptavidin content was 2%.
  • 3 ⁇ l of the streptavidin solution was added dropwise to the surface of the MSS membrane, allowed to stand under the same conditions, and further washed with the PBS. Then, the sensor substrate was dried at room temperature for 10 minutes.
  • the two sensor substrates are processed, one sensor substrate is further coupled with an aptamer to form the MSS of Example 1A, and the other sensor substrate is further coupled with poly T.
  • the MSS was 1A.
  • the aptamer solution was prepared by suspending thrombin aptamer (SEQ ID NO: 1: GGTTGGTGTGGTTGGTTTTT-biotin-3') having a biotin tag added to the 3'end in the PBS to a final concentration of 1 ⁇ mol / l.
  • the thrombin aptamer Since the thrombin aptamer has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the thrombin aptamer is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Example 1A.
  • the poly T solution is prepared by suspending poly T DNA (SEQ ID NO: 2: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-biotin-3') with a biotin tag added to the 3'end in the PBS so as to have a final concentration of 1 ⁇ mol / l. did. Since the poly T has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the poly T is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Reference Example 1.
  • the entire sensor substrate was immersed in a 100 ⁇ mol / l BiotinSAM ethanol solution (Dojin Chemical Laboratory), allowed to stand at room temperature for 1 hour, and further washed with ethanol. Then, in the same manner as in (1) above, it was connected to the substrate with the connector, and the entire connector was further waterproofed.
  • the two sensor substrates are processed, one sensor substrate is further coupled with an aptamer to form the MSS of the embodiment, and the other sensor substrate is further coupled with a poly T, according to the reference example. It was designated as MSS.
  • aptamer solution 3 ⁇ l was dropped onto the surface of the one sensor substrate and allowed to stand at room temperature for 1 hour under a water vapor atmosphere (100% (relative humidity)).
  • the aptamer solution was prepared by suspending the thrombin aptamer in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 50 minutes, and washed with the PBS.
  • the thrombin aptamer Since the thrombin aptamer has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the thrombin aptamer is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Example 2.
  • the poly T solution was prepared by suspending the DNA of the poly T in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 50 minutes, and washed with the PBS. Since the poly T has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the poly T is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Reference Example 2.
  • the sensor substrate is waterproofed to the aluminum wire on the sensor substrate, the sensor substrate is connected to the substrate with a connector, and the entire connector is waterproofed. gave.
  • the surface at the end where the MSS film is arranged is washed with 0.1 mol / l Tris-HCl (pH 8), and then further 0.1 mol / l Tris-HCl (pH 8).
  • the end was immersed in pH 8) and allowed to stand at room temperature for 15 minutes. The edges were then washed with PBS.
  • the two sensor substrates are processed, one sensor substrate is further coupled with an aptamer to form the MSS of the embodiment, and the other sensor substrate is further coupled with a poly T to form a reference example. MSS.
  • aptamer solution 3 ⁇ l was dropped onto the surface of the one sensor substrate and allowed to stand at room temperature for 1 hour under a water vapor atmosphere (100% (relative humidity)).
  • the aptamer solution was prepared by suspending the thrombin aptamer in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 30 minutes, and washed with the PBS.
  • the thrombin aptamer Since the thrombin aptamer has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the thrombin aptamer is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Example 3.
  • the poly T solution was dropped on the surface and allowed to stand at room temperature for 1 hour under a water vapor atmosphere (100% (relative humidity)).
  • the poly T solution was prepared by suspending the DNA of the poly T in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 30 minutes, and washed with the PBS. Since the poly T has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the poly T is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Reference Example 3.
  • the MSS of Example 1 and Reference Example 1, the MSS of Example 2 and Reference Example 2, and the MSS of Example 3 and Reference Example 3 are set as a set and simultaneously immersed in a sample solution to obtain a voltage.
  • the voltage change accompanying the stress change was measured. Specifically, first, the end portion of the MSS containing the MSS film was immersed in the PBS, a voltage was applied to the MSS, and the voltage signal was left until it became stable. Then, when the voltage signal was sufficiently stable at the measurement time of 1400 seconds, the immersion of the MSS was switched to the thrombin solution, and the voltage signal was continuously measured.
  • the thrombin solution was prepared by mixing a thrombin reagent (trade name: ⁇ Thrombin, Human, Funakoshi) with the PBS so as to have a final concentration of 240 nmol / l.
  • the voltage signal is converted into a voltage, and the difference between the stable voltage (Vs) after immersion in the sample solution and the lowest voltage (Vt) after immersion in the thrombin solution (Vt). Vs-Vt) was determined, and this was used as the voltage drop value ( ⁇ V) due to immersion in the thrombin solution.
  • Example 2 For all of the MSSs of Example 1, Example 2, and Example 3, a rapid decrease in voltage was confirmed after immersion in the thrombin solution. Then, as shown in Table 1, the voltage drop of each example showed a significantly significantly larger value (large voltage drop) than the voltage drop of each corresponding reference example. From this result, it can be seen that in the MSS of the example, thrombin was bound to the MSS film of the MSS via an aptamer by immersion in the target thrombin solution, and a stress change was generated.
  • Example 2 It was confirmed that the sensitivity of MSS was improved by immobilizing the aptamer with respect to the MSS membrane at substantially the same distance.
  • MSS As the MSS of the example, the MSS shown in FIG. 2 (A) was prepared. First, after washing the sensor substrate of the commercially available MSS of Example 1 (1) with ethanol, the end portion on which the MSS film is arranged is rinsed with about 100 ⁇ l of a silane coupling solution, and 1. It was left for 5 hours.
  • the silane coupling agent had a composition of 8 ml of ethanol, 200 ⁇ l of acetic acid, 100 ⁇ l of APTMS (trimethoxyryl 3-propylmethacrylic acid (3- (methacryloyloxy) propyltrimethoxysilane)), and 1.8 ml of pure water.
  • the sensor substrate was washed with ethanol and dried at room temperature for 5 minutes.
  • N-acetylcysteine solution is dropped onto one surface of the MSS film of the sensor substrate (the surface on which the aluminum wire is formed), and UV (Nitride, NS365L-6SMG) is irradiated for several minutes. did. Irradiation was performed in a water vapor atmosphere (100% (relative humidity)) at room temperature until dry. Then, the sensor substrate was washed with pure water and dried at room temperature.
  • the sensor portion of the sensor substrate was immersed in an acetic anhydride solution (10% acetic anhydride, 90% acetonitrile) and reacted at 60 ° C. for 0.5 hours. After the reaction, the sensor substrate was washed with acetonitrile.
  • the sensor substrate was dried at room temperature for 10 minutes. Further, 1 ⁇ l of a 0.5% streptavidin solution was added dropwise to the same surface of the MSS film of the sensor substrate, and the mixture was allowed to stand at room temperature for 1.5 hours under a water vapor atmosphere (100% (relative humidity)). After the standing, the sensor substrate was washed with the PBS.
  • the sensor substrate is waterproofed to the aluminum wire on the sensor substrate, and then the sensor substrate is connected to the substrate with a connector to cover the entire connector. It has been waterproofed.
  • the two sensor substrates are processed, and an aptamer is further bonded to one of the sensor substrates to obtain MSS of Example (Example 2-1), and poly T is applied to the other sensor substrate. Further, they were combined to obtain MSS of Reference Example (Reference Example 2-1).
  • the aptamer solution was prepared by suspending the thrombin aptamer in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 30 minutes, and washed with the PBS. Since the thrombin aptamer has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the binding of the biotin to the streptavidin causes the MSS as shown in FIG. 2 (A).
  • the thrombin aptamer will be fixed to the surface of the membrane. This was designated as the MSS of Example 2-1.
  • the MSS of Example 2-1 corresponds to an MSS in which the aptamer is immobilized at substantially the same distance with respect to the MSS film.
  • the poly T solution was prepared by suspending the DNA of the poly T in the PBS so as to have a final concentration of 5 ⁇ mol / l. After standing, the mixture was further immersed in PBS containing 1% BSA, allowed to stand at room temperature for 30 minutes, and washed with the PBS. Since the poly T has a biotin tag, if streptavidin is bound to the surface of the MSS membrane, the poly T is fixed to the surface of the MSS membrane by the binding of biotin and the streptavidin. Will be. This was designated as the MSS of Reference Example 2-1.
  • MSS of Example (Example 2-2) and MSS of Reference Example (Reference Example 2-2) were prepared in the same manner as in Example 1 (1).
  • the MSS of Example 2-1 and Reference Example 2-1 and the MSS of Example 2-2 and Reference Example 2-2 are set as a set, and at the same time, they are immersed in a sample solution and a voltage is applied. Then, the voltage change accompanying the stress change was measured. Specifically, first, the end portion of the MSS containing the MSS film was immersed in the PBS, a voltage was applied to the MSS, and the voltage signal was left until it became stable. Then, when the measurement time at which the voltage signal was sufficiently stable was 1200 seconds or 2100 seconds, the immersion of the MSS was switched to the thrombin solution, and the voltage signal was continuously measured.
  • the thrombin solution was prepared by mixing the thrombin reagent with the PBS so that the final concentration was about 200 nmol / l. The result is shown in FIG.
  • FIG. 2 is a schematic diagram showing the structure of the MSS and a graph showing the voltage of the MSS.
  • (A) is a diagram showing the structure of the MSS of Example 2-1 and (B) is a graph showing the results of Example 2-1 and Reference Example 2-1.
  • (C) ) Is a graph showing the results of Example 2-2 and Reference Example 2-2.
  • the horizontal axis represents the time after the start of immersion of the end in PBS, and the vertical axis represents the voltage.
  • FIGS. 2 (B) and 2 (C) in both MSS of Example 2-1 and Example 2-2, significantly compared with Reference Example 2-1 and Reference Example 2-2.
  • the MSS of Example 1 produced by the non-specific adsorption method exhibits about twice the sensitivity of the MSS of Example 3 produced by the silane coupling method. Therefore, it can be said that the MSS of Example 2-1 exhibits about four times the sensitivity of the MSS of Example 3 in Table 1 above.
  • streptavidin is immobilized on the MSS membrane by using a silane coupling agent, but since glutaraldehyde is used as the cross-linking agent, the aptamer is the MSS membrane. It is fixed at different distances.
  • the difference in sensitivity between the MSS of Example 2-1 and the MSS of Example 3 in Table 1 depends on whether or not the aptamer is immobilized at a certain distance with respect to the MSS membrane. .. Further, since the main chain length of the linker in the MSS of Example 2-1 is 11, the aptamer should be fixed to the MSS membrane at a substantially constant distance, and the linker length at that time should be around 11. Therefore, it was estimated that the sensitivity of MSS could be improved.
  • Appendix 1 Includes aptamer, membrane, and sensor substrate,
  • the aptamer is a nucleic acid molecule that binds to the target and is immobilized on the membrane.
  • the membrane is a membrane that deforms due to the binding of the target to the aptamer.
  • the sensor substrate has a support area and The support region supports the film and has a piezoresistive element.
  • the piezoresistive element is a film-type surface stress sensor, which is an element that detects deformation of the film.
  • Appendix 2 The film-type surface stress sensor according to Appendix 1, wherein the film is a silicon film.
  • (Appendix 3) The film-type surface stress sensor according to Appendix 1 or 2, wherein the support region partially supports the film.
  • (Appendix 4) The film-type surface stress sensor according to any one of Appendix 1 to 3, wherein the aptamer is immobilized on one surface of the film.
  • (Appendix 5) The film-type surface stress sensor according to any one of Appendix 1 to 3, wherein the aptamer is immobilized on both sides of the film.
  • (Appendix 6) The film-type surface stress sensor according to any one of Appendix 1 to 5, wherein the aptamer is immobilized on the film via a conjugate of avidin or an avidin derivative and biotin or a biotin derivative.
  • (Appendix 11) The film-type surface stress sensor according to any one of Appendix 8 to 10, wherein the linker contains a cross-linking agent (a region derived from the cross-linking agent).
  • (Appendix 12) The film-type surface stress sensor according to any one of Appendix 8 to 11, wherein the main chain length of the linker is 1 to 15.
  • (Appendix 13) The film-type surface stress sensor according to any one of Appendix 1 to 12, wherein the aptamer is immobilized on the surface of the film via a silane coupling agent (region derived from the silane coupling agent).
  • the sensor substrate has a plurality of support areas and has a plurality of support areas.
  • the film-type surface stress sensor according to any one of Supplementary note 1 to 13, wherein each of the plurality of support regions supports the film.
  • the film-type surface stress sensor according to Appendix 14 wherein the plurality of film-type surface stress sensors include sensors in which aptamers are immobilized for different targets.
  • the sensor board has a circuit and The support region includes a plurality of piezoresistive elements.
  • Appendix 17 The step of immersing the film-type surface stress sensor according to any one of Appendix 1 to 16 in the sample solution, and The process of applying a voltage to the film-type surface stress sensor in the liquid phase, A method for analyzing a target, which comprises a step of analyzing a target in the sample liquid by measuring a stress change of the piezoresistive element in the film-type surface stress sensor.
  • Appendix 18 In the application step, the liquid phase is the sample liquid, The analysis method according to Appendix 17, wherein the application step is performed as it is after the immersion step.
  • the present invention as a form for binding a target, by newly immobilizing an aptamer on the film, for example, application to a target different from the conventional film-type surface stress sensor, or so far. It is possible to expand the possibility of modification, etc., which is different from the film type surface stress sensor of.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

ターゲットを結合させるための新たな形態をとる膜型表面応力センサの提供を目的とする。 本発明の膜型表面応力センサは、アプタマーと、膜と、センサ基板とを含み、前記アプタマーは、ターゲットに結合する核酸分子であり、前記膜に固定化され、前記膜は、前記アプタマーへの前記ターゲットの結合により変形する膜であり、前記センサ基板は、支持領域を有し、前記支持領域は、前記膜を支持し、ピエゾ抵抗素子を有し、前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であることを特徴とする。

Description

膜型表面応力センサ、およびそれを用いた分析方法
 本発明は、膜型表面応力センサ、およびそれを用いた分析方法に関する。
 食品、医療等の多種多様な分野において、ターゲットの検出は重要であり、様々な方法が提案されている。そして、近年において、膜型表面応力センサが注目されている(特許文献1参照)。前記膜型表面応力センサは、例えば、シリコン膜等の膜にターゲットを結合させることで、前記膜を変形させ、前記変形による電気抵抗の変動を測定することによって、ターゲットの有無や量を分析できる。しかしながら、ターゲットを前記膜に結合させる方式については、例えば、分析精度の向上や、適応できるターゲットの拡張等の観点から、さらなる改良が求められている。
国際公開第2011/148774号
 そこで、本発明は、ターゲットを結合させるための新たな形態をとる膜型表面応力センサの提供を目的とする。
 前記目的を達成するために、本発明の膜型表面応力センサは、
アプタマーと、膜と、センサ基板とを含み、
前記アプタマーは、ターゲットに結合する核酸分子であり、前記膜に固定化され、
前記膜は、前記アプタマーへの前記ターゲットの結合により変形する膜であり、
前記センサ基板は、支持領域を有し、
前記支持領域は、前記膜を支持し、ピエゾ抵抗素子を有し、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子である
ことを特徴とする。
 本発明のターゲットの分析方法は、
サンプル液に、前記本発明の膜型表面応力センサを浸漬する工程と、
液相中で前記膜型表面応力センサに電圧を印加する工程と、
前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する工程とを含むことを特徴とする。
 本発明によれば、ターゲットを結合させるための形態として、新たに、前記膜にアプタマーを固定化することによって、例えば、これまでの膜型表面応力センサとは異なるターゲットへの適用や、これまでの膜型表面応力センサとは異なる改変等の可能性を広げることができる。
図1は、MSSの一般的な構成を示す模式図である。 図2は、実施例2におけるMSSの構造を示す模式図およびMSSの電圧を示すグラフである。
 本発明において、以下、「膜型表面応力センサ(Membrane-type Surface-stress Sensor」は、MSSともいう。いわゆるMSSは、ターゲットへの結合性を有する膜が、ピエゾ抵抗素子を有する支持体に支持されている。そして、前記ターゲットが前記膜に結合すると、前記結合により前記膜は応力を受けて、歪みの発生等により前記膜は変形(歪みの発生)する。そして、前記膜の変形の量に応じて、前記膜を支持する前記支持体のピエゾ抵抗素子に応力が発生し、前記応力に比例して、前記ピエゾ抵抗素子の抵抗値が変化する。このため、MSSに電圧を印加して、抵抗値の変化に伴う電気シグナルを測定することで、間接的に、前記膜に結合した前記ターゲットの有無を定性したり、前記膜に結合した前記ターゲットの量を定量する分析が可能である。本発明は、このようなMSSにおいて、ターゲットに結合するアプタマーを使用すること、具体的には、前記膜に前記アプタマーを固定化して、前記ターゲットをMSSに結合させることが特徴である。このため、本発明において、前記膜にアプタマーを固定化する以外、その他の構成は、特に制限されず、既存の構成を利用でき、また、同様の機能を奏する将来の構成にも利用できる。
 本発明において、「アプタマー」は、ターゲットに対して結合性を有する核酸分子である。前記アプタマーは、例えば、ターゲットに特異的に結合する核酸分子ということもできる。前記アプタマーの構成単位は、例えば、ヌクレオチド残基および非ヌクレオチド残基である。前記ヌクレオチド残基は、例えば、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられ、前記ヌクレオチド残基は、例えば、修飾されても、未修飾でもよい。前記アプタマーは、例えば、デオキシリボヌクレオチド残基からなるDNAアプタマー、リボヌクレオチド残基からなるRNAアプタマー、両方を含むアプタマー、修飾ヌクレオチド残基を含むアプタマー等があげられる。前記アプタマーの長さは、特に制限されず、例えば、10~200塩基である。前記ターゲットに対するアプタマーは、例えば、既存のアプタマーを使用してもよいし、前記ターゲットに応じて、例えば、SELEX法等を利用して新たに取得したものを使用することもできる。
 本発明において、「ターゲット」は、特に制限されず、任意に設定でき、例えば、液体中で前記アプタマーに接触できる物質であればよい。前記ターゲットは、例えば、炭疽菌、大腸菌、サルモネラ、大腸菌等の細菌をはじめとする微生物;インフルエンザウイルス等のウイルス;アレルゲン;等があげられる。前記アレルゲンは、例えば、小麦等の穀物、卵、肉、魚、貝、野菜、果物、牛乳、ピーナッツ等の豆、スギ、ヒノキ等の花粉等があげられる。前記ターゲットの種類は、特に制限されず、例えば、タンパク質、糖鎖、核酸、ポリマー等の高分子化合物;低分子化合物;等があげられる。
 本発明において、「液体サンプル」は、液体であればよい。採取検体が液体の場合、それをそのまま液体サンプルとしてもよいし、さらに、液体溶媒によって、希釈、懸濁、分散等を行って調製した液体サンプルでもよい。採取検体が固体の場合、例えば、液体溶媒によって、溶解、懸濁、分散等を行って調製した液体サンプルでもよい。また、採取検体が気体の場合、例えば、前記気体中のエアロゾルを濃縮した液体サンプルでもよいし、さらに、液体溶媒によって、溶解、懸濁、分散等を行って調製した液体サンプルでもよい。前記液体溶媒の種類は、特に制限されず、例えば、アプタマーとターゲットとの結合等に影響を与えにくい溶媒であり、具体例として、水、緩衝液等があげられる。前記採取検体は、例えば、食品、血液、尿、唾液、体液、土壌、排水、水道水、池、河川、空気等が例示できる。
 以下に、本発明の実施形態について、例をあげて説明する。本発明は、以下の実施形態には限定されない。また、各実施形態の説明は、特に言及がない限り、互いの説明を援用できる。さらに、各実施形態の構成は、特に言及がない限り、組合せ可能である。
[実施形態1]
 本実施形態のMSSは、前述のように、アプタマーと、膜と、センサ基板とを含み、前記アプタマーは、ターゲットに結合する核酸分子であり、前記膜に固定化され、前記膜は、前記アプタマーへの前記ターゲットの結合により変形する膜であり、前記センサ基板は、支持領域を有し、前記支持領域は、前記膜を支持し、ピエゾ抵抗素子を有し、前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であることを特徴とする。
 本実施形態のMSSにおいて、前記膜は、MSS膜ともいう。前記MSS膜は、前述のように、ターゲットの結合によって変形し、その変形によって、前記ピエゾ抵抗素子に応力を与えるものであればよく、特に制限されない。前記膜は、例えば、薄膜であり、その厚みおよび各表面の面積は、特に制限されず、例えば、市販のMSSに使用されているMSS膜と同様である。前記膜の平面形状は、例えば、円形であり、具体的には、例えば、正円である。前記膜の素材は、特に制限されず、例えば、シリコン膜であり、具体例として、n型 Si(100)があげられる。
 本実施形態のMSSにおいて、前記MSS膜には、前記アプタマーが固定化されている。前記アプタマーは、例えば、前記MSS膜の一方の表面に固定化されてもよいし、両方の表面に固定化されてもよい。前記MSS膜の両面に前記アプタマーが固定化される場合、一方の表面のアプタマーと他方の表面のアプタマーは、例えば、同じターゲットに結合する同じアプタマーであることが好ましい。以下の説明において、前記MSS膜の表面とは、例えば、一方の表面でもよいし、両面でもよい。
 前記MSS膜に対する前記アプタマーの固定化方法は、特に制限されず、前記MSS膜に対して、前記アプタマーを直接的に固定化しても、間接的に固定化してもよい。前者の場合、例えば、前記MSS膜と前記アプタマーとを化学的処理することによって、共有結合等により固定化することができる。前記直接的な固定方法は、例えば、フォトリソグラフィーを利用する方法があげられ、具体例として、米国特許5,424,186号明細書等を参照できる。また、他の直接的な固定方法は、例えば、前記MSS膜上で前記センサを合成する方法があげられる。この方法は、例えば、いわゆるスポット法があげられ、具体例として、米国特許5,807,522号明細書等を参照できる。後者の場合、例えば、前記MSS膜に対して、リンカーを介して前記アプタマーを固定化することができる。前記リンカーの種類は、何ら制限されず、例えば、ビオチンまたはビオチン誘導体(以下、ビオチン類という)と、アビジンまたはアビジン誘導体(以下、アビジン類という)との組み合わせ等があげられる。前記ビオチン誘導体は、例えば、ビオシチン等があり、前記アビジン誘導体は、例えば、ストレプトアビジン等がある。前記リンカーの長さは、例えば、MSS膜上の官能基(例えば、シリコン膜上のシラノール基の酸素原子)と、アビジン等のアフィニティータグまたはアプタマーまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSSの感度を向上できることから、好ましくは、1~15、1~13、3~13、5~13、1~11、3~11、1~10、3~10、1~8、3~8、1~5、1~3、1または2である。以下に、固定化方法を例示するが、本発明は、これらには制限されない。
 第1の例として、前記MSS膜および前記アプタマーのいずれか一方に、前記ビオチン類を結合させ、他方に、前記アビジン類を結合させる。そして、前記ビオチン類と前記アビジン類とを結合させることによって、間接的に、前記MSS膜に前記アプタマーを固定化できる。
 なお、第1の例では、アビジン類-ビオチン類間の特異的な結合、すなわち、アビジン類へのビオチン類のアフィニティーを利用して、アプタマーを間接的にMSS膜に固定したが、本発明はこれに限定されず、アビジン類-ビオチン類以外のアフィニティータグを利用してもよい。前記アフィニティータグとしては、例えば、Hisタグ(His×6タグ)-ニッケルイオン、グルタチオン-S-トランスフェラーゼ-グルタチオン、マルトース結合タンパク質-マルトース、エピトープタグ(mycタグ、FLAGタグ、HA(ヘマグルチニン)タグ)-抗体または抗原結合断片が利用できる。他のアフィニティータグを用いてもよい点は、後述の第2~4の例においても同様である。
 第2の例として、前記MSS膜に対して、例えば、介在膜を介して、前記アプタマーを固定化してもよい。前記MSS膜上に前記介在膜を形成し、前記第1の例と同様に、前記介在膜および前記アプタマーのいずれか一方に、前記ビオチン類を結合させ、他方に、前記アビジン類を結合させ、前記ビオチン類と前記アビジン類との結合により、前記介在膜を介して前記アプタマーを前記MSSに固定化できる。前記介在膜は、例えば、金等の金属の膜であり、前記MSS膜に対して前記金属を蒸着することにより形成できる。前記介在膜の厚みは、特に制限されず、例えば、10~100nmである。前記介在膜は、例えば、一層でも二層以上でもよい。前記介在膜の表面を金にする場合、前記介在膜は、例えば、二層とし、金膜の接着性を向上できる点から、前記MSS膜に対して、接着用の金属膜(接着膜)を介して前記金膜を形成することが好ましい。前記接着膜の金属は、例えば、チタン、クロム等があげられる。前記接着膜の厚みは、例えば、0.1~10nmであり、前記金膜の厚みは、例えば、0.1~100nmである。前記介在膜に前記ビオチン類を結合する場合、例えば、前記介在膜の表面に、さらに、前記ビオチン類が結合したチオールアルカンを用いて、チオールアルカンの自己形成膜(SAM:self-assembled monolayers)を形成し、前記ビオチン類が結合したアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化してもよい。
 第3の例として、前記MSS膜に対して、アミノ基を結合させ、さらにグルタルアルデヒドを結合させることによって、前記ストレプトアビジン類を結合させる方法があげられる。すなわち、前記MSS膜に対して、アミノ基を有するシランカップリング剤を反応させ、前記MSS膜上にアミノ基を結合させる。前記反応は、例えば、アミノ基を有するシランカップリング剤を含む溶液を前記MSS膜に塗布することにより実施できる。さらに、前記MSS膜に対して、アミノ基とアミノ酸の主鎖もしくは側鎖とを結合可能な架橋剤、または前記MSS膜に対して、アミノ基とアミノ酸の主鎖もしくは側鎖との間にリンカーを形成可能な、グルタルアルデヒド等の架橋剤とを反応させ、前記MSS膜上の前記アミノ基にグルタルアルデヒド等の架橋剤の一端を結合させる。具体的には、シランカップリング後のMSS膜について、膜表面を洗浄し、架橋剤を含む溶液を前記MSS膜に塗布し、前記アミノ基と、前記架橋剤とを結合させる。前記架橋反応の条件は、例えば、架橋剤の種類に応じて適宜決定できる。つぎに、前記グルタルアルデヒド等の架橋剤の他端に前記アビジン類を結合させる。具体的には、架橋後のMSS膜について、膜表面を洗浄し、アビジン類を含む溶液を塗布し、架橋剤の他端と、アビジン類のアミノ酸の主鎖または側鎖とを結合させる。そして、このように処理した前記MSS膜に、前記ビオチンを結合させたアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化できる。
 シランカップリング剤は、例えば、Y-Si(CH3-n(OR)で表される。前記シランカップリング剤がアミノ基を有するシランカップリング剤の場合、n、R、およびYは、例えば、以下の例があげられる。前記「n」は、2または3である。Rは、例えば、メチル基、エチル基等のアルキル基;アセチル基、プロピル基等のアシル基;等があげられる。Yは、アミノ基を末端に有する反応性官能基である。
 前記アミノ基を有するシランカップリング剤は、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン(例えば、KBM-602(信越シリコーン社製))、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(例えば、KBM-603(信越シリコーン社製))、3-アミノプロピルトリメトキシシラン(例えば、KBM-903(信越シリコーン社製))、3-アミノプロピルトリエトキシシラン(例えば、KBE-903(信越シリコーン社製))、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン(例えば、GENIOSIL(登録商標)GF 91(旭化成ワッカーシリコーン社製))、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン(例えば、GENIOSIL(登録商標)GF 95(旭化成ワッカーシリコーン社製))等があげられる。
 前記架橋剤は、リンカーと結合するアミノ酸の主鎖または側鎖の官能基に応じて、適宜決定できる。前記官能基は、例えば、アミノ基(-NH)、チオール基(-SH)、カルボキシル基(-COOH)等があげられる。前記アミノ基は、例えば、タンパク質もしくはペプチドのN末端またはリジンの側鎖が有する。前記チオール基は、例えば、システインの側鎖が有する。前記カルボキシル基は、例えば、タンパク質もしくはペプチドのC末端またはアスパラギン酸もしくはグルタミン酸の側鎖が有する。
 前記アミノ酸の主鎖または側鎖のアミノ基を利用する場合、前記架橋剤としては、例えば、グルタルアルデヒド等のアルデヒド基を両端に有する架橋剤;ビス(スルホスクシンイミジル)スベラート(BS3)、グルタル酸ジスクシンイミジル(DSG)、スベリン酸ジスクシンイミジル(DSS)、ジチオビス(プロピオン酸スクシンイミジル)、ジチオビス(プロピオン酸スルホスクシンイミジル)(DSP)、ジチオビス(プロピオン酸スクシンイミジル)(DTSP)、ジチオビス(プロピオン酸スルホスクシンイミジル)(DTSSP)、酒石酸ジスクシンイミジル(DST)、エチレングリコールビス(スクシンイミジルスクシネート)(ESG)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(Sulfo-ESG)、PEG化ビス(スルホスクシンイミジル)(BS(PEG)5、BS(PEG)9等)等のN-ヒドロキシスクシンイミド活性エステル(N-ヒドロキシスクシンイミド反応基)を両端に有する架橋剤;アジポイミド酸ジメチル(DMA)、ピメルイミド酸ジメチル(DMP)、ピメルイミド酸ジメチル(DMS)等のイミドエステル反応基を両端に有する架橋剤;等があげられる。
 前記アミノ酸の側鎖のチオール基を利用する場合、前記架橋剤としては、例えば、N-(6-マレイミドカプロイルオキシ)スクシンイミド(EMCS)、N-(6-マレイミドカプロイルオキシ)スルホスクシンイミド(Sulfo-EMCS)、N-(8-マレイミドカプリルオキシ)スクシンイミド(HMCS)、N-(8-マレイミドカプリルオキシ)スルホスクシンイミド(Suflo-HMCS)、N-α-maleimidoacet-oxysuccinimide ester(AMAS)、N-β-maleimidopropyl-oxysuccinimide ester(BMPS)、N-γ-maleimidobutyryl-oxysuccinimide ester(GMBS)、N-γ-maleimidobutyryl-oxysulfosuccinimide ester(Sulfo-GMBS)、m-maleimidobenzoyl-N-hydroxysuccinimide ester(MBS)、m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester(Sulfo-MBS)、succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate(SMCC)、sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate(Sulfo-SMCC)、succinimidyl 4-(p-maleimidophenyl) butyrate(SMPB)、sulfosuccinimidyl 4-(N-maleimidophenyl) butyrate(Sulfo-SMPB)、Succinimidyl 6-((beta-maleimidopropionamido) hexanoate)(SMPH)、succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxy-(6-amidocaproate)(LC-SMCC)、N-κ-maleimidoundecanoyl-oxysulfosuccinimide ester(Sulfo-KMUS)等のマレイミド基とN-ヒドロキシスクシンイミド活性エステルとを分子の両端に有する架橋剤;succinimidyl iodoacetate(SIA)、succinimidyl 3-(bromoacetamido) propionate(SBAP)、succinimidyl (4-iodoacetyl) aminobenzoate(SIAB)、sulfosuccinimidyl (4-iodoacetyl) aminobenzoate(Sulfo-SIAB)等のN-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤;succinimidyl 3-(2-pyridyldithio) propionate(SPDP)、succinimidyl 6-(3(2-pyridyldithio) propionamido) hexanoate(LC-SPDP)、succinimidyl 6-(3(2-pyridyldithio) propionamido) hexanoate(Sulfo-LC-SPDP)、4-succinimidyloxycarbonyl-alpha-methyl-α(2-pyridyldithio) toluene(SMPT)、2-Pyridyldithiol-tetraoxatetradecane-N-hydoxysuccinimide(PEG4-SPDP)、2-Pyridyldithiol-tetraoxaoctatriacontane-N-hydoxysuccinimide(PEG12-SPDP)等のN-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤;等があげあられる。
 前記アミノ酸の主鎖または側鎖のカルボキシル基を利用する場合、前記架橋剤としては、例えば、Dicyclohexylcarbodiimide(DCC)、1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)、N-hydroxysuccinimide(NHS)、N-hydroxysulfosuccinimide(Sulfo-NHS)、無水酢酸等があげられる。なお、DCC、EDC、NHS、Sulfo-NHS、無水酢酸は、例えば、アミノ基とカルボキシル基とを直接結合させるため、カルボキシル基とアミノ基との間に残存せず、架橋剤に由来するリンカー領域(基)は生じない。
 前記架橋剤は、リンカーの長さを略一定化または一定化できることから、自己縮合が実質的に生じない架橋剤が好ましい。前記リンカーの長さが一定とは、例えば、複数のアプタマーのリンカーにおいて、各アプタマーのリンカーの長さが略同一または同一であることを意味する。前記リンカーの長さは、例えば、リンカーの構造を略同一または同一とすることにより、略同一または同一にすることができる。第3の例では、このような架橋剤を用いることにより、MSSの感度を向上できる。前記感度の向上は、以下の理由によると推定される。なお、本発明は、以下の推定に何ら制限されない。アプタマーにターゲットが結合すると、ターゲットと結合したアプタマーの周囲には、前記ターゲットに起因する立体的障害が生じる。前記アプタマーが前記MSS膜に対して異なる距離で固定化されている場合、前記ターゲットは、前記MSS膜から遠位端側に存在するアプタマーと接触する可能性が高い。このため、前記ターゲットは、前記MSS膜から遠位端側のアプタマーと優先的に結合すると推定される。この場合、前記ターゲットが結合したアプタマーの周囲に前記ターゲットに起因する立体的障害が生じても、他のアプタマーは、前記ターゲットが結合したアプタマーと比較して、前記MSS膜側に存在するものが多いため、前記ターゲットに起因する立体的障害を受けづらい。このため、前記ターゲットがアプタマーに結合しても、周囲に存在するアプタマーが、立体的障害による影響を受けて、位置が動く可能性が低い。したがって、前記アプタマーが前記MSS膜に対して異なる距離で固定化されている場合、前記MSS膜上では、前記周囲のアプタマーの位置の移動に起因して、MSS膜の歪みが生じる可能性も相対的に低い。すなわち、アプタマーの結合に起因して、周囲のアプタマーが動き、MSS膜の歪みが増幅される可能性が低い。他方、前記アプタマーが前記MSS膜に対して略同一の距離で固定化されている場合、アプタマーにターゲットが結合すると、周囲のアプタマーは、前記ターゲットに起因する立体的障害の影響を受ける。このため、周囲のアプタマーの位置が動く可能性が高く、周囲のアプタマーの位置の移動に起因して、MSS膜の歪みが生じる可能性も相対的に高い。すなわち、前記アプタマーが前記MSS膜に対して略同一の距離で固定化されている場合、前記MSS膜上では、1つのアプタマーとターゲットとの結合により、周囲のアプタマーの位置の移動も生じるため、前記MSS膜の歪みが増幅されることになる。したがって、前記アプタマーが前記MSS膜に対して略同一の距離で固定化されている場合、すなわち、前記リンカーの長さが略一定化されている場合、前記MSS膜は、感度が向上すると推定される。
 前記自己縮合が実質的に生じない架橋剤の具体例としては、例えば、N-ヒドロキシスクシンイミド活性エステルを両端に有する架橋剤、イミドエステル反応基を両端に有する架橋剤、マレイミド基とN-ヒドロキシスクシンイミド活性エステルを分子の両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤、DCC、EDC、NHS、Sulfo-NHS、無水酢酸等があげられる。
 前記リンカーは、例えば、下記式(1)で表される。下記式(1)において、Mは、MSS膜上のシランカップリング剤と結合している原子を表し、Lは、シランカップリング剤由来の領域(基)を表し、Lは、架橋剤由来の領域(基)を表し、Lは、あってもなくてもよく、Mは、アフィニティータグにおける架橋剤またはNHと結合している原子を表す。また、NHは、アミノ基を有するシランカップリング剤のアミノ基由来のアミンを表す。
 M-L-NH-L-M・・・(1)
 Lは、例えば、(M)-Si(CH2-m(OR-R-(NH)または(M)-Si(CH2-m(OR-R-NH-R-(NH)で表される。Rは、炭素原子数1~5の直鎖もしくは分枝状のアルキル基である。RおよびRは、例えば、それぞれ独立して、炭素原子数1~5の直鎖もしくは分枝状のアルキル基であり、同じでもよいし、異なってもよい。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等があげられる。Rは、例えば、水素原子または結合手である。mは、1または2である。
 前記シランカップリング剤として、3-アミノプロピルトリエトキシシランを用いた場合、Lは、例えば、(M)-Si(OR-(CH-(NH)で表される。Rは、例えば、水素原子または結合手である。また、前記架橋剤として、グルタルアルデヒドを用いた場合、Lは、例えば、(NH)=CH-C-CH=(CH(CHO)-C-CH)=CH(CHO)-C-C=(M)で表される。
 前記リンカーの長さは、例えば、MSS膜上の官能基(例えば、シリコン膜上のシラノール基の酸素原子)と、アビジン等のアフィニティータグまたはアプタマーまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSSの感度を向上できることから、好ましくは、1~15、1~13、3~13、5~13、1~11、3~11、1~10、3~10、1~8、3~8、1~5、1~3、1または2である。
 なお、第3の例では、アビジン類-ビオチン類の結合を利用しているが、第3の例は、これに限定されず、前記アプタマーの水酸基またはリン酸基に、リンカーを直接結合させてもよい。この場合、アプタマーは、3’末端のリン酸基をアミダイド化し、前記リンカーと反応させることにより、前記MSS膜に固定化できる。
 第4の例として、前記MSS膜に対して、メタクリル基(-C(=O)-C(CH)=CH)を結合させ、さらにアミノ酸またはその誘導体(以下、「アミノ酸誘導体」という)を介して、前記ストレプトアビジン類を結合させる方法があげられる。すなわち、前記MSS膜に対して、メタクリル基を有するシランカップリング剤を反応させ、前記MSS膜上にアミノ基を結合させる。前記反応は、例えば、メタクリル基を有するシランカップリング剤を含む溶液を前記MSS膜に塗布することにより実施できる。さらに、前記MSS膜に対して、N-アセチルシステイン等のアミノ酸誘導体を反応させた後、前記アミノ酸誘導体の主鎖または側鎖と、アビジン類のアミノ酸の主鎖または側鎖の間にリンカーを形成可能な架橋剤とを反応させ、前記MSS膜上の前記アミノ酸誘導体に架橋剤の一端を結合させる。具体的には、アミノ酸誘導体処理後のMSS膜について、膜表面を洗浄し、架橋剤を含む溶液を前記MSS膜に塗布し、前記アミノ酸誘導体と、前記架橋剤とを結合させる。前記架橋反応の条件は、例えば、架橋剤の種類に応じて適宜決定できる。つぎに、前記架橋剤の他端に前記アビジン類を結合させる。具体的には、架橋後のMSS膜について、膜表面を洗浄し、アビジン類を含む溶液を塗布し、架橋剤の他端と、アビジン類のアミノ酸の主鎖または側鎖とを結合させる。そして、このように処理した前記MSS膜に、前記ビオチンを結合させたアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化できる。なお、第4の例では、アビジン類-ビオチン類の結合を利用しているが、第4の例は、これに限定されず、前記アプタマーの水酸基またはリン酸基に、リンカーを直接結合させてもよい。
 前述のように、前記シランカップリング剤は、例えば、Y-Si(CH3-n(OR)で表される。前記シランカップリング剤がメタクリル基を有するシランカップリング剤の場合、n、R、およびYは、例えば、以下の例があげられる。前記「n」は、2または3である。Rは、例えば、メチル基、エチル基等のアルキル基;アセチル基、プロピル基等のアシル基;等があげられる。Yは、メタクリル基を末端に有する反応性官能基である。
 前記メタクリル基を有するシランカップリング剤は、例えば、3-(メタクリロイルオキシ)プロピルメチルジメトキシシラン(例えば、KBM-502(信越シリコーン社製))、3-(メタクリロイルオキシ)プロピルトリメトキシシラン(例えば、KBM-503(信越シリコーン社製)、GENIOSIL(登録商標)GF31(旭化成ワッカーシリコーン社製))、3-(メタクリロイルオキシ)プロピルメチルジメトキシシラン(例えば、KBE-502(信越シリコーン社製))、(3-メタクリロイルオキシプロピル)トリエトキシシラン(例えば、KBE-503(信越シリコーン社製))等があげられる。
 前記アミノ酸またはアミノ酸誘導体は、例えば、メタクリル基と反応可能な官能基と、カルボキシル基とを有する。前記メタクリル基と反応可能な官能基は、例えば、チオール基(-SH)等があげられる。前記チオール基を有するアミノ酸またはアミノ酸誘導体は、例えば、システイン;N-アセチルシステイン等のアミノ基が修飾されたシステイン;等があげられる。
 前記架橋剤は、例えば、架橋に供するアミノ酸誘導体の官能基と、架橋に供するアビジン類のアミノ酸の官能基とに応じて、適宜決定できる。具体例として、2つの官能基がアミノ基の場合、前記架橋剤は、前記第3の例における前記アミノ酸の主鎖または側鎖のアミノ基を利用する場合の架橋剤の説明を援用できる。また、2つの官能基の一方がアミノ基であり、他方がチオール基である場合、前記架橋剤は、前記第3の例における前記アミノ酸の側鎖のチオール基を利用する場合の架橋剤の説明を援用できる。さらに、2つの官能基の一方がアミノ基であり、他方がカルボキシル基である場合、前記架橋剤は、前記第3の例における前記アミノ酸の主鎖または側鎖のカルボキシル基を利用する場合の架橋剤の説明を援用できる。
 前記架橋剤は、リンカーの長さを一定化できることから、自己縮合が実質的に生じない架橋剤が好ましい。第4の例では、このような架橋剤を用いることにより、前述の第3の例で説明するメカニズムと同様のメカニズムにより、MSSの感度を向上できる。自己縮合が実質的に生じない架橋剤の具体例としては、例えば、N-ヒドロキシスクシンイミド活性エステルを両端に有する架橋剤、イミドエステル反応基を両端に有する架橋剤、マレイミド基とN-ヒドロキシスクシンイミド活性エステルを分子の両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤、DCC、EDC、NHS、Sulfo-NHS、無水酢酸等があげられる。
 前記リンカーは、例えば、下記式(2)で表される。下記式(2)において、Mは、MSS膜上のシランカップリング剤と結合している原子を表し、Lは、シランカップリング剤由来の領域(基)を表し、Aは、アミノ酸誘導体を表し、Lは、架橋剤由来の領域(基)を表し、Lは、あってもなくてもよく、Mは、アフィニティータグにおける架橋剤またはNHと結合している原子を表す。
 M-L-A-L-M・・・(2)
 Lは、例えば、(M)-Si(CH2-m(OR-R-C(=O)-CH(CH2-l-(A)で表される。Rは、例えば、水素原子または結合手である。Rは、炭素原子数1~5の直鎖もしくは分枝状のアルキル基である。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等があげられる。mは、1または2である。lは、0または1である。
 前記シランカップリング剤として、3-(メタクリロイルオキシ)プロピルトリメトキシシランを用いた場合、Lは、例えば、(M)-Si(OR-(CH-O-C(=O)-C(CH-(A)で表される。Rは、例えば、水素原子または結合手である。また、前記アミノ酸誘導体として、N-アセチルシステインを用いた場合、Aは、例えば、(L)-S-CH-CH(NH-COCH)-C(=O)-(M)で表される。前記架橋剤として、無水酢酸を用いた場合、Lは、例えば、存在しない。
 前記リンカーの長さは、例えば、MSS膜上の官能基(例えば、シリコン膜上のシラノール基)と、アビジン等のアフィニティータグまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSSの感度を向上できることから、好ましくは、1~15、1~13、1~11、1~10、1~8、1~5、1~3、1または2である。
 なお、第4の例では、アビジン類-ビオチン類の結合を利用しているが、第4の例は、これに限定されず、前記アプタマーの水酸基またはリン酸基に、リンカーを直接結合させてもよい。この場合、アプタマーは、3’末端のリン酸基をアミダイド化し、前記リンカーと反応させることにより、前記MSS膜に固定化できる。
 前記MSS膜に対する前記アプタマーの固定化部位は、特に制限されず、例えば、3’末端または5’末端があげられる。
 本実施形態のMSSにおいて、前記センサ基板は、前記MSS膜を支持する支持領域を有し、前記支持領域は、ピエゾ抵抗素子を有する。前記センサ基板は、前記支持領域によって、前記MSS膜を支持する。前記MSS膜は、例えば、対向する一方の表面または両方の表面に、前述のように前記アプタマーが固定化され、側面において、前記センサ基板により支持される。前記センサ基板は、例えば、前記MSS膜を部分的に支持することが好ましく、具体的に、前記MSS膜の側面を部分的に支持することが好ましい。前記MSS膜において、前記センサ基板の支持領域によって支持されている箇所(支持部)の数は、特に制限されず、例えば、4点である。なお、これは例示であって、何ら制限されない。
 前記センサ基板において、前記支持領域は、例えば、シリコン膜であり、前記シリコン膜の任意の領域を、不純物のドーピングによりp型化することによって、前記p型化した領域(p型Si)を、前記ピエゾ抵抗素子として機能させることができる。前記支持領域は、例えば、前記MSS膜を支持している箇所またはその付近に、前記ピエゾ抵抗素子を有する。前記センサ基板は、例えば、全体がシリコン製でもよいし、前記支持領域のみがシリコン膜でもよく、前記ピエゾ抵抗素子を含む支持領域以外の材料は、特に制限されない。
 本実施形態のMSSにおいて、例えば、前記センサ基板は、電圧を印加するための回路を有する。前記支持領域が、複数の点で前記MSS膜を支持し、その支持している箇所およびその付近に、それぞれピエゾ抵抗素子を有する場合、例えば、前記回路は、前記支持領域における複数のピエゾ抵抗素子を含むホイートストンブリッジ回路があげられる。本実施形態のMSSは、例えば、前記ホイートストンブリッジ回路に電圧を印加することで、前述のように、前記ピエゾ抵抗素子における抵抗値の変化に伴う電気シグナルを測定できる。
 本実施形態のMSSは、例えば、前記センサ基板が、複数の前記支持領域を有し、前記複数の支持領域が、それぞれ、前記MSS膜を支持してもよい。本実施形態のMSSにおいて、前記支持領域の数および支持される前記MSS膜の数は、特に制限されず、それぞれ、1つでもよいし、2つ以上の複数でもよい。本実施形態のMSSが複数の前記MSS膜を有する場合、前記複数のMSS膜は、例えば、同じターゲットに対するアプタマーが固定化されたMSS膜でもよいし、異なるターゲットに対するアプタマーが固定化されたMSS膜でもよく、両方であってもよい。ここで、「同じターゲットに対するアプタマー」とは、例えば、同じターゲットに対する同じ配列のアプタマーでもよいし、同じターゲットに対する異なる配列のアプタマーでもよい。
 本実施形態のMSSが同じターゲットに対するアプタマーが固定化されたMSS膜を複数有する場合、例えば、同じターゲットに対する分析を一つのMSSで、同時に複数行うことができる。また、本実施形態のMSSが異なるターゲットに対するアプタマーが固定化されたMSS膜を複数有する場合、例えば、異なるターゲットに対する分析を一つのMSSで、同時に行うことができる。
 本実施形態のMSSは、例えば、使用時において、前記センサ基板に前記MSS膜が配置された形態であればよく、使用前は、前記センサ基板と前記MSS膜とが別個独立した形態でもよい。後者の場合、例えば、本発明のMSSは、例えば、前記センサ基板と前記MSS膜とを別個独立に含むキットであってもよい。
 本実施形態のMSSは、例えば、後述する分析方法において、既存の計測モジュールを使用して、前記MSSにおける前記ピエゾ抵抗素子の応力変化に伴う抵抗値の変化を、電子シグナルとして測定することができる。
[実施形態2]
 本実施形態のターゲットの分析方法は、前述のように、サンプル液に、前記本発明の膜型表面応力センサ(MSS)を浸漬する工程と、液相中で前記MSSに電圧を印加する工程と、前記MSSにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する工程とを含むことを特徴とする。本発明の分析方法は、前述のようにアプタマーが固定化されたMSSを使用することが特徴であり、その他の工程および条件等は、特に制限されない。
 前記浸漬工程において、前記MSSの浸漬は、例えば、前記センサ基板における前記ピエゾ抵抗素子を含む支持領域と、それに支持された前記MSS膜とが、前記サンプル液に浸漬できればよい。前記サンプル液への前記MSSの浸漬条件は、特に制限されず、例えば、温度20~35℃で0.1~120分、温度50~60℃で0.1~120分等が例示できる。前記MSSが複数のMSS膜を有する場合は、例えば、前記MSSにおける複数のMSS膜を同時に同じサンプル液に浸漬させればよい。
 前記印加工程は、前述のように、液相中で前記膜型表面応力センサに電圧を印加する。前記電圧の印加条件は、特に制限されず、例えば、市販のMSSと同様の条件が例示できる。前記液相は、例えば、前記浸漬工程におけるサンプル液でもよいし、他の溶媒でもよい。後者の場合、前記浸漬工程後の前記MSSを、前記サンプル液から取出し、新たな溶媒に浸漬させて、電圧を印加すればよい。前記サンプル液への浸漬工程後、前記サンプル中の前記アプタマーに結合しなかった物質を除去するために、前記MSSを洗浄した場合等、このように新たな溶媒に前記MSSを浸漬させて、電圧を印加することが好ましい。前記溶媒は、特に制限されず、例えば、PBS、Tris-HCl等の緩衝液、水等があげられる。
 前記分析工程は、前述のように、前記MSSにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する。前記応力変化の測定は、例えば、電気シグナルの測定により行うことができ、市販の計測モジュール(例えば、MSS-8RM、NANOSENSOR社)等が使用できる。
[実施例1]
 市販のMSSにおけるMSS膜に、アプタマーを固定化し、ターゲットの分析が可能であることを確認した。
(1)非特異的吸着法によるアプタマーの固定
 市販のMSS(商品名:SD-MSS-1K2G、NANOSENSOR社)を使用した。前記MSSの構成を、図1の上面図に示す。前記MSSは、図1に示すように、センサ基板10が、電極11、アルミ線12、MSS膜13およびピエゾ抵抗素子14を有し、MSS膜13は、ピエゾ抵抗素子14を介してアルミ線12と連結し、アルミ線12は、それぞれ電極11と連結した構造である。
 前記センサ基板上の前記アルミ線に、アクリル樹脂(商品名:Mr.COLOR 62、GSI クレオス社製)、およびエポキシ樹脂(商品名:PM 165-R Hi、セメダイン社製)を塗布して、防水処理を施した。そして、処理後の前記センサ基板を、その電極が挿入されるように、コネクタ付き基板(商品名:IFB-FFC-(0.5)4P-B、AITENDO社製)に連結させた。さらに、前記コネクタ付き基板のコネクタの全体について、金属の露出部、および金属部へつながる隙間等に、前述と同じ樹脂を塗布・充填することによって、防水処理を施した。
 つぎに、前記センサ基板のMSS膜に対して、その裏面(前記アルミ線が形成されている表面とは反対側の面)に、ストレプトアビジン溶液1μlを滴下し、水蒸気雰囲気下(100%(相対湿度))、室温(約25℃)で、1時間静置した。前記ストレプトアビジン溶液は、ストレプトアビジンが2%となるように1×PBS(pH7.4)に懸濁して調製した。つぎに、前記PBSで前記裏面を洗浄した後、前記MSS膜の表面に、前記ストレプトアビジン溶液3μlを滴下し、同条件で静置し、さらに、前記PBSで洗浄した。そして、前記センサ基板を、10分間、室温で乾燥させた。
 このようにして、2つの前記センサ基板を処理し、一方のセンサ基板には、アプタマーをさらに結合させ、実施例1AのMSSとし、他方のセンサ基板には、ポリTをさらに結合させ、参照例1AのMSSとした。
 すなわち、前記一方のセンサ基板には、アプタマー溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記アプタマー溶液は、3’末端にビオチンタグが付加されたトロンビンアプタマー(配列番号1:GGTTGGTGTGGTTGGTTTTT-biotin-3’)を終濃度1μmol/lとなるように、前記PBSに懸濁して調製した。前記トロンビンアプタマーは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記トロンビンアプタマーが固定されることになる。これを実施例1AのMSSとした。
 前記他方のセンサ基板には、ポリT溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記ポリT溶液は、3’末端にビオチンタグが付加されたポリTのDNA(配列番号2:TTTTTTTTTTTTTTTTTTTT-biotin-3’)を終濃度1μmol/lとなるように、前記PBSに懸濁して調製した。前記ポリTは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記ポリTが固定されることになる。これを参照例1のMSSとした。
(2)金蒸着法によるアプタマーの固定
 特に示さない限りは、前記(1)と同様の処理を行った。すなわち、前記市販のMSSのセンサ基板について、前記センサ基板上のアルミ線への防水処理を施した後、前記センサ基板の電極をマスクし、前記MSS膜を含めた前記センサ基板の全面にチタン蒸着を行い、その後、さらに金蒸着を行った。前記チタン蒸着により、厚さ約5nmのチタン薄膜を形成し、前記金蒸着により、厚さ約100nmの金薄膜を形成した。そして、前記センサ基板をエタノールで洗浄した。
 つぎに、前記センサ基板の全体を、100μmol/l BiotinSAMエタノール溶液(同仁化学研究所)に浸漬し、室温で1時間静置し、さらに、エタノールで洗浄した。そして、前記(1)と同様に、前記コネクタ付き基板に連結し、さらに前記コネクタ全体に防水処理を施した。
 つぎに、前記センサ基板のMSS膜に対して、その一方の表面(前記アルミ線が形成されている表面)に、0.5%のストレプトアビジン溶液1μlを滴下し、水蒸気雰囲気下(100%(相対湿度))、室温で、0.5時間静置した。つぎに、前記PBSで洗浄した後、前記センサ基板を、10分間、室温で乾燥させた。
 このようにして、2つの前記センサ基板を処理し、一方のセンサ基板には、アプタマーをさらに結合させ、実施例のMSSとし、他方のセンサ基板には、ポリTをさらに結合させ、参照例のMSSとした。
 すなわち、前記一方のセンサ基板には、アプタマー溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記アプタマー溶液は、前記トロンビンアプタマーを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で50分静置し、前記PBSで洗浄した。前記トロンビンアプタマーは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記トロンビンアプタマーが固定されることになる。これを実施例2のMSSとした。
 前記他方のセンサ基板には、ポリT溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記ポリT溶液は、前記ポリTのDNAを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で50分静置し、前記PBSで洗浄した。前記ポリTは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記ポリTが固定されることになる。これを参照例2のMSSとした。
(3)シランカップリング法によるアプタマーの固定
 前記市販のMSSの前記センサ基板をエタノールで洗浄した後、前記MSS膜が配置されている端部をシランカップリング溶液に浸漬して、室温で20分間静置した。前記シランカップリング剤は、エタノール8ml、酢酸200μl、APTMS(3-アミノプロピルトリエトキシシラン)10μl、純水1.8mlの組成とした。そして、前記センサ基板の浸漬させた前記端部を純水で洗浄し、110℃で1.5時間処理を行った。
 前記センサ基板について、前記(1)と同様に、前記センサ基板上のアルミ線への防水処理を施した後、前記センサ基板を、前記コネクタ付き基板に連結し、前記コネクタの全体に防水処理を施した。
 つぎに、前記センサ基板の前記MSS膜の一方の表面(前記アルミ線が形成されている表面)に、14%グルタルアルデヒド溶液1μlを滴下し、水蒸気雰囲気下(100%(相対湿度))、室温で、0.75時間静置した。つぎに、前記PBSで洗浄した後、前記センサ基板を、10分間、室温で乾燥させた。さらに、前記センサ基板のMSS膜の同じ表面に、0.5%ストレプトアビジン溶液1μlを滴下し、水蒸気雰囲気下(100%(相対湿度))、室温で、0.5時間静置した。つぎに、前記センサ基板について、前記MSS膜が配置されている端部の前記表面を、0.1mol/l Tris-HCl(pH8)で洗浄した後、さらに、0.1mol/l Tris-HCl(pH8)に前記端部を浸漬し、室温で15分間静置した。その後、前記端部を前記PBSで洗浄した。
 このようにして、2つの前記センサ基板を処理し、一方のセンサ基板には、アプタマーをさらに結合させ、実施例のMSSとし、他方のセンサ基板には、ポリTをさらに結合させて、参照例のMSSとした。
 すなわち、前記一方のセンサ基板には、アプタマー溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記アプタマー溶液は、前記トロンビンアプタマーを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で30分静置し、前記PBSで洗浄した。前記トロンビンアプタマーは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記トロンビンアプタマーが固定されることになる。これを実施例3のMSSとした。
 前記他方のセンサ基板には、ポリT溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記ポリT溶液は、前記ポリTのDNAを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で30分静置し、前記PBSで洗浄した。前記ポリTは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記ポリTが固定されることになる。これを参照例3のMSSとした。
(4)電気シグナルの検出
 実施例1と参照例1のMSS、実施例2と参照例2のMSS、実施例3と参照例3のMSSを、それぞれセットとし、同時にサンプル液に浸漬し、電圧を印加し、応力変化に伴う電圧変化を測定した。具体的には、まず、前記PBSに、前記MSSにおけるMSS膜を含む端部を浸漬し、前記MSSに電圧を印加して、電圧のシグナルが安定するまで放置した。そして、電圧のシグナルが十分に安定した計測時間1400秒の時点で、前記MSSの浸漬をトロンビン溶液に切り替え、電圧のシグナルを引き続き測定した。前記トロンビン溶液は、終濃度240nmol/lとなるようにトロンビン試薬(商品名:αThrombin,Human、フナコシ社)を前記PBSに混合して調製した。
 そして、前記各MSSについて、前記電圧シグナルを電圧に換算し、前記サンプル液への浸漬後の安定した電圧(Vs)と、前記トロンビン溶液への浸漬後の最も低い電圧(Vt)との差(Vs-Vt)を求め、これをトロンビン溶液への浸漬による降下電圧値(μV)とした。これらの結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、実施例2、および実施例3のいずれのMSSについても、トロンビン溶液への浸漬後、急激な電圧の低下が確認された。そして、各実施例の降下電圧は、前記表1に示すように、対応する各参照例の降下電圧よりも、著しく有意に大きい値(電圧の大きな降下)を示した。この結果から、実施例のMSSは、ターゲットであるトロンビン溶液への浸漬によって、前記MSSのMSS膜にアプタマーを介してトロンビンが結合し、応力変化が発生したことがわかる。なお、前記表1に示すように、各参照例についても、トロンビン溶液への切り替え後に電気シグナルの計測値の低下が見られたが、これは使用したトロンビン試薬に含まれるグリセリンの影響(グリセリンの前記MSS膜への非特異的吸着等の影響)であって、バックグラウンド補正により無視できる。また、各実施例が、対応する各参照例よりも大きな電圧の降下を示していることからも、実施例においては、参照例とは異なり、ターゲットであるトロンビンとの特異的な結合が生じていることは明らかといえる。以上の結果から、アプタマーを固定化したMSSによれば、ターゲットを分析できることが確認できた。
[実施例2]
 アプタマーをMSS膜に対して略同一の距離で固定化することにより、MSSの感度が向上することを確認した。
(1)MSSの作製
 実施例のMSSとして、図2(A)に示すMSSを作製した。まず、前記実施例1(1)の市販のMSSの前記センサ基板をエタノールで洗浄した後、前記MSS膜が配置されている端部をシランカップリング溶液を100μlほどでリンスし、室温で1.5時間放置した。前記シランカップリング剤は、エタノール8ml、酢酸200μl、APTMS(トリメトキシリル3-プロピルメタクリル酸(3-(メタクリロイルオキシ)プロピルトリメトキシシラン)100μl、純水1.8mlの組成とした。そして、前記センサ基板をエタノールで洗浄し、室温で5分乾燥した。
 つぎに、前記センサ基板のMSS膜の一方の表面(前記アルミ線が形成されている表面)に、N-アセチルシステイン溶液1μlを滴下し、UV(ナイトライド社、NS365L-6SMG)を数分照射した。水蒸気雰囲気下(100%(相対湿度))、室温で、乾燥するまで照射した。その後、前記センサ基板を、純水で洗浄し、室温で乾燥した。
 つぎに、前記センサ基板のセンサ部分を無水酢酸溶液(10%無水酢酸、90%アセトニトリル)に浸し、60℃、0.5時間反応させた。前記反応後、前記センサ基板をアセトニトリルで洗浄した。
 つぎに、前記センサ基板を、10分間、室温で乾燥させた。さらに、前記センサ基板のMSS膜の同じ表面に、0.5%ストレプトアビジン溶液1μlを滴下し、水蒸気雰囲気下(100%(相対湿度))、室温で、1.5時間静置した。前記静置後、前記センサ基板を、前記PBSで洗浄した。
 前記センサ基板について、前記実施例1(1)と同様に、前記センサ基板上のアルミ線への防水処理を施した後、前記センサ基板を、前記コネクタ付き基板に連結し、前記コネクタの全体に防水処理を施した。
 このようにして、2つの前記センサ基板を処理し、一方のセンサ基板には、アプタマーをさらに結合させ、実施例のMSS(実施例2-1)とし、他方のセンサ基板には、ポリTをさらに結合させて、参照例のMSS(参照例2-1)とした。
 すなわち、前記一方のセンサ基板には、アプタマー溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記アプタマー溶液は、前記トロンビンアプタマーを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で30分静置し、前記PBSで洗浄した。前記トロンビンアプタマーは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、図2(A)に示すように、前記MSS膜の表面に前記トロンビンアプタマーが固定されることになる。これを実施例2-1のMSSとした。なお、実施例2-1のMSSは、アプタマーが、MSS膜に対して略同一の距離で固定化されたMSSに対応する。
 前記他方のセンサ基板には、ポリT溶液3μlを、前記表面に滴下して、水蒸気雰囲気下(100%(相対湿度))、室温で、1時間静置した。前記ポリT溶液は、前記ポリTのDNAを終濃度5μmol/lとなるように、前記PBSに懸濁して調製した。静置後、さらに、1% BSA含有PBSに浸漬し、室温で30分静置し、前記PBSで洗浄した。前記ポリTは、ビオチンタグを有することから、前記MSS膜の表面にストレプトアビジンが結合していれば、前記ビオチンと前記ストレプトアビジンとの結合により、前記MSS膜の表面に前記ポリTが固定されることになる。これを参照例2-1のMSSとした。
 さらに、前記実施例1(1)と同様にして、実施例のMSS(実施例2-2)および参照例のMSS(参照例2-2)のMSSを作製した。
(2)電気シグナルの検出
 実施例2-1と参照例2-1のMSS、実施例2-2と参照例2-2のMSSを、それぞれセットとし、同時にサンプル液に浸漬し、電圧を印加し、応力変化に伴う電圧変化を測定した。具体的には、まず、前記PBSに、前記MSSにおけるMSS膜を含む端部を浸漬し、前記MSSに電圧を印加して、電圧のシグナルが安定するまで放置した。そして、電圧のシグナルが十分に安定した計測時間1200秒または2100秒の時点で、前記MSSの浸漬をトロンビン溶液に切り替え、電圧のシグナルを引き続き測定した。前記トロンビン溶液は、終濃度約200nmol/lとなるように、前記トロンビン試薬を前記PBSに混合して調製した。この結果を図2に示す。
 図2は、MSSの構造を示す模式図およびMSSの電圧を示すグラフである。図2において、(A)は、実施例2-1のMSSの構造を示す図であり、(B)は、実施例2-1および参照例2-1の結果を示すグラフであり、(C)は、実施例2-2および参照例2-2の結果を示すグラフである。図2(B)および(C)において、横軸は、PBSに前記端部を浸漬開始後の時間を示し、縦軸は、電圧を示す。図2(B)および(C)に示すように、実施例2-1および実施例2-2のいずれのMSSにおいても、参照例2-1および参照例2-2と比較して、有意に高い電圧値を示し、ターゲットの有無で電圧が変化することが確認できた。すなわち、本発明のMSSによれば、ターゲットを検出できることがわかった。また、実施例2-1のMSSの電圧値と参照例2-1のMSSの電圧値の差分と、実施例2-2のMSSの電圧値と参照例2-2のMSSの電圧値の差分とを比較した場合、前者は、後者の約2倍であった。すなわち、実施例2-1のMSSは、実施例2-2のMSSと比較して、2倍の感度を示した。
 また、前記表1に示すように、非特異的吸着法により作製された実施例1のMSSは、シランカップリング法により作製された実施例3のMSSの約2倍の感度を示す。このため、実施例2-1のMSSは、前記表1の実施例3のMSSの約4倍の感度を示すと言える。さらに、前記表1における実施例3のMSSは、シランカップリング剤を用いて、ストレプトアビジンをMSS膜に固定化しているが、架橋剤として、グルタルアルデヒドを用いているため、アプタマーが、MSS膜に対して異なる距離で固定化されている。したがって、実施例2-1のMSSと前記表1の実施例3のMSSとの感度の差は、アプタマーが、MSS膜に対して一定の距離で固定化されているか否かによると推定された。さらに、実施例2-1のMSSにおけるリンカーの主鎖長は、11であるため、アプタマーが、MSS膜に対して略一定の距離で固定化し、かつその際のリンカー長を11前後とすることにより、MSSの感度をよくできると推定された。
 以上のことから、アプタマーをMSS膜に対して略同一の距離で固定化することにより、MSSの感度が向上することがわかった。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年7月10日に出願された日本出願特願2019-128311および2020年3月26日に出願された日本出願特願2020-056897を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
アプタマーと、膜と、センサ基板とを含み、
前記アプタマーは、ターゲットに結合する核酸分子であり、前記膜に固定化され、
前記膜は、前記アプタマーへの前記ターゲットの結合により変形する膜であり、
前記センサ基板は、支持領域を有し、
前記支持領域は、前記膜を支持し、ピエゾ抵抗素子を有し、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子である
ことを特徴とする膜型表面応力センサ。
(付記2)
前記膜が、シリコン膜である、付記1記載の膜型表面応力センサ。
(付記3)
前記支持領域は、前記膜を部分的に支持する、付記1または2記載の膜型表面応力センサ。
(付記4)
前記膜の一方の表面に前記アプタマーが固定化されている、付記1から3のいずれかに記載の膜型表面応力センサ。
(付記5)
前記膜の両面に前記アプタマーが固定化されている、付記1から3のいずれかに記載の膜型表面応力センサ。
(付記6)
前記アプタマーが、アビジンまたはアビジン誘導体と、ビオチンまたはビオチン誘導体との結合体を介して、前記膜に固定化されている、付記1から5のいずれかに記載の膜型表面応力センサ。
(付記7)
前記膜の表面に、金属膜を有し、前記金属膜を介して、前記アプタマーが、前記膜の表面に固定化されている、付記1から6のいずれかに記載の膜型表面応力センサ。
(付記8)
前記アプタマーは、リンカーを介して、前記膜表面に固定されている、付記1から7のいずれかに記載の膜型表面応力センサ。
(付記9)
各アプタマーにおけるリンカーの長さは、略一定である、付記8記載の膜型表面応力センサ。
(付記10)
前記リンカーは、シランカップリング剤(シランカップリング剤由来の領域)を含む、付記8または9記載の膜型表面応力センサ。
(付記11)
前記リンカーは、架橋剤(架橋剤由来の領域)を含む、付記8から10のいずれかに記載の膜型表面応力センサ。
(付記12)
前記リンカーの主鎖長は、1~15である、付記8から11のいずれかに記載の膜型表面応力センサ。
(付記13)
前記アプタマーが、シランカップリング剤(シランカップリング剤由来の領域)を介して、前記膜の表面に固定化されている、付記1から12のいずれかに記載の膜型表面応力センサ。
(付記14)
前記センサ基板が、複数の支持領域を有し、
前記複数の支持領域は、それぞれ、前記膜を支持する、付記1から13のいずれかに記載の膜型表面応力センサ。
(付記15)
前記複数の膜型表面応力センサが、異なるターゲットに対するアプタマーが固定化されたセンサを含む、付記14記載の膜型表面応力センサ。
(付記16)
前記センサ基板が、回路を有し、
前記支持領域が複数のピエゾ抵抗素子を含み、
前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路である、付記1から15のいずれかに記載の膜型表面応力センサ。
(付記17)
サンプル液に、付記1から16のいずれかに記載の膜型表面応力センサを浸漬する工程と、
液相中で前記膜型表面応力センサに電圧を印加する工程と、
前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する工程とを含むことを特徴とするターゲットの分析方法。
(付記18)
前記印加工程において、前記液相が、前記サンプル液であり、
前記浸漬工程の後、そのまま前記印加工程を行う、付記17記載の分析方法。
 本発明によれば、ターゲットを結合させるための形態として、新たに、前記膜にアプタマーを固定化することによって、例えば、これまでの膜型表面応力センサとは異なるターゲットへの適用や、これまでの膜型表面応力センサとは異なる改変等の可能性を広げることができる。
10 センサ基板
11 電極
12 アルミ線
13 MSS膜
14 ピエゾ抵抗素子

 

Claims (18)

  1. アプタマーと、膜と、センサ基板とを含み、
    前記アプタマーは、ターゲットに結合する核酸分子であり、前記膜に固定化され、
    前記膜は、前記アプタマーへの前記ターゲットの結合により変形する膜であり、
    前記センサ基板は、支持領域を有し、
    前記支持領域は、前記膜を支持し、ピエゾ抵抗素子を有し、
    前記ピエゾ抵抗素子は、前記膜の変形を検出する素子である
    ことを特徴とする膜型表面応力センサ。
  2. 前記膜が、シリコン膜である、請求項1記載の膜型表面応力センサ。
  3. 前記支持領域は、前記膜を部分的に支持する、請求項1または2記載の膜型表面応力センサ。
  4. 前記膜の一方の表面に前記アプタマーが固定化されている、請求項1から3のいずれか一項に記載の膜型表面応力センサ。
  5. 前記膜の両面に前記アプタマーが固定化されている、請求項1から3のいずれか一項に記載の膜型表面応力センサ。
  6. 前記アプタマーが、アビジンまたはアビジン誘導体と、ビオチンまたはビオチン誘導体との結合体を介して、前記膜に固定化されている、請求項1から5のいずれか一項に記載の膜型表面応力センサ。
  7. 前記膜の表面に、金属膜を有し、前記金属膜を介して、前記アプタマーが、前記膜の表面に固定化されている、請求項1から6のいずれか一項に記載の膜型表面応力センサ。
  8. 前記アプタマーは、リンカーを介して、前記膜表面に固定されている、請求項1から7のいずれか一項に記載の膜型表面応力センサ。
  9. 各アプタマーにおけるリンカーの長さは、略一定である、請求項8記載の膜型表面応力センサ。
  10. 前記リンカーは、シランカップリング剤を含む、請求項8または9記載の膜型表面応力センサ。
  11. 前記リンカーは、架橋剤を含む、請求項8から10のいずれか一項に記載の膜型表面応力センサ。
  12. 前記リンカーの主鎖長は、1~15である、請求項8から11のいずれか一項に記載の膜型表面応力センサ。
  13. 前記アプタマーが、シランカップリング剤を介して、前記膜の表面に固定化されている、請求項1から12のいずれか一項に記載の膜型表面応力センサ。
  14. 前記センサ基板が、複数の支持領域を有し、
    前記複数の支持領域は、それぞれ、前記膜を支持する、請求項1から13のいずれか一項に記載の膜型表面応力センサ。
  15. 前記複数の膜型表面応力センサが、異なるターゲットに対するアプタマーが固定化されたセンサを含む、請求項14記載の膜型表面応力センサ。
  16. 前記センサ基板が、回路を有し、
    前記支持領域が複数のピエゾ抵抗素子を含み、
    前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路である、請求項1から15のいずれか一項に記載の膜型表面応力センサ。
  17. サンプル液に、請求項1から16のいずれか一項に記載の膜型表面応力センサを浸漬する工程と、
    液相中で前記膜型表面応力センサに電圧を印加する工程と、
    前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する工程とを含むことを特徴とするターゲットの分析方法。
  18. 前記印加工程において、前記液相が、前記サンプル液であり、
    前記浸漬工程の後、そのまま前記印加工程を行う、請求項17記載の分析方法。
PCT/JP2020/024068 2019-07-10 2020-06-19 膜型表面応力センサ、およびそれを用いた分析方法 WO2021006003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021530565A JP7367762B2 (ja) 2019-07-10 2020-06-19 膜型表面応力センサ、およびそれを用いた分析方法
GB2200241.4A GB2599858B (en) 2019-07-10 2020-06-19 Membrane-type surface stress sensor and analysis method using same
US17/625,388 US20220260568A1 (en) 2019-07-10 2020-06-19 Membrane-type surface-stress sensor and analysis method using the same
JP2023147993A JP2023165765A (ja) 2019-07-10 2023-09-12 膜型表面応力センサ、およびそれを用いた分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019128311 2019-07-10
JP2019-128311 2019-07-10
JP2020056897 2020-03-26
JP2020-056897 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021006003A1 true WO2021006003A1 (ja) 2021-01-14

Family

ID=74114744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024068 WO2021006003A1 (ja) 2019-07-10 2020-06-19 膜型表面応力センサ、およびそれを用いた分析方法

Country Status (4)

Country Link
US (1) US20220260568A1 (ja)
JP (2) JP7367762B2 (ja)
GB (1) GB2599858B (ja)
WO (1) WO2021006003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281674A1 (ja) * 2021-07-07 2023-01-12 日本電気株式会社 膜型表面応力センサおよび膜型表面応力センサの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506977A (ja) * 2003-09-23 2007-03-22 マサチューセッツ インスティチュート オブ テクノロジー つり式マイクロチャネル検出器の製造およびパッケージング
WO2013157581A1 (ja) * 2012-04-17 2013-10-24 独立行政法人物質・材料研究機構 両面被覆表面応力センサー
JP2016158592A (ja) * 2015-03-04 2016-09-05 株式会社デンソー 核酸、ミオグロビン検出用アプタマー、ミオグロビン検出方法、及びミオグロビン検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083409A1 (en) * 2004-02-26 2005-09-09 Nanonord A/S A sensor for use in detection of a target substance in a sample
JP2006214744A (ja) * 2005-02-01 2006-08-17 Gunma Univ バイオセンサ及びバイオセンサチップ
JPWO2014196606A1 (ja) * 2013-06-05 2017-02-23 国立研究開発法人物質・材料研究機構 抗体または抗原を固定化した膜型表面応力センサとその製造方法並びにこれを用いた免疫測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506977A (ja) * 2003-09-23 2007-03-22 マサチューセッツ インスティチュート オブ テクノロジー つり式マイクロチャネル検出器の製造およびパッケージング
WO2013157581A1 (ja) * 2012-04-17 2013-10-24 独立行政法人物質・材料研究機構 両面被覆表面応力センサー
JP2016158592A (ja) * 2015-03-04 2016-09-05 株式会社デンソー 核酸、ミオグロビン検出用アプタマー、ミオグロビン検出方法、及びミオグロビン検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281674A1 (ja) * 2021-07-07 2023-01-12 日本電気株式会社 膜型表面応力センサおよび膜型表面応力センサの製造方法

Also Published As

Publication number Publication date
US20220260568A1 (en) 2022-08-18
GB2599858A (en) 2022-04-13
JP2023165765A (ja) 2023-11-17
JPWO2021006003A1 (ja) 2021-01-14
JP7367762B2 (ja) 2023-10-24
GB2599858B (en) 2024-01-03

Similar Documents

Publication Publication Date Title
Samanta et al. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications
Eissa et al. A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish
JP2023165765A (ja) 膜型表面応力センサ、およびそれを用いた分析方法
Su et al. Label-free liquid crystal immunosensor for detection of HBD-2
US20120238036A1 (en) Method for immobilizing protein a on a self-assembled monolayer
JP2013024870A (ja) 糖化蛋白質測定用電極及びこれの製造方法
US8541005B2 (en) Cysteine-tagged streptococcal protein G variant
TWI321569B (en) Peptide and method for detecting amine using the same
ES2797391T3 (es) Procedimiento de funcionalización de superficies para la detección de analitos
WO2011078800A1 (en) Method for the detection of an analyte
WO2021192641A1 (ja) ターゲットの分析キットおよびそれを用いた分析方法
GhoshMoulick et al. Impedimetric detection of covalently attached biomolecules on field‐effect transistors
Ichihara et al. A novel approach of protein immobilization for protein chips using an oligo-cysteine tag
JP5202762B2 (ja) アルブミンを自己組織化膜上に固定する方法
WO2012013693A1 (en) Covalent immobilization of molecules comprising an amino group
US20100137155A1 (en) Biosensor, method for fabricating the same, detecting method utilizing the same
Dettin et al. Synthesis and chromatography-free purification of PNA-PEO conjugates for the functionalisation of gold sensors
WO2023281674A1 (ja) 膜型表面応力センサおよび膜型表面応力センサの製造方法
JP2009229319A (ja) 固定化方法、生理活性物質固定化担体及び固定用担体
Kruis et al. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions
KR20130074621A (ko) 단백질 g 다합체를 이용하며 반복 사용이 가능한 전기화학 면역 센서
EP3246698B1 (en) Electrochemical biosensors
KR101789141B1 (ko) 에틸렌 검출용 바이오센서 및 그 용도
Han et al. Self-Designed Antifouling Cyclic Peptides for Electrochemical Antigen Testing of COVID-19 in Human Blood
TW490562B (en) Preparation of hydrophilic piezoelectric sensing probe by self-assembled monolayer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202200241

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200619

122 Ep: pct application non-entry in european phase

Ref document number: 20836499

Country of ref document: EP

Kind code of ref document: A1