WO2021004468A1 - 一种航班舱位资源分配方法及装置 - Google Patents

一种航班舱位资源分配方法及装置 Download PDF

Info

Publication number
WO2021004468A1
WO2021004468A1 PCT/CN2020/100777 CN2020100777W WO2021004468A1 WO 2021004468 A1 WO2021004468 A1 WO 2021004468A1 CN 2020100777 W CN2020100777 W CN 2020100777W WO 2021004468 A1 WO2021004468 A1 WO 2021004468A1
Authority
WO
WIPO (PCT)
Prior art keywords
passengers
overflow
cabin
flight
unchecked
Prior art date
Application number
PCT/CN2020/100777
Other languages
English (en)
French (fr)
Inventor
毕铮
傅之凤
王晓玲
张金薇
李园园
Original Assignee
中国民航信息网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民航信息网络股份有限公司 filed Critical 中国民航信息网络股份有限公司
Priority to US17/625,484 priority Critical patent/US20220300865A1/en
Priority to EP20836905.8A priority patent/EP3998562A4/en
Publication of WO2021004468A1 publication Critical patent/WO2021004468A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention belongs to the field of aviation technology, and in particular relates to a method and device for allocating flight slot resources.
  • the purpose of the present invention is to provide a method and device for allocating flight space resources, in the event of passenger overflow, more reasonable allocation of flight space resources, adjustment of passenger cabins, and minimizing model changes to passengers
  • the specific plan is as follows:
  • the present invention provides a method for allocating flight class resources, including:
  • the preset activation information includes at least an EQT message for the model change of the target flight, and the EQT message includes at least each model after the change.
  • the target flight segment is in a state where the flight has not overflowed and the cabin is overflowing, according to the number of overflowing single cabins in the overflowing main cabin and the passenger check-in status of the overflowing main cabin, it is determined that the overflowing main cabin needs Overflow passengers who reallocate seats;
  • the overflow passenger is allocated a corresponding target cabin according to a preset cabin mapping rule, wherein the preset cabin mapping rule is formulated according to the preset passenger priority and the class of each main cabin.
  • the flight space resource allocation method provided in the first aspect of the present invention further includes:
  • the first L unchecked individual passengers will be allocated to the candidate flights according to the preset passenger priority order
  • the target flight segment is in a state where the flight has not overflowed and the space has overflowed, where L is the number of people who have overflowed the flight segment.
  • the flight slot resource allocation method provided in the first aspect of the present invention further includes:
  • the determination of the overflow passengers who need to be re-allocated in the overflow main cabin based on the number of people overflowed in a single cabin of the overflow main cabin and the passenger check-in status of the overflow main cabin includes:
  • the overflow passengers who need to be re-allocated from the preset high-level passengers and the unchecked individual passengers are determined.
  • the preset high-level passengers include group passengers and checked-in passengers.
  • the determination of the overflow passengers who need to be re-allocated from the unchecked individual passengers includes:
  • the unchecked individual passengers in the main cabin that have overflowed will be sorted according to the preset passenger priority from low to high;
  • the cabin upgrade method is used to allocate cabins for overflow passengers, the unchecked individual passengers in the main cabin that have overflowed are sorted according to the preset passenger priority from high to low;
  • the determination of the overflow passengers who need to be re-allocated from the preset high-level passengers and the unchecked individual passengers includes:
  • the preset high-level passengers in the main cabin where the overflow occurred are sorted according to the preset passenger priority from low to high;
  • the preset high-level passengers in the main cabin that have overflowed are sorted according to the preset passenger priority from high to low;
  • the present invention provides a flight slot resource allocation device, including:
  • the acquiring unit is configured to acquire preset activation information of the target flight and PNR information of the passenger reservation record, wherein the preset activation information includes at least a model change EQT message of the target flight, and the EQT message includes at least The information about the saleable space of each flight segment of the model after the change, and the PNR information includes at least the information of the sold space of each flight segment of the target flight;
  • the target flight segment determination unit is used to determine the target flight segment according to the preset flight segment priority
  • An overflow status determination unit configured to compare the sold space information of the target flight segment with the saleable space information after the target flight segment has been changed, and determine the overflow status of the target flight segment
  • the overflow passenger determination unit determines that the overflow has occurred based on the number of overflows in the single cabin of the overflowing main cabin and the passenger check-in status of the overflowing main cabin Overflow passengers in the main cabin that need to be re-allocated;
  • the allocation unit is configured to allocate corresponding target cabins to the overflow passengers according to preset cabin mapping rules, wherein the preset cabin mapping rules are formulated according to the preset passenger priority and the class of each main cabin.
  • the flight slot resource allocation device provided by the second aspect of the present invention further includes:
  • a calculation unit for calculating the difference between the total number of sold seats on the target flight segment and the number of saleable seats on the target flight segment of the model after the change, to obtain the number of people overflowing on the flight segment;
  • An unchecked individual passenger determination unit configured to determine the number of unchecked individual passengers in the target flight segment according to the PNR information
  • the first allocation unit is used to allocate the first L unchecked individual passengers according to the preset passenger priority ordering from low to high if the number of unchecked individual passengers is greater than or equal to the number of overflow passengers in the flight segment To the candidate flight, so that the target flight segment is in the state of the flight not overflowing and the cabin is overflowing, where L is the number of people overflowing the flight segment.
  • the flight slot resource allocation device provided by the second aspect of the present invention further includes:
  • the second allocation unit is used to allocate all the unchecked individual passengers to the candidate flight.
  • the overflow passenger determining unit is configured to determine that the overflowed main cabin needs to be re-allocated according to the number of overflows in a single cabin of the overflowed main cabin and the passenger check-in status of the overflowed main cabin
  • the details include:
  • the overflow passengers who need to be re-allocated from the preset high-level passengers and the unchecked individual passengers are determined.
  • the preset high-level passengers include group passengers and checked-in passengers.
  • the flight slot resource allocation method and device provided by the present invention, after obtaining the preset start information and PNR information of the target flight, first determine the target flight segment according to the preset flight segment priority, and then compare the target flight The information about the sold cabins of the segment and the saleable cabin information of the target segment after the model is changed, determine the overflow status of the target segment, and when the target segment is in the state of not overflowing the flight and the cabin overflow, for each overflow In the main cabin, the overflow passengers who need to be re-allocated to the main cabin are determined according to the number of people overflowed in the single cabin and the passenger check-in status of the overflow main cabin, and the corresponding target cabins are allocated to the overflow passengers according to the preset cabin mapping rules. Therefore, the technical solution provided by the present invention can allocate flight space resources more reasonably when passenger overflow occurs, adjust the space corresponding to passengers, and minimize the impact of model changes on passengers.
  • Figure 1 is a flowchart of a method for allocating flight class resources according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a device for allocating resources of flight slots according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of another device for allocating resources for flight slots according to an embodiment of the present invention.
  • Fig. 4 is a structural block diagram of yet another flight slot resource allocation device provided by an embodiment of the present invention.
  • Figure 1 is a flowchart of a method for allocating flight space resources provided by an embodiment of the present invention.
  • the method can be applied to electronic devices, such as laptops, smart phones, PCs (personal computers), etc.
  • the electronic device can also be implemented by a server on the network side in some cases; referring to Figure 1, an embodiment of the present invention
  • the provided flight class resource allocation methods can include:
  • Step S100 Obtain the preset start information of the target flight and the PNR information of the passenger reservation record.
  • the passenger overflow situation can be roughly divided into two types.
  • One is that when the flight type changes, the number of seats available for sale on the target flight changes from large to small. For example, when the model of the target flight changes, the model of the flight changes from Boeing 737 to Boeing 320, and the number of sales changes from F10Y200 to F8Y190.
  • the second is that when the flight type changes, the number of main cabins or the settings of the main cabin of the target flight changes. For example, the model changed from three cabins to two cabins after the change.
  • it can also be other overflow situations that can occur in actual applications.
  • the method for allocating flight space resources provided by the embodiment of the present invention can determine whether there is passenger overflow in two cases, and then allocate space resources of the target flight.
  • the electronic device applying the method provided in the embodiment of the present invention receives a model change EQT (Equipment) message.
  • the EQT message includes at least the saleable space information of each flight segment of the changed model. Specifically, it includes the total number of saleable space for each flight segment and the number of saleable space for each main cabin in each flight segment. Of course, the EQT message will also contain other necessary information about the changed model, which will not be repeated here.
  • the electronic device receives the EQT message, it means that the model of the target flight has changed, and it can start the judgment step of whether passenger overflow has occurred.
  • the EQT message is issued by the airline's flight planning system, which contains at least the new aircraft type adopted after the change. Furthermore, after knowing the changed model, the total number of saleable slots of the changed model and the number of saleable slots corresponding to the main cabin of each class can be specifically known.
  • the second is that the electronic device applying the method provided in the embodiment of the present invention receives the passenger value information of the target flight sent by the airline.
  • some airlines have their own control logic. Only when the passenger value information of the target flight is generated can the judgment step of whether passenger overflow occurs. In this scenario, only the passenger value information sent by the airline is received. Only judge whether there is passenger overflow, otherwise, even if the EQT message has been received, it cannot judge whether there is passenger overflow. Therefore, the preset activation information mentioned in the embodiment of the present invention includes at least an EQT message.
  • the embodiment of the present invention exemplarily provides an implementation method for obtaining the passenger value of the target flight directly from the airline.
  • the target can be obtained from the airline by executing the following exemplary code.
  • the embodiment of the present invention also provides a calculation method for calculating the passenger value.
  • the grouping is based on attributes such as whether the passengers are group passengers, check-in status (checked in or not), and special settings. It should be noted that the passenger grouping rules can be specifically set according to the needs of different airlines. Take Airline A and Airline B as examples to briefly introduce how to group passengers:
  • Airline A is based on passenger check-in status. For passengers in the same main cabin, take the PNR as the unit.
  • a PNR includes two or more passengers. If at least one passenger has checked in, it is considered that all passengers included in the PNR have already checked in and are classified as Checked crew; accordingly, only when all passengers in the PNR have not checked in, the PNR is classified as unchecked crew.
  • Airline B first divides the group passengers into a group, and then divides them according to the check-in status of individual passengers, and divides the checked-in individual passengers into one group and the unchecked individual passengers into one group. Specifically, when there are multiple passengers in the same PNR, if there is at least one passenger who has checked in, it is considered that all passengers in the entire PNR have been checked in, and they are divided into groups of checked-in individual passengers, only when the entire PNR When all passengers in China have not checked in, it is considered that the entire PNR passenger has not checked in.
  • group passengers have the highest priority
  • checked-in individual passengers have the middle priority
  • unchecked individual passengers have the lowest priority.
  • group passengers and individual passengers who have already checked-in are given priority to change cabin protection on this flight, and individual passengers who have not checked in can be protected to other flights.
  • protection can also be performed in other priority order.
  • the protection methods for group passengers and checked-in individual passengers can also be selected according to the actual needs of the airline, such as allowing group passengers or checked-in individual passengers to be allocated to other flights.
  • the grouping of passengers can be used as an important reference item in the calculation process of passenger value. If the value of the passenger is represented by a specific value, the higher the value, the greater the value of the passenger, then the grouping status of the passenger, or the group of the passenger No, it will directly affect the calculated passenger value. Furthermore, the group to which the passengers belong (group passengers, individual passengers who have checked in, and individual passengers who have not checked in) will also play an important role in the subsequent determination of overflow passengers.
  • a certain value identification is given to the passenger, such as a specific number.
  • Table 1 shows a reference example for calculating passenger value.
  • the above passenger value calculation method involves a large number of passenger flight records, passenger consumption records and other information. These historical information are all obtained by the computer or other equipment executing this method by accessing the corresponding information storage. The content stored in the information storage is also recorded by the airline using the corresponding information collection and information sorting equipment. Moreover, the collection and processing of information are all completed by the processor executing a preset control program.
  • the PNR information includes at least the information of the sold cabins of each segment of the target flight, that is, each PNR records the corresponding sold cabins (in the case that the passenger has not checked in, the PNR records the main cabin of the cabin purchased by the passenger) Level), according to the PNR information, through summary statistics, you can clearly know the sales status of the main cabin of each level of the target flight.
  • various information such as the passenger's name, flight segment group, fare group, and fare calculation group can also be obtained, which will not be repeated here.
  • Step S110 Determine the target flight segment according to the preset flight segment priority.
  • the target flight For a target flight that includes at least two flight segments, after obtaining the above information, it is necessary to determine the target flight segment to be processed first.
  • the inventor’s research found that long-haul passengers usually bring more benefits to airlines. Therefore, when the target flight includes multiple flight segments and long-haul segments, priority is given to the allocation of space resources for long-haul passengers, namely Among the preset priority rules, the long flight segment has the highest priority. If the long flight segment is not included, but multiple short flight segments are included, then the cabin resources can be allocated to the passengers of each short flight segment in turn, that is, each short flight segment is regarded as the target flight segment in turn. Correspondingly, if the target flight is a single flight segment, then the single flight segment can be directly used as the target flight segment.
  • a target flight including three flight segments as an example to illustrate possible changes.
  • a, b, and c respectively represent the terminal of the target flight
  • a-b represent the corresponding flight segment from terminal a to terminal b.
  • the representation method of other flight segments is the same as this, and will not be repeated. It can be divided into the following scenarios:
  • a-b model change
  • b-c flight cancellation
  • a-c flight cancellation (cancel a terminal or c terminal).
  • a-b-c cancel terminal b a-c means model change; a-b, b-c mean flight cancellation.
  • Add c terminal, a-b are model changes, a-c, b-c are new flight segments.
  • each flight segment can be set by itself according to needs. For example, for a target flight that includes multiple flight segments, it is also possible to give priority to short-segment passenger allocation of cabin resources, and wait for short-segment overflow passengers to be properly After the treatment is completed, arrangements will be made to overflow passengers for long flights.
  • the preset priority of the flight segment can be pre-set in the program code.
  • the target flight segment can be directly selected according to the preset priority.
  • it can also be set here to obtain the designated flight segment or designated priority input by the user (airline). After the corresponding parameters are obtained, the target flight segment is determined according to the obtained parameters.
  • Step S120 comparing the information of the sold space of the target flight segment with the information of the available space of the target flight segment after the model is changed to determine the overflow status of the target flight segment.
  • the overflow status of the target flight segment needs to be further determined.
  • the overflow status of the target flight segment can be determined according to the specific overflow situation of the target flight segment.
  • the information on sold spaces includes the total number of sold spaces and the number of sold spaces in the main cabins of each class, and the sum of the number of sold spaces in the main cabins of each class is equal to the total number of sold spaces;
  • the information on saleable spaces includes the target flight segment The total number of saleable cabins in the model after the change, and the saleable cabins of the main cabin of each class, and the sum of the saleable cabins of the main cabin of each class is equal to the total number of saleable cabins.
  • the total number of sold cabins of the target flight segment is not greater than the total number of saleable cabins after the model is changed, it is necessary to further compare the sold cabins of the main cabin of each class of the target flight segment with the corresponding saleable seats of each class after the model is changed If the number of sold cabins in the main cabin of any class is greater than the saleable cabin in the main cabin of that class, it is determined that the target segment is in the state of not overflowing the flight and the cabin is overflowing.
  • the target flight segment is a long flight segment
  • the first situation Overflow of passengers participating in the target flight for both short flight segments. In this case, it is judged separately for each short flight segment, whether the unchecked individual passengers that can be removed are greater than or equal to the unchecked individual passengers overflowing from the short flight segment itself.
  • both short flight segments can meet the condition that the unchecked individual passengers that can be removed are greater than or equal to the unchecked individual passengers overflowing on the short flight segment itself, it is determined that the target flight segment (i.e., the long flight segment) is not overflowing and The cabin overflow status. After the cabin resources of the target flight are allocated, the two short flight segments are processed according to the flight overflow and cabin overflow status.
  • the target is determined
  • the flight segment is in the state of flight overflow and space overflow
  • the short flight segment that meets the conditions of unchecked individual passengers that can be moved out is greater than or equal to the unchecked individual passenger overflow of the short flight segment itself is determined to be in the state of flight overflow and space overflow
  • the short flight segment that meets this condition is judged to be in the state of flight overflow and space overflow.
  • the second case If there is only one short segment of passengers participating in the target flight overflow. It is only necessary to judge the short flight segment over which the passengers of the participating target flight overflow. If the number of unchecked individual passengers that can be removed in the short flight segment is greater than or equal to the number of unchecked individual passengers overflowing on the short flight segment itself, it is determined that the target flight segment (ie, the long flight segment) is in the state of not overflowing the flight and overflowing the space After allocating space resources for the long flight segment, the short flight segment will be allocated according to the flight overflow and space overflow status.
  • the target flight segment ie, the long flight segment
  • the short flight segments that have overflowed will be allocated according to the overflow and space overflow status of the flight.
  • the short flight segments that have not overflowed will be allocated according to the non-overflow and overflow status of the flight.
  • the overbooking rate when airlines sell tickets, they often set a certain overbooking rate, that is, they are allowed to oversell part of the tickets on the basis of the total number of available seats on the flight.
  • the setting of the overbooking rate will affect the judgment of passenger overflow in the target flight, the type of overflow of the target flight segment, and the subsequent allocation of space resources.
  • flight attributes such as ordinary flights, last flights, etc.
  • SSM flight plan types
  • CAP, MAX calculation standards
  • priority is given to ensuring that the flight class is not overbooked, and then the overbooking rate of each main cabin will be specifically considered.
  • a flight layout is F10Y200 (10 cabins in first class and 200 cabins in economy class), the calculation standard is set to MAX, the flight class overbooking rate is 10%, the F cabin does not allow overbooking, the Y cabin overbooking rate is 10%, and the flight is obtained
  • the MAX value of each cabin of the information is F10Y220.
  • Table 2 exemplarily gives an optional oversell rate formulation rule.
  • MAX represents the maximum number of sales allowed by the airline for each main cabin of the flight.
  • the number of saleable space is the number of space that can be sold after calculating the overbooking rate, and It is not the actual number of saleable physical cabins set on the flight, and for the case where overbooking is not allowed, the available number of saleable cabins mentioned in the embodiment of the present invention is the actual saleable number of physical cabins set on the flight.
  • step S130 the target flight segment is in a state where the flight has not overflowed and the space is overflowed, and the overflow passengers who need to be re-allocated are determined according to the number of overflowing single cabins of the overflowing main cabin and the passenger check-in status of the overflowing main cabin.
  • the target flight segment is in a state where the flight has not overflowed and the cabin is overflowing, it is necessary to determine which passengers need to reallocate cabins for the main cabin where the passenger overflow occurs, so that the main cabin does not overflow. If there are multiple main cabin overflows in the target flight segment, they need to be dealt with one by one in the order of the main cabin class, until the overflowing passengers in each overflow main cabin are allocated to the corresponding cabins to achieve reasonable cabin resources distribution. Of course, it is also possible to allocate space resources to each main cabin one by one according to the order of main cabin level from low to high or other preset order. All of them belong to the protection scope of the embodiments of the present invention without going beyond the core idea of the embodiments of the present invention.
  • the main cabin where the overflow occurs obtain the information of the sold cabins of the target segment (specifically refer to the total number of sold cabins of the target segment) and the saleable cabin information after the target segment changes the model (specifically refer to the target segment) The total number of saleable cabins), calculate the difference between the total number of sold cabins and the total number of saleable cabins, and the result obtained is the number of overflowing single cabins in the main cabin that has overflowed.
  • the number of unchecked individual passengers in the main cabin where the overflow occurred is greater than or equal to the number of overflow individuals in the single cabin, it means that removing part or all of the unchecked individual passengers can guarantee that the overflowing main cabin will no longer overflow.
  • Check-in individual passengers are screened to identify overflow passengers who need to be re-allocated, while individual passengers and group passengers that have already been checked in in the main cabin will not move and remain in the main cabin.
  • Situation 1 Use downgrade to allocate space for overflow passengers, for example, allocate passengers in first class to business class or super economy class.
  • the unchecked individual passengers in the main cabin that have overflowed are sorted according to the preset passenger priority from low to high.
  • the first N unchecked individual passengers are regarded as overflow passengers that need to be re-allocated.
  • N is the number of people overflowing in the aforementioned single cabin.
  • the preset passenger priority can be determined based on the aforementioned passenger value, or the value of the passenger can be directly used as the priority when arranging space resources for passengers.
  • Case 2 Use upgrade to allocate space for overflow passengers, for example, allocate economy class passengers to business class or first class, and allocate business class or first class space resources to them.
  • First sort the unchecked individual passengers in the main cabin that have overflowed according to the preset passenger priority from high to low. After the sorting is completed, determine the first N unchecked individual passengers as overflow passengers who need to reallocate slots, such as As mentioned earlier, N is the number of people overflowing in a single cabin.
  • the preset high-level passengers referred to in the embodiments of the present invention include group passengers and checked-in individual passengers.
  • the level of group passengers is higher than that of checked-in individual passengers, that is, when the overflow of unchecked individual passengers cannot be the main cabin where the space overflow occurs and no longer overflows, consider removing the checked-in individual passengers, only at the same time. If the checked-in individual passengers and unchecked individual passengers cannot make the overflowing space no longer overflow, some group passengers will be removed so that the overflowing space no longer overflows.
  • preset high-level passengers are a different concept from the aforementioned preset passenger priority.
  • the preset high-level passengers are designated according to the passenger’s group, and only when the passenger overflows, the class will be processed last. Regulated passengers, furthermore, the designated preset high-level passengers are also passengers who can generate more and more stable income for the airline.
  • the overflow passengers who need to be re-allocated from the preset high-level passengers and unchecked passengers are different from the aforementioned situation where the main cabin that has overflowed can no longer overflow by removing some or all unchecked individual passengers.
  • the difference between the number of overflowing passengers in a single cabin and the number of unchecked scattered passengers in the main cabin is the preset number of high-level passengers overflowing.
  • After obtaining the preset number of high-level passenger overflow according to different protection methods, it can also be divided into two situations.
  • Situation 1 Use downgrading to allocate space for overflow passengers.
  • the preset high-level passengers in the main cabin that overflowed are sorted according to the preset passenger priority from low to high. After the sorting is completed, the first M preset high-level passengers and all unchecked individual passengers need to be reallocated Overflow passengers of cabins.
  • Situation 2 Use the upgrade method to allocate space for overflow passengers.
  • the preset high-level passengers in the main cabin that overflowed are sorted according to the preset passenger priority from high to low.
  • the first M preset high-level passengers and all unchecked individual passengers are determined to be reallocated Overflow passengers of cabins.
  • the main cabin that has overflowed can no longer overflow, and no adjustment will be made to the group passengers, only when all the checked-in individual passengers are moved. Passengers and all unchecked individual passengers are still not considered to be mobile group passengers when the main cabin does not overflow.
  • the target flight segment in the state of flight overflow and space overflow first calculate the difference between the total number of sold space in the target flight segment and the number of saleable space in the target flight segment after the model is changed, and obtain the number of overflow people in the flight segment.
  • the number of people overflowing the flight segment is represented by L.
  • a computer or other electronic device using the method provided in the embodiment of the present invention extracts the passenger check-in status information in the obtained PNR, and then determines the number of unchecked individual passengers in the target flight segment. Comparing the relationship between the number of unchecked individual passengers and the number of overruns in the flight segment, if the number of unchecked individual passengers is greater than or equal to the number of overruns in the flight segment, it means that all or part of the unchecked individual passengers will be allocated to the candidate flight (i.e. all or part of them) Unchecked individual passengers are removed from the target flight and allocated to the candidate flight), which can make the target flight segment in the state of not overflowing the flight and overflowing the cabin.
  • all unchecked passengers in the target flight segment can be sorted according to the preset passenger priority from low to high, and the first L unchecked individual passengers can be allocated to candidate flights. After the allocation is completed, the target flight segment can be used The flight is not overflowing and the cabin is overflowing.
  • the number of unchecked individual passengers in the target flight segment is less than the number of overflow passengers, it indicates that there is a preset high-level passenger overflow.
  • the number of unchecked individual passengers in the target flight segment is less than the number of overflow passengers, it indicates that there is a preset high-level passenger overflow.
  • Step S140 According to the preset cabin mapping rules, the overflow passengers are allocated corresponding target cabins.
  • the corresponding target cabins are allocated to each overflow passenger according to the preset cabin mapping rules.
  • the preset cabin mapping rules are formulated according to the preset passenger priority and the class of each main cabin. The core idea of the preset class mapping rules is to assign overflow passengers with a higher preset passenger priority to a higher-level main cabin, and assign overflow passengers with a lower preset passenger priority to a lower-level main cabin. While providing passengers with flight arrangements that are suitable for their overall situation, they can improve their experience while ensuring that the interests of airlines are maximized.
  • the upgrade or downgrade method when allocating spaces for overflow passengers in the main cabin, the upgrade or downgrade method will be used flexibly according to the actual space sales. In the case of a large number of overflow passengers in a single cabin, the two The methods for determining overflow passengers in this way are combined to determine the overflow passengers in the main cabin where the overflow occurred.
  • Airline A Take Airline A as an example to illustrate an optional form of preset class mapping rules.
  • Airline A’s target flights have four types of main cabins: first class, business class, super economy class and ordinary economy class (the main cabin class is lowered in order). specific:
  • the cabin resource allocation is carried out by the method of downgrading, and the cabin resources of super economy class and ordinary economy class are allocated in sequence according to the preset passenger priority of overflow passengers from high to low.
  • the combination of downgrade and upgrade is used to allocate space resources for overflow passengers.
  • the space resources of ordinary economy class are allocated first by downgrading, and then the space resources of first class are allocated by means of upgrade.
  • the upgrade method can be used to allocate space resources.
  • the cabin resources are allocated to the overflow passengers.
  • the overflow passengers should be assigned to each overflow passenger in the order of the preset passenger priority from low to high, and the corresponding cabin class from low to high.
  • flight class resources can be allocated more reasonably, the corresponding class of passengers can be adjusted, and the number of types of changes to passengers can be minimized.
  • it also helps to maximize the interests of airlines and increase their profit margins.
  • the airline can personalize the destination of the remaining passengers as needed. For example, you can directly no longer allocate any cabins to the remaining passengers, or allocate the corresponding passengers to other flights in accordance with the flight cancellation rules. For such cases, the details will not be repeated in the embodiment of the present invention.
  • the flight slot resource allocation device described below can be considered as a functional module structure that needs to be set in the central device to implement the flight slot resource allocation method provided by the embodiment of the present invention ;
  • the following description can cross-reference with the above.
  • FIG. 2 is a structural block diagram of a device for allocating flight class resources according to an embodiment of the present invention.
  • the device may include:
  • the obtaining unit 10 is configured to obtain preset activation information of a target flight and PNR information of a passenger reservation record, wherein the preset activation information includes at least a model change EQT message of the target flight, and the EQT message is at least Including the saleable space information of each flight segment of the model after the change, and the PNR information includes at least the sold space information of each flight segment of the target flight;
  • the target flight segment determination unit 20 is used to determine the target flight segment according to the preset flight segment priority
  • the overflow state determining unit 30 is configured to compare the sold space information of the target flight segment with the saleable space information of the target flight segment after the model is changed to determine the overflow state of the target flight segment;
  • the overflow passenger determining unit 40 determines the occurrence according to the number of overflows in the single cabin of the overflowing main cabin and the passenger check-in status of the overflowing main cabin. Overflow passengers who need to be re-allocated in the overflow main cabin;
  • the allocating unit 50 is configured to allocate corresponding target cabins to the overflow passengers according to preset cabin mapping rules, wherein the preset cabin mapping rules are formulated according to the preset passenger priority and the class of each main cabin.
  • FIG. 3 is a structural block diagram of another device for allocating flight slot resources according to an embodiment of the present invention. Based on the embodiment shown in FIG. 2, the device further includes:
  • the calculation unit 60 is configured to calculate the difference between the total number of sold seats on the target flight segment and the saleable number of seats on the target flight segment of the model after the change, to obtain the number of people overflowing on the flight segment;
  • the unchecked individual passenger determining unit 70 is configured to determine the number of unchecked individual passengers in the target flight segment according to the PNR information;
  • the first allocating unit 80 is configured to, if the number of unchecked individual passengers is greater than or equal to the number of overflow passengers in the flight segment, sort the first L unchecked individual passengers according to the preset passenger priority from low to high Allocate to the candidate flight, so that the target flight segment is in the state of the flight not overflowing and the cabin is overflowing, where L is the number of people overflowing the flight segment.
  • FIG. 4 is a structural block diagram of yet another device for allocating flight slot resources according to an embodiment of the present invention. Based on the embodiment shown in FIG. 3, the device further includes:
  • the second allocation unit 90 is used to allocate all the unchecked individual passengers to the candidate flight.
  • the overflow passenger determining unit 40 is configured to determine that the overflowed main cabin needs to be renewed according to the number of overflows in a single cabin of the overflowed main cabin and the passenger check-in status of the overflowed main cabin.
  • the details include:
  • the overflow passengers who need to be re-allocated from the preset high-level passengers and the unchecked individual passengers are determined.
  • the preset high-level passengers include group passengers and checked-in passengers.
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage medium.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种航班舱位资源分配方法及装置,应用于航空技术领域,该方法在获取目标航班的预设启动信息和PNR信息后(S100),首先按照预设航段优先级,确定目标航段(S110),进而比对目标航段的已销售舱位信息和目标航段变更机型后的可销售舱位信息,确定目标航段的溢出状态(S120),在目标航段处于航班未溢出且舱位溢出状态的情况下,针对每一发生溢出的主舱,根据发生溢出的主舱的单舱溢出人数和旅客值机状态,确定需要重新分配舱位的溢出旅客(S130),并按预设舱位映射规则为溢出旅客分配对应的目标舱位(S140)。上述方法在发生旅客溢出时,能够更加合理的分配航班的舱位资源,调整旅客对应的舱位,最大程度的降低机型变更给旅客带来的影响。

Description

一种航班舱位资源分配方法及装置
本申请要求于2019年07月10日提交中国专利局、申请号为201910620244.2、发明名称为“一种航班舱位资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于航空技术领域,尤其涉及一种航班舱位资源分配方法及装置。
背景技术
在航空公司的日常工作中,由于天气变化、资源调度等原因,航班会出现各种各样计划性或非计划性的变更,而机型变更是诸多变更情况中对航班影响最大的一种变更情况。
航班发生机型变更时,往往会出现已销售舱位与变更后机型能够提供的可销售舱位不符的情况,比如,头等舱中的已销售舱位多于变更后机型头等舱中可提供的可销售舱位,同样的,经济舱或其他等级主舱中也会出现这种旅客溢出的情况。
当旅客溢出的情况出现时,如何合理分配航班的舱位资源,调整旅客对应的舱位,最大程度的降低机型变更给旅客带来的影响,成为本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种航班舱位资源分配方法及装置,在发生旅客溢出时,更加合理的分配航班的舱位资源,调整旅客对应的舱位,最大程度的降低机型变更给旅客带来的影响,具体方案如下:
第一方面,本发明提供一种航班舱位资源分配方法,包括:
获取目标航班的预设启动信息和旅客订位记录PNR信息,其中,所述预设启动信息至少包括所述目标航班的机型变更EQT报文,所述EQT报文至少 包括变更后机型各航段的可销售舱位信息,所述PNR信息中至少包括所述目标航班各航段的已销售舱位信息;
按照预设航段优先级,确定目标航段;
比对所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述目标航段的溢出状态;
若所述目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客;
按预设舱位映射规则为所述溢出旅客分配对应的目标舱位,其中,所述预设舱位映射规则根据预设旅客优先级以及各主舱的等级制定。
可选的,若所述目标航段处于航班溢出且舱位溢出状态,本发明第一方面提供的航班舱位资源分配方法,还包括:
计算所述目标航段已销售舱位总数与所述变更后机型在所述目标航段的可销售舱位数量之差,得到航段溢出人数;
根据所述PNR信息,确定所述目标航段中未值机散客数量;
若所述未值机散客数量大于或等于所述航段溢出人数,按照所述预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,以使所述目标航段处于所述航班未溢出且舱位溢出状态,其中,L为所述航段溢出人数。
可选的,若所述未值机散客数量小于所述航段溢出人数,本发明第一方面提供的航班舱位资源分配方法,还包括:
将全部所述未值机散客分配至所述候选航班。
可选的,所述根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客,包括:
根据所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述发生溢出的主舱的单舱溢出人数;
若所述发生溢出的主舱中未值机散客数量大于或等于所述单舱溢出人数, 从所述未值机散客中确定需要重新分配舱位的溢出旅客;
若所述发生溢出的主舱中未值机散客数量小于所述单舱溢出人数,从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,其中,所述预设高级别旅客包括团队旅客和已值机旅客。
可选的,所述从所述未值机散客中确定需要重新分配舱位的溢出旅客,包括:
若采用降舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中未值机散客按预设旅客优先级由低到高排序;
确定前N个未值机散客为需要重新分配舱位的溢出旅客,其中,N为所述单舱溢出人数;
若采用升舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中未值机散客按预设旅客优先级由高到低排序;
确定前N个未值机散客为需要重新分配舱位的溢出旅客。
可选的,所述从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,包括:
确定所述单舱溢出人数中包括的预设高级别旅客溢出人数;
若采用降舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中预设高级别旅客按预设旅客优先级由低到高排序;
确定前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客;其中,M为所述已值机散客溢出人数;
若采用升舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中预设高级别旅客按预设旅客优先级由高到低排序;
确定前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客。
第二方面,本发明提供一种航班舱位资源分配装置,包括:
获取单元,用于获取目标航班的预设启动信息和旅客订位记录PNR信息,其中,所述预设启动信息至少包括所述目标航班的机型变更EQT报文,所述 EQT报文至少包括变更后机型各航段的可销售舱位信息,所述PNR信息中至少包括所述目标航班各航段的已销售舱位信息;
目标航段确定单元,用于按照预设航段优先级,确定目标航段;
溢出状态确定单元,用于比对所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述目标航段的溢出状态;
溢出旅客确定单元,若所述目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客;
分配单元,用于按预设舱位映射规则为所述溢出旅客分配对应的目标舱位,其中,所述预设舱位映射规则根据预设旅客优先级以及各主舱的等级制定。
可选的,本发明第二方面提供的航班舱位资源分配装置,还包括:
计算单元,用于计算所述目标航段已销售舱位总数与所述变更后机型在所述目标航段的可销售舱位数量之差,得到航段溢出人数;
未值机散客确定单元,用于根据所述PNR信息,确定所述目标航段中未值机散客数量;
第一分配单元,用于若所述未值机散客数量大于或等于所述航段溢出人数,按照所述预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,以使所述目标航段处于所述航班未溢出且舱位溢出状态,其中,L为所述航段溢出人数。
可选的,本发明第二方面提供的航班舱位资源分配装置,还包括:
第二分配单元,用于将全部所述未值机散客分配至所述候选航班。
可选的,所述溢出旅客确定单元,用于根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客时,具体包括:
根据所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述发生溢出的主舱的单舱溢出人数;
若所述发生溢出的主舱中未值机散客数量大于或等于所述单舱溢出人数, 从所述未值机散客中确定需要重新分配舱位的溢出旅客;
若所述发生溢出的主舱中未值机散客数量小于所述单舱溢出人数,从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,其中,所述预设高级别旅客包括团队旅客和已值机旅客。
基于上述技术方案,本发明提供的航班舱位资源分配方法及装置,在获取目标航班的预设启动信息和PNR信息后,首先按照预设航段优先级,确定目标航段,进而比对目标航段的已销售舱位信息和目标航段变更机型后的可销售舱位信息,确定目标航段的溢出状态,在目标航段处于航班未溢出且舱位溢出状态的情况下,针对每一发生溢出的主舱,根据发生溢出的主舱的单舱溢出人数和旅客值机状态,确定需要重新分配舱位的溢出旅客,并按预设舱位映射规则为溢出旅客分配对应的目标舱位。因此,本发明提供的技术方案,在发生旅客溢出时,能够更加合理的分配航班的舱位资源,调整旅客对应的舱位,最大程度的降低机型变更给旅客带来的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种航班舱位资源分配方法的流程图;
图2是本发明实施例提供的一种航班舱位资源分配装置的结构框图;
图3是本发明实施例提供的另一种航班舱位资源分配装置的结构框图;
图4是本发明实施例提供的再一种航班舱位资源分配装置的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例,都属于本发明保护的范围。
参见图1,图1是本发明实施例提供的航班舱位资源分配方法的流程图,该方法可应用于电子设备,该电子设备可选如笔记本电脑、智能手机、PC(个人计算机)等能够获取所需数据,并根据所得数据按本发明实施例提供的方法进行数据处理的电子设备,显然,该电子设备在某些情况下也可选用网络侧的服务器实现;参照图1,本发明实施例提供的航班舱位资源分配方法可以包括:
步骤S100,获取目标航班的预设启动信息和旅客订位记录PNR信息。
航班机型变更时,旅客溢出情况大致可以分为两种,其一是航班发生机型变更时,目标航班可销售舱位数由大变小。比如,当目标航班发生机型变更时,航班机型由波音737变成波音320,则销售数由F10Y200变成F8Y190。其二是航班发生机型变更时,目标航班的各主舱舱位数或主舱的设置情况发生变化。比如,变更后机型由三舱变成两舱。当然,还可以是实际应用中可以出现的其他溢出情况。
对于何时判断是否出现旅客溢出,不同的航空公司往往有着不同要求,因此,预设启动信息的具体内容也会有所不同。本发明实施例提供的航班舱位资源分配方法,可以在两种情况下判断是否出现旅客溢出,继而对目标航班的舱位资源进行分配。
其一是应用本发明实施例所提供方法的电子设备收到机型变更EQT(Equipment)报文。EQT报文中至少包括变更后机型的各航段的可销售舱位信息,具体的,包括每一航段可销售舱位的总数,以及每一航段中各主舱的可销售舱位数。当然,EQT报文中还会包含变更后机型的其他必要信息,此处不再赘述。当电子设备收到EQT报文后,即说明目标航班发生机型变更,可以启动是否发生旅客溢出的判断步骤。
EQT报文由航空公司的航班计划系统下发,其中至少包含变更后采用的新机型。进一步的,在获知变更后的机型后,可以具体获知变更后机型的可销售舱位总数,以及各等级主舱对应的可销售舱位数。
其二是应用本发明实施例所提供方法的电子设备收到航空公司发送的目标航班的旅客价值信息。现有技术中,部分航空公司有着自己的控制逻辑,只有生成目标航班的旅客价值信息才允许启动是否发生旅客溢出的判断步骤,在此种场景下,只有收到航空公司发送的旅客价值信息,才进行是否出现旅客溢出的判断,否则,即是已经收到EQT报文,也不能进行是否出现旅客溢出的判断。因此,本发明实施例中述及的预设启动信息,至少包括EQT报文。
可选的,本发明实施例示例性的给出直接从航空公司获取目标航班旅客价值的实施方式,在与航空公司建立通讯连接后,通过执行下述示例性代码,即可从航空公司获得目标航班各旅客的旅客价值。
Figure PCTCN2020100777-appb-000001
Figure PCTCN2020100777-appb-000002
可选的,本发明实施例还给出一种计算旅客价值的计算方法。
首先,对旅客进行分组。具体的,根据旅客是否为团队旅客、值机状态(已值机或未值机)、特殊设置等属性进行分组。需要说明的是,旅客分组规则可以根据不同航空公司的需要,进行针对性、个性化的具体设置。下面分别以A航空公司和B航空公司为例,简要介绍旅客分组方法:
A航空公司,以旅客值机状态为主要划分依据。对于同一主舱的旅客,以PNR为单位,一PNR中包括两位及以上旅客,若至少存在一名旅客已办理值机,则认为该PNR中所包含的所有旅客均已值机,划分至已值机组;相应的,只有当该PNR中所有旅客均未办理值机时,才将该PNR划分至未值机组。
B航空公司,首先将团队旅客划分为一组,然后根据散客的值机状态进行划分,将已值机散客分为一组,将未值机散客分为一组。具体的,当同一PNR中包括有多名旅客时,如果至少存在一名旅客已值机,则认为整个PNR中的所有旅客均已值机,划分至已值机散客分组,只有当整个PNR中所有旅客均未办理值机时,才认为整个PNR旅客未值机。
进一步的,还可以设定不同分组旅客在保护过程中的预设优先级,比如团队旅客优先级最高,已值机散客优先级居中,未值机散客优先级最低。需要说明的是,团队旅客和已值机散客优先在本航班进行换舱保护,对于未值机散客,可以保护至其他航班。当然,也可以按其他优先级顺序进行保护。进一步可以 想到的是,对于团队旅客和已值机散客的保护方式,同样可以根据航空公司的实际需求进行选择,比如,允许团队旅客或已值机散客分配到其他航班等。
需要说明的是,对旅客进行分组,可以作为旅客价值计算过程的重要参考项,如果以具体数值来表征旅客价值,数值越高旅客价值越大,那么旅客的分组状态,或者说旅客所在的组别,将直接影响计算得到的旅客价值。进一步的,旅客所属的组别(团队旅客,已值机散客、未值机散客),还会在后续溢出旅客的确定过程中起到重要作用。
在对旅客进行分组之后,再根据旅客的常客卡级别、特征身份、特殊服务、舱位等属性,赋予旅客一定价值标识,比如,可以是具体的数字等。
仍以A航空公司为例,说明旅客价值的计算方法:
72小时内团队分值=本身价值+5001(此处暂不区分值机状态)
已值机散客=本身价值+2000
72小时外团队未值机分值=本身价值
72小时外团队已值机分值=本身价值+2000
基于上述计算方法,参见表1,表1示出一种计算旅客价值的参考样例。
表1
Figure PCTCN2020100777-appb-000003
Figure PCTCN2020100777-appb-000004
可以想到的是,上述旅客价值计算方法,涉及到大量的旅客乘机记录,以及旅客的消费记录等信息,这些历史信息都是执行本方法的计算机或者其他设备通过访问相应的信息存储器获得的,而信息存储器中存储的内容,也是航空公司利用相应的信息收集、信息整理设备记录的。并且,信息的采集、处理都是通过处理器执行预设的控制程序完成的。
进一步的,为完成判断过程,还需要获取目标航班的PNR(Passenger Name Record,旅客定位记录)信息。PNR信息中至少包括目标航班各航段的已销售舱位信息,即每一个PNR中都记录着对应的已销售舱位(在旅客未办理值机的情况下,PNR记录着旅客所购舱位的主舱等级),根据PNR信息,经过汇总统计,可以明确获知目标航班各等级主舱的销售情况。当然,还可以获知旅客姓名、航段组、票价组,以及票价计算组等多种信息,此处不再赘述。
步骤S110,按照预设航段优先级,确定目标航段。
对于包括至少两个航段的目标航班来说,在获取上述信息之后,需要确定优先处理的目标航段。发明人研究发现,长航段旅客通常会给航空公司带来更 多的收益,因此,当目标航班包括多个航段,且包含长航段时,优先为长航段旅客分配舱位资源,即预设的优先级规则中,长航段具有最高优先级。如果不包括长航段,而是包括多个短航段,则依次为各个短航段旅客分配舱位资源即可,即依次将每个短航段作为目标航段。相应的,如果目标航班为单航段,那么则可以直接将该单航段作为目标航段。
下面以包括三个航段的目标航班为例,说明可能出现的变更情况。其中,a,b,c分别代表目标航班的航站,a-b表示从a航站到b航站对应的航段,其他航段的表示方法与此一致,不再赘述。具体可以分为以下场景:
场景一
a-b-c全部都是机型变更。
场景二
a-b-c同时出现EQT和时刻变更。
场景三
a-b,机型变更;b-c,时刻变更,a-c,机型变更/时刻变更。
场景四
a-b,机型变更;b-c,航班取消;a-c,航班取消(取消a航站或c航站)。
场景五
a-b-c取消b航站;a-c为机型变更;a-b,b-c为航班取消。
场景六
新增c航站,a-b为机型变更,a-c,b-c为新航段。
场景七
a-c之间新增b航站,a-b为新航段,b-c为新航段,a-c为机型变更。
需要说明的是,各个航段的优先级可以根据需要自行设定,比如,对于包括多个航段的目标航班,同样可以优先为短航段旅客分配舱位资源,待短航段溢出旅客都妥善处理完毕后,再行安排长航段溢出旅客。
可选的,对于航段的预设优先级,可以在程序代码中预先设定好,当计算机或者其他执行本方法的设备运行相应代码时,可以直接按照预设优先级选择目标航段。当然,此处也可以设置为获取用户(航空公司)输入的指定航段或指定优先级,在获取到相应参数后,根据所得参数确定目标航段。
步骤S120,比对目标航段的已销售舱位信息和目标航段变更机型后的可销售舱位信息,确定目标航段的溢出状态。
在确定需要处理的目标航段之后,需要进一步确定目标航段的溢出状态。如前所述,可以根据目标航段具体的溢出情况,确定目标航段所属的溢出状态。
以单航段作为目标航段为例,获取得到的目标航班的EQT报文和相应的PNR信息之后,可以具体提取到目标航段的已销售舱位信息和变更机型后目标航段的可销售舱位信息。具体的,已销售舱位信息中包括已销售舱位总数以及各等级主舱已销售舱位数,并且各等级主舱已销售舱位数之和等于已销售舱位总数;可销售舱位信息中,包括目标航段在变更后机型中的可销售舱位总数,以及各等级主舱的可销售舱位数,并且各等级主舱可销售舱位数之和等于可销售舱位总数。
得到上述信息之后,首先比对目标航班的已销售舱位总数和变更机型后的可销售舱位总数,如果已销售舱位总数大于可销售舱位总数,说明航班已经发生溢出,则确定目标航段处于航班溢出且舱位溢出状态。
如果目标航段的已销售舱位总数不大于变更机型后的可销售舱位总数,需要进一步比对目标航段各等级主舱的已销售舱位数和各等级对应的变更机型后的可销售舱位数,如果存在任一等级主舱的已销售舱位数大于该等级主舱的可销售舱位数,则确定目标航段处于航班未溢出且舱位溢出状态。
可选的,对于目标航段为长航段的情况,需要进一步结合其余短航段的情况,判断目标航段所述的溢出状态。
首先,需要依次判断有几个短航段参与目标航班的旅客溢出,具体划分为:
第一种情况:两个短航段都参与目标航班的旅客溢出。此种情况下,针对每一个短航段分别进行判断,可移出的未值机散客是否大于或等于短航段自身溢出的未值机散客。
如果两个短航段都能满足可移出的未值机散客大于或等于短航段自身溢出的未值机散客这一条件,判定目标航段(即长航段)处于航班未溢出且舱位溢出状态,待目标航班的舱位资源分配完毕后,再分别把两个短航段,按照航班溢出且舱位溢出状态处理。
如果两个短航段中,一个短航段满足前述可移出的未值机散客大于或等于短航段自身溢出的未值机散客这一条件,另一个短航段不满足,判定目标航段处于航班溢出且舱位溢出状态,并把满足可移出的未值机散客大于或等于短航段自身溢出的未值机散客条件的短航段判定处于航班未溢出且舱位溢出状态,将满足该条件的短航段,判定处于航班溢出且舱位溢出状态。
第二种情况:如果只有一个短航段参与目标航班的旅客溢出。则只需针对该参与目标航班旅客溢出的短航段进行判断。如果该短航段中可移出的未值机散客数量大于或等于该短航段自身溢出的未值机散客数量,判定目标航段(即长航段)处于航班未溢出且舱位溢出状态,待为长航段分配舱位资源之后,将短航段按照航班溢出且舱位溢出状态进行舱位资源分配。如果该短航段中可移出的未值机散客数量小于该短航段自身溢出的未值机散客数量,判定目标航段(即长航段)处于航班溢出且舱位溢出状态,待为长航段分配舱位资源之后,将发生溢出的短航段按照航班溢出且舱位溢出状态进行舱位资源分配,同时,将未发生溢出的短航段按照航班未溢出且舱位溢出状态进行舱位资源分配。
可选的,航空公司在进行售票时,往往还会设置一定的超售率,即允许在航班可销售舱位总数的基础上,超额销售部分机票。超售率的设置会对目标航 班发生旅客溢出、目标航段溢出类型的判断,以及后续舱位资源的分配带来影响。在确定航班溢出人数、航班可超售数等具体操作过程中,可按照航空公司的个性化需要,如航班属性(如普通航班、末班航班等)、航班计划类型(SSM、ASM等)、是否考虑重要旅客、计算标准(CAP、MAX)等特点,配置航班级、舱位级超售率。在具体舱位资源的分配过程中,优先确保航班级不超售的情况下,才会具体考虑各个主舱的超售率。
假设某航班布局F10Y200(头等舱10个舱位,经济舱200个舱位),设置计算标准为MAX,航班级超售率10%,F舱不允许超售,Y舱超售率10%,获取航班信息的各舱MAX值为F10Y220。首先航班级超售人数为:212*10%=21.2,取整为21人。在航班不超售的情况下,Y舱可允许超售的人数为:202*10%=20.2,取整为20人。
可选的,参见表2,表2示例性的给出一种可选的超售率制定规则。
表2
Figure PCTCN2020100777-appb-000005
其中,字母P、F、J、Y表示主舱简称,各航空公司都有自己的定义,此处不再赘述;
MAX表示航空公司允许该航班各个主舱的最大销售数。
需要说明的是,在航空公司允许超售的情况下,本发明实施例提供的舱位资源分配方法中,所述及的可销售舱位数是经过超售率计算后得到的可销售舱位数,而并非航班实际设置的可销售的物理舱位数,而对于不允许超售的情况, 本发明实施例述及的可销售舱位数即航班实际设置的可销售的物理舱位数。
步骤S130,目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和发生溢出的主舱的旅客值机状态,确定需要重新分配舱位的溢出旅客。
若目标航段处于航班未溢出且舱位溢出状态,需要针对发生旅客溢出的主舱,确定具体需要为哪些旅客重新分配舱位,以使得该主舱不再溢出。如果目标航段中出现多个主舱溢出,需要按照主舱等级由高到低的顺序逐一处理,直至将各发生溢出的主舱中溢出的旅客都分配至相应的舱位,实现舱位资源的合理分配。当然,也可以按照主舱等级由低到高的顺序或者其他预设顺序逐一对各主舱进行舱位资源的分配。在不超出本发明实施例核心思想的前提下,都属于本发明实施例保护的范围。
可选的,针对发生溢出的主舱,获取目标航段的已销售舱位信息(具体指目标航段已销售舱位总数)和目标航段变更机型后的可销售舱位信息(具体指目标航段可销售舱位总数),计算该已销售舱位总数和该可销售舱位总数之差,所得结果即为发生溢出的主舱的单舱溢出人数。
在计算得到单舱溢出人数之后,需要进一步判断发生溢出的主舱中未值机散客的数量与该单舱溢出人数的大小关系,以确定需要为哪部分旅客重新分配舱位资源。
具体的,如果发生溢出的主舱中未值机散客数量大于或等于该单舱溢出人数,说明移出部分或全部未值机散客即可保证发生溢出的主舱不再溢出,则从未值机散客中筛选确定出需要重新分配舱位的溢出旅客,而本主舱中已值机散客和团体旅客不动,仍留在本主舱不动。
可选的,在移出部分或全部未值机散客即可使得发生溢出的主舱不再溢出的情况下,具体需要移出哪些旅客,并为这些移出的旅客重新分配舱位资源,根据采取的保护方式不同,可以分为两种情况。
情况一、采用降舱方式为溢出旅客分配舱位,比如,将头等舱中的旅客分配至公务舱或超级经济舱。首先,将发生溢出的主舱中未值机散客按预设旅客优先级由低到高排序,排序完成后,将前N个未值机散客作为需要重新分配舱位的溢出旅客,其中,N为前述单舱溢出人数。可选的,预设旅客优先级可以根据前述的旅客价值制定,或直接将旅客价值的高低作为在为旅客安排舱位资源时的优先级。
情况二、采用升舱方式为溢出旅客分配舱位,比如,将经济舱中的旅客分配至公务舱或头等舱,为其分配公务舱或头等舱的舱位资源。首先,将发生溢出的主舱中的未值机散客按预设旅客优先级由高到低排序,完成排序后,确定前N个未值机散客为需要重新分配舱位的溢出旅客,如前所述,N为单舱溢出人数。
相反的,如果发生溢出的主舱中未值机散客数量小于单舱溢出人数,说明移出全部的未值机散客也不能使发生溢出的主舱不再溢出,而是需要进一步的移出部分预设高级别旅客才能使得发生溢出的主舱不再溢出。如前所述,在将旅客分为团队旅客、已值机散客和未值机散客的情况下,本发明实施例所指的预设高级别旅客包括团队旅客和已值机散客,进一步的,团队旅客的级别又要高于已值机散客,即在溢出未值机散客不能是发生舱位溢出的主舱不再溢出时,考虑移出已值机散客,只有在同时移出已值机散客和未值机散客还不能使发生溢出的舱位不再溢出的情况下,才会移出部分团队旅客,以使的发生溢出的舱位不再溢出。
需要说明的是,上述预设高级别旅客的指定与前述预设旅客优先级是不同的概念,预设高级别旅客是根据旅客所属组别进行指定的,是在旅客溢出时,最后才进行舱位调节的旅客,进一步的,指定的预设高级别旅客也是对航空公司而言,能够产生更多、更稳定收益的旅客。
可选的,从预设高级别旅客和未值机旅客中确定需要重新分配舱位的溢出旅客,与前述移出部分或全部未值机散客即可使得发生溢出的主舱不再溢出的 情况不同的是,在确定溢出旅客之前,首先需要确定发生舱位溢出的主舱的单舱溢出人数中所包括的预设高级别旅客溢出人数(本实施例中以M表示)。具体的,单舱溢出人数与该主舱中未值机散客人数之差,即为预设高级别旅客溢出人数。求得预设高级别旅客溢出人数之后,根据保护方式的不同,同样可以分为两种情况。
情况一、采用降舱方式为溢出旅客分配舱位。首先,将发生溢出的主舱中预设高级别旅客按预设旅客优先级由低到高排序,完成排序后,将前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客。
情况二、采用升舱方式为溢出旅客分配舱位。首次,将发生溢出的主舱中预设高级别旅客按预设旅客优先级由高到低排序,完成排序后,确定前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客。
如前所述,如果只移动部分或全部已值机散客和全部未值机散客即可以使发生溢出的主舱不再溢出,则不对团队旅客进行调整,只有在移动全部已值机散客和全部未值机散客仍不能是该主舱不溢出时,才考虑移动团队旅客。
若目标航段处于航班溢出且舱位溢出状态,需要对目标航段进行初步处理,以使目标航段处于航班未溢出且舱位溢出状态,然后按照前述的方法步骤,确定发生溢出的主舱的溢出旅客。
具体的,针对处于航班溢出且舱位溢出状态的目标航段,首先计算目标航段已销售舱位总数与变更后机型在目标航段的可销售舱位数量之差,得到航段溢出人数。可选的,航段溢出人数以L表示。
然后,应用本发明实施例所提供方法的计算机或其他电子设备提取所获取得到的PNR中的旅客值机状态信息,进而确定目标航段中未值机散客数量。对比未值机散客数量和航段溢出人数的大小关系,如果未值机散客数量大于或等于航段溢出人数,说明将全部或部分未值机散客分配至候选航班(即将全部或部分未值机散客从目标航班中移出,分配至候选航班)可以使得目标航段处于航班未溢出且舱位溢出状态。
进一步的,可以将目标航段中所有未值机旅客按照预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,分配完成后,即可使目标航段处于航班未溢出且舱位溢出状态。
可选的,若目标航段中未值机散客数量小于航段溢出人数,说明存在预设高级别旅客溢出的情况。出现此种情况时,只将全部未值机散客分配至候选航班。对于团队旅客和已值机散客则不会分配至候选航班,而是留在目标航班,转由人工处理。对于候选航班仍不能接收全部溢出旅客的情况,则将剩余的旅客留在目标航班的原舱位中,同样转由人工处理。
步骤S140,按预设舱位映射规则为溢出旅客分配对应的目标舱位。
当目标航班发生机型变更导致旅客溢出时,按照前述步骤确认溢出旅客之后,按照预设舱位映射规则为各溢出旅客分配对应的目标舱位。可选的,预设舱位映射规则是根据预设旅客优先级以及各主舱的等级制定的。预设舱位映射规则的核心思想就在于将预设旅客优先级较高的溢出旅客分配至较高等级的主舱,将预设旅客优先级较低的溢出旅客分配至较低等级的主舱,在为旅客提供与旅客综合情况相适宜的乘机安排,提高旅客乘机感受的同时,确保航空公司的利益最大化。
基于前述步骤可知,在对主舱中的溢出旅客分配舱位时,会根据实际舱位售出情况,灵活采用升舱方式或降舱方式,在单舱溢出人数较多的情况下,还可以将两种方式下的溢出旅客确定方法进行组合使用,进而确定发生溢出的主舱中的溢出旅客。而在根据预设舱位映射规则为溢出旅客分配舱位时,同样需要根据选定的保护方式(升舱或降舱),灵活的为溢出旅客分配目标舱位。
以A航空公司为例说明预设舱位映射规则的一种可选形式。A航空公司的目标航班设置有头等舱、公务舱、超级经济舱和普通经济舱四类主舱(主舱等级依次降低)。具体的:
头等舱溢出:
头等舱发生旅客溢出时,只能采用降舱方式进行舱位资源分配。将溢出旅客按照预设旅客优先级从高到低的顺序,依次分配公务舱、超级经济舱和普通经济舱的舱位。
公务舱溢出:
采用升舱方式进行舱位资源分配,为溢出旅客分配头等舱的舱位资源;
采用降舱方式进行舱位资源分配,按照溢出旅客的预设旅客优先级从高到低的顺序,依次分配超级经济舱和普通经济舱的舱位资源。
超级经济舱溢出:
采用降舱方式与升舱方式组合的方法为溢出旅客分配舱位资源,针对溢出旅客,先采用降舱方式分配普通经济舱的舱位资源,再采用升舱的方式分配头等舱的舱位资源。
普通经济舱溢出:
普通经济舱溢出时,只能采用升舱方式分配舱位资源。按照主舱等级由低到高的顺序,为溢出旅客分配舱位资源。如前所述,应将溢出旅客按照预设旅客优先级由低到高的顺序,对应舱位等级由低到高的顺序,为各溢出旅客分配舱位资源。
综上所述,通过本发明实施例提供的航班舱位资源分配方法,在发生旅客溢出时,能够更加合理的分配航班的舱位资源,调整旅客对应的舱位,最大程度的降低机型变更给旅客带来的影响,提高旅客的乘机体验。同时,还有助于实现航空公司的利益最大化,提高航空公司的利润率。
可选的,如果按照本发明实施例提供的航班舱位资源分配方法对目标航班进行舱位资源分配后,仍存在目标航班保护不下的旅客,航空公司可根据需要,个性化设置剩余旅客的去向。比如,可以直接不再为剩余旅客分配任何舱位,或者,按照航班取消规则进行分配相应旅客至其他航班。对于此类情况,本发 明实施例中不再赘述。
下面对本发明实施例提供的航班舱位资源分配装置进行介绍,下文描述的航班舱位资源分配装置可以认为是为实现本发明实施例提供的航班舱位资源分配方法,在中央设备中需设置的功能模块架构;下文描述内容可与上文相互参照。
图2为本发明实施例提供的一种航班舱位资源分配装置的结构框图,参照图2,该装置可以包括:
获取单元10,用于获取目标航班的预设启动信息和旅客订位记录PNR信息,其中,所述预设启动信息至少包括所述目标航班的机型变更EQT报文,所述EQT报文至少包括变更后机型各航段的可销售舱位信息,所述PNR信息中至少包括所述目标航班各航段的已销售舱位信息;
目标航段确定单元20,用于按照预设航段优先级,确定目标航段;
溢出状态确定单元30,用于比对所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述目标航段的溢出状态;
溢出旅客确定单元40,若所述目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客;
分配单元50,用于按预设舱位映射规则为所述溢出旅客分配对应的目标舱位,其中,所述预设舱位映射规则根据预设旅客优先级以及各主舱的等级制定。
可选的,参见图3,图3是本发明实施例提供的另一种航班舱位资源分配装置的结构框图,在图2所示实施例基础上,该装置还包括:
计算单元60,用于计算所述目标航段已销售舱位总数与所述变更后机型 在所述目标航段的可销售舱位数量之差,得到航段溢出人数;
未值机散客确定单元70,用于根据所述PNR信息,确定所述目标航段中未值机散客数量;
第一分配单元80,用于若所述未值机散客数量大于或等于所述航段溢出人数,按照所述预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,以使所述目标航段处于所述航班未溢出且舱位溢出状态,其中,L为所述航段溢出人数。
可选的,参见图4,图4是本发明实施例提供的再一种航班舱位资源分配装置的结构框图,在图3所示实施例基础上,该装置还包括:
第二分配单元90,用于将全部所述未值机散客分配至所述候选航班。
可选的,所述溢出旅客确定单元40,用于根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客时,具体包括:
根据所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述发生溢出的主舱的单舱溢出人数;
若所述发生溢出的主舱中未值机散客数量大于或等于所述单舱溢出人数,从所述未值机散客中确定需要重新分配舱位的溢出旅客;
若所述发生溢出的主舱中未值机散客数量小于所述单舱溢出人数,从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,其中,所述预设高级别旅客包括团队旅客和已值机旅客。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的核心思想或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种航班舱位资源分配方法,其特征在于,包括:
    获取目标航班的预设启动信息和旅客订位记录PNR信息,其中,所述预设启动信息至少包括所述目标航班的机型变更EQT报文,所述EQT报文至少包括变更后机型各航段的可销售舱位信息,所述PNR信息中至少包括所述目标航班各航段的已销售舱位信息;
    按照预设航段优先级,确定目标航段;
    比对所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述目标航段的溢出状态;
    若所述目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客;
    按预设舱位映射规则为所述溢出旅客分配对应的目标舱位,其中,所述预设舱位映射规则根据预设旅客优先级以及各主舱的等级制定。
  2. 根据权利要求1所述的航班舱位资源分配方法,其特征在于,若所述目标航段处于航班溢出且舱位溢出状态,所述方法还包括:
    计算所述目标航段已销售舱位总数与所述变更后机型在所述目标航段的可销售舱位数量之差,得到航段溢出人数;
    根据所述PNR信息,确定所述目标航段中未值机散客数量;
    若所述未值机散客数量大于或等于所述航段溢出人数,按照所述预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,以使所述目标航段处于所述航班未溢出且舱位溢出状态,其中,L为所述航段溢出人数。
  3. 根据权利要求2所述的航班舱位资源分配方法,其特征在于,若所述未值机散客数量小于所述航段溢出人数,所述方法还包括:
    将全部所述未值机散客分配至所述候选航班。
  4. 根据权利要求1所述的航班舱位资源分配方法,其特征在于,所述根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确 定所述发生溢出的主舱中需要重新分配舱位的溢出旅客,包括:
    根据所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述发生溢出的主舱的单舱溢出人数;
    若所述发生溢出的主舱中未值机散客数量大于或等于所述单舱溢出人数,从所述未值机散客中确定需要重新分配舱位的溢出旅客;
    若所述发生溢出的主舱中未值机散客数量小于所述单舱溢出人数,从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,其中,所述预设高级别旅客包括团队旅客和已值机旅客。
  5. 根据权利要求4所述的航班舱位资源分配方法,其特征在于,所述从所述未值机散客中确定需要重新分配舱位的溢出旅客,包括:
    若采用降舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中未值机散客按预设旅客优先级由低到高排序;
    确定前N个未值机散客为需要重新分配舱位的溢出旅客,其中,N为所述单舱溢出人数;
    若采用升舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中未值机散客按预设旅客优先级由高到低排序;
    确定前N个未值机散客为需要重新分配舱位的溢出旅客。
  6. 根据权利要求4所述的航班舱位资源分配方法,其特征在于,所述从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,包括:
    确定所述单舱溢出人数中包括的预设高级别旅客溢出人数;
    若采用降舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中预设高级别旅客按预设旅客优先级由低到高排序;
    确定前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客;其中,M为所述已值机散客溢出人数;
    若采用升舱方式为溢出旅客分配舱位,将所述发生溢出的主舱中预设高级别旅客按预设旅客优先级由高到低排序;
    确定前M个预设高级别旅客和全部未值机散客为需要重新分配舱位的溢出旅客。
  7. 一种航班舱位资源分配装置,其特征在于,包括:
    获取单元,用于获取目标航班的预设启动信息和旅客订位记录PNR信息,其中,所述预设启动信息至少包括所述目标航班的机型变更EQT报文,所述EQT报文至少包括变更后机型各航段的可销售舱位信息,所述PNR信息中至少包括所述目标航班各航段的已销售舱位信息;
    目标航段确定单元,用于按照预设航段优先级,确定目标航段;
    溢出状态确定单元,用于比对所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述目标航段的溢出状态;
    溢出旅客确定单元,若所述目标航段处于航班未溢出且舱位溢出状态,根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客;
    分配单元,用于按预设舱位映射规则为所述溢出旅客分配对应的目标舱位,其中,所述预设舱位映射规则根据预设旅客优先级以及各主舱的等级制定。
  8. 根据权利要求7所述的航班舱位资源分配装置,其特征在于,还包括:
    计算单元,用于计算所述目标航段已销售舱位总数与所述变更后机型在所述目标航段的可销售舱位数量之差,得到航段溢出人数;
    未值机散客确定单元,用于根据所述PNR信息,确定所述目标航段中未值机散客数量;
    第一分配单元,用于若所述未值机散客数量大于或等于所述航段溢出人数,按照所述预设旅客优先级由低到高排序,将前L个未值机散客分配至候选航班,以使所述目标航段处于所述航班未溢出且舱位溢出状态,其中,L为所述航段溢出人数。
  9. 根据权利要求8所述的航班舱位资源分配装置,其特征在于,还包括:
    第二分配单元,用于将全部所述未值机散客分配至所述候选航班。
  10. 根据权利要求7所述的航班舱位资源分配装置,其特征在于,所述溢 出旅客确定单元,用于根据发生溢出的主舱的单舱溢出人数和所述发生溢出的主舱的旅客值机状态,确定所述发生溢出的主舱中需要重新分配舱位的溢出旅客时,具体包括:
    根据所述目标航段的已销售舱位信息和所述目标航段变更机型后的可销售舱位信息,确定所述发生溢出的主舱的单舱溢出人数;
    若所述发生溢出的主舱中未值机散客数量大于或等于所述单舱溢出人数,从所述未值机散客中确定需要重新分配舱位的溢出旅客;
    若所述发生溢出的主舱中未值机散客数量小于所述单舱溢出人数,从预设高级别旅客和所述未值机散客中确定需要重新分配舱位的溢出旅客,其中,所述预设高级别旅客包括团队旅客和已值机旅客。
PCT/CN2020/100777 2019-07-10 2020-07-08 一种航班舱位资源分配方法及装置 WO2021004468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/625,484 US20220300865A1 (en) 2019-07-10 2020-07-08 Flight cabin seat resource allocation method and apparatus
EP20836905.8A EP3998562A4 (en) 2019-07-10 2020-07-08 METHOD AND APPARATUS FOR ALLOCATION OF AIRCRAFT CABIN SEAT RESOURCES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910620244.2 2019-07-10
CN201910620244.2A CN110334959B (zh) 2019-07-10 2019-07-10 一种航班舱位资源分配方法及装置

Publications (1)

Publication Number Publication Date
WO2021004468A1 true WO2021004468A1 (zh) 2021-01-14

Family

ID=68146207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100777 WO2021004468A1 (zh) 2019-07-10 2020-07-08 一种航班舱位资源分配方法及装置

Country Status (4)

Country Link
US (1) US20220300865A1 (zh)
EP (1) EP3998562A4 (zh)
CN (1) CN110334959B (zh)
WO (1) WO2021004468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313391A (zh) * 2021-06-01 2021-08-27 中国民航信息网络股份有限公司 一种航班舱位资源分配方法、装置及服务器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334959B (zh) * 2019-07-10 2024-01-23 中国民航信息网络股份有限公司 一种航班舱位资源分配方法及装置
CN110728461A (zh) * 2019-10-21 2020-01-24 中国民航信息网络股份有限公司 一种行程置换方法、装置及系统
CN110728545A (zh) * 2019-10-21 2020-01-24 中国民航信息网络股份有限公司 智能调舱方法、装置及可读存储介质
CN110889610B (zh) * 2019-11-18 2023-07-14 中国民航信息网络股份有限公司 一种旅客保护方法及系统
CN111402351B (zh) * 2020-03-06 2023-05-09 飞友科技有限公司 一种基于se报文识别的飞机舱位图生成系统
CN111950984B (zh) * 2020-08-13 2023-08-04 中国民航信息网络股份有限公司 一种自动开放离港值机的方法及装置
CN112200625A (zh) * 2020-09-30 2021-01-08 中国民航信息网络股份有限公司 一种航班资源推荐方法及装置
CN112396246A (zh) * 2020-11-30 2021-02-23 中国民航信息网络股份有限公司 一种航班订座需求处理方法和装置
CN112396247B (zh) * 2020-11-30 2024-03-05 中国民航信息网络股份有限公司 一种舱节登机率计算方法及系统
CN112732985A (zh) * 2021-01-18 2021-04-30 中国民航信息网络股份有限公司 一种航段登机信息处理方法和装置
CN112651668A (zh) * 2021-01-18 2021-04-13 中国民航信息网络股份有限公司 一种航班资源分配方法、装置及服务器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050278201A1 (en) * 2002-07-22 2005-12-15 Amadues S. A .S. Method for determining the number of available transport seats in a computerized reservation system
CN102725768A (zh) * 2009-10-09 2012-10-10 阿玛得斯两合公司 飞机乘客的座位分配
CN105654181A (zh) * 2015-12-28 2016-06-08 中国民航信息网络股份有限公司 一种预付费座位保护方法及装置、系统
CN105654312A (zh) * 2015-12-28 2016-06-08 中国民航信息网络股份有限公司 非自愿旅客识别方法及系统
CN108470393A (zh) * 2018-03-28 2018-08-31 中国民航大学 一种基于旅客和行李的动态登机方法
CN110334959A (zh) * 2019-07-10 2019-10-15 中国民航信息网络股份有限公司 一种航班舱位资源分配方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020082878A1 (en) * 2000-12-22 2002-06-27 Boies Stephen J. Airline reservation system that supports guaranteed reservations for a preferred category of seating
AU2002363059A1 (en) * 2001-09-24 2003-05-06 Sabre Inc. Methods, systems, and articles of manufacture for reaccommodating passengers following a travel disruption
US9639812B1 (en) * 2004-12-23 2017-05-02 American Airlines, Inc. System and method for accommodating disrupted travelers
US20110055770A1 (en) * 2009-08-31 2011-03-03 Hed Maria B User interface method and apparatus for a reservation departure and control system
US20130132128A1 (en) * 2011-11-17 2013-05-23 Us Airways, Inc. Overbooking, forecasting and optimization methods and systems
EP2838056A1 (en) * 2013-08-14 2015-02-18 Airbus Operations GmbH Dynamic in flight seat management
US20150073842A1 (en) * 2013-09-09 2015-03-12 Abdullah Aljabarti Seat Reassignment Method for Transport Vehicles
JP2016537758A (ja) * 2013-11-05 2016-12-01 デルタ・エアラインズ・インコーポレイテッド 輸送モードにおける空きの便の収益化
US20170308972A1 (en) * 2014-09-09 2017-10-26 Sita Information Networking Computing Uk Limited Improved customer profiling system and method therefor
US20160117617A1 (en) * 2014-10-22 2016-04-28 Google Inc. Using preferential status indicators for alternative flight recommendations
US20180012152A1 (en) * 2016-07-08 2018-01-11 Ge Aviation Systems Llc Determining a passenger service parameter for flight disruption
CN109508805B (zh) * 2019-01-25 2020-07-28 携程旅游网络技术(上海)有限公司 航班改签信息的提供方法、系统、存储介质及电子设备
JP2023047627A (ja) * 2021-09-27 2023-04-06 東芝テック株式会社 情報処理装置およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050278201A1 (en) * 2002-07-22 2005-12-15 Amadues S. A .S. Method for determining the number of available transport seats in a computerized reservation system
CN102725768A (zh) * 2009-10-09 2012-10-10 阿玛得斯两合公司 飞机乘客的座位分配
CN105654181A (zh) * 2015-12-28 2016-06-08 中国民航信息网络股份有限公司 一种预付费座位保护方法及装置、系统
CN105654312A (zh) * 2015-12-28 2016-06-08 中国民航信息网络股份有限公司 非自愿旅客识别方法及系统
CN108470393A (zh) * 2018-03-28 2018-08-31 中国民航大学 一种基于旅客和行李的动态登机方法
CN110334959A (zh) * 2019-07-10 2019-10-15 中国民航信息网络股份有限公司 一种航班舱位资源分配方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998562A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313391A (zh) * 2021-06-01 2021-08-27 中国民航信息网络股份有限公司 一种航班舱位资源分配方法、装置及服务器
CN113313391B (zh) * 2021-06-01 2024-04-09 中国民航信息网络股份有限公司 一种航班舱位资源分配方法、装置及服务器

Also Published As

Publication number Publication date
US20220300865A1 (en) 2022-09-22
CN110334959A (zh) 2019-10-15
CN110334959B (zh) 2024-01-23
EP3998562A1 (en) 2022-05-18
EP3998562A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2021004468A1 (zh) 一种航班舱位资源分配方法及装置
US11275609B2 (en) Job distribution within a grid environment
Pyrgiotis et al. On the impact of scheduling limits: A case study at newark liberty international airport
JP2004056517A (ja) トランザクション振り分けプログラム
CN109948844B (zh) 一种停机位分配鲁棒性的优化方法、装置、设备及介质
CN109783225B (zh) 一种多租户大数据平台的租户优先级管理方法及系统
WO2021004473A1 (zh) 航班生效批次的生效调整方法及装置
CN109544000A (zh) 面向航班正常性的航空公司排班计划优化方法和系统
US8117051B2 (en) Method for determining the number of available transport seats in a computerized reservation system
US20150025920A1 (en) Check-in reduced carry on baggage system and other boarding process enhancements
EP3016040A1 (en) Dynamic database object management
CN109783236B (zh) 用于输出信息的方法和装置
Cadarso et al. Passenger-centric integrated airline schedule and aircraft recovery
JP6359687B2 (ja) 座席指定システム、座席指定方法
CN110942240B (zh) 信息处理方法、系统、终端及存储介质
CN108985556A (zh) 流量调度的方法、装置、设备和计算机存储介质
CN112214321A (zh) 一种新增微服务的节点选择方法、装置及微服务管理平台
Carlson Exploiting the opportunities of collaborative decision making: A model and efficient solution algorithm for airline use
CN112785097A (zh) 停机位分配方法、装置、存储介质及计算机设备
CN111353662A (zh) 排班方法、装置、设备及存储介质
CN115061811A (zh) 一种资源调度方法、装置、设备及存储介质
CN114048936A (zh) 基于因子分析法的航节时刻价值评估方法
CN112651668A (zh) 一种航班资源分配方法、装置及服务器
de Arruda Junior et al. Enhancement of airport collaborative decision making through applying agent system with matching theory
CN111866043B (zh) 任务处理方法、装置、计算设备及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020836905

Country of ref document: EP

Effective date: 20220210