WO2021005864A1 - Wiring circuit board and method for manufacturing wiring circuit board - Google Patents

Wiring circuit board and method for manufacturing wiring circuit board Download PDF

Info

Publication number
WO2021005864A1
WO2021005864A1 PCT/JP2020/016551 JP2020016551W WO2021005864A1 WO 2021005864 A1 WO2021005864 A1 WO 2021005864A1 JP 2020016551 W JP2020016551 W JP 2020016551W WO 2021005864 A1 WO2021005864 A1 WO 2021005864A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
base insulating
thickness direction
layer
metal support
Prior art date
Application number
PCT/JP2020/016551
Other languages
French (fr)
Japanese (ja)
Inventor
良介 笹岡
理人 福島
裕紀 ▲桑▼山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080049537.0A priority Critical patent/CN114073172A/en
Publication of WO2021005864A1 publication Critical patent/WO2021005864A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a wiring circuit board and a method for manufacturing a wiring circuit board.
  • a base insulating layer having an image sensor opening, a conductor pattern having an image sensor connecting terminal, and a cover insulating layer are provided in this order, and the image sensor connecting terminal is exposed from the image sensor opening to cover the base insulating layer.
  • An image sensor mounting substrate that is arranged so as to be flush with the surface opposite to the insulating layer has been proposed (see, for example, Patent Document 1).
  • a base insulating layer is formed on a metal support, a conductor pattern is formed on the base insulating layer and a metal support exposed from the opening of the image pickup element, and then the conductor pattern is coated. It is manufactured by forming a cover insulating layer on the base insulating layer and then removing the metal support.
  • the terminal of the image sensor and the image sensor are on the surface of the base insulating layer opposite to the cover insulating layer, that is, the surface on which the metal support is provided (hereinafter referred to as the mounting surface).
  • the image sensor is mounted by connecting the connection terminals with solder bumps.
  • the cover insulating layer has a step for covering the conductor pattern, while the mounting surface of the base insulating layer is relatively flat because the conductor pattern and the cover insulating layer are not provided. Therefore, by mounting the image sensor on a relatively flat mounting surface, the position accuracy of the image sensor in the thickness direction of the image sensor mounting substrate is improved.
  • an underfill layer may be provided between the mounting surface and the image sensor from the viewpoint of improving the connection strength between the terminal of the image sensor and the image sensor connection terminal. ..
  • the mounted image sensor may be removed and reworked for replacement or reuse.
  • the underfill layer is pulled from the base insulating layer. It is desirable to peel it off.
  • the present invention provides a wiring circuit board capable of ensuring reworkability of electronic components while improving the adhesion of the second insulating layer to the first insulating layer, and a method for manufacturing a wiring circuit board with high manufacturing efficiency. provide.
  • the present invention [1] includes a first insulating layer containing polyimide and terminals arranged on one surface of the first insulating layer in the thickness direction, and is provided on one surface of the first insulating layer in the thickness direction. , Includes a wiring circuit board in which the amount of metal element detected by ESCA measurement is 1 atom% or more and less than 20 atom% of all detected elements.
  • the electronic component is mounted on one surface of the first insulating layer in the thickness direction, and the first When the second insulating layer is provided between the insulating layer and the electronic component, the adhesion of the second insulating layer to the first insulating layer can be improved.
  • the amount of metal element detected on one surface in the thickness direction of the first insulating layer is equal to or more than the above lower limit, so that the first insulating layer is subjected to.
  • the adhesion of the second insulating layer can be adjusted so that the second insulating layer can be peeled off from the first insulating layer, and the reworkability of the electronic component can be ensured.
  • the present invention [2] is described in the above [1], wherein the total of the Cr element detection amount and the Mn element detection amount in the ESCA measurement on one surface in the thickness direction of the first insulating layer is less than 10 atom%. Includes wiring circuit board.
  • the sum of the Cr element detection amount and the Mn element detection amount on one surface in the thickness direction of the first insulation layer is less than the above upper limit, so that the adhesion of the second insulation layer to the first insulation layer Can be surely improved.
  • the present invention [3] further includes a second insulating layer arranged on one surface in the thickness direction of the first insulating layer, and the second insulating layer adheres to one surface in the thickness direction of the first insulating layer.
  • the present invention [4] is arranged on one surface in the thickness direction of the first insulating layer, that is, a step of preparing a metal support layer, a step of forming a first insulating layer containing polyimide on the metal support layer, and a step of forming the first insulating layer.
  • Wiring including a step of forming a terminal, a step of removing the metal support layer, and a step of etching one surface in the thickness direction of the first insulating layer exposed by removing the metal support layer.
  • terminals are formed on one surface of the first insulating layer in the thickness direction, and then the metal support layer is removed to obtain the first insulating layer.
  • One side of the insulating layer in the thickness direction is exposed.
  • one surface of the first insulating layer exposed by removing the metal support layer in the thickness direction is etched.
  • the amount of metal element detected on one surface of the first insulating layer in the thickness direction can be adjusted to 1 atom% or more and less than 20 atom%.
  • the above-mentioned wiring circuit board can be efficiently manufactured even though it is a simple method.
  • the reworkability of electronic components can be ensured while improving the adhesion of the second insulating layer to the first insulating layer.
  • the above-mentioned wiring circuit board can be efficiently manufactured.
  • FIG. 1 shows a plan view of an image pickup device mounting board according to an embodiment of the wiring circuit board of the present invention.
  • FIG. 2 shows a cross-sectional view taken along the line AA of the image sensor mounting substrate shown in FIG. 3A to 3D show a manufacturing process diagram of the image pickup device mounting substrate shown in FIG. 2,
  • FIG. 3A is a metal support preparation step and a base insulating layer forming step
  • FIG. 3B is a conductor pattern forming step
  • FIG. 3C is.
  • FIG. 3D shows a metal support removing step.
  • 4E and 4F show a process diagram of mounting the image pickup device on the image pickup device mounting substrate following FIG. 3D
  • FIG. 4E shows the element connection step
  • FIG. 4F shows the underfill forming step.
  • FIG. 5 shows an image pickup apparatus including the image pickup device mounting substrate shown in FIG.
  • mounting board 1 As an embodiment of the wiring circuit board of the present invention will be described.
  • the mounting board 1 is a flexible wiring circuit board (FPC) for mounting an image pickup device 21 (see FIG. 4F described later) as an example of an electronic component, and is still provided with the image pickup device 21. Not done.
  • the mounting substrate 1 has a flat plate shape (sheet shape) that is substantially rectangular (rectangular) in a plan view.
  • the mounting board 1 includes a housing arrangement portion 2 and an external component connection portion 3.
  • the housing arrangement portion 2 is a portion in which the housing 22 (described later, see FIG. 5) and the image sensor 21 are arranged. Specifically, the housing arrangement portion 2 is a portion that overlaps with the housing 22 when the housing 22 is arranged on the mounting substrate 1 and projected in the thickness direction of the mounting substrate 1. A plurality of first terminals 10 (described later) as an example of terminals are arranged substantially in the center of the housing arrangement portion 2.
  • the external component connecting portion 3 is an area other than the housing arranging portion 2 and is a portion for connecting to the external component.
  • the external component connecting portion 3 is arranged continuously with the housing arranging portion 2 in the longitudinal direction of the mounting board 1.
  • a plurality of second terminals 11 (described later) are arranged in the external component connecting portion 3.
  • the mounting substrate 1 includes a base insulating layer 4 as an example of the first insulating layer, a conductor pattern 5, and a cover insulating layer 6 in order in the thickness direction of the base insulating layer 4.
  • the thickness direction of the base insulating layer 4 is simply described as the thickness direction.
  • the upper side of the paper surface is one side in the thickness direction of the base insulating layer 4, and the lower side of the paper surface is the other side in the thickness direction of the base insulating layer 4.
  • the base insulating layer 4 has the outer shape of the mounting substrate 1 and has a substantially rectangular shape in a plan view.
  • the base insulating layer 4 is not supported by the metal support 19 (see FIGS. 3A to 3C) described later, and the mounting substrate 1 does not include the metal support 19 (metal support layer).
  • the base insulating layer 4 includes a plurality of first openings 7 and a plurality of second openings 8.
  • the plurality of first openings 7 expose the first terminal 10 (described later) from one side in the thickness direction.
  • the plurality of first openings 7 are arranged in a central portion of the housing arrangement portion 2 so as to form a rectangular frame at intervals of each other.
  • the first opening 7 penetrates the base insulating layer 4 in the thickness direction and has a substantially circular shape in a plan view.
  • the first opening 7 has a tapered shape in which the cross-sectional area of the opening decreases toward one side in the thickness direction (see FIG. 2).
  • the plurality of second openings 8 expose the second terminal 11 (described later) from one side in the thickness direction.
  • the plurality of second openings 8 are arranged in the external component connecting portion 3 so as to be spaced apart from each other in the width direction of the mounting substrate 1.
  • the second opening 8 penetrates the base insulating layer 4 in the thickness direction and has a substantially rectangular shape (rectangular shape) in a plan view.
  • the base insulating layer 4 includes one surface 4A and the other surface 4B in the thickness direction.
  • One side 4A of the base insulating layer is located on one side in the thickness direction.
  • One surface 4A of the base insulating layer has a flat (smooth) shape, and the entire surface thereof is exposed.
  • a metal residue of the metal support 19 described later is attached to one surface 4A of the base insulating layer.
  • the metal residue examples include metal elements such as Si element, Cr element, Mn element, Fe element, Ni element, Mo element, and Cu element.
  • the metal residue can contain one or more metal elements.
  • the metal residue contains at least one metal element selected from the group consisting of Si element, Cr element, Mn element, Fe element, Ni element, Mo element and Cu element, preferably Cr element and Mn. Contains elements.
  • the amount of metal element detected by ESCA (Electron Spectroscopy for Chemical Analysis) measurement on one surface 4A of the base insulating layer 4 is 1 atom% or more and less than 20 atom%, preferably 10 atom% or less, more preferably. Is 5 atom% or less.
  • the metal element of the metal residue described above is detected, and each element (for example, C element, N element, O element, F element, etc.) constituting the base insulating layer is detected.
  • the ESCA measurement can be performed according to the method described in Examples described later, and the metal element detection amount can be calculated according to the method described in Examples described later (the same applies hereinafter).
  • the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4 can be improved. Further, if the amount of metal element detected on the one surface 4A is equal to or higher than the above lower limit, the underfill layer 18 draws the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4 from the base insulating layer 4. It can be adjusted so that it can be peeled off, and the reworkability of the image sensor 21 can be ensured.
  • the sum of the Cr element detection amount and the Mn element detection amount in the ESCA measurement on the one surface 4A of the base insulating layer 4 is, for example, 0.5 atom% or more, preferably 1 atom. % Or more, for example, less than 15 atom%, preferably less than 10 atom%, and more preferably 5 atom% or less.
  • the sum of the Cr element detection amount and the Mn element detection amount on the one surface 4A is less than the above upper limit, it is possible to surely improve the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4. it can.
  • the other surface 4B of the base insulating layer is located on the other side in the thickness direction and is located on the opposite side of the one surface 4A in the thickness direction.
  • the other surface 4B of the base insulating layer is covered with the cover insulating layer 6.
  • the above-mentioned metal residue does not adhere to the other surface 4B of the base insulating layer.
  • the amount of metal element detected by ESCA measurement on the other surface 4B of the base insulating layer 4 is, for example, less than 1 atom%, preferably 0 atom%, of all the detected elements.
  • Examples of the material of the base insulating layer 4 include polyimide. That is, the base insulating layer 4 contains polyimide.
  • the thickness of the base insulating layer 4 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, for example, 30 ⁇ m or less, preferably 12 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the conductor pattern 5 includes a plurality of first terminals 10, a plurality of second terminals 11 (see FIG. 1), and a plurality of wirings 9.
  • the plurality of first terminals 10 are arranged and arranged at the center of the housing arrangement portion 2 so as to form a rectangular frame at intervals from each other (see FIG. 1).
  • the plurality of first terminals 10 are provided so as to correspond to the plurality of terminals 25 (see FIG. 4E) of the mounted image sensor 21. Further, the plurality of first terminals 10 are provided corresponding to the plurality of first openings 7.
  • the first terminal 10 has a substantially circular shape in a plan view.
  • the first terminal 10 is filled in the first opening 7 and is exposed from the base insulating layer 4 when viewed from one side in the thickness direction.
  • One surface 10A of the first terminal 10 in the thickness direction has a flat (smooth) shape.
  • One surface 10A of the first terminal 10 in the thickness direction is substantially flush with one surface 4A of the base insulating layer 4.
  • the first terminal 10 is arranged on one surface 4A of the base insulating layer 4.
  • the plurality of second terminals 11 are aligned and arranged at the external component connecting portion 3 at intervals from each other.
  • the plurality of second terminals 11 are provided so as to correspond to a plurality of terminals (not shown) of the external component. Further, the plurality of second terminals 11 are provided corresponding to the plurality of second openings 8.
  • the second terminal 11 has a substantially rectangular shape (rectangular shape) in a plan view.
  • the second terminal 11 is filled in the second opening 8 and is exposed from the base insulating layer 4 when viewed from one side in the thickness direction.
  • One surface of the second terminal 11 in the thickness direction is substantially flush with one surface 4A of the base insulating layer 4.
  • the second terminal 11 is arranged on one surface 4A of the base insulating layer 4.
  • the plurality of wirings 9 are arranged on the other side in the thickness direction with respect to the base insulating layer 4, and specifically, are arranged on the other surface 4B of the base insulating layer 4.
  • the plurality of wirings 9 electrically connect the plurality of first terminals 10 and the plurality of second terminals 11. Specifically, one end of each wiring 9 falls from the other surface 4B into the first opening 7 and is continuous with each first terminal 10. The other end of each wiring 9 falls from the other surface 4B into the second opening 8 and is continuous with each second terminal 11.
  • Examples of the material of the conductor pattern 5 include metal materials such as copper, silver, gold, nickel or alloys containing them, and solder, and copper is preferable.
  • the thickness of the conductor pattern 5 is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, for example, 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the cover insulating layer 6 is arranged on the other side in the thickness direction with respect to the base insulating layer 4 so as to cover the conductor pattern 5, and specifically, is arranged on the other surface 4B of the base insulating layer 4.
  • the outer shape of the cover insulating layer 6 is formed to be the same as the outer shape of the base insulating layer 4.
  • Examples of the material of the cover insulating layer 6 include an insulating material.
  • Examples of the insulating material include synthetic resins such as polyimide, polyamideimide, acrylic, polyethernitrile, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, and polyvinyl chloride.
  • the insulating material preferably, the same polyimide as the base insulating layer 4 can be mentioned.
  • the thickness of the cover insulating layer 6 is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, for example, 30 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the thickness of such a mounting substrate 1 (the sum of the thicknesses of the base insulating layer 4, the conductor pattern 5, and the cover insulating layer 6) is, for example, 3 ⁇ m or more, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the method for manufacturing the mounting substrate 1 includes, for example, a metal support preparation step, a base insulating layer forming step, a conductor pattern forming step, a cover insulating layer forming step, and an etching step in this order.
  • the metal support 19 as an example of the metal support layer is prepared.
  • the metal support 19 has a flat plate shape that is substantially rectangular (rectangular) in a plan view.
  • the upper surface of the metal support 19 has a flat (smooth) shape.
  • the material of the metal support 19 contains the above-mentioned metal elements, and specific examples thereof include metal materials such as stainless steel, 42 alloy, and aluminum, preferably stainless steel.
  • the thickness of the metal support 19 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the base insulating layer 4 is formed on the upper surface of the metal support 19.
  • the thickness direction of the base insulating layer 4 shown in FIGS. 3A to 3D is opposite to the thickness direction of the base insulating layer 4 shown in FIG. 2, with the upper side of the paper surface being the other side in the thickness direction and the lower side of the paper surface being one side in the thickness direction.
  • one surface 4A of the base insulating layer 4 comes into contact with the metal support 19, and the other surface 4B of the base insulating layer 4 is located on the opposite side of the metal support 19 with respect to the one surface 4A.
  • a varnish containing a polyimide precursor is applied to the entire upper surface of the metal support 19 and dried to form a base film.
  • the base film is then exposed through a photomask having a pattern corresponding to the openings (first opening 7 and second opening 8). After that, the base film is developed and preferably heat-cured. As a result, the base insulating layer 4 containing the polyimide is formed on the metal support 19.
  • the conductor pattern 5 is formed in the above-mentioned pattern with the upper surface (the other surface 4B) of the base insulating layer 4 and the first opening 7 and the second opening 8. It is formed on the upper surface of the metal support 19 exposed from, for example, by an additive method or the like.
  • the plurality of first terminals 10, the plurality of second terminals 11, and the plurality of wirings 9 are collectively formed.
  • the first terminal 10 is arranged in the first opening 7 and comes into contact with the upper surface of the metal support 19.
  • the second terminal 11 is arranged in the second opening 8 and comes into contact with the upper surface of the metal support 19.
  • the first terminal 10 and the second terminal 11 are arranged on one surface 4A of the base insulating layer 4.
  • the wiring 9 is arranged on the other surface 4B of the base insulating layer 4.
  • the cover insulating layer 6 is formed on the upper surface (the other surface 4B) of the base insulating layer 4 so as to cover the conductor pattern 5.
  • the cover insulating layer forming step can be carried out in the same manner as the base insulating layer forming step.
  • the metal support 19 is removed in the metal support removing step.
  • a method for removing the metal support 19 for example, a method of peeling the metal support 19 from the lower surface (one surface 4A) of the base insulating layer 4, for example, etching the metal support 19 (for example, dry etching, wet etching, etc.). How to do it.
  • etching is preferable, and wet etching is more preferable.
  • the metal support 19 When the metal support 19 is wet-etched, for example, a ferric chloride solution is used as the etching solution. Then, for example, the metal support 19 is removed by spraying the etching solution from one side in the thickness direction with respect to the metal support 19.
  • a ferric chloride solution is used as the etching solution.
  • one surface 4A of the base insulating layer 4, one surface 10A of the first terminal 10, and one surface (not shown) of the second terminal 11 are exposed.
  • the mounting substrate 1 including the base insulating layer 4, the conductor pattern 5, and the cover insulating layer 6 is manufactured.
  • the metal residue of the metal support 19 having a metal element detection amount of 20 atom% or more in the ESCA measurement is attached to one surface 4A of the base insulating layer 4 of the mounting substrate 1.
  • one surface 4A of the base insulating layer 4 exposed by removing the metal support 19 is etched to remove the adhering metal residue.
  • Examples of the etching method include dry etching and wet etching, and preferably wet etching.
  • a dicerium ammonium nitrate solution an aqueous solution of caustic soda, a solution of potassium permanganate, a solution of sodium metasilicate, etc. are used as the etching solution. Further, among the etching solutions, a dimerium ammonium nitrate solution is preferable. Then, for example, the mounting substrate 1 is immersed in the etching solution to remove the metal residue adhering to the one surface 4A.
  • the temperature of the etching solution is, for example, 20 ° C. or higher, preferably 30 ° C. or higher, for example, 80 ° C. or lower, preferably 65 ° C. or lower.
  • the etching time (immersion time) is, for example, 1 minute or more, for example, 15 minutes or less, preferably 10 minutes or less.
  • the amount of metal element detected by ESCA measurement on one surface 4A of the base insulating layer 4 can be adjusted to less than 20 atom%. Further, when the temperature of the etching solution is not more than the above upper limit or the etching time is not more than the above upper limit, the amount of metal element detected in the ESCA measurement on one surface 4A of the base insulating layer 4 can be adjusted to 1 atom% or more.
  • the mounting substrate 1 taken out from the etching solution is washed with water as needed.
  • one surface 4A of the base insulating layer 4 is soft-etched, and the amount of metal element detected by ESCA measurement on the one surface 4A of the base insulating layer 4 is adjusted to 1 atom% or more and less than 20 atom%.
  • Such a mounting board 1 is provided with, for example, an image pickup device such as a camera module on which an image pickup device is mounted.
  • the method of mounting the image pickup device 21 on the mounting board 1 includes an element connection step and an underfill forming step.
  • the image sensor 21 is prepared.
  • the image sensor 21 is a semiconductor element that converts light into an electric signal, and examples thereof include solid-state image sensors such as CMOS sensors and CCD sensors.
  • the image pickup device 21 is formed in a flat plate shape having a substantially rectangular shape in a plan view, and includes silicon such as a Si substrate, a photodiode (photoelectric conversion element) arranged on the silicon substrate, and a color filter (not shown).
  • the image sensor 21 includes a plurality of terminals 25.
  • the plurality of terminals 25 correspond to the plurality of first terminals 10.
  • a bonding material 26 such as a solder bump is arranged on the first terminal 10 of the mounting board 1, and the first terminal 10 of the mounting board 1 and the terminal 25 of the image sensor 21 are electrically connected via the bonding material 26. Connecting.
  • the image sensor 21 is arranged at the center of the housing arrangement portion 2 of the mounting substrate 1, and is flip-chip mounted on the mounting substrate 1. At this time, the image pickup device 21 is located on one side in the thickness direction with a distance from the one side surface 4A of the base insulating layer 4.
  • an underfill layer 18 as an example of the second insulating layer is formed between the image pickup device 21 and the base insulating layer 4.
  • a liquid resin composition is injected between the image pickup device 21 and one surface 4A of the base insulating layer 4, and then heat-cured.
  • Examples of the material of the underfill layer 18 include resin materials such as epoxy resin, polyurethane resin, silicone resin, and polyester resin, and epoxy resin is preferable.
  • the material of the underfill layer 18 can be used alone or in combination of two or more.
  • the heating temperature is appropriately changed depending on the material of the underfill layer 18, but is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, for example, 150 ° C. or lower, preferably 130 ° C. or lower.
  • the heating time is appropriately changed depending on the material of the underfill layer 18, but is, for example, 10 minutes or more, preferably 30 minutes or more, for example, 120 minutes or less, preferably 60 minutes or less.
  • the underfill layer 18 is formed between the image pickup device 21 and the one surface 4A of the base insulating layer 4.
  • the underfill layer 18 is arranged on one surface 4A of the base insulating layer 4. That is, the mounting substrate 1 on which the image pickup device 21 is mounted includes the underfill layer 18.
  • the adhesion of the underfill layer 18 to the one surface 4A of the base insulating layer 4 exceeds, for example, 20 gf / cm, preferably 50 gf / cm or more, more preferably 100 gf / cm or more, for example, 200 gf / cm or less. Is.
  • the adhesion can be measured according to the method described in Examples described later (the same applies hereinafter).
  • the adhesion of the underfill layer 18 is equal to or greater than the above lower limit, it is possible to prevent the underfill layer 18 from undesirably peeling from one surface 4A of the base insulating layer 4.
  • the adhesion of the underfill layer 18 is equal to or less than the above upper limit, the reworkability of the image pickup device 21 can be reliably ensured.
  • the mounting substrate 1, the image sensor 21, and the underfill layer 18 form an image pickup unit 27.
  • the mounting substrate 1 is not an image pickup device described later, but a component of the image pickup device, that is, a component for manufacturing the image pickup device, and is an industrially applicable device.
  • the mounting substrate 1 may be distributed as a single component that does not include an image sensor, or may be distributed as an image pickup unit on which an image sensor is mounted.
  • Imaging Device Next, an imaging device 20 including an imaging unit 27 will be described with reference to FIG.
  • the image pickup device 20 includes an image pickup unit 27, a housing 22, an optical lens 23, and a filter 24.
  • the image pickup unit 27 includes a mounting substrate 1, an image pickup element 21, and an underfill layer 18.
  • the housing 22 is arranged in the housing arrangement portion 2 of the mounting substrate 1 so as to surround the housing 22 with a distance from the image sensor 21.
  • the housing 22 has a tubular shape having a substantially rectangular shape in a plan view.
  • the optical lens 23 is arranged on the opposite side of the mounting substrate 1 with respect to the image pickup element 21 at intervals in the thickness direction.
  • the optical lens 23 is formed in a substantially circular shape in a plan view, and is fixed to the housing 22 so that light from the outside reaches the image pickup device 21.
  • the filter 24 is arranged between the image sensor 21 and the optical lens 23 in the thickness direction at intervals from the image sensor 21, and is fixed to the housing 22.
  • the present inventors have studied various findings and found that the adhesion of the underfill layer 18 depends on the metal residue of the metal support 19 adhering to one surface 4A of the base insulating layer 4. Completed the invention.
  • the amount of metal element detected on one surface 4A of the base insulating layer 4 is less than the above upper limit. Therefore, the adhesion of the underfill layer 18 to the base insulating layer 4 can be improved.
  • the amount of metal element detected on one surface 4A of the base insulating layer 4 is equal to or higher than the above lower limit. Therefore, when the image pickup device 21 mounted on the mounting board 1 is removed from the mounting board 1 and reworked, the underfill layer 18 can be peeled off from the base insulating layer 4. As a result, the reworkability of the image sensor 21 can be ensured.
  • the sum of the Cr element detection amount and the Mn element detection amount on one surface 4A of the base insulating layer 4 is less than the above upper limit. Therefore, it is possible to surely improve the adhesion of the underfill layer 18 to the base insulating layer 4.
  • the adhesion of the underfill layer 18 to the base insulating layer 4 is equal to or higher than the above lower limit. Therefore, it is possible to prevent the underfill layer 18 from undesirably peeling from the base insulating layer 4.
  • the first terminal 10 is formed on one surface 4A of the base insulating layer 4. Then, the metal support 19 is removed to expose one surface 4A of the base insulating layer 4. Then, one surface 4A of the base insulating layer 4 exposed by removing the metal support 19 is etched.
  • the amount of metal element detected on one surface 4A of the base insulating layer 4 can be adjusted within the above range.
  • the above-mentioned mounting substrate 1 can be efficiently manufactured by a simple method.
  • the image pickup device mounting board 1 (mounting board 1) for mounting the image pickup device 21 is described as the wiring circuit board of the present invention, but the application of the wiring circuit board is not limited to this. ..
  • it is suitably used for FPCs used in smartphones, personal computers, game machines, and the like.
  • the mounting substrate 1 layers adjacent to each other in the thickness direction are adhesive-less FPCs that are adhered without an adhesive, but the present invention is not limited to this.
  • An adhesive layer may be provided between layers adjacent to each other in the thickness direction.
  • the mounting substrate 1 is an adhesive-less FPC as in the above embodiment.
  • the mounting board 1 includes a base insulating layer 4, a conductor pattern 5, and a cover insulating layer 6, but the configuration of the mounting board 1 is not limited to this.
  • the mounting substrate 1 may be further provided with a shield layer that is arranged on one side of the cover insulating layer 6 in the thickness direction and blocks electromagnetic waves from the outside, and a second cover insulating layer that covers the shield layer.
  • the image pickup element 21 is flip-chip mounted on the mounting board 1, but can also be mounted on the mounting board 1 by wire bonding.
  • a reference example and a reference comparative example are shown below, and the present invention will be described in more detail.
  • the present invention is not limited to Reference Examples and Reference Comparative Examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned "Form for carrying out the invention", and the compounding ratios corresponding to them ( Substitute for the upper limit (numerical value defined as "less than or equal to” or “less than”) or lower limit (numerical value defined as "greater than or equal to” or “excess”) such as content ratio), physical property value, parameter, etc. it can.
  • Reference comparison example 1 A metal support made of stainless steel was prepared, a polyimide precursor solution was applied to the upper surface of the metal support, and then dried at 80 ° C. for 10 minutes to form a base film (polyimide precursor film).
  • the base film was exposed and developed, and then cured by heating at 360 ° C. for 1 hour in a nitrogen atmosphere. As a result, a base insulating layer containing polyimide was formed.
  • the metal support was removed by spraying an aqueous solution of ferric chloride (etching solution) on the metal support. As a result, one side of the base insulating layer was exposed.
  • etching solution aqueous solution of ferric chloride
  • Reference Example 1 The base insulating layer prepared in the same manner as in Reference Comparative Example 1 was immersed in a cerium ammonium nitrate solution (etching solution) adjusted to 40 ° C. for 3 minutes. Then, the base insulating layer was washed with water and dried.
  • etching solution cerium ammonium nitrate solution
  • each base insulating layer of the Reference Comparative Example and the Reference Example is cut out to a size of 1 cm ⁇ 1 cm, and each base insulating layer is made of a molybdenum (Mo) plate so that the measurement target surface faces the analyzer of the following device. It was fixed by pressing it on the sample table. The sample table has a flat plate shape. Then, under the following conditions, wide scan measurement was performed and qualitative analysis was performed. In addition, narrow scan measurement was carried out for each element shown in Table 1 to calculate the element ratio (atomic%). The results are shown in Table 1.
  • a liquid epoxy resin composition was applied to the measurement target surfaces of the base insulating layers of Reference Comparative Examples and Reference Examples, and then dried at 125 ° C. for 10 minutes to form an underfill layer.
  • the thickness of the underfill layer was about 40 ⁇ m.
  • a double-sided tape (No. 5000ns, manufactured by Nitto Denko Corporation) was attached to the surface of the underfill layer opposite to the base insulating layer to prepare a laminate.
  • the laminate includes a base insulating layer, an underfill layer, and double-sided tape in this order in the thickness direction.
  • the laminate was cut into a flat band having a width of 5 mm, and the laminate was fixed to the sample table provided with the following device with double-sided tape.
  • the sample table had a cylindrical shape that was rotatably supported, and the outer diameter of the sample table was 20 cm. Further, the laminated body was adhered to the peripheral surface of the sample table.
  • the amount of metal element detected by ESCA measurement on one surface of the base insulating layer is 1 atom% or more, and the adhesion of the underfill layer to the base insulating layer is adjusted to 200 gf / cm or less. .. If the adhesion exceeds 200 gf / cm as in the other surface of Reference Comparative Example 1, it is difficult to peel off the underfill layer from the base insulating layer at the time of reworking the electronic component. In this respect, in Reference Example 1, the adhesion is 200 gf / cm, and the reworkability of the electronic component can be ensured.
  • the wiring circuit board of the present invention is used in various applications such as an image sensor mounting board, a flexible wiring circuit board used in a smartphone, a personal computer, a game machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention comprises, on a mount board 1, a base insulating layer 4 that contains polyimide and a first terminal 10 that is disposed on one surface 4A of the base insulating layer 4 in the thickness direction. The amount of metal element detection by ESCA measurement on the one surface 4A of the base insulating layer 4 in the thickness direction among all detected elements is adjusted to 1 atom% or more and less than 20 atom%.

Description

配線回路基板および配線回路基板の製造方法Wiring circuit board and manufacturing method of wiring circuit board
 本発明は、配線回路基板および配線回路基板の製造方法に関する。 The present invention relates to a wiring circuit board and a method for manufacturing a wiring circuit board.
 従来、撮像素子などの電子部品が実装される配線回路基板が知られている。 Conventionally, a wiring circuit board on which electronic components such as an image sensor are mounted is known.
 例えば、撮像素子開口部を有するベース絶縁層と、撮像素子接続端子を有する導体パターンと、カバー絶縁層とを順に備え、撮像素子接続端子が、撮像素子開口部から露出され、ベース絶縁層におけるカバー絶縁層と反対側の表面と面一となるように配置される撮像素子実装基板が提案されている(例えば、特許文献1参照。)。 For example, a base insulating layer having an image sensor opening, a conductor pattern having an image sensor connecting terminal, and a cover insulating layer are provided in this order, and the image sensor connecting terminal is exposed from the image sensor opening to cover the base insulating layer. An image sensor mounting substrate that is arranged so as to be flush with the surface opposite to the insulating layer has been proposed (see, for example, Patent Document 1).
 そのような撮像素子実装基板は、金属支持体上にベース絶縁層を形成し、ベース絶縁層上と撮像素子開口部から露出する金属支持体上とに導体パターンを形成した後、導体パターンを被覆するようにベース絶縁層上にカバー絶縁層を形成し、次いで、金属支持体を除去することにより製造される。 In such an image pickup element mounting substrate, a base insulating layer is formed on a metal support, a conductor pattern is formed on the base insulating layer and a metal support exposed from the opening of the image pickup element, and then the conductor pattern is coated. It is manufactured by forming a cover insulating layer on the base insulating layer and then removing the metal support.
 また、撮像素子実装基板には、ベース絶縁層におけるカバー絶縁層と反対側の表面、つまり金属支持体が設けられていた表面(以下、実装面とする。)において、撮像素子の端子と撮像素子接続端子とがソルダーバンプにより接続されて、撮像素子が実装される。 Further, on the image sensor mounting substrate, the terminal of the image sensor and the image sensor are on the surface of the base insulating layer opposite to the cover insulating layer, that is, the surface on which the metal support is provided (hereinafter referred to as the mounting surface). The image sensor is mounted by connecting the connection terminals with solder bumps.
 ここで、カバー絶縁層は、導体パターンを被覆するために段差を有する一方、ベース絶縁層の実装面は、導体パターンおよびカバー絶縁層が設けられておらず、比較的平坦となる。そのため、撮像素子を比較的平坦な実装面に実装することで、撮像素子実装基板の厚み方向における撮像素子の位置精度の向上を図っている。 Here, the cover insulating layer has a step for covering the conductor pattern, while the mounting surface of the base insulating layer is relatively flat because the conductor pattern and the cover insulating layer are not provided. Therefore, by mounting the image sensor on a relatively flat mounting surface, the position accuracy of the image sensor in the thickness direction of the image sensor mounting substrate is improved.
特開2018-190787号公報JP-A-2018-190787
 このような特許文献1に記載の撮像素子実装基板では、撮像素子の端子と撮像素子接続端子との接続強度向上の観点から、実装面と撮像素子との間にアンダーフィル層を設ける場合がある。 In such an image sensor mounting substrate described in Patent Document 1, an underfill layer may be provided between the mounting surface and the image sensor from the viewpoint of improving the connection strength between the terminal of the image sensor and the image sensor connection terminal. ..
 しかし、特許文献1に記載の撮像素子実装基板では、ベース絶縁層に対するアンダーフィル層の密着性を十分に確保できず、アンダーフィル層がベース絶縁層から剥離するおそれがある。そこで、ベース絶縁層に対するアンダーフィル層の密着性の向上が検討される。 However, in the image sensor mounting substrate described in Patent Document 1, the adhesion of the underfill layer to the base insulating layer cannot be sufficiently ensured, and the underfill layer may be peeled off from the base insulating layer. Therefore, improvement of the adhesion of the underfill layer to the base insulating layer is examined.
 一方、特許文献1に記載されるような撮像素子実装基板では、実装した撮像素子を、交換や再利用のために取り外してリワークする場合があり、この場合、アンダーフィル層をベース絶縁層から引き剥がすことが望まれる。 On the other hand, in an image sensor mounting substrate as described in Patent Document 1, the mounted image sensor may be removed and reworked for replacement or reuse. In this case, the underfill layer is pulled from the base insulating layer. It is desirable to peel it off.
 このとき、ベース絶縁層とアンダーフィル層との密着性が過度に高いと、アンダーフィル層をベース絶縁層から引き剥がすことが困難となり、ひいては、撮像素子のリワーク性を確保できないという不具合がある。 At this time, if the adhesion between the base insulating layer and the underfill layer is excessively high, it becomes difficult to peel off the underfill layer from the base insulating layer, and there is a problem that the reworkability of the image sensor cannot be ensured.
 つまり、特許文献1に記載されるような撮像素子実装基板には、アンダーフィル層をベース絶縁層に安定して密着できながら、撮像素子のリワーク時においてアンダーフィル層をベース絶縁層から引き剥がしたいという要望がある。 That is, it is desired to peel off the underfill layer from the base insulating layer at the time of reworking the image sensor while the underfill layer can be stably adhered to the base insulating layer on the image sensor mounting substrate as described in Patent Document 1. There is a request.
 本発明は、第1絶縁層に対する第2絶縁層の密着性の向上を図ることができながら、電子部品のリワーク性を確保できる配線回路基板、および、製造効率のよい配線回路基板の製造方法を提供する。 The present invention provides a wiring circuit board capable of ensuring reworkability of electronic components while improving the adhesion of the second insulating layer to the first insulating layer, and a method for manufacturing a wiring circuit board with high manufacturing efficiency. provide.
 本発明[1]は、ポリイミドを含有する第1絶縁層と、前記第1絶縁層の厚み方向の一方面に配置される端子と、を備え、前記第1絶縁層の厚み方向の一方面における、ESCA測定での金属元素検出量が、全検出元素のうち、1atom%以上20atom%未満である、配線回路基板を含んでいる。 The present invention [1] includes a first insulating layer containing polyimide and terminals arranged on one surface of the first insulating layer in the thickness direction, and is provided on one surface of the first insulating layer in the thickness direction. , Includes a wiring circuit board in which the amount of metal element detected by ESCA measurement is 1 atom% or more and less than 20 atom% of all detected elements.
 このような構成によれば、第1絶縁層の厚み方向の一方面における金属元素検出量が上記上限未満であるので、第1絶縁層の厚み方向の一方面に電子部品を実装し、第1絶縁層と電子部品との間に第2絶縁層を設けたときに、第1絶縁層に対する第2絶縁層の密着性の向上を図ることができる。 According to such a configuration, since the amount of metal element detected on one surface of the first insulating layer in the thickness direction is less than the above upper limit, the electronic component is mounted on one surface of the first insulating layer in the thickness direction, and the first When the second insulating layer is provided between the insulating layer and the electronic component, the adhesion of the second insulating layer to the first insulating layer can be improved.
 また、配線回路基板に実装した電子部品を、配線回路基板から取り外してリワークする場合、第1絶縁層の厚み方向の一方面における金属元素検出量が上記下限以上であるので、第1絶縁層に対する第2絶縁層の密着性を、第2絶縁層が第1絶縁層から引き剥がし可能となるように調整でき、電子部品のリワーク性を確保することができる。 Further, when the electronic component mounted on the wiring circuit board is removed from the wiring circuit board and reworked, the amount of metal element detected on one surface in the thickness direction of the first insulating layer is equal to or more than the above lower limit, so that the first insulating layer is subjected to. The adhesion of the second insulating layer can be adjusted so that the second insulating layer can be peeled off from the first insulating layer, and the reworkability of the electronic component can be ensured.
 本発明[2]は、前記第1絶縁層の厚み方向の一方面における、ESCA測定でのCr元素検出量およびMn元素検出量の総和が、10atom%未満である、上記[1]に記載の配線回路基板を含む。 The present invention [2] is described in the above [1], wherein the total of the Cr element detection amount and the Mn element detection amount in the ESCA measurement on one surface in the thickness direction of the first insulating layer is less than 10 atom%. Includes wiring circuit board.
 このような構成によれば、第1絶縁層の厚み方向の一方面におけるCr元素検出量およびMn元素検出量の総和が上記上限未満であるので、第1絶縁層に対する第2絶縁層の密着性の向上を確実に図ることができる。 According to such a configuration, the sum of the Cr element detection amount and the Mn element detection amount on one surface in the thickness direction of the first insulation layer is less than the above upper limit, so that the adhesion of the second insulation layer to the first insulation layer Can be surely improved.
 本発明[3]は、前記第1絶縁層の厚み方向の一方面に配置される第2絶縁層を、さらに備え、前記第1絶縁層の厚み方向の一方面に対する前記第2絶縁層の密着力が、50gf/cm以上である、上記[1]または[2]に記載の配線回路基板を含む。 The present invention [3] further includes a second insulating layer arranged on one surface in the thickness direction of the first insulating layer, and the second insulating layer adheres to one surface in the thickness direction of the first insulating layer. The wiring circuit board according to the above [1] or [2], wherein the force is 50 gf / cm or more.
 このような構成によれば、第1絶縁層に対する第2絶縁層の密着力が上記下限以上であるので、第2絶縁層が第1絶縁層から所望せずに剥離することを抑制できる。 According to such a configuration, since the adhesion of the second insulating layer to the first insulating layer is equal to or higher than the above lower limit, it is possible to prevent the second insulating layer from undesirably peeling from the first insulating layer.
 本発明[4]は、金属支持層を準備する工程と、前記金属支持層上にポリイミドを含有する第1絶縁層を形成する工程と、前記第1絶縁層の厚み方向の一方面に配置される端子を形成する工程と、前記金属支持層を除去する工程と、前記金属支持層の除去により露出された前記第1絶縁層の厚み方向の一方面を、エッチングする工程と、を含む、配線回路基板の製造方法を含む。 The present invention [4] is arranged on one surface in the thickness direction of the first insulating layer, that is, a step of preparing a metal support layer, a step of forming a first insulating layer containing polyimide on the metal support layer, and a step of forming the first insulating layer. Wiring including a step of forming a terminal, a step of removing the metal support layer, and a step of etching one surface in the thickness direction of the first insulating layer exposed by removing the metal support layer. Includes a method of manufacturing a circuit board.
 このような方法によれば、金属支持層上に第1絶縁層を形成した後、第1絶縁層の厚み方向の一方面に端子を形成し、次いで、金属支持層を除去して、第1絶縁層の厚み方向の一方面を露出させる。そして、金属支持層の除去により露出された第1絶縁層の厚み方向の一方面をエッチングする。 According to such a method, after forming the first insulating layer on the metal support layer, terminals are formed on one surface of the first insulating layer in the thickness direction, and then the metal support layer is removed to obtain the first insulating layer. One side of the insulating layer in the thickness direction is exposed. Then, one surface of the first insulating layer exposed by removing the metal support layer in the thickness direction is etched.
 そのため、第1絶縁層の厚み方向の一方面における金属元素検出量を1atom%以上20atom%未満に調整することができる。その結果、簡易な方法でありながら、上記した配線回路基板を効率よく製造することができる。 Therefore, the amount of metal element detected on one surface of the first insulating layer in the thickness direction can be adjusted to 1 atom% or more and less than 20 atom%. As a result, the above-mentioned wiring circuit board can be efficiently manufactured even though it is a simple method.
 本発明の配線回路基板によれば、第1絶縁層に対する第2絶縁層の密着性の向上を図ることができながら、電子部品のリワーク性を確保できる。 According to the wiring circuit board of the present invention, the reworkability of electronic components can be ensured while improving the adhesion of the second insulating layer to the first insulating layer.
 本発明の配線回路基板の製造方法によれば、上記した配線回路基板を効率よく製造することができる。 According to the method for manufacturing a wiring circuit board of the present invention, the above-mentioned wiring circuit board can be efficiently manufactured.
図1は、本発明の配線回路基板の一実施形態である撮像素子実装基板の平面図を示す。FIG. 1 shows a plan view of an image pickup device mounting board according to an embodiment of the wiring circuit board of the present invention. 図2は、図1に示す撮像素子実装基板におけるA-A断面図を示す。FIG. 2 shows a cross-sectional view taken along the line AA of the image sensor mounting substrate shown in FIG. 図3A~図3Dは、図2に示す撮像素子実装基板の製造工程図を示し、図3Aが、金属支持体準備工程およびベース絶縁層形成工程、図3Bが、導体パターン形成工程、図3Cが、カバー絶縁層形成工程、図3Dが、金属支持体除去工程を示す。3A to 3D show a manufacturing process diagram of the image pickup device mounting substrate shown in FIG. 2, FIG. 3A is a metal support preparation step and a base insulating layer forming step, FIG. 3B is a conductor pattern forming step, and FIG. 3C is. , Cover insulating layer forming step, FIG. 3D shows a metal support removing step. 図4Eおよび図4Fは、図3Dに続いて、撮像素子を撮像素子実装基板に実装する工程図を示し、図4Eが、素子接続工程、図4Fが、アンダーフィル形成工程を示す。4E and 4F show a process diagram of mounting the image pickup device on the image pickup device mounting substrate following FIG. 3D, FIG. 4E shows the element connection step, and FIG. 4F shows the underfill forming step. 図5は、図2に示す撮像素子実装基板を備える撮像装置を示す。FIG. 5 shows an image pickup apparatus including the image pickup device mounting substrate shown in FIG.
 1.撮像素子実装基板
 図1および図2を参照して、本発明の配線回路基板の一実施形態としての撮像素子実装基板1(以下、実装基板1とする。)を説明する。
1. 1. Image sensor mounting board With reference to FIGS. 1 and 2, the image sensor mounting board 1 (hereinafter referred to as mounting board 1) as an embodiment of the wiring circuit board of the present invention will be described.
 図1に示すように、実装基板1は、電子部品の一例としての撮像素子21(後述、図4F参照)を実装するためのフレキシブル配線回路基板(FPC)であって、撮像素子21を未だ備えていない。実装基板1は、平面視略矩形(長方形状)の平板形状(シート形状)を有している。 As shown in FIG. 1, the mounting board 1 is a flexible wiring circuit board (FPC) for mounting an image pickup device 21 (see FIG. 4F described later) as an example of an electronic component, and is still provided with the image pickup device 21. Not done. The mounting substrate 1 has a flat plate shape (sheet shape) that is substantially rectangular (rectangular) in a plan view.
 実装基板1は、ハウジング配置部2、および、外部部品接続部3を備える。 The mounting board 1 includes a housing arrangement portion 2 and an external component connection portion 3.
 ハウジング配置部2は、ハウジング22(後述、図5参照)や撮像素子21が配置される部分である。具体的には、ハウジング配置部2は、ハウジング22が実装基板1に配置された場合において、実装基板1の厚み方向に投影したときに、ハウジング22と重複する部分である。ハウジング配置部2の略中央には、端子の一例としての第1端子10(後述)が複数配置されている。 The housing arrangement portion 2 is a portion in which the housing 22 (described later, see FIG. 5) and the image sensor 21 are arranged. Specifically, the housing arrangement portion 2 is a portion that overlaps with the housing 22 when the housing 22 is arranged on the mounting substrate 1 and projected in the thickness direction of the mounting substrate 1. A plurality of first terminals 10 (described later) as an example of terminals are arranged substantially in the center of the housing arrangement portion 2.
 外部部品接続部3は、ハウジング配置部2以外の領域であって、外部部品と接続するための部分である。外部部品接続部3は、実装基板1の長手方向にハウジング配置部2と連続して配置されている。外部部品接続部3には、第2端子11(後述)が複数配置されている。 The external component connecting portion 3 is an area other than the housing arranging portion 2 and is a portion for connecting to the external component. The external component connecting portion 3 is arranged continuously with the housing arranging portion 2 in the longitudinal direction of the mounting board 1. A plurality of second terminals 11 (described later) are arranged in the external component connecting portion 3.
 図2に示すように、実装基板1は、第1絶縁層の一例としてのベース絶縁層4と、導体パターン5と、カバー絶縁層6とを、ベース絶縁層4の厚み方向に順に備える。なお、以下では、ベース絶縁層4の厚み方向を単に厚み方向として記載する。図2において、紙面上側がベース絶縁層4の厚み方向の一方側であり、紙面下側がベース絶縁層4の厚み方向の他方側である。 As shown in FIG. 2, the mounting substrate 1 includes a base insulating layer 4 as an example of the first insulating layer, a conductor pattern 5, and a cover insulating layer 6 in order in the thickness direction of the base insulating layer 4. In the following, the thickness direction of the base insulating layer 4 is simply described as the thickness direction. In FIG. 2, the upper side of the paper surface is one side in the thickness direction of the base insulating layer 4, and the lower side of the paper surface is the other side in the thickness direction of the base insulating layer 4.
 図1に示すように、ベース絶縁層4は、実装基板1の外形をなし、平面視略矩形状を有する。ベース絶縁層4は、後述する金属支持体19(図3A~図3C参照)に支持されておらず、実装基板1は、金属支持体19(金属支持層)を備えない。 As shown in FIG. 1, the base insulating layer 4 has the outer shape of the mounting substrate 1 and has a substantially rectangular shape in a plan view. The base insulating layer 4 is not supported by the metal support 19 (see FIGS. 3A to 3C) described later, and the mounting substrate 1 does not include the metal support 19 (metal support layer).
 ベース絶縁層4は、複数の第1開口部7と、複数の第2開口部8とを備える。 The base insulating layer 4 includes a plurality of first openings 7 and a plurality of second openings 8.
 複数の第1開口部7は、第1端子10(後述)を厚み方向一方側から露出する。複数の第1開口部7は、ハウジング配置部2の中央部に、矩形枠状となるように、互いに間隔を隔てて整列配置されている。第1開口部7は、ベース絶縁層4を厚み方向に貫通し、平面視略円形状を有している。第1開口部7は、厚み方向一方側に向かうに従って開口断面積が小さくなるテーパ形状を有する(図2参照)。 The plurality of first openings 7 expose the first terminal 10 (described later) from one side in the thickness direction. The plurality of first openings 7 are arranged in a central portion of the housing arrangement portion 2 so as to form a rectangular frame at intervals of each other. The first opening 7 penetrates the base insulating layer 4 in the thickness direction and has a substantially circular shape in a plan view. The first opening 7 has a tapered shape in which the cross-sectional area of the opening decreases toward one side in the thickness direction (see FIG. 2).
 複数の第2開口部8は、第2端子11(後述)を厚み方向一方側から露出する。複数の第2開口部8は、外部部品接続部3において、実装基板1の幅方向に互いに間隔を隔てて整列配置されている。第2開口部8は、ベース絶縁層4を厚み方向に貫通し、平面視略矩形状(長方形状)を有している。 The plurality of second openings 8 expose the second terminal 11 (described later) from one side in the thickness direction. The plurality of second openings 8 are arranged in the external component connecting portion 3 so as to be spaced apart from each other in the width direction of the mounting substrate 1. The second opening 8 penetrates the base insulating layer 4 in the thickness direction and has a substantially rectangular shape (rectangular shape) in a plan view.
 また、図2に示すように、ベース絶縁層4は、厚み方向において、一方面4Aと、他方面4Bとを備える。 Further, as shown in FIG. 2, the base insulating layer 4 includes one surface 4A and the other surface 4B in the thickness direction.
 ベース絶縁層の一方面4Aは、厚み方向の一方側に位置する。ベース絶縁層の一方面4Aは、平坦(平滑)状を有し、その全体が露出されている。ベース絶縁層の一方面4Aには、後述する金属支持体19の金属残渣が付着している。 One side 4A of the base insulating layer is located on one side in the thickness direction. One surface 4A of the base insulating layer has a flat (smooth) shape, and the entire surface thereof is exposed. A metal residue of the metal support 19 described later is attached to one surface 4A of the base insulating layer.
 金属残渣として、例えば、Si元素、Cr元素、Mn元素、Fe元素、Ni元素、Mo元素、Cu元素などの金属元素が挙げられる。金属残渣は、1種または2種以上の金属元素を含むことができる。言い換えれば、金属残渣は、Si元素、Cr元素、Mn元素、Fe元素、Ni元素、Mo元素およびCu元素からなる群から選択される少なくとも1種の金属元素を含み、好ましくは、Cr元素およびMn元素を含む。 Examples of the metal residue include metal elements such as Si element, Cr element, Mn element, Fe element, Ni element, Mo element, and Cu element. The metal residue can contain one or more metal elements. In other words, the metal residue contains at least one metal element selected from the group consisting of Si element, Cr element, Mn element, Fe element, Ni element, Mo element and Cu element, preferably Cr element and Mn. Contains elements.
 ベース絶縁層4の一方面4Aにおける、ESCA(Electron Spectroscopy for Chemical Analysis)測定での金属元素検出量は、全検出元素のうち、1atom%以上、20atom%未満、好ましくは、10atom%以下、さらに好ましくは、5atom%以下である。 The amount of metal element detected by ESCA (Electron Spectroscopy for Chemical Analysis) measurement on one surface 4A of the base insulating layer 4 is 1 atom% or more and less than 20 atom%, preferably 10 atom% or less, more preferably. Is 5 atom% or less.
 ESCA測定では、上記した金属残渣の金属元素が検出されるとともに、ベース絶縁層を構成する各元素(例えば、C元素、N元素、O元素、F元素など)が検出される。ESCA測定は、後述する実施例に記載の方法に準拠して測定でき、金属元素検出量は、後述する実施例に記載の方法に準拠して算出できる(以下同様)。 In the ESCA measurement, the metal element of the metal residue described above is detected, and each element (for example, C element, N element, O element, F element, etc.) constituting the base insulating layer is detected. The ESCA measurement can be performed according to the method described in Examples described later, and the metal element detection amount can be calculated according to the method described in Examples described later (the same applies hereinafter).
 一方面4Aにおける金属元素検出量が上記上限未満であれば、ベース絶縁層4の一方面4Aに対するアンダーフィル層18(後述)の密着性の向上を図ることができる。また、一方面4Aにおける金属元素検出量が上記下限以上であれば、ベース絶縁層4の一方面4Aに対するアンダーフィル層18(後述)の密着性を、アンダーフィル層18がベース絶縁層4から引き剥がし可能となるように調整でき、撮像素子21のリワーク性を確保することができる。 If the amount of metal element detected on the one surface 4A is less than the above upper limit, the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4 can be improved. Further, if the amount of metal element detected on the one surface 4A is equal to or higher than the above lower limit, the underfill layer 18 draws the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4 from the base insulating layer 4. It can be adjusted so that it can be peeled off, and the reworkability of the image sensor 21 can be ensured.
 金属残渣がCr元素およびMn元素を含む場合、ベース絶縁層4の一方面4AにおけるESCA測定でのCr元素検出量およびMn元素検出量の総和は、例えば、0.5atom%以上、好ましくは、1atom%以上、例えば、15atom%未満、好ましくは、10atom%未満、さらに好ましくは、5atom%以下である。 When the metal residue contains Cr element and Mn element, the sum of the Cr element detection amount and the Mn element detection amount in the ESCA measurement on the one surface 4A of the base insulating layer 4 is, for example, 0.5 atom% or more, preferably 1 atom. % Or more, for example, less than 15 atom%, preferably less than 10 atom%, and more preferably 5 atom% or less.
 一方面4AにおけるCr元素検出量およびMn元素検出量の総和が上記上限未満であれば、ベース絶縁層4の一方面4Aに対するアンダーフィル層18(後述)の密着性の向上を確実に図ることができる。 If the sum of the Cr element detection amount and the Mn element detection amount on the one surface 4A is less than the above upper limit, it is possible to surely improve the adhesion of the underfill layer 18 (described later) to the one surface 4A of the base insulating layer 4. it can.
 ベース絶縁層の他方面4Bは、厚み方向の他方側に位置し、厚み方向において一方面4Aの反対側に位置する。ベース絶縁層の他方面4Bは、カバー絶縁層6により被覆されている。ベース絶縁層の他方面4Bには、上記した金属残渣が付着していない。言い換えれば、ベース絶縁層4の他方面4Bにおける、ESCA測定での金属元素検出量は、全検出元素のうち、例えば、1atom%未満であり、好ましくは、0atom%である。 The other surface 4B of the base insulating layer is located on the other side in the thickness direction and is located on the opposite side of the one surface 4A in the thickness direction. The other surface 4B of the base insulating layer is covered with the cover insulating layer 6. The above-mentioned metal residue does not adhere to the other surface 4B of the base insulating layer. In other words, the amount of metal element detected by ESCA measurement on the other surface 4B of the base insulating layer 4 is, for example, less than 1 atom%, preferably 0 atom%, of all the detected elements.
 ベース絶縁層4の材料として、例えば、ポリイミドが挙げられる。つまり、ベース絶縁層4は、ポリイミドを含有する。 Examples of the material of the base insulating layer 4 include polyimide. That is, the base insulating layer 4 contains polyimide.
 ベース絶縁層4の厚みは、例えば、1μm以上、好ましくは、3μm以上、例えば、30μm以下、好ましくは、12μm以下、さらに好ましくは、8μm以下である。 The thickness of the base insulating layer 4 is, for example, 1 μm or more, preferably 3 μm or more, for example, 30 μm or less, preferably 12 μm or less, and more preferably 8 μm or less.
 導体パターン5は、複数の第1端子10と、複数の第2端子11(図1参照)と、複数の配線9とを備える。 The conductor pattern 5 includes a plurality of first terminals 10, a plurality of second terminals 11 (see FIG. 1), and a plurality of wirings 9.
 複数の第1端子10は、ハウジング配置部2の中央部において、矩形枠状となるように、互いに間隔を隔てて整列配置されている(図1参照)。複数の第1端子10は、実装される撮像素子21の複数の端子25(図4E参照)に対応するように設けられている。また、複数の第1端子10は、複数の第1開口部7に対応して設けられる。第1端子10は、平面視略円形状を有する。第1端子10は、第1開口部7に充填され、厚み方向一方側から見て、ベース絶縁層4から露出されている。厚み方向における第1端子10の一方面10Aは、平坦(平滑)状を有する。厚み方向における第1端子10の一方面10Aは、ベース絶縁層4の一方面4Aと略面一である。これによって、第1端子10は、ベース絶縁層4の一方面4Aに配置される。 The plurality of first terminals 10 are arranged and arranged at the center of the housing arrangement portion 2 so as to form a rectangular frame at intervals from each other (see FIG. 1). The plurality of first terminals 10 are provided so as to correspond to the plurality of terminals 25 (see FIG. 4E) of the mounted image sensor 21. Further, the plurality of first terminals 10 are provided corresponding to the plurality of first openings 7. The first terminal 10 has a substantially circular shape in a plan view. The first terminal 10 is filled in the first opening 7 and is exposed from the base insulating layer 4 when viewed from one side in the thickness direction. One surface 10A of the first terminal 10 in the thickness direction has a flat (smooth) shape. One surface 10A of the first terminal 10 in the thickness direction is substantially flush with one surface 4A of the base insulating layer 4. As a result, the first terminal 10 is arranged on one surface 4A of the base insulating layer 4.
 図1に示すように、複数の第2端子11は、外部部品接続部3において、互いに間隔を隔てて整列配置されている。複数の第2端子11は、外部部品の複数の端子(図示せず)に対応するように設けられている。また、複数の第2端子11は、複数の第2開口部8に対応して設けられる。第2端子11は、平面視略矩形状(長方形状)を有している。第2端子11は、第2開口部8に充填され、厚み方向一方側から見て、ベース絶縁層4から露出されている。厚み方向における第2端子11の一方面は、ベース絶縁層4の一方面4Aと略面一である。これによって、第2端子11は、ベース絶縁層4の一方面4Aに配置される。 As shown in FIG. 1, the plurality of second terminals 11 are aligned and arranged at the external component connecting portion 3 at intervals from each other. The plurality of second terminals 11 are provided so as to correspond to a plurality of terminals (not shown) of the external component. Further, the plurality of second terminals 11 are provided corresponding to the plurality of second openings 8. The second terminal 11 has a substantially rectangular shape (rectangular shape) in a plan view. The second terminal 11 is filled in the second opening 8 and is exposed from the base insulating layer 4 when viewed from one side in the thickness direction. One surface of the second terminal 11 in the thickness direction is substantially flush with one surface 4A of the base insulating layer 4. As a result, the second terminal 11 is arranged on one surface 4A of the base insulating layer 4.
 図2に示すように、複数の配線9は、ベース絶縁層4に対して厚み方向の他方側に配置され、具体的には、ベース絶縁層4の他方面4Bに配置される。 As shown in FIG. 2, the plurality of wirings 9 are arranged on the other side in the thickness direction with respect to the base insulating layer 4, and specifically, are arranged on the other surface 4B of the base insulating layer 4.
 複数の配線9は、複数の第1端子10と複数の第2端子11とを電気的に接続する。具体的には、各配線9の一端は、他方面4Bから第1開口部7に落ち込み、各第1端子10と連続する。各配線9の他端は、他方面4Bから第2開口部8に落ち込み、各第2端子11と連続する。 The plurality of wirings 9 electrically connect the plurality of first terminals 10 and the plurality of second terminals 11. Specifically, one end of each wiring 9 falls from the other surface 4B into the first opening 7 and is continuous with each first terminal 10. The other end of each wiring 9 falls from the other surface 4B into the second opening 8 and is continuous with each second terminal 11.
 導体パターン5の材料として、例えば、銅、銀、金、ニッケルまたはそれらを含む合金、半田などの金属材料が挙げられ、好ましくは、銅が挙げられる。 Examples of the material of the conductor pattern 5 include metal materials such as copper, silver, gold, nickel or alloys containing them, and solder, and copper is preferable.
 導体パターン5の厚みは、例えば、1μm以上、好ましくは、2μm以上、例えば、15μm以下、好ましくは、10μm以下である。 The thickness of the conductor pattern 5 is, for example, 1 μm or more, preferably 2 μm or more, for example, 15 μm or less, preferably 10 μm or less.
 カバー絶縁層6は、導体パターン5を被覆するように、ベース絶縁層4に対して厚み方向の他方側に配置され、具体的には、ベース絶縁層4の他方面4Bに配置される。カバー絶縁層6の外形は、ベース絶縁層4の外形と同一となるように形成される。 The cover insulating layer 6 is arranged on the other side in the thickness direction with respect to the base insulating layer 4 so as to cover the conductor pattern 5, and specifically, is arranged on the other surface 4B of the base insulating layer 4. The outer shape of the cover insulating layer 6 is formed to be the same as the outer shape of the base insulating layer 4.
 カバー絶縁層6の材料として、例えば、絶縁材料が挙げられる。絶縁材料として、例えば、ポリイミド、ポリアミドイミド、アクリル、ポリエーテルニトリル、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ塩化ビニルなどの合成樹脂などが挙げられる。絶縁材料として、好ましくは、ベース絶縁層4と同様のポリイミドが挙げられる。 Examples of the material of the cover insulating layer 6 include an insulating material. Examples of the insulating material include synthetic resins such as polyimide, polyamideimide, acrylic, polyethernitrile, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, and polyvinyl chloride. As the insulating material, preferably, the same polyimide as the base insulating layer 4 can be mentioned.
 カバー絶縁層6の厚みは、例えば、1μm以上、好ましくは、2μm以上、例えば、30μm以下、好ましくは、10μm以下、さらに好ましくは、5μm以下である。 The thickness of the cover insulating layer 6 is, for example, 1 μm or more, preferably 2 μm or more, for example, 30 μm or less, preferably 10 μm or less, and more preferably 5 μm or less.
 このような実装基板1の厚み(ベース絶縁層4、導体パターン5およびカバー絶縁層6の厚みの総和)は、例えば、3μm以上、例えば、50μm以下、好ましくは、30μm以下である。 The thickness of such a mounting substrate 1 (the sum of the thicknesses of the base insulating layer 4, the conductor pattern 5, and the cover insulating layer 6) is, for example, 3 μm or more, for example, 50 μm or less, preferably 30 μm or less.
 2.撮像素子実装基板の製造方法
 次に、図3A~図3Dを参照して、実装基板1の製造方法について説明する。実装基板1の製造方法は、例えば、金属支持体準備工程と、ベース絶縁層形成工程と、導体パターン形成工程と、カバー絶縁層形成工程と、エッチング工程とを順に含む。
2. 2. Manufacturing Method of Image Sensor Mounting Board Next, a manufacturing method of the mounting board 1 will be described with reference to FIGS. 3A to 3D. The method for manufacturing the mounting substrate 1 includes, for example, a metal support preparation step, a base insulating layer forming step, a conductor pattern forming step, a cover insulating layer forming step, and an etching step in this order.
 図3Aに示すように、金属支持体準備工程では、金属支持層の一例としての金属支持体19を準備する。 As shown in FIG. 3A, in the metal support preparation step, the metal support 19 as an example of the metal support layer is prepared.
 金属支持体19は、平面視略矩形(長方形状)の平板形状を有する。金属支持体19の上面は、平坦(平滑)状を有する。 The metal support 19 has a flat plate shape that is substantially rectangular (rectangular) in a plan view. The upper surface of the metal support 19 has a flat (smooth) shape.
 金属支持体19の材料は、上記した金属元素を含み、具体的には、ステンレス、42アロイ、アルミニウムなどの金属材料が挙げられ、好ましくは、ステンレスが挙げられる。 The material of the metal support 19 contains the above-mentioned metal elements, and specific examples thereof include metal materials such as stainless steel, 42 alloy, and aluminum, preferably stainless steel.
 金属支持体19の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、例えば、50μm以下、好ましくは、30μm以下である。 The thickness of the metal support 19 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 50 μm or less, preferably 30 μm or less.
 続いて、ベース絶縁層形成工程では、ベース絶縁層4を、金属支持体19の上面に形成する。なお、図3A~図3Dに示すベース絶縁層4の厚み方向は、図2に示すベース絶縁層4の厚み方向と逆であり、紙面上側が厚み方向の他方側、紙面下側が厚み方向の一方側である。つまり、ベース絶縁層4の一方面4Aが、金属支持体19と接触し、ベース絶縁層4の他方面4Bが、一方面4Aに対して金属支持体19の反対側に位置する。 Subsequently, in the base insulating layer forming step, the base insulating layer 4 is formed on the upper surface of the metal support 19. The thickness direction of the base insulating layer 4 shown in FIGS. 3A to 3D is opposite to the thickness direction of the base insulating layer 4 shown in FIG. 2, with the upper side of the paper surface being the other side in the thickness direction and the lower side of the paper surface being one side in the thickness direction. On the side. That is, one surface 4A of the base insulating layer 4 comes into contact with the metal support 19, and the other surface 4B of the base insulating layer 4 is located on the opposite side of the metal support 19 with respect to the one surface 4A.
 具体的には、ポリイミド前駆体を含むワニスを金属支持体19の上面全体に塗布して乾燥させて、ベース皮膜を形成する。その後、ベース皮膜を、開口部(第1開口部7および第2開口部8)に対応するパターンを有するフォトマスクを介して露光する。その後、ベース皮膜を現像し、好ましくは加熱硬化させる。これによって、ポリイミドを含有するベース絶縁層4が、金属支持体19上に形成される。 Specifically, a varnish containing a polyimide precursor is applied to the entire upper surface of the metal support 19 and dried to form a base film. The base film is then exposed through a photomask having a pattern corresponding to the openings (first opening 7 and second opening 8). After that, the base film is developed and preferably heat-cured. As a result, the base insulating layer 4 containing the polyimide is formed on the metal support 19.
 続いて、図3Bに示すように、導体パターン形成工程では、導体パターン5を、上記したパターンで、ベース絶縁層4の上面(他方面4B)と、第1開口部7および第2開口部8から露出する金属支持体19の上面とに、例えば、アディティブ法などによって形成する。 Subsequently, as shown in FIG. 3B, in the conductor pattern forming step, the conductor pattern 5 is formed in the above-mentioned pattern with the upper surface (the other surface 4B) of the base insulating layer 4 and the first opening 7 and the second opening 8. It is formed on the upper surface of the metal support 19 exposed from, for example, by an additive method or the like.
 これによって、複数の第1端子10と、複数の第2端子11と、複数の配線9とが一括して形成される。第1端子10は、第1開口部7内に配置され、金属支持体19の上面と接触する。第2端子11は、図示しないが、第2開口部8内に配置され、金属支持体19の上面と接触する。これによって、第1端子10および第2端子11は、ベース絶縁層4の一方面4Aに配置される。また、配線9は、ベース絶縁層4の他方面4Bに配置される。 As a result, the plurality of first terminals 10, the plurality of second terminals 11, and the plurality of wirings 9 are collectively formed. The first terminal 10 is arranged in the first opening 7 and comes into contact with the upper surface of the metal support 19. Although not shown, the second terminal 11 is arranged in the second opening 8 and comes into contact with the upper surface of the metal support 19. As a result, the first terminal 10 and the second terminal 11 are arranged on one surface 4A of the base insulating layer 4. Further, the wiring 9 is arranged on the other surface 4B of the base insulating layer 4.
 続いて、図3Cに示すように、カバー絶縁層形成工程では、カバー絶縁層6を、導体パターン5を被覆するように、ベース絶縁層4の上面(他方面4B)に形成する。カバー絶縁層形成工程は、ベース絶縁層形成工程と同様に実施できる。 Subsequently, as shown in FIG. 3C, in the cover insulating layer forming step, the cover insulating layer 6 is formed on the upper surface (the other surface 4B) of the base insulating layer 4 so as to cover the conductor pattern 5. The cover insulating layer forming step can be carried out in the same manner as the base insulating layer forming step.
 続いて、図3Dに示すように、金属支持体除去工程では、金属支持体19を除去する。 Subsequently, as shown in FIG. 3D, the metal support 19 is removed in the metal support removing step.
 金属支持体19の除去方法として、例えば、金属支持体19をベース絶縁層4の下面(一方面4A)から剥離する方法、例えば、金属支持体19をエッチング(例えば、ドライエッチング、ウェットエッチングなど)する方法などが挙げられる。 As a method for removing the metal support 19, for example, a method of peeling the metal support 19 from the lower surface (one surface 4A) of the base insulating layer 4, for example, etching the metal support 19 (for example, dry etching, wet etching, etc.). How to do it.
 金属支持体19の除去方法のなかでは、好ましくは、エッチング、さらに好ましくは、ウェットエッチングが挙げられる。 Among the methods for removing the metal support 19, etching is preferable, and wet etching is more preferable.
 金属支持体19をウェットエッチングする場合、エッチング液として、例えば、塩化第二鉄溶液などが使用される。そして、例えば、金属支持体19に対して厚み方向の一方側から、エッチング液をスプレーして、金属支持体19を除去する。 When the metal support 19 is wet-etched, for example, a ferric chloride solution is used as the etching solution. Then, for example, the metal support 19 is removed by spraying the etching solution from one side in the thickness direction with respect to the metal support 19.
 すると、ベース絶縁層4の一方面4Aと、第1端子10の一方面10Aと、第2端子11の一方面(図示せず)とが露出される。 Then, one surface 4A of the base insulating layer 4, one surface 10A of the first terminal 10, and one surface (not shown) of the second terminal 11 are exposed.
 以上によって、ベース絶縁層4と、導体パターン5と、カバー絶縁層6とを備える実装基板1が製造される。 From the above, the mounting substrate 1 including the base insulating layer 4, the conductor pattern 5, and the cover insulating layer 6 is manufactured.
 後述するエッチング工程の前において、実装基板1のベース絶縁層4の一方面4Aには、ESCA測定での金属元素検出量が20atom%以上となる金属支持体19の金属残渣が付着している。 Before the etching step described later, the metal residue of the metal support 19 having a metal element detection amount of 20 atom% or more in the ESCA measurement is attached to one surface 4A of the base insulating layer 4 of the mounting substrate 1.
 次いで、エッチング工程では、金属支持体19の除去により露出されたベース絶縁層4の一方面4Aをエッチングして、付着する金属残渣を除去する。 Next, in the etching step, one surface 4A of the base insulating layer 4 exposed by removing the metal support 19 is etched to remove the adhering metal residue.
 エッチング方法として、例えば、ドライエッチングおよびウェットエッチングが挙げられ、好ましくは、ウェットエッチングが挙げられる。 Examples of the etching method include dry etching and wet etching, and preferably wet etching.
 ベース絶縁層4の一方面4Aをウェットエッチングする場合、エッチング液として、例えば、硝酸第二セリウムアンモニウム溶液、苛性ソーダ水溶液、過マンガン酸カリウム溶液、メタケイ酸ナトリウム溶液などが使用される。さらに、エッチング液のなかで、好ましくは、硝酸第二セリウムアンモニウム溶液が挙げられる。そして、例えば、実装基板1をエッチング液に浸漬して、一方面4Aに付着する金属残渣を除去する。 When wet etching one side 4A of the base insulating layer 4, for example, a dicerium ammonium nitrate solution, an aqueous solution of caustic soda, a solution of potassium permanganate, a solution of sodium metasilicate, etc. are used as the etching solution. Further, among the etching solutions, a dimerium ammonium nitrate solution is preferable. Then, for example, the mounting substrate 1 is immersed in the etching solution to remove the metal residue adhering to the one surface 4A.
 エッチング液の温度は、例えば、20℃以上、好ましくは、30℃以上、例えば、80℃以下、好ましくは、65℃以下である。エッチング時間(浸漬時間)は、例えば、1分以上、例えば、15分以下、好ましくは、10分以下である。 The temperature of the etching solution is, for example, 20 ° C. or higher, preferably 30 ° C. or higher, for example, 80 ° C. or lower, preferably 65 ° C. or lower. The etching time (immersion time) is, for example, 1 minute or more, for example, 15 minutes or less, preferably 10 minutes or less.
 エッチング液の温度が上記下限以上またはエッチング時間が上記下限以上であれば、ベース絶縁層4の一方面4AにおけるESCA測定での金属元素検出量を20atom%未満に調整できる。また、エッチング液の温度が上記上限以下またはエッチング時間が上記上限以下であれば、ベース絶縁層4の一方面4AにおけるESCA測定での金属元素検出量を1atom%以上に調整できる。 When the temperature of the etching solution is equal to or higher than the above lower limit or the etching time is equal to or higher than the above lower limit, the amount of metal element detected by ESCA measurement on one surface 4A of the base insulating layer 4 can be adjusted to less than 20 atom%. Further, when the temperature of the etching solution is not more than the above upper limit or the etching time is not more than the above upper limit, the amount of metal element detected in the ESCA measurement on one surface 4A of the base insulating layer 4 can be adjusted to 1 atom% or more.
 その後、エッチング液から取り出した実装基板1を、必要に応じて水洗いする。 After that, the mounting substrate 1 taken out from the etching solution is washed with water as needed.
 これによって、ベース絶縁層4の一方面4Aがソフトエッチングされて、ベース絶縁層4の一方面4AにおけるESCA測定での金属元素検出量が、1atom%以上20atom%未満に調整される。 As a result, one surface 4A of the base insulating layer 4 is soft-etched, and the amount of metal element detected by ESCA measurement on the one surface 4A of the base insulating layer 4 is adjusted to 1 atom% or more and less than 20 atom%.
 3.実装基板に対する撮像素子の実装方法
 このような実装基板1は、例えば、撮像素子が実装されて、カメラモジュールなどの撮像装置に備えられる。
3. 3. Method of Mounting an Image Sensor on a Mounting Board Such a mounting board 1 is provided with, for example, an image pickup device such as a camera module on which an image pickup device is mounted.
 次に、図4Eおよび図4Fを参照して、実装基板1に対する撮像素子21の実装方法を説明する。 Next, a method of mounting the image pickup device 21 on the mounting board 1 will be described with reference to FIGS. 4E and 4F.
 実装基板1に対する撮像素子21の実装方法は、素子接続工程と、アンダーフィル形成工程とを含む。 The method of mounting the image pickup device 21 on the mounting board 1 includes an element connection step and an underfill forming step.
 図4Eに示すように、素子接続工程では、まず、撮像素子21を準備する。 As shown in FIG. 4E, in the element connection step, first, the image sensor 21 is prepared.
 撮像素子21は、光を電気信号に変換する半導体素子であって、例えば、CMOSセンサ、CCDセンサなどの固体撮像素子が挙げられる。撮像素子21は、平面視略矩形の平板形状に形成されており、図示しないが、Si基板などのシリコンと、その上に配置されるフォトダイオード(光電変換素子)およびカラーフィルターとを備える。撮像素子21は、複数の端子25を備える。複数の端子25は、複数の第1端子10と対応する。 The image sensor 21 is a semiconductor element that converts light into an electric signal, and examples thereof include solid-state image sensors such as CMOS sensors and CCD sensors. The image pickup device 21 is formed in a flat plate shape having a substantially rectangular shape in a plan view, and includes silicon such as a Si substrate, a photodiode (photoelectric conversion element) arranged on the silicon substrate, and a color filter (not shown). The image sensor 21 includes a plurality of terminals 25. The plurality of terminals 25 correspond to the plurality of first terminals 10.
 そして、実装基板1の第1端子10上にソルダーバンプなどの接合材料26を配置し、実装基板1の第1端子10と撮像素子21の端子25とを、接合材料26を介して電気的に接続する。 Then, a bonding material 26 such as a solder bump is arranged on the first terminal 10 of the mounting board 1, and the first terminal 10 of the mounting board 1 and the terminal 25 of the image sensor 21 are electrically connected via the bonding material 26. Connecting.
 これによって、撮像素子21は、実装基板1のハウジング配置部2の中央部に配置され、実装基板1にフリップチップ実装される。このとき、撮像素子21は、ベース絶縁層4の一方面4Aに対して厚み方向の一方側に間隔を空けて位置する。 As a result, the image sensor 21 is arranged at the center of the housing arrangement portion 2 of the mounting substrate 1, and is flip-chip mounted on the mounting substrate 1. At this time, the image pickup device 21 is located on one side in the thickness direction with a distance from the one side surface 4A of the base insulating layer 4.
 次いで、図4Fに示すように、アンダーフィル形成工程では、撮像素子21とベース絶縁層4との間に、第2絶縁層の一例としてのアンダーフィル層18を形成する。 Next, as shown in FIG. 4F, in the underfill forming step, an underfill layer 18 as an example of the second insulating layer is formed between the image pickup device 21 and the base insulating layer 4.
 具体的には、液状の樹脂組成物を、撮像素子21とベース絶縁層4の一方面4Aとの間に注入した後、加熱硬化させる。 Specifically, a liquid resin composition is injected between the image pickup device 21 and one surface 4A of the base insulating layer 4, and then heat-cured.
 アンダーフィル層18の材料として、例えば、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリエステル樹脂などの樹脂材料が挙げられ、好ましくは、エポキシ樹脂が挙げられる。アンダーフィル層18の材料は、単独使用または2種以上併用することができる。 Examples of the material of the underfill layer 18 include resin materials such as epoxy resin, polyurethane resin, silicone resin, and polyester resin, and epoxy resin is preferable. The material of the underfill layer 18 can be used alone or in combination of two or more.
 加熱温度は、アンダーフィル層18の材料に応じて適宜変更されるが、例えば、100℃以上、好ましくは、120℃以上、例えば、150℃以下、好ましくは、130℃以下である。 The heating temperature is appropriately changed depending on the material of the underfill layer 18, but is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, for example, 150 ° C. or lower, preferably 130 ° C. or lower.
 加熱時間は、アンダーフィル層18の材料に応じて適宜変更されるが、例えば、10分以上、好ましくは、30分以上、例えば、120分以下、好ましくは、60分以下である。 The heating time is appropriately changed depending on the material of the underfill layer 18, but is, for example, 10 minutes or more, preferably 30 minutes or more, for example, 120 minutes or less, preferably 60 minutes or less.
 これによって、アンダーフィル層18が、撮像素子21とベース絶縁層4の一方面4Aとの間に形成される。言い換えれば、アンダーフィル層18は、ベース絶縁層4の一方面4Aに配置される。つまり、撮像素子21が実装された実装基板1は、アンダーフィル層18を備える。 As a result, the underfill layer 18 is formed between the image pickup device 21 and the one surface 4A of the base insulating layer 4. In other words, the underfill layer 18 is arranged on one surface 4A of the base insulating layer 4. That is, the mounting substrate 1 on which the image pickup device 21 is mounted includes the underfill layer 18.
 ベース絶縁層4の一方面4Aに対するアンダーフィル層18の密着力は、例えば、20gf/cmを超過し、好ましくは、50gf/cm以上、さらに好ましくは、100gf/cm以上、例えば、200gf/cm以下である。なお、密着力は、後述する実施例に記載の方法に準拠して測定できる(以下同様)。 The adhesion of the underfill layer 18 to the one surface 4A of the base insulating layer 4 exceeds, for example, 20 gf / cm, preferably 50 gf / cm or more, more preferably 100 gf / cm or more, for example, 200 gf / cm or less. Is. The adhesion can be measured according to the method described in Examples described later (the same applies hereinafter).
 アンダーフィル層18の密着力が上記下限以上であれば、アンダーフィル層18が所望せずにベース絶縁層4の一方面4Aから剥離することを抑制できる。アンダーフィル層18の密着力が上記上限以下であれば、撮像素子21のリワーク性を確実に確保することができる。 If the adhesion of the underfill layer 18 is equal to or greater than the above lower limit, it is possible to prevent the underfill layer 18 from undesirably peeling from one surface 4A of the base insulating layer 4. When the adhesion of the underfill layer 18 is equal to or less than the above upper limit, the reworkability of the image pickup device 21 can be reliably ensured.
 以上によって、実装基板1に対する撮像素子21の実装が完了する。なお、実装基板1と、撮像素子21と、アンダーフィル層18とは、撮像ユニット27を構成する。 With the above, the mounting of the image sensor 21 on the mounting board 1 is completed. The mounting substrate 1, the image sensor 21, and the underfill layer 18 form an image pickup unit 27.
 また、実装基板1は、後述する撮像装置ではなく、撮像装置の一部品、すなわち、撮像装置を作製するための部品であり、産業上利用可能なデバイスである。実装基板1は、撮像素子を含まない部品単独で流通してもよく、撮像素子が実装された撮像ユニットとして流通してもよい。 Further, the mounting substrate 1 is not an image pickup device described later, but a component of the image pickup device, that is, a component for manufacturing the image pickup device, and is an industrially applicable device. The mounting substrate 1 may be distributed as a single component that does not include an image sensor, or may be distributed as an image pickup unit on which an image sensor is mounted.
 4.撮像装置
 次に、図5を参照して、撮像ユニット27を備える撮像装置20を説明する。
4. Imaging Device Next, an imaging device 20 including an imaging unit 27 will be described with reference to FIG.
 撮像装置20は、撮像ユニット27と、ハウジング22と、光学レンズ23と、フィルター24とを備える。 The image pickup device 20 includes an image pickup unit 27, a housing 22, an optical lens 23, and a filter 24.
 撮像ユニット27は、実装基板1と、撮像素子21と、アンダーフィル層18とを備える。 The image pickup unit 27 includes a mounting substrate 1, an image pickup element 21, and an underfill layer 18.
 ハウジング22は、実装基板1のハウジング配置部2に、撮像素子21と間隔を隔てて囲むように配置されている。ハウジング22は、平面視略矩形状の筒状を有している。 The housing 22 is arranged in the housing arrangement portion 2 of the mounting substrate 1 so as to surround the housing 22 with a distance from the image sensor 21. The housing 22 has a tubular shape having a substantially rectangular shape in a plan view.
 光学レンズ23は、厚み方向において、撮像素子21に対して実装基板1の反対側に間隔を隔てて配置される。光学レンズ23は、平面視略円形状に形成され、外部からの光が撮像素子21に到達するように、ハウジング22に固定される。 The optical lens 23 is arranged on the opposite side of the mounting substrate 1 with respect to the image pickup element 21 at intervals in the thickness direction. The optical lens 23 is formed in a substantially circular shape in a plan view, and is fixed to the housing 22 so that light from the outside reaches the image pickup device 21.
 フィルター24は、厚み方向における撮像素子21と光学レンズ23との間に、これらと間隔を隔てて配置され、ハウジング22に固定される。 The filter 24 is arranged between the image sensor 21 and the optical lens 23 in the thickness direction at intervals from the image sensor 21, and is fixed to the housing 22.
 本発明者らは、図4Fに示すように、ベース絶縁層4の一方面4A(金属支持体19が設けられていた表面)にアンダーフィル層18を形成すると、一方面4Aに対するアンダーフィル層18の密着性を十分に確保できないという知見を得た。 As shown in FIG. 4F, when the underfill layer 18 is formed on one surface 4A (the surface on which the metal support 19 is provided) of the base insulating layer 4, the present inventors form the underfill layer 18 with respect to the one surface 4A. We obtained the finding that sufficient adhesion cannot be ensured.
 そこで、本発明者らは、当該知見について種々検討し、アンダーフィル層18の密着性は、ベース絶縁層4の一方面4Aに付着する金属支持体19の金属残渣に依存することを見出し、本発明を完成した。 Therefore, the present inventors have studied various findings and found that the adhesion of the underfill layer 18 depends on the metal residue of the metal support 19 adhering to one surface 4A of the base insulating layer 4. Completed the invention.
 図4Fに示すように、実装基板1では、ベース絶縁層4の一方面4Aにおける金属元素検出量が上記上限未満である。そのため、ベース絶縁層4に対するアンダーフィル層18の密着性の向上を図ることができる。 As shown in FIG. 4F, in the mounting substrate 1, the amount of metal element detected on one surface 4A of the base insulating layer 4 is less than the above upper limit. Therefore, the adhesion of the underfill layer 18 to the base insulating layer 4 can be improved.
 また、実装基板1では、ベース絶縁層4の一方面4Aにおける金属元素検出量が上記下限以上である。そのため、実装基板1に実装した撮像素子21を、実装基板1から取り外してリワークする場合、アンダーフィル層18をベース絶縁層4から引き剥がすことができる。その結果、撮像素子21のリワーク性を確保することができる。 Further, in the mounting substrate 1, the amount of metal element detected on one surface 4A of the base insulating layer 4 is equal to or higher than the above lower limit. Therefore, when the image pickup device 21 mounted on the mounting board 1 is removed from the mounting board 1 and reworked, the underfill layer 18 can be peeled off from the base insulating layer 4. As a result, the reworkability of the image sensor 21 can be ensured.
 また、ベース絶縁層4の一方面4AにおけるCr元素検出量およびMn元素検出量の総和は、上記上限未満である。そのため、ベース絶縁層4に対するアンダーフィル層18の密着性の向上を確実に図ることができる。 Further, the sum of the Cr element detection amount and the Mn element detection amount on one surface 4A of the base insulating layer 4 is less than the above upper limit. Therefore, it is possible to surely improve the adhesion of the underfill layer 18 to the base insulating layer 4.
 また、ベース絶縁層4に対するアンダーフィル層18の密着力は、上記下限以上である。そのため、アンダーフィル層18がベース絶縁層4から、所望せずに剥離することを抑制できる。 Further, the adhesion of the underfill layer 18 to the base insulating layer 4 is equal to or higher than the above lower limit. Therefore, it is possible to prevent the underfill layer 18 from undesirably peeling from the base insulating layer 4.
 また、実装基板1の製造方法では、図3A~図3Dに示すように、金属支持体19上にベース絶縁層4を形成した後、ベース絶縁層4の一方面4Aに第1端子10を形成し、次いで、金属支持体19を除去して、ベース絶縁層4の一方面4Aを露出させる。そして、金属支持体19の除去により露出されたベース絶縁層4の一方面4Aをエッチングする。 Further, in the method of manufacturing the mounting substrate 1, as shown in FIGS. 3A to 3D, after the base insulating layer 4 is formed on the metal support 19, the first terminal 10 is formed on one surface 4A of the base insulating layer 4. Then, the metal support 19 is removed to expose one surface 4A of the base insulating layer 4. Then, one surface 4A of the base insulating layer 4 exposed by removing the metal support 19 is etched.
 そのため、ベース絶縁層4の一方面4Aにおける金属元素検出量を上記の範囲に調整することができる。その結果、簡易な方法でありながら、上記した実装基板1を効率よく製造することができる。 Therefore, the amount of metal element detected on one surface 4A of the base insulating layer 4 can be adjusted within the above range. As a result, the above-mentioned mounting substrate 1 can be efficiently manufactured by a simple method.
 <変形例>
 上記した実施形態では、本発明の配線回路基板として、撮像素子21を実装するための撮像素子実装基板1(実装基板1)を説明しているが、配線回路基板の用途は、これに限定されない。例えば、スマートフォン、パソコン、ゲーム機などに用いられるFPCなどに好適に用いられる。
<Modification example>
In the above-described embodiment, the image pickup device mounting board 1 (mounting board 1) for mounting the image pickup device 21 is described as the wiring circuit board of the present invention, but the application of the wiring circuit board is not limited to this. .. For example, it is suitably used for FPCs used in smartphones, personal computers, game machines, and the like.
 また、実装基板1では、厚み方向に互いに隣り合う層が、接着剤なしに接着される接着剤レスのFPCであるが、これに限定されない。厚み方向に互いに隣り合う層の間に接着剤層を設けることもできる。一方、薄型化の観点から、上記の実施形態のように、実装基板1は、接着剤レスのFPCであることが好ましい。 Further, in the mounting substrate 1, layers adjacent to each other in the thickness direction are adhesive-less FPCs that are adhered without an adhesive, but the present invention is not limited to this. An adhesive layer may be provided between layers adjacent to each other in the thickness direction. On the other hand, from the viewpoint of thinning, it is preferable that the mounting substrate 1 is an adhesive-less FPC as in the above embodiment.
 また、実装基板1は、図2に示すように、ベース絶縁層4、導体パターン5およびカバー絶縁層6を備えるが、実装基板1の構成は、これに限定されない。例えば、実装基板1は、カバー絶縁層6の厚み方向一方側に配置され、外部からの電磁波を遮断するシールド層と、シールド層を被覆する第2カバー絶縁層とをさらに備えてもよい。 Further, as shown in FIG. 2, the mounting board 1 includes a base insulating layer 4, a conductor pattern 5, and a cover insulating layer 6, but the configuration of the mounting board 1 is not limited to this. For example, the mounting substrate 1 may be further provided with a shield layer that is arranged on one side of the cover insulating layer 6 in the thickness direction and blocks electromagnetic waves from the outside, and a second cover insulating layer that covers the shield layer.
 また、撮像装置20では、図5に示すように、撮像素子21は、実装基板1にフリップチップ実装されているが、実装基板1にワイヤボンディングによって実装することもできる。 Further, in the image pickup apparatus 20, as shown in FIG. 5, the image pickup element 21 is flip-chip mounted on the mounting board 1, but can also be mounted on the mounting board 1 by wire bonding.
 このような変形例においても、上記した実施形態と同様の作用効果を奏する。また、上記した実施形態と変形例とは適宜組み合わせることができる。 Even in such a modified example, the same effect as that of the above-described embodiment is obtained. Moreover, the above-described embodiment and the modified example can be appropriately combined.
 以下に参考実施例および参考比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、参考実施例および参考比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 A reference example and a reference comparative example are shown below, and the present invention will be described in more detail. The present invention is not limited to Reference Examples and Reference Comparative Examples. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned "Form for carrying out the invention", and the compounding ratios corresponding to them ( Substitute for the upper limit (numerical value defined as "less than or equal to" or "less than") or lower limit (numerical value defined as "greater than or equal to" or "excess") such as content ratio), physical property value, parameter, etc. it can.
  参考比較例1
 ステンレスを材料とする金属支持体を準備し、ポリイミド前駆体溶液を金属支持体の上面に塗布し、次いで、80℃で10分乾燥させて、ベース皮膜(ポリイミド前駆体皮膜)を形成した。
Reference comparison example 1
A metal support made of stainless steel was prepared, a polyimide precursor solution was applied to the upper surface of the metal support, and then dried at 80 ° C. for 10 minutes to form a base film (polyimide precursor film).
 続いて、ベース皮膜を、露光および現像した後、窒素雰囲気下、360℃で1時間加熱して硬化させた。これにより、ポリイミドを含有するベース絶縁層を形成した。 Subsequently, the base film was exposed and developed, and then cured by heating at 360 ° C. for 1 hour in a nitrogen atmosphere. As a result, a base insulating layer containing polyimide was formed.
 次いで、金属支持体に対して塩化第二鉄水溶液(エッチング液)をスプレーして、金属支持体を除去した。これによって、ベース絶縁層の一方面を露出させた。 Next, the metal support was removed by spraying an aqueous solution of ferric chloride (etching solution) on the metal support. As a result, one side of the base insulating layer was exposed.
 以上により、ベース絶縁層を得た。 From the above, a base insulating layer was obtained.
  参考実施例1
 参考比較例1と同様にして調製したベース絶縁層を、40℃に調整した硝酸第二セリウムアンモニウム溶液(エッチング液)に、3分間浸漬した。その後、ベース絶縁層を水洗いして乾燥させた。
Reference Example 1
The base insulating layer prepared in the same manner as in Reference Comparative Example 1 was immersed in a cerium ammonium nitrate solution (etching solution) adjusted to 40 ° C. for 3 minutes. Then, the base insulating layer was washed with water and dried.
 以上により、ベース絶縁層を得た。 From the above, a base insulating layer was obtained.
 <ESCA測定>
 参考比較例のベース絶縁層の一方面(金属支持体が設けられていた面)および他方面(一方面と逆側の面)と、参考実施例のベース絶縁層の一方面(金属支持体が設けられていた面)とのそれぞれについて、ESCA測定を実施した。
<ESCA measurement>
One surface of the base insulating layer of the reference comparative example (the surface on which the metal support was provided) and the other surface (the surface opposite to the one surface) and one surface of the base insulating layer of the reference example (the metal support) ESCA measurement was carried out for each of the provided surfaces).
 具体的には、参考比較例および参考実施例のベース絶縁層を1cm×1cmのサイズに切り出し、各ベース絶縁層を、測定対象面が下記装置のアナライザと向かい合うように、モリブデン(Mo)板により試料台に押さえて固定した。試料台は、平板形状を有する。その後、下記条件において、ワイドスキャン測定を実施して、定性分析した。また、表1に示す各元素に対してナロースキャン測定を実施して、元素比率(atomic%)を算出した。その結果を表1に示す。 Specifically, the base insulating layers of the Reference Comparative Example and the Reference Example are cut out to a size of 1 cm × 1 cm, and each base insulating layer is made of a molybdenum (Mo) plate so that the measurement target surface faces the analyzer of the following device. It was fixed by pressing it on the sample table. The sample table has a flat plate shape. Then, under the following conditions, wide scan measurement was performed and qualitative analysis was performed. In addition, narrow scan measurement was carried out for each element shown in Table 1 to calculate the element ratio (atomic%). The results are shown in Table 1.
  装置;Quantera SXM(アルバック・ファイ社製)
  X線源;モノクロ AlKα
  X線セッティング;100μmφ[15kV、25W]
  光電子取出し角;ベース絶縁層の測定対象面に対して45°
  結合エネルギーの補正;C1スペクトルのC-C結合由来のピークを285.0eVに補正
  帯電中和条件;電子中和銃とArイオン銃(中和モード)との併用。
Equipment; Quantera SXM (manufactured by ULVAC-PHI)
X-ray source; monochrome AlKα
X-ray setting; 100 μmφ [15 kV, 25 W]
Photoelectron extraction angle; 45 ° with respect to the measurement target surface of the base insulating layer
Correction of binding energy; Correction of peak derived from CC bond in C1 s spectrum to 285.0 eV Charge neutralization condition; Combined use of electron neutralization gun and Ar ion gun (neutralization mode).
 <アンダーフィル層の密着力>
 参考比較例のベース絶縁層の一方面および他方面と、参考実施例のベース絶縁層の一方面とのそれぞれに、アンダーフィル層を形成して、ベース絶縁層に対するアンダーフィル層の密着力を測定した。
<Adhesion of underfill layer>
An underfill layer is formed on each of one surface and the other surface of the base insulating layer of the reference comparative example and one surface of the base insulating layer of the reference example, and the adhesion of the underfill layer to the base insulating layer is measured. did.
 具体的には、参考比較例および参考実施例のベース絶縁層の測定対象面に、液状のエポキシ樹脂組成物を塗布し、次いで、125℃で10分乾燥させて、アンダーフィル層を形成した。アンダーフィル層の厚みは、約40μmであった。 Specifically, a liquid epoxy resin composition was applied to the measurement target surfaces of the base insulating layers of Reference Comparative Examples and Reference Examples, and then dried at 125 ° C. for 10 minutes to form an underfill layer. The thickness of the underfill layer was about 40 μm.
 次いで、アンダーフィル層におけるベース絶縁層と反対側の面に、両面テープ(No.5000ns、日東電工社製)を貼り付けて、積層体を準備した。積層体は、ベース絶縁層と、アンダーフィル層と、両面テープとを厚み方向に順に備える。 Next, a double-sided tape (No. 5000ns, manufactured by Nitto Denko Corporation) was attached to the surface of the underfill layer opposite to the base insulating layer to prepare a laminate. The laminate includes a base insulating layer, an underfill layer, and double-sided tape in this order in the thickness direction.
 次いで、積層体を5mm幅の平帯状にカットし、積層体を、両面テープによって、下記装置が備える試料台に固定した。試料台は、回転可能に支持される円柱形状を有し、試料台の外径は、20cmであった。また、積層体は、試料台の周面に接着された。 Next, the laminate was cut into a flat band having a width of 5 mm, and the laminate was fixed to the sample table provided with the following device with double-sided tape. The sample table had a cylindrical shape that was rotatably supported, and the outer diameter of the sample table was 20 cm. Further, the laminated body was adhered to the peripheral surface of the sample table.
 次いで、ベース絶縁層を、下記条件において、アンダーフィル層から引き剥がした。その結果を表1に示す。 Next, the base insulating layer was peeled off from the underfill layer under the following conditions. The results are shown in Table 1.
  装置;SVZ-50NB(IMADA社製)
  引張角度;90°(つまり、引張方向は、試料台の径方向)
  引張速度;10mm/分
Equipment; SVZ-50NB (manufactured by IMADA)
Tensile angle: 90 ° (that is, the tensile direction is the radial direction of the sample table)
Tensile rate; 10 mm / min
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1に示されるように、ベース絶縁層の一方面におけるESCA測定での金属元素検出量が20atom%未満である参考実施例1は、ベース絶縁層の一方面におけるESCA測定での金属元素検出量が20atom%以上である参考比較例1と比較して、ベース絶縁層に対するアンダーフィル層の密着力が顕著に向上している。
<Discussion>
As shown in Table 1, in Reference Example 1 in which the amount of metal element detected by ESCA measurement on one surface of the base insulating layer is less than 20 atom%, the amount of metal element detected by ESCA measurement on one surface of the base insulating layer is shown. The adhesion of the underfill layer to the base insulating layer is remarkably improved as compared with Reference Comparative Example 1 in which is 20 atom% or more.
 また、参考実施例1は、ベース絶縁層の一方面におけるESCA測定での金属元素検出量が1atom%以上であり、ベース絶縁層に対するアンダーフィル層の密着力が200gf/cm以下に調整されている。なお、参考比較例1の他方面のように、密着力が200gf/cmを超過すると、電子部品のリワーク時に、アンダーフィル層をベース絶縁層から引き剥がすことが困難である。この点、参考実施例1は、密着力が200gf/cmであり、電子部品のリワーク性を確保できる。 Further, in Reference Example 1, the amount of metal element detected by ESCA measurement on one surface of the base insulating layer is 1 atom% or more, and the adhesion of the underfill layer to the base insulating layer is adjusted to 200 gf / cm or less. .. If the adhesion exceeds 200 gf / cm as in the other surface of Reference Comparative Example 1, it is difficult to peel off the underfill layer from the base insulating layer at the time of reworking the electronic component. In this respect, in Reference Example 1, the adhesion is 200 gf / cm, and the reworkability of the electronic component can be ensured.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の配線回路基板は、例えば、撮像素子実装基板、スマートフォン、パソコン、ゲーム機などに用いられるフレキシブル配線回路基板などの各種用途で用いられる。 The wiring circuit board of the present invention is used in various applications such as an image sensor mounting board, a flexible wiring circuit board used in a smartphone, a personal computer, a game machine, and the like.
 1   実装基板
 4   ベース絶縁層
 4A  一方面
 10  第1端子
 18  アンダーフィル層
 19  金属支持体
1 Mounting board 4 Base insulation layer 4A One side 10 1st terminal 18 Underfill layer 19 Metal support

Claims (4)

  1.  ポリイミドを含有する第1絶縁層と、
     前記第1絶縁層の厚み方向の一方面に配置される端子と、を備え、
     前記第1絶縁層の厚み方向の一方面における、ESCA測定での金属元素検出量が、全検出元素のうち、1atom%以上20atom%未満であることを特徴とする、配線回路基板。
    The first insulating layer containing polyimide and
    A terminal arranged on one surface in the thickness direction of the first insulating layer is provided.
    A wiring circuit board, characterized in that the amount of metal element detected by ESCA measurement on one surface of the first insulating layer in the thickness direction is 1 atom% or more and less than 20 atom% of all detected elements.
  2.  前記第1絶縁層の厚み方向の一方面における、ESCA測定でのCr元素検出量およびMn元素検出量の総和が、10atom%未満であることを特徴とする、請求項1に記載の配線回路基板。 The wiring circuit board according to claim 1, wherein the sum of the Cr element detection amount and the Mn element detection amount in the ESCA measurement on one surface in the thickness direction of the first insulating layer is less than 10 atom%. ..
  3.  前記第1絶縁層の厚み方向の一方面に配置される第2絶縁層を、さらに備え、
     前記第1絶縁層の厚み方向の一方面に対する前記第2絶縁層の密着力が、50gf/cm以上であることを特徴とする、請求項1に記載の配線回路基板。
    A second insulating layer arranged on one surface in the thickness direction of the first insulating layer is further provided.
    The wiring circuit board according to claim 1, wherein the adhesion of the second insulating layer to one surface in the thickness direction of the first insulating layer is 50 gf / cm or more.
  4.  金属支持層を準備する工程と、
     前記金属支持層上に、ポリイミドを含有する第1絶縁層を形成する工程と、
     前記第1絶縁層の厚み方向の一方面に配置される端子を形成する工程と、
     前記金属支持層を除去する工程と、
     前記金属支持層の除去により露出された前記第1絶縁層の厚み方向の一方面を、エッチングする工程と、を含むことを特徴とする、配線回路基板の製造方法。
    The process of preparing the metal support layer and
    A step of forming a first insulating layer containing polyimide on the metal support layer, and
    A step of forming terminals arranged on one surface in the thickness direction of the first insulating layer, and
    The step of removing the metal support layer and
    A method for manufacturing a wiring circuit board, which comprises a step of etching one surface of the first insulating layer in the thickness direction exposed by removing the metal support layer.
PCT/JP2020/016551 2019-07-09 2020-04-15 Wiring circuit board and method for manufacturing wiring circuit board WO2021005864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080049537.0A CN114073172A (en) 2019-07-09 2020-04-15 Wired circuit board and method for manufacturing wired circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-127374 2019-07-09
JP2019127374A JP7317604B2 (en) 2019-07-09 2019-07-09 Wiring circuit board and method for manufacturing wiring circuit board

Publications (1)

Publication Number Publication Date
WO2021005864A1 true WO2021005864A1 (en) 2021-01-14

Family

ID=74114659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016551 WO2021005864A1 (en) 2019-07-09 2020-04-15 Wiring circuit board and method for manufacturing wiring circuit board

Country Status (4)

Country Link
JP (1) JP7317604B2 (en)
CN (1) CN114073172A (en)
TW (1) TW202110291A (en)
WO (1) WO2021005864A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441297A (en) * 1987-08-07 1989-02-13 Mitsui Mining & Smelting Co Manufacture of wiring board
JP2006147662A (en) * 2004-11-16 2006-06-08 Fujikura Ltd Copper-clad laminate, flexible printed wiring board and its manufacturing method
JP2006196761A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for manufacturing wiring circuit board
JP2009295691A (en) * 2008-06-03 2009-12-17 Nitto Denko Corp Manufacturing method of wiring circuit board
WO2018199129A1 (en) * 2017-04-28 2018-11-01 日東電工株式会社 Flexible wiring circuit board, and manufacturing method thereof and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441297A (en) * 1987-08-07 1989-02-13 Mitsui Mining & Smelting Co Manufacture of wiring board
JP2006147662A (en) * 2004-11-16 2006-06-08 Fujikura Ltd Copper-clad laminate, flexible printed wiring board and its manufacturing method
JP2006196761A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method for manufacturing wiring circuit board
JP2009295691A (en) * 2008-06-03 2009-12-17 Nitto Denko Corp Manufacturing method of wiring circuit board
WO2018199129A1 (en) * 2017-04-28 2018-11-01 日東電工株式会社 Flexible wiring circuit board, and manufacturing method thereof and imaging device

Also Published As

Publication number Publication date
CN114073172A (en) 2022-02-18
JP7317604B2 (en) 2023-07-31
TW202110291A (en) 2021-03-01
JP2021012984A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
KR101510173B1 (en) Shield film for printed wiring board, and printed wiring board
CN1867226B (en) Method of manufacturing wiring circuit board
US20060197176A1 (en) Electronic subassembly having conductive layer, conductive film and method of making the same
KR20200010462A (en) Method of manufacturing electromagnetic shielding film, circuit board and electromagnetic shielding film
US9099450B2 (en) Package structure and method for manufacturing same
JP2015179790A (en) Laminate for electromagnetic wave shield, electronic apparatus, and method for manufacturing the same
JPWO2008149772A1 (en) Laminated film for mounting electronic parts, film carrier tape for mounting electronic parts, and semiconductor device
CN208047155U (en) Electromagnetic shielding film and printed circuit board with electromagnetic shielding film
JP7173752B2 (en) FLEXIBLE WIRED CIRCUIT BOARD, MANUFACTURING METHOD THEREOF, AND IMAGING DEVICE
WO2021005864A1 (en) Wiring circuit board and method for manufacturing wiring circuit board
CN109429442B (en) Circuit board and manufacturing method thereof
JP2002043467A (en) Board for semiconductor package, its manufacturing method, semiconductor package using board and manufacturing method of semiconductor package
JP2010129803A (en) Wiring circuit board and method for manufacturing the same
JP2007158069A (en) External connection structure for semiconductor package and manufacturing method thereof
KR20190139863A (en) Imaging element mounting board | substrate, its manufacturing method, and mounting board assembly
JP2006049822A (en) Module with built-in semiconductor ic
JP7424745B2 (en) Electromagnetic shielding film, printed wiring board with electromagnetic shielding film, and manufacturing method thereof
JP2020098825A (en) Wiring board and manufacturing method therefor
WO2017010216A1 (en) Electronic component
TWI387081B (en) Integrated circuit package structure and packaging method
WO2022138681A1 (en) Metal member
JP2006237267A (en) Electronic component accommodating package and electronic device
JPWO2007058108A1 (en) Anisotropic conductive adhesive
JP3129217B2 (en) Fine pitch connector members
JP2009001628A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836734

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836734

Country of ref document: EP

Kind code of ref document: A1