WO2021004391A1 - 一种c-Myc蛋白抑制剂及其制备方法和用途 - Google Patents

一种c-Myc蛋白抑制剂及其制备方法和用途 Download PDF

Info

Publication number
WO2021004391A1
WO2021004391A1 PCT/CN2020/100103 CN2020100103W WO2021004391A1 WO 2021004391 A1 WO2021004391 A1 WO 2021004391A1 CN 2020100103 W CN2020100103 W CN 2020100103W WO 2021004391 A1 WO2021004391 A1 WO 2021004391A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
cancer
group
alkyl
cycloalkyl
Prior art date
Application number
PCT/CN2020/100103
Other languages
English (en)
French (fr)
Inventor
童友之
来鲁华
Original Assignee
苏州开拓药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州开拓药业股份有限公司 filed Critical 苏州开拓药业股份有限公司
Priority to US17/597,311 priority Critical patent/US20220324884A1/en
Priority to CN202080049295.5A priority patent/CN114072413B/zh
Publication of WO2021004391A1 publication Critical patent/WO2021004391A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the field of medicine, and specifically relates to a c-Myc protein inhibitor and a preparation method and application thereof.
  • Oncogenes are genes that exist in the genome of cells or viruses and whose encoded products can transform normal cells to form tumors. When such genes are in a normal state, they are called proto-oncogenes. Studies have found that proto-oncogenes are widely present in the biological world and have many important functions such as maintaining normal physiological functions, regulating cell growth and differentiation, including ras family, myc family, myb family, src family, sis family, etc. When affected by physical, chemical, microbial and other factors, proto-oncogenes can be mutated, amplified, and activated, which can be transformed into oncogenes, and oncogene-coded products can induce tumors in animals.
  • the human c-Myc proto-oncogene is located on human chromosome 8q24 and contains 3 exons and 2 introns. Exon 1 plays a regulatory role and does not participate in the coding of proteins. Exon 2 and exon 3 code together C-Myc protein.
  • the c-Myc protein consists of the following structural groups, including: the N-terminal transcriptional activation domain (TAD), which is necessary for activating target gene expression, and contains two conserved domains, MBI and MBII; MBIII domain, It will affect the transcription and stability of c-Myc; the PEST region is involved in regulating the hydrolysis of c-Myc; CAPN is the site where calpain cleaves c-Myc, and truncated Myc-Nick will promote tumor survival and metastasis; MBIV region , Participates in the process of cell apoptosis; NLS is a nuclear localization region, which regulates the entry of Myc protein into the nucleus and exerts its transcription function; the C-terminal helix-turn-helix leucine zipper domain (bHLH-LZ) can form with the ligand protein Max Heterodimers bind to specific DNA sequences and activate the transcription of related genes (Herbst A et al.
  • c-Myc As an extremely unstable protein, c-Myc has a very short half-life in the cell. It is mainly degraded by ubiquitin-proteasome or kept stable by deubiquitination. c-Myc can regulate a variety of intracellular biology Functions, such as cell proliferation, apoptosis, cell cycle progression, cell metabolism and embryonic development, play a very important role in the occurrence, development and evolution of diseases, especially in the occurrence and progression of tumors .
  • c-Myc In normal cells, the expression of c-Myc is strictly regulated. In quiescent cells, the expression of c-Myc is very small. When stimulated by growth factors, c-Myc accumulates rapidly as the initial response gene and maintains a high level throughout the cell cycle, affecting downstream target genes The expression of the cells returned to the original level until the cells entered the resting phase (Magid R et al. J Biol Chem 2003; 278(35): 32994-9).
  • c-Myc is closely related to 70% of tumor diseases, including lymphoma, breast cancer, prostate cancer, colon cancer, cervical cancer, multiple myeloma, myelogenous leukemia, melanoma, osteosarcoma, and malignant glia Tumors, small cell lung cancer and medulloblastoma.
  • c-Myc can promote the occurrence and growth of tumors in many aspects. After c-Myc is activated, the protein it encodes is overexpressed, causing cell transformation and tumor formation. Felsher et al.
  • c-Myc transgene model in mouse hematopoietic cells, the expression of the transgene can lead to malignant lymphoma and myeloid Department of tumor occurrence.
  • the role of c-Myc in regulating the cell cycle is more effective in tumor cells, accelerating cell proliferation, and knocking out c-Myc in tumor cells in vitro can hinder cell proliferation and arrest the cell cycle.
  • new blood vessels are the guarantee for its survival.
  • hypoxia inducible factor-1 ⁇ HIF-1 ⁇
  • c-Myc can induce HIF The expression of -1 ⁇ promotes angiogenesis.
  • Dysregulation of c-Myc is a characteristic of many types of B-cell lymphomas. In these lymphomas, c-Myc overexpression inhibits the development of normal B cells, leading to cell recoding. Nearly 70% of B-cell lymphomas also carry mutations in upstream regulatory factors involved in the TCF3-ID3 pathway, leading to increased cell survival. Among them, c-Myc can affect the regulation of TCF3-ID3, thereby affecting the expression of cyclin 3 and promoting tumors. Proliferation and growth of cells (Petra Korac et al. Genes 2017, 8, 115).
  • c-Myc is expressed in almost all types of leukemia.
  • Wickstrom and Holt synthesized the antisense oligodeoxynucleotide ASODN of c-Myc mRNA and co-cultured with HL60 cells in vitro, which effectively inhibited c-Myc.
  • the expression of c-Myc inhibited cell growth and inhibited the formation of leukemia cell colonies, indicating that c-Myc gene plays an important role in the occurrence of leukemia.
  • c-Myc is one of the most highly expressed oncogenes in liver cancer, and it has been found that c-Myc overexpression is often detected in patients and models of advanced liver fibrosis.
  • PDGF-B platelet-derived growth factor subunits
  • Liver cirrhosis and chronic liver disease often lead to liver cancer.
  • hypomethylation of c-Myc gene is related to the occurrence and development of liver cancer.
  • c-Myc is an indicator of poor prognosis of liver cancer, and the survival time of patients with c-Myc overexpression is significantly shortened. Compared with primary liver cancer, higher c-Myc expression is detected in metastatic and recurrent liver cancer (Wang ,Y.et al.Cancer 2002,95,2346-2352). In addition, the metastasis of liver cancer cells is mediated through multiple signaling pathways of c-Myc (Pedica F et al. PLoS One, 2013, 8(7)).
  • c-Myc is also an important mediator of tumor occurrence and maintenance.
  • c-Myc initiates and maintains the occurrence of tumors by regulating multiple procedures, including DNA replication, survival, death, self-renewal and energy metabolism of cells, in the tumor microenvironment (such as the regulation of secreted factors and angiogenesis) and immune response Impact (Yulin Li J Intern Med. 2014Jul; 276(1):52-60.).
  • the inhibition of c-Myc can reverse tumorigenesis and lead to proliferation arrest.
  • c-Myc inactivation can reconstruct the microenvironment, restore normal tissue structure and block angiogenesis.
  • c-Myc as an anti-tumor target will have broad application prospects.
  • c-Myc is also related to some other diseases. Diabetes is caused by the complete or relative absence of beta islet cells. In diabetes, with the increase of c-Myc expression, the insulin-producing beta islet cells dedifferentiate or undergo apoptosis, and the secretion of insulin decreases. This is because of c -Myc lacks the function of activating insulin gene expression, and inhibits gene transcription and expression through the E-box structure of the integrated insulin gene promoter that competes with the transcription factor NeuroD (Magid R et al. J Biol Chem, 2003, 278: 32994) ).
  • Atherosclerosis and vascular proliferative diseases have some similar pathological mechanisms with tumors.
  • the increased expression of c-Myc in vivo is related to the production of aortic and carotid plaques.
  • early coronary artery disease and hypercholesterolemia in the Watanabe hyperlipidemia rabbit model The activation of c-Myc-dependent signaling pathways was found in the early coronary artery wall lipid accumulation of the diseased pigs, and more importantly, the antioxidants down-regulated c-Myc overexpression in a similar manner as observed in tumor cells ( Prasad KN et al. Biochem Cell Biol 68, 1250-55.).
  • c-Myc has been found to be critical to the proliferation of vascular smooth muscle cells. After the balloon is damaged, the mRNA level of c-Myc reaches a peak in 2 hours. The c-Myc protein binds to DNA and promotes genes related to cell proliferation. Opening, stimulating the proliferation effect of smooth muscle cells in the resting phase, and c-Myc can also regulate the expression level of vascular endothelial growth factor VEGFA, which has an important impact on the regeneration and maturation of blood vessels (Kokai et al. Circulation Reserach, 2009, 1151).
  • An object of the present invention is to provide a c-Myc protein inhibitor and its preparation method and application.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically usable salt, solvate, stereoisomer, and prodrug thereof:
  • T is selected from CHR 4 , CR 4 R 5 ;
  • W is BZ 1 Z 2 ;
  • R 2 is selected from: hydrogen, C 1 -C 3 alkyl, C 3 -C 6 cycloalkyl;
  • R 3 is selected from: hydrogen, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, phenyl or benzyl, the alkyl, cycloalkyl, phenyl or benzyl is optionally 1-3 Substituting a group selected from halogen, cyano, C 1 -C 3 alkyl or C 1 -C 3 alkoxy, R 3 and R 11 can form a C 4 -C 6 cycloalkyl group;
  • R 7 is selected from: C 1 -C 4 alkyl
  • R 8 is selected from: hydrogen, C 1 -C 4 alkyl, allyl or benzyl;
  • R 11 is hydrogen, C 1 -C 3 alkyl, C 3 cycloalkyl
  • Z 1 and Z 2 are independently selected from: hydroxy, C 1 -C 10 alkyl, C 1 -C 10 alkoxy or aryloxy, B, Z 1 and Z 2 can be formed together to contain N, S or O The heterocyclic group.
  • the compound is a compound represented by formula (II) or a pharmaceutically usable salt, solvate, stereoisomer, or prodrug thereof:
  • T, R 1 , R 2 , R 3 , and R 11 are as defined above.
  • the specific invention provides the following compounds:
  • the compound is a compound represented by formula (III) or a pharmaceutically acceptable salt, solvate, stereoisomer, or prodrug thereof:
  • T, R 1 , R 2 , R 3 and R 11 are as defined above.
  • the present invention provides the following specific compounds:
  • the pharmaceutically acceptable salts of the present invention include hydrochloride, phosphate, hydrogen phosphate, dihydrogen phosphate, sulfate, nitrate, bicarbonate, carbonate, glutarate, and hydrobromide Acid salt, acetate, citrate, lactate, maleate, benzoate, methanesulfonate, oxalate, benzenesulfonate, p-toluenesulfonate, tartrate, apple Salt, succinate, ascorbate, gluconate, lactate, etc.
  • the solvate of the present invention is selected from: hemihydrate, monohydrate, dihydrate, etc.; the stereoisomer is selected from: enantiomer, diastereomer, and the like.
  • Another object of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier and the above-mentioned compound or a pharmaceutically usable salt, solvate, stereoisomer, and prodrug thereof.
  • Another object of the present invention is to provide the use of the compound of the present invention or its pharmaceutically usable salts, solvates, stereoisomers and prodrugs in the preparation of c-Myc protein inhibitors.
  • Another object of the present invention is to provide the use of the compound of the present invention or its pharmaceutically usable salts, solvates, stereoisomers and prodrugs in the preparation and treatment of c-Myc protein disorders related diseases.
  • the c-Myc protein disorder is selected from c-Myc protein overexpression or enhanced protein stability.
  • the c-Myc protein disorder-related diseases are selected from cancer, cardiovascular and cerebrovascular diseases, viral infection-related diseases, and the like.
  • the cancer is selected from the group consisting of liver cancer, lung cancer, kidney cancer, pancreatic cancer, oral cancer, gastric cancer, esophageal cancer, laryngeal cancer, nasopharyngeal cancer, skin cancer, breast cancer, colon cancer, rectal cancer, cervical cancer, and ovarian cancer Cancer, prostate cancer, brain cancer, nerve cancer, granulocytic leukemia, rhabdomyosarcoma, osteosarcoma, chondrosarcoma, leukemia, lymphoma, etc.; the viral infection-related diseases are selected from: HIV, hepatitis B, hepatitis C, hepatitis A, influenza , Japanese encephalitis, herpes, etc.
  • the compound provided by the present invention has excellent c-Myc protein inhibitory effect, so it can be used for the prevention and treatment of c-Myc-related diseases, such as cancer, cardiovascular and cerebrovascular diseases, viral infections and other diseases.
  • c-Myc-related diseases such as cancer, cardiovascular and cerebrovascular diseases, viral infections and other diseases.
  • the compound method is simple and convenient.
  • the inhibitory effect of c-Myc protein is exact.
  • Figure 1 Single-cycle binding kinetic curve of A5 and c-Myc peptide LE40.
  • Figure 2 The binding K D of A5 and c-Myc peptide LE40 is 0.16 ⁇ M.
  • Figure 3 Single-cycle binding kinetic curve of A5 and c-Myc peptide LE40 (S373A), no obvious binding.
  • Figure 5 A5 and A13 promote the degradation of c-Myc protein.
  • Figure 6 A13 selectively inhibits tumor cells with high expression of c-Myc.
  • the synthesis method of compound A20-A21 is the same as that of A19, just change the raw material N 2 -boc-N 4 -Trt-L-asparagine to N 2 -Cbz-N 4 -Trt-L-asparagine and Cbz-L- Tryptophan.
  • A39-1 (1g, 4mmol) was dissolved in MeOH (15mL), and LiOH (6mL, 1M) aqueous solution was added at low temperature and reacted at room temperature for 2h. TLC showed that the reaction of the raw materials was complete. Pull out the solvent, add dilute hydrochloric acid to adjust the pH to 3-4, extract with ethyl acetate (15mL*3), combine the organic phases, and pull out the solvent to obtain compound A39-2 (790mg, yield 88 %).
  • A39-2 (225mg, 1mmol) and ethyl L-leucine (353mg, 1.8mmol) were dissolved in DCM (4mL), HATU (760mg, 2mmol) and TEA (350mg, 3.5mmol) were added, and the two were reacted at room temperature. hour. Water was added, extracted with DCM (20 mL*3), the organic phases were combined, and the solvent was pulled dry, and then purified with a thick preparation plate to obtain a white solid compound A39-3 (160 mg, yield 44%).
  • A39-3 (160mg, 0.44mmol) was dissolved in MeOH (4mL), and LiOH (1mL, 1M) aqueous solution was added at low temperature, and reacted at room temperature for 2h. TLC showed that the reaction of the raw materials was complete, the solvent was pulled dry, diluted hydrochloric acid was added to adjust the pH to 3-4, extracted with ethyl acetate (10mL*3), the organic phases were combined, and the solvent was pulled dry to obtain compound A39-4 (110mg, yield 74 %).
  • A39-4 (100mg, 0.3mmol) and A1-2 (170mg, 0.45mmol) were dissolved in DCM (3mL), HATU (230mg, 0.6mmol) and TEA (120mg, 1.2mmol) were added and reacted at room temperature for two hours.
  • A42-1 (290mg, 0.79mmol) was dissolved in 10mL of dioxane/water (10:1), and 1 drop of concentrated sulfuric acid was added to it. After refluxing overnight, cool to room temperature. It was diluted with 20 mL of water, and the aqueous phase was extracted with ethyl acetate (20 mL*3), then combined, dried and spin-dried to obtain a white solid (200 mg, 74% yield).
  • Compound A42-2 (200mg, 0.59mmol) was dissolved in dichloromethane (20mL), HATU (340mg, 0.89mmol), A1-2 (190mg, 0.71mmol) and triethylamine (0.3mL) were added to it in sequence . After reacting at room temperature for 3 hours, it was diluted with water (20 mL). The aqueous phase was extracted with dichloromethane (20 mL*3). The organic phases were combined, dried and spin-dried, and the solute was prepared and purified by medium pressure to obtain a white solid (45 mg, 13% yield).
  • 9-Fluorenic acid (10g, 47.6mmol) was dissolved in 50mL DMF, HATU (27g, 71.0mmol), ammonium chloride (25.5g, 476.6mmol) and triethylamine (66mL) were added to it in sequence. After 48h reaction at room temperature, it was diluted with water (200mL). The aqueous layer was extracted with ethyl acetate (30 mL*3). The organic phases were combined, dried and spin-dried, and the solute was purified by column to obtain a white solid (1.6 g, 16% yield).
  • A43-2 (540 mg, 2.77 mmol) was dissolved in 10 mL of dichloromethane, and triethylamine (1.15 mL) and triphosgene (330 mg, 1.11 mmol) were sequentially added to it under ice bath. After stirring for 30 min, ethyl L-leucine (590 mg, 3.01 mmol) was added thereto. After reacting at room temperature for 1 hour, the reaction was quenched by adding water (10 mL). Extract with dichloromethane (20 mL*3). The organic phases were combined, dried and spin-dried, the solute was slurried with a petroleum ether/ethyl acetate mixed solution, and then filtered to obtain a white solid (850 mg, 80% yield).
  • A43-3 (370mg, 0.97mmol) was dissolved in 10mL of dioxane/water (10:1), and 1 drop of concentrated sulfuric acid was added to it. After refluxing overnight, cool to room temperature. It was diluted with 20 mL of water, and the aqueous phase was extracted with ethyl acetate (20 mL*3), then combined, dried and spin-dried to obtain a white solid (240 mg, 70% yield).
  • Cyclopentylamine (115 mg, 1.35 mmol) was dissolved in 10 mL of dichloromethane, and triethylamine (270 mg, 2.67 mmol) and triphosgene (160 mg, 0.54 mmol) were sequentially added to it under ice bath. After reacting for 30 min, L-tryptophan hydrochloride (325 mg, 1.35 mmol) was added. After reacting at room temperature for 1 hour, add 1M HCl to adjust to acidity. Extract with dichloromethane (20 mL*3). The organic phases were combined, dried and spin-dried to obtain a crude product (260 mg, 60%).
  • A44-1 (260 mg, 0.82 mmol) was dissolved in 15 mL of dichloromethane, and HATU (470 mg, 1.23 mmol), A1-2 (260 mg, 0.98 mmol) and triethylamine (125 mg, 1.24 mmol) were sequentially added thereto. After 2h reaction at room temperature, it was diluted with water (10mL). The organic phase was extracted with dichloromethane (10 mL*3) and then combined, dried and spin-dried. The solute was purified by medium pressure preparation to obtain a white solid (70 mg, 15% yield).
  • A46-1 (420 mg, 1.36 mmol) and LiOH (120 mg, 2.72 mmol) were dissolved in methanol/water (3:1, 24 mL). After reacting at 70°C for 2 hours, the methanol was spun off, and the aqueous phase was adjusted to acidity with 2M HCl. The obtained solid was filtered to obtain a white solid (350 mg, 87% yield).
  • A46-2 (350 mg, 1.19 mmol) was dissolved in 15 mL of dichloromethane, HATU (680 mg, 1.78 mmol), A1-2 (380 mg, 1.43 mmol) and triethylamine (580 mg, 5.74 mmol) were sequentially added to it. After 2h reaction at room temperature, it was diluted with water (10mL). The organic phase was extracted with dichloromethane (10 mL*3) and then combined, dried and spin-dried. The solute was prepared and purified by medium pressure to obtain a white solid (180 mg, 27% yield).
  • A47-2 (690 mg, 1.95 mmol) was dissolved in 25 mL of dichloromethane, HATU (1120 mg, 2.93 mmol), A1-2 (620 mg, 2.34 mmol) and triethylamine (950 mg, 9.45 mmol) were sequentially added to it. After 2h reaction at room temperature, it was diluted with water (20mL). The organic phase was extracted with dichloromethane (20 mL*3) and then combined, dried and spin-dried. The solute was purified by medium pressure preparation and purification to obtain a white solid (140 mg, 11% yield).
  • A22-1 (210mg, 0.59mmol) was dissolved in 5mL of dichloromethane, HATU (340mg, 0.89mmol), A49-1 (229mg, 0.80mmol) and triethylamine (180mg, 1.78mmol) were added to it in sequence. After 2h reaction at room temperature, it was diluted with water (10mL). The organic phase was extracted with dichloromethane (10 mL*3) and then combined, dried and spin-dried. The solute was prepared and purified by medium pressure to obtain a white solid (180 mg, 52% yield).
  • A50-1 (367 mg, 1 mmol) was dissolved in 5 mL of dichloromethane, and HATU (494 mg, 1.3 mmol), A1-2 (493 mg, 1.3 mmol) and triethylamine (303 mg, 3 mmol) were sequentially added thereto. After 2h reaction at room temperature, it was diluted with water (10mL). The organic phase was extracted with dichloromethane (10 mL*3), then combined, dried and spin-dried, and the solute was purified by medium pressure preparation to obtain a white solid (58 mg, 9% yield).
  • Lovis medium RPMI-1640 (+ L-glutamine) was added with 10% fetal bovine serum, 100 units penicillin and 100 ⁇ g streptomycin per ml.
  • Cell culture conditions 5% CO 2 , 95% humidity, constant temperature culture at 37°C.
  • HL-60 human chronic myeloid leukemia cells
  • KYSE510 human esophageal squamous cell carcinoma cells
  • H460 human large cell lung cancer cells
  • MTT Thiazole Blue
  • Table 1 IC50 value of the compound of the present invention for inhibiting HL60 cells
  • Compound number HL60/IC50 Compound number HL60/IC50 A1 A A55 C A2 A A56 C A3 C A57 C A4 A A58 B A5 A A59 C A6 A A60 C A7 A A61 B A8 A A62 B A9 B A63 B A10 A A64 C A11 B A65 A A12 A A66 A A13 A A67 A A14 A A68 B A15 A A69 A A16 A A70 A A17 A71 A
  • A represents the compound IC50 is below 100nM
  • B represents the compound IC50 is 100 ⁇ 500nM
  • C represents the compound IC50 is 500nM ⁇ 2 ⁇ M
  • D represents the compound IC50 is between 2 ⁇ 10 ⁇ M.
  • Tables 1 and 2 show that the compounds of the present invention have excellent inhibitory effects on HL60, K562, KYSE510, and H460 cells, and can be used for cancer prevention and treatment.
  • Table 2 The IC50 value of the compound of the present invention on the inhibition of other c-Myc high-expressing cells
  • A represents compound IC50 below 100nM.
  • the c-Myc370-412-biotin polypeptide stock solution was added to 1.05 ⁇ PBS-P buffer to prepare a 50 ⁇ M solution, and then diluted with 1.00 ⁇ PBS-P buffer (5% DMSO) to 1 ⁇ g/ml for protein fixation.
  • Use buffer to configure different concentrations of small molecule compounds for sample testing is 1.00 ⁇ PBS-P buffer (5% DMSO). Detect the difference between the response of small molecules flowing through the sample channel and the reference channel.
  • the experimental conditions were a flow rate of 30 ⁇ L/min, a binding time of 120 seconds, and a dissociation time of 240 seconds. After each binding and dissociation test, use 50% DMSO to flush the tubing, and 10mM glycine-HCl buffer (pH 2.1) to flush the chip surface to wash away the remaining compound molecules.
  • A represents compound Kd below 100nM
  • B represents compound Kd below 100 ⁇ 500nM

Abstract

涉及一类c-Myc蛋白抑制剂及其制备方法和用途,所述c-Myc蛋白抑制剂可选择性的抑制c-Myc蛋白,因此,可用于c-Myc蛋白失调的相关疾病,如癌症、心脑血管疾病、病毒感染相关疾病等的预防和治疗。

Description

一种c-Myc蛋白抑制剂及其制备方法和用途 技术领域
本发明属于药物领域,具体涉及一种c-Myc蛋白抑制剂及其制备方法和用途。
背景技术
癌基因是指存在于细胞或病毒基因组内,其编码产物能转化正常细胞形成肿瘤的基因,当这类基因处于正常状态时即为原癌基因。经研究发现,原癌基因广泛存在于生物界,具有维持正常生理功能、调控细胞生长和分化等多种重要的功能,包括了ras家族、myc家族、myb家族、src家族、sis家族等。当受物理、化学、微生物等因素影响时,原癌基因可发生突变、扩增、激活,从而可以转化为癌基因,而癌基因编码产物可以在动物体内诱导肿瘤的发生。
人c-Myc原癌基因位于人染色体8q24,包含3个外显子和2个内含子,其中外显子1起调节作用,不参与编码蛋白,外显子2和外显子3共同编码的c-Myc蛋白。c-Myc蛋白由以下结构组,包含:N-端的转录激活结构域(transcriptional activation domain,TAD),是激活靶基因表达所必需的,包含MBI和MBII这两个保守结构域;MBIII结构域,会影响c-Myc的转录和稳定性;PEST区域,参与调控c-Myc的水解作用;CAPN是钙蛋白酶裂解c-Myc的位点,截断的Myc-Nick会促进肿瘤的存 活和转移;MBIV区域,参与细胞凋亡进程;NLS是核定位区域,调控Myc蛋白进入细胞核以及发挥其转录功能;C-端的螺旋-转角-螺旋亮氨酸拉链结构域(bHLH-LZ)可以与配体蛋白Max形成异二聚体,与特定的DNA序列结合并激活相关基因的转录(Herbst A et al.Oncogene 2004;23(21):3863-71)。c-Myc作为一种极不稳定的蛋白,在细胞中半衰期极短,主要通过泛素-蛋白酶体进行降解或通过去泛素化作用保持稳定,c-Myc能够调节细胞内的多种生物学功能,如细胞增殖、凋亡、细胞周期进展、细胞代谢和胚胎发育,在疾病的发生、发展及演进过程中起到非常重要的作用,尤其是在肿瘤的发生和进展过程中起到重要作用。
在正常细胞中,c-Myc的表达是被严格调控的。在静止期的细胞中,c-Myc的表达是很微量的,当有生长因子刺激时,c-Myc作为最初的应答基因快速积累,并在整个细胞周期中维持较高水平,影响下游靶基因的表达直到细胞进入静止期后又恢复到原有的水平(Magid R et al.J Biol Chem 2003;278(35):32994-9)。
大量的研究表明c-Myc与70%的肿瘤疾病密切相关,包括淋巴瘤、乳腺癌、前列腺癌、结肠癌、宫颈癌、多发性骨髓瘤、髓性白血病、黑色素瘤、骨肉瘤、恶性胶质瘤、小细胞肺癌以及成神经管细胞瘤。c-Myc能在多个方面促进肿瘤的发生和生长。c-Myc被激活后,其编码的蛋白过表达,引起细胞转化和肿瘤形成,Felsher等的研究发现,在小鼠造血细胞 中构建c-Myc转基因模型,转基因的表达会导致恶性淋巴瘤和髓系肿瘤的发生。c-Myc调节细胞周期的作用在肿瘤细胞中更能发挥作用,加速细胞的增殖,而在体外敲除肿瘤细胞中的c-Myc后能够阻碍细胞增殖,使细胞周期停滞。在肿瘤的发生进程中,新生血管是其赖以生存的保障,在肿瘤内部低氧的环境下,低氧诱导因子-1α(HIF-1α)可以促进肿瘤血管生成,而c-Myc能够诱导HIF-1α的表达,促进血管生成,当下调c-Myc和HIF-1α最终会抑制血管内皮生长因子VEGF和血管形成。此外,多种肿瘤的预后不良与c-Myc的扩增相关,在c-Myc表达升高的子宫癌肉瘤中,即使是早期患者其复发率也达到30%~50%(Salvi S et al.Int J Mol Sci,2014,15(7):12458-12468)。
c-Myc失调是多种类型B细胞淋巴瘤的特点,在这些淋巴瘤中,c-Myc过表达抑制正常B细胞的发育,导致细胞重编码。近70%的B细胞淋巴瘤还携带参与TCF3-ID3通路的上游调控因子突变,导致细胞存活率增加,其中c-Myc可以影响TCF3-ID3的调控,从而影响细胞周期蛋白3的表达,促进肿瘤细胞的增殖和生长(Petra Korac et al.Genes 2017,8,115)。
c-Myc在几乎各型白血病中都有表达,在1988年Wickstrom和Holt分别合成了c-Myc mRNA的反义寡聚脱氧核苷酸ASODN在体外与HL60细胞共培养,有效抑制了c-Myc的表达,细胞生长受到了抑制,并且抑制了白血病细胞集落的形成,表明了c-Myc基因在白血病发生中起重要 作用。在其后的研究中发现急性淋巴细胞白血病和急性非淋巴细胞白血病c-Myc表达最强,慢粒(CML)、骨髓增殖异常综合征(MDS)和多发性骨髓瘤(MM)中c-Myc表达远低于急性白血病,但明显高于对照细胞。研究发现c-Myc mRNA高表达的患者很难再化疗药物的诱导下缓解,c-Myc表达越低,完全缓解率越高,无病生存期也越长(Evingerhodges M J et al.Leukemia,1988,2(1):45.)。
在乳腺癌中,大约有30%的病人有c-Myc高表达的情况,而在一组临床数据中发现c-Myc高表达组的术后无病生存期相比正常表达组从大于6.4年下降为1.4年,并且在极端情况下,淋巴结阴性、雌激素和孕激素受体阳性、c-Myc低表达的术后复发率为0%,而有淋巴结转移,雌激素和孕激素受体阴性、高表达c-Myc的患者复发率为93%(Pertschuk et al.Cancer,1993,71(1):162)。
最近的研究发现在肝癌中c-Myc是最高表达的癌基因之一,并且发现在晚期肝纤维化患者和模型中经常检测到c-Myc的过表达,在小鼠模型慢性损伤发生后由于c-Myc的调节导致肝细胞凋亡,增殖增加,血小板来源的生长因子亚单位(PDGF-B)异常表达。肝硬化和慢性肝病常常导致肝癌,目前发现c-Myc基因的低甲基化和肝癌的发生发展有关,并且通过对小鼠实验模型研究发现在肝硬化和慢性肝病中可以作为新的标志物和治疗的新靶点(Kang Zheng et al.Genes 2017,8,123; doi:10.3390)。同时,c-Myc是肝癌预后不良的指标,而且c-Myc过表达患者生存期明显缩短,与原发性肝癌相比,转移性和复发性肝癌中检测到较高的c-Myc表达(Wang,Y.et al.Cancer 2002,95,2346–2352)。此外,肝癌细胞的转移是通过c-Myc的多种信号通路介导的(Pedica F et al.PLoS One,2013,8(7))。
c-Myc还是肿瘤发生和维持的重要介质。c-Myc通过调节多个程序启动和维持肿瘤的发生,包括细胞的DNA复制、生存、死亡、自我更新和能量代谢,在肿瘤微环境(如分泌因子和血管生成的调控)和对免疫应答的影响(Yulin Li J Intern Med.2014Jul;276(1):52–60.)。c-Myc被抑制后可以逆转肿瘤发生,导致增殖阻滞。此外还发现c-Myc失活可以重构微环境,恢复正常组织结构并阻断血管生成。在多种肿瘤中观察到类似的结果,包括造血(T细胞和B细胞淋巴瘤,白血病),上皮(肝细胞,乳腺和鳞状细胞癌)和间充质肿瘤(成骨肉瘤)(Felsher DW,Bishop JM Mol Cell.1999Aug;4(2):199-207.)因此,以c-Myc为抗肿瘤靶标将具有广阔的应用前景。
除癌症外,c-Myc还与一些其他疾病相关。糖尿病是由于β胰岛细胞完全或相对缺失导致的,在糖尿病中,伴随着c-Myc表达的增加,产生胰岛素的β胰岛细胞去分化或者凋亡,其胰岛素的分泌随之下降,这是因为c-Myc缺乏激活胰岛素基因表达的功能,通过与转录因子NeuroD竞争 性的集合胰岛素基因启动子的E-box结构而抑制基因的转录和表达(Magid R et al.J Biol Chem,2003,278:32994)。
动脉粥样硬化和血管增生性疾病与肿瘤具有部分相似的病理机制。在动脉粥样硬化产生的单克隆假说中,c-Myc在体内表达增强与主动脉和颈动脉斑块的产生相关,实际上在渡边高血脂兔模型中的早起冠状动脉病变和高胆固醇血症猪的早期冠状动脉血管壁脂质积累中发现了c-Myc依赖性信号通路的激活,更重要的是抗氧化剂以在肿瘤细胞中观察到的类似的方式下调了c-Myc的过表达(Prasad KN et al.Biochem Cell Biol 68,1250-55.)。在动脉发生损伤后再狭窄主要是由于血管细胞增殖引起的并最终导致动脉闭塞。另外,细胞迁移、基质沉积和血管重构也参与了动脉损伤后再狭窄的发生。c-Myc已经被发现与血管平滑肌细胞的增殖至关重要,在球囊发生损伤后,c-Myc的mRNA水平在2小时达到高峰,c-Myc蛋白与DNA结合,促进与细胞增殖的相关基因开放,刺激静止期的平滑肌细胞产生增殖效应,并且c-Myc还能调控血管内皮生长因子VEGFA的表达水平,对血管的新生和成熟产生重要影响(Kokai et al.Circulation Reserach,2009,1151)。
目前,诸多研究证实了c-Myc作为抗肿瘤靶标的临床开发前景,但是目前尚未报道有高活性的c-Myc抑制剂。抗肿瘤药物耐药性问题愈发严重,亟需新型作用机制的药物以满足临床上的巨大需求。本发明公开内 容提供了以c-Myc为靶标的强抑制活性化合物。
发明内容
本发明的一个目的是提供一种c-Myc蛋白抑制剂及其制备方法和用途。
一方面,本发明提供式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药:
Figure PCTCN2020100103-appb-000001
其中,T选自CHR 4,CR 4R 5
W为BZ 1Z 2
R 1选自:RAC(=O)-、RANHC(=O)-、RAOC(=O)-、RACH 2C(=O)-、RAS(=O) 2-或RA;
RA选自:C 1-C 4烷基、C 3-C 8环烷基、C 3-C 8任含O、S、SO 2、N或NHC(=O)R 8的杂环基、芳基、杂芳基、芳基-环烷基、芳基-杂环基、环烷基-杂环基、杂环基-杂环基,RA可任选的被一个或多个R 6取代;
R 2选自:氢、C 1-C 3烷基、C 3-C 6环烷基;
R 3选自:氢、C 1-C 6的烷基、C 3-C 6环烷基、苯基或苄基,所述烷基、环烷基、苯基或者苄基任选1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代,R 3可与R 11成C 4-C 6的环烷基;
R 4、R 5分别独立的选自:羟基、氨基、R 7NHC(=O)R 8、R 7C(=O)OR 8、C 1-C 6的烷基、C 1-C 6烷氧基、C 1-C 6烷硫基、C 1-C 6烷胺基、C 3-C 8环烷基,芳基、含有1-3个杂原子的5-6元杂芳基或含有1-3个杂原子的3-10元杂 环基,所述烷基、烷氧基、烷胺基、烷硫基、环烷基、芳基、杂芳基、杂环基任选的被1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代,其中R 4和R 5可以成C 3-C 6的饱和环或任含O、S、SO 2、N或NHC(=O)R 8的饱和杂环;
R 6选自:氢、卤素、羟基、氰基、氨基、R 7NHC(=O)R 8、R 7C(=O)OR 8、C 1-C 6烷基、C 1-C 6的烷氧基、C 1-C 6的烷硫基、C 1-C 6的烷胺基、C 3-C 8的环烷基、C 2-C 8的烯基、C 2-C 8的炔基、芳基、含有1-3个杂原子的5-6元杂芳基或含有1-3个杂原子的3-10元杂环基,所述烷基、烷氧基、烷胺基、烷硫基、环烷基、芳基、杂芳基、杂环基任选被1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代;
R 7选自:C 1-C 4的烷基;
R 8选自:氢、C 1-C 4的烷基、烯丙基或苄基;
R 11为氢、C 1-C 3的烷基、C 3环烷基;
Z 1、Z 2分别独立的选自:羟基、C 1-C 10烷基、C 1-C 10烷氧基或芳氧基,B、Z 1和Z 2可一起形成含N、S或O的杂环基。
在一些实施方案中,所述化合物为式(II)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药:
Figure PCTCN2020100103-appb-000002
其中T、R 1、R 2、R 3、R 11定义同前。
具体的本发明提供以下化合物:
Figure PCTCN2020100103-appb-000003
Figure PCTCN2020100103-appb-000004
Figure PCTCN2020100103-appb-000005
Figure PCTCN2020100103-appb-000006
Figure PCTCN2020100103-appb-000007
Figure PCTCN2020100103-appb-000008
Figure PCTCN2020100103-appb-000009
Figure PCTCN2020100103-appb-000010
Figure PCTCN2020100103-appb-000011
Figure PCTCN2020100103-appb-000012
Figure PCTCN2020100103-appb-000013
Figure PCTCN2020100103-appb-000014
Figure PCTCN2020100103-appb-000015
在一些实施方案中,所述化合物为式(III)所示的化合物或其药学上可药用的盐、溶剂化物、立体异构体和前药:
Figure PCTCN2020100103-appb-000016
其中T、R 1、R 2、R 3、R 11取代基定义同前。
具体的,本发明提供以下具体化合物:
Figure PCTCN2020100103-appb-000017
Figure PCTCN2020100103-appb-000018
Figure PCTCN2020100103-appb-000019
Figure PCTCN2020100103-appb-000020
Figure PCTCN2020100103-appb-000021
Figure PCTCN2020100103-appb-000022
Figure PCTCN2020100103-appb-000023
本发明所述的药学上可接受的盐,包括盐酸盐、磷酸盐、磷酸氢盐、磷酸二氢盐、硫酸盐、硝酸盐、碳酸氢盐、碳酸盐、戊二酸盐、氢溴酸盐、 醋酸盐、枸橼酸盐、乳酸盐、马来酸盐、苯甲酸盐、甲磺酸盐、草酸盐、苯磺酸盐、对甲苯磺酸盐、酒石酸盐、苹果酸盐、琥珀酸盐、抗坏血酸盐、葡萄糖酸盐、乳酸盐等。
本发明所述溶剂化物选自:半水合物、一水合物、二水合物等;所述立体异构体选自:对应异构体、非对应异构体等。
本发明又一个目的是提供一种药物组合物,所述药物组合物包含药学上可接受的载体和上述化合物或其药学上可用的盐、溶剂化物、立体异构体和前药。
本发明的再一个目的是提供本发明所述化合物或其药学上可用的盐、溶剂化物、立体异构体和前药在制备c-Myc蛋白抑制剂中的用途。
本发明的再一个目的是提供本发明所述化合物或其药学上可用的盐、溶剂化物、立体异构体和前药在制备治疗c-Myc蛋白失调相关疾病中的用途。
优选的,所述c-Myc蛋白失调选自c-Myc蛋白过表达或蛋白稳定性增强。
优选的,所述c-Myc蛋白失调相关疾病选自:癌症、心脑血管疾病、病毒感染相关疾病等。
优选的,所述癌症选自:肝癌、肺癌、肾癌、胰腺癌、口腔癌、胃癌、食道癌、喉癌、鼻咽癌、皮肤癌、乳腺癌、结肠癌、直肠癌、宫颈癌、卵巢癌、前列腺癌、脑癌、神经癌、粒细胞性白血病、横纹肌肉瘤、成骨肉瘤、软骨肉瘤、白血病、淋巴癌等;所述病毒感染相关疾病选自:HIV、乙肝、丙肝、甲肝、流感、流行性乙脑炎、疱疹等。
本发明的有益效果
本发明提供的化合物具有优异的c-Myc蛋白抑制效果,从而可用于c-Myc相关疾病,如癌症、心脑血管疾病、病毒感染等多种疾病的预防和治疗,所述化合物的合成方法简便,c-Myc蛋白抑制效果确切。
附图说明
图1:A5与c-Myc肽LE40单循环结合动力学曲线。
图2:A5与c-Myc肽LE40结合K D为0.16μM。
图3:A5与c-Myc肽LE40(S373A)单循环结合动力学曲线,无明显结合。
图4:化合物A13可以竞争c-Myc与Max的结合。
图5:A5和A13促进c-Myc蛋白的降解。
图6:A13选择性抑制c-Myc高表达的肿瘤细胞。
具体实施方式
下面将结合附图以及进一步的详细说明来举例说明本发明。需要指出的是,以下说明仅仅是对本发明要求保护的技术方案的举例说明,并非对这些技术方案的任何限制。本发明的保护范围以所附权利要求书记载的内容为准。
实施例1
化合物A1
Figure PCTCN2020100103-appb-000024
化合物A1是按如下方法合成:
Figure PCTCN2020100103-appb-000025
化合物A1-1(2.98g,5mmol)溶于二氯甲烷(DCM)(150mL)中,冰浴下加入1-羟基苯并三唑(HOBt)(810mg,6mmol)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)(1.15g,6mmol)。反应30min后,加入A1-2(1.90g,5mmol)和N,N-二异丙基乙胺(DIEA)(1.3mL,7.4mmol),室温反应两个小时。加水,用DCM萃取(100mL*3),合并有机相,拉干溶剂后,用中压制备纯化粗产品得到白色固体化合物A1(280mg,产率6.8%)。
1H NMR(400MHz,DMSO)δ8.87(s,1H),8.60(s,1H),7.90(d,J=7.6Hz,2H),7.78-7.66(m,3H),7.47-7.37(m,2H),7.33(t,J=7.4Hz,1H),7.20(dt,J=13.0,6.7Hz,15H),4.44(d,J=22.6Hz,1H),4.34(d,J=16.0Hz,1H),4.29-4.15(m,2H),4.08(d,J=8.4Hz,1H),2.72(t,J=14.8Hz, 1H),2.58(d,J=6.8Hz,1H),2.46(s,1H),2.24-2.14(m,1H),2.05-1.96(m,1H),1.86-1.79(m,1H),1.80-1.75(m,1H),1.70-1.61(m,2H),1.36-1.20(m,9H),0.84-0.74(m,9H).
ESI-MS(M+H) +:844.
化合物A2-A10合成方法同A1,只需将Fmoc保护的L-天冬酰胺(NH-Trt)换成相应Fmoc保护的氨基酸。
实施例2
化合物A2:
Figure PCTCN2020100103-appb-000026
1H NMR(400MHz,DMSO)δ8.67(s,1H),7.88(d,J=7.3Hz,2H),7.73(t,J=6.4Hz,2H),7.41(t,J=7.1Hz,2H),7.31(t,J=7.2Hz,2H),7.06(d,J=9.3Hz,1H),4.48-4.28(m,2H),4.24(d,J=6.2Hz,1H),4.12(dd,J=18.6,8.5Hz,2H),3.85(t,J=13.9Hz,1H),2.57(d,J=21.7Hz,1H),2.18(dd,J=24.5,14.7Hz,1H),2.01(s,1H),1.81(d,J=24.2Hz,2H),1.73-1.57(m,2H),1.34(d,J=9.4Hz,2H),1.26(s,3H),1.21(s,3H),1.10(s,9H),1.03(d,J=5.7Hz,3H),0.90-0.75(m,9H).
ESI-MS(M+Na) +:667.
实施例3
化合物A3:
Figure PCTCN2020100103-appb-000027
1H NMR(400MHz,DMSO)δ8.53(s,1H),7.89(d,J=7.6Hz,2H),7.72(d,J=7.7Hz,3H),7.40(t,J=7.4Hz,2H),7.35-7.29(m,12H),7.25(dt,J=12.0,4.6Hz,5H),4.33-4.16(m,3H),4.16-4.00(m,2H),2.61(t,J=9.3Hz,1H),2.39(t,J=12.8Hz,1H),2.30(dd,J=11.8,5.5Hz,1H),2.17(dd,J=17.7,13.3Hz,1H),1.98(dd,J=13.2,8.4Hz,1H),1.83-1.71(m,2H),1.66-1.53(m,2H),1.33(dd,J=29.0,15.1Hz,3H),1.17(t,J=13.8Hz,6H),0.86-0.70(m,9H).
ESI-MS(M+Na) +:855.
实施例4
化合物A4:
Figure PCTCN2020100103-appb-000028
1H NMR(400MHz,DMSO)δ8.94(s,1H),7.88(d,J=7.3Hz,2H),7.66(d,J=6.0Hz,2H),7.57(d,J=8.3Hz,1H),7.40-7.38(m,2H),7.36-7.22(m,12H),7.05(d,J=6.6Hz,6H),6.77(s,1H),4.43(t,J=10.3Hz,1H),4.29-4.09(m,3H),4.01(d,J=7.8Hz,1H),2.99-2.74(m,2H),2.66-2.53(m,1H),2.17-2.12(m,1H),1.96(s,1H),1.82-1.51(m,4H), 1.41-1.04(m,9H),0.85-0.76(m,9H).
ESI-MS(M+H) +:867.
实施例5
化合物A5:
Figure PCTCN2020100103-appb-000029
1H NMR(400MHz,DMSO)δ8.79(s,1H),7.89(d,J=7.5Hz,2H),
7.71(t,J=7.8Hz,2H),7.64(d,J=8.1Hz,1H),7.42(t,J=7.4Hz,2H),
7.32(dd,J=11.7,7.2Hz,2H),4.32-4.14(m,4H),4.10(t,J=8.3Hz,1H),2.67-2.53(m,1H),2.48-2.40(m,2H),2.22-2.18(m,1H),2.08-2.00(m,4H),1.90-1.74(m,4H),1.70-1.60(m,2H),1.35-1.12(m,9H),0.90-0.72(m,9H).
ESI-MS(M+H) +:619.
实施例6
化合物A6:
Figure PCTCN2020100103-appb-000030
1H NMR(400MHz,DMSO)δ8.78(s,1H),8.57(s,1H),7.89(d,J=7.2Hz,2H),7.71(d,J=7.1Hz,2H),7.53(d,J=12.7Hz,1H),7.42(t,J=7.2Hz,2H),7.37-7.30(m,2H),7.25-7.24(m,6H),7.21-7.15(m,9H), 4.30-4.27(m,2H),4.22(d,J=12.7Hz,1H),4.11-4.04(m,2H),2.20-2.14(m,1H),2.01-1.97(m,1H),1.83-1.76(m,2H),1.77-1.73(m,1H),1.69-1.58(m,2H),1.36-1.16(m,10H),0.85-0.77(m,9H).
ESI-MS(M+H) +:858.
实施例7
化合物A7:
Figure PCTCN2020100103-appb-000031
1H NMR(400MHz,DMSO)δ8.72(s,1H),7.89(d,J=7.5Hz,2H),7.72(t,J=8.1Hz,2H),7.58(d,J=8.0Hz,1H),7.42(t,J=7.4Hz,2H),7.32(t,J=9.1Hz,2H),4.28-4.20(m,3H),4.17-4.04(m,2H),2.66-2.59(m,1H),2.30-2.14(m,3H),2.04-1.98(m,1H),1.87-1.73(m,4H),1.68-1.61(m,2H),1.39(s,9H),1.34-1.29(m,2H),1.22(d,J=9.1Hz,6H),0.87-0.74(m,9H).
ESI-MS(M+Na) +:695.
实施例8
化合物A8:
Figure PCTCN2020100103-appb-000032
1H NMR(400MHz,DMSO)δ8.95(s,1H),8.03(d,J=7.6Hz,1H),7.90-7.80(m,3H),7.73(d,J=7.3Hz,1H),7.67-7.53(m,3H),7.46-7.15(m,6H),4.62-4.39(m,1H),4.20-4.10(m,4H),3.13-2.87(m,2H),2.67-2.50(m,1H),2.30-2.11(m,1H),2.06-1.95(m,1H),1.85-1.72(m,2H),1.70-1.47(m,11H),1.37-1.12(m,9H),0.90-0.68(m,9H).
ESI-MS(M+Na) +:796.
实施例9
化合物A9:
Figure PCTCN2020100103-appb-000033
1H NMR(400MHz,DMSO)δ8.81(s,1H),8.60(s,1H),7.90(d,J=7.6Hz,2H),7.82-7.70(m,2H),7.42(dd,J=15.8,7.9Hz,2H),7.34(d,J=7.3Hz,1H),7.28-7.06(m,17H),4.47-4.30(m,2H),4.25-4.18(m,2H),4.12-4.08(m,1H),2.80-2.64(m,1H),2.62-2.52(m,1H),2.25-2.16(m,1H),2.03-2.00(m,1H),1.86-1.73(m,2H),1.67-1.60(m,2H),1.45-1.18(m,9H),0.84-0.72(m,9H).
ESI-MS(M+H) +:844.
实施例10
化合物A10:
Figure PCTCN2020100103-appb-000034
1H NMR(400MHz,DMSO)δ8.98(s,1H),7.90(d,J=7.5Hz,2H),7.71(t,J=7.6Hz,2H),7.61(d,J=8.4Hz,1H),7.42(t,J=7.4Hz,2H),7.33(q,J=7.0Hz,2H),4.29(d,J=7.1Hz,2H),4.24-4.12(m,2H),4.06(d,J=7.0Hz,1H),2.31-2.10(m,1H),2.10-1.88(m,1H),1.88-1.63(m,4H),1.63-1.33(m,4H),1.33-1.17(m,9H),0.94-0.75(m,13H).
ESI-MS(M+Na) +:623.
实施例11
化合物A11
Figure PCTCN2020100103-appb-000035
是按如下方法合成:
1.中间体A11-1的合成
L-苏氨酸(119mg,1mmol)和碳酸钠(159mg,1.5mmol)溶于1,4- 二氧六环(3mL)和水(2mL)中,慢慢加入9-芴甲基-N-琥珀酰亚胺基碳酸酯(337mg,1mmol)的1,4-二氧六环(3mL)溶液。室温反应6h。薄层色谱(TLC)显示原料完全反应完。拉干溶剂,加稀盐酸调节pH值到3-4,有固体析出,过滤,将滤饼用乙酸乙酯洗下来,无水硫酸钠干燥,过滤,拉干,得到白色固体化合物A11-1(280mg,产率82%)。
2.化合物A11的合成
化合物A11-1(170mg,0.5mmol)和A1-2(227mg,0.6mmol)溶于DCM(3mL)中,加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)(285mg,0.75mmol)和三乙胺(TEA)(151mg,1.5mmol),室温反应两个小时。加水,用DCM萃取(15mL*3),合并有机相,拉干溶剂后,用中压制备纯化粗产品得到白色固体化合物A11(20mg,产率6.8%)。
1H NMR(400MHz,DMSO)δ8.88(s,1H),7.90(d,J=7.5Hz,2H),7.75(t,J=8.2Hz,2H),7.53(d,J=9.1Hz,1H),7.43(t,J=7.4Hz,2H),7.34(dd,J=12.8,6.6Hz,2H),4.94(d,J=5.2Hz,1H),4.29(d,J=7.1Hz,2H),4.24(d,J=5.9Hz,1H),4.09(t,J=8.3Hz,2H),3.88(dd,J=11.6,6.2Hz,1H),3.61(t,J=6.6Hz,2H),2.18(d,J=8.9Hz,1H),2.00(d,J=7.3Hz,2H),1.84(t,J=5.5Hz,1H),1.80-1.75(m,2H),1.36(s,2H),1.34-1.29(m,2H),1.25(d,J=9.3Hz,7H),1.22(s,4H),1.07(d,J=6.2Hz,3H),0.85(d,J=6.4Hz,6H),0.81(s,3H).
ESI-MS(M+H) +:589.
化合物A12-A18合成方法同A11,只需将L-苏氨酸换成相应的氨基酸。
实施例12
化合物A12:
Figure PCTCN2020100103-appb-000036
1H NMR(400MHz,DMSO)δ8.83(s,1H),7.90(d,J=7.5Hz,2H),7.72(t,J=8.1Hz,2H),7.64(d,J=7.7Hz,1H),7.43(t,J=7.4Hz,2H),7.33(td,J=7.3,3.6Hz,2H),4.39-4.11(m,4H),4.07(d,J=6.6Hz,1H),2.57(s,1H),2.26-2.14(m,1H),2.01(dd,J=14.9,7.1Hz,2H),1.82(t,J=5.6Hz,1H),1.76(s,1H),1.71-1.53(m,2H),1.40-1.15(m,14H),0.84(d,J=6.5Hz,6H),0.80(s,3H).
ESI-MS(M+H) +:573.
实施例13
化合物A13:
Figure PCTCN2020100103-appb-000037
1H NMR(400MHz,DMSO)δ8.90(s,1H),7.90(d,J=7.5Hz,2H),7.71(t,J=7.5Hz,2H),7.58(d,J=8.1Hz,1H),7.42(t,J=7.4Hz,2H),7.33(dd,J=12.4,7.1Hz,2H),6.76(s,1H),4.34-4.16(m,3H),4.07(d,J=8.1Hz,2H),2.89(d,J=5.8Hz,2H),2.56(s,1H),2.25-2.13(m,1H),2.04(d,J=32.9Hz,2H),1.81(dd,J=16.8,11.2Hz,2H),1.72-1.52(m,5H),1.36(d,J=11.2Hz,13H),1.22(d,J=6.1Hz,11H),0.84(d,J=6.4Hz,7H),0.80(s,3H).
ESI-MS(M+H) +:716.
实施例14
化合物A14:
Figure PCTCN2020100103-appb-000038
1H NMR(400MHz,DMSO)δ8.73(s,1H),7.90(d,J=7.5Hz,2H),7.72(t,J=7.8Hz,2H),7.61(d,J=8.2Hz,1H),7.43(t,J=7.4Hz,2H),7.33(td,J=7.3,3.4Hz,2H),4.28(d,J=6.8Hz,2H),4.25-4.17(m,1H),4.13(t,J=8.5Hz,2H),3.60(s,3H),2.66(d,J=17.5Hz,2H),2.34(t,J=14.6Hz,2H),2.29-2.15(m,1H),2.10-1.97(m,2H),1.94-1.74(m,4H),1.73-1.58(m,2H),1.37-1.17(m,11H),0.93-0.72(m,9H).
ESI-MS(M+H) +:645.
实施例15
化合物A15:
Figure PCTCN2020100103-appb-000039
1H NMR(400MHz,DMSO)δ8.89(d,J=2.8Hz,1H),7.89(d,J=7.5Hz,2H),7.75(d,J=8.6Hz,2H),7.64(d,J=7.5Hz,2H),7.41(t,J=7.5Hz,2H),7.29(td,J=14.9,7.6Hz,5H),4.36(dd,J=14.1,9.1Hz,1H),4.28-4.14(m,4H),3.05-2.98(m,2H),2.01(d,J=15.3Hz,2H),1.83(dd,J=18.6,13.1Hz,2H),1.39-1.23(m,9H),0.83(dd,J=12.8,6.1Hz,8H).
ESI-MS(M+H) +:635.
实施例16
化合物A16:
Figure PCTCN2020100103-appb-000040
1H NMR(400MHz,DMSO)δ8.64(s,1H),7.89(d,J=7.5Hz,2H),7.70(d,J=8.0Hz,3H),7.42(t,J=7.4Hz,2H),7.33(t,J=7.5Hz,2H),4.48(dd,J=13.9,8.4Hz,1H),4.34-4.19(m,3H),4.14-4.09(m,1H),3.59(s,3H),2.66(dd,J=11.0,6.2Hz,2H),2.25-2.15(m,1H),2.00(dd,J=14.1,6.6Hz,2H),1.84(t,J=5.6Hz,1H),1.77(s,1H),1.64(t,J=12.7Hz,2H),1.30-1.22(m,9H),0.85-0.76(m,9H).
ESI-MS(M+Na) +:639.
实施例17
化合物A17:
Figure PCTCN2020100103-appb-000041
1H NMR(400MHz,DMSO)δ8.87(d,J=2.8Hz,1H),7.90(d,J=7.5Hz, 2H),7.74(t,J=8.6Hz,3H),7.42(t,J=7.4Hz,2H),7.37-7.27(m,4H),7.19(t,J=7.6Hz,3H),4.32(d,J=7.0Hz,2H),4.24(t,J=7.0Hz,1H),4.10(dd,J=12.9,7.1Hz,2H),2.68-2.54(m,3H),2.19(d,J=2.3Hz,1H),2.08(s,1H),2.05-1.96(m,1H),1.88(dd,J=15.4,7.9Hz,2H),1.82(t,J=5.6Hz,1H),1.76(s,1H),1.71-1.59(m,2H),1.32(dd,J=15.2,6.2Hz,2H),1.23(s,3H),1.20(s,3H),0.84(d,J=6.5Hz,6H),0.79(s,3H).
ESI-MS(M+H) +:649.
实施例18
化合物A18:
Figure PCTCN2020100103-appb-000042
1H NMR(400MHz,DMSO)δ10.87(s,1H),9.05(s,1H),7.86(d,J=7.6Hz,2H),7.63(dd,J=15.2,7.7Hz,4H),7.38(dd,J=13.1,6.9Hz,2H),7.31(d,J=8.8Hz,2H),7.25(dd,J=14.5,6.7Hz,1H),7.17(s,1H),7.05(t,J=7.2Hz,1H),6.97(t,J=7.3Hz,1H),4.39(d,J=5.8Hz,1H),4.19-4.05(m,4H),3.08-2.93(m,2H),2.52(s,1H),2.16(s,2H),2.06-1.90(m,2H),1.81(dd,J=18.0,12.2Hz,2H),1.64(d,J=14.8Hz,2H),1.30-1.20(m,7H),0.88-0.73(m,9H).
ESI-MS(M+H) +:674.
实施例19
化合物A19:
Figure PCTCN2020100103-appb-000043
化合物A19是按如下方法合成的:
Figure PCTCN2020100103-appb-000044
将N 2-boc-N 4-Trt-L-天冬酰胺(200mg,0.42mmol)溶于二氯甲烷(10mL)中,向其中依次加入1-丙基磷酸酐(T 3P)(50%wt,乙酸乙酯(EtOAc),1.2mL),A1-2(135mg,0.51mmol)和TEA(1.2mL)。常温反应3h后,加水(30mL)稀释。有机相用二氯甲烷萃取(20mL*3)后合并干燥旋干。溶质用中压制备纯化,得白色固体(100mg,33%产率)。
1H NMR(400MHz,DMSO)δ8.85(s,1H),8.60(s,1H),7.23(dt,J=13.5,7.8Hz,15H),7.13(d,J=8.4Hz,1H),4.39-4.27(m,1H),4.07(d,J=7.2Hz,1H),2.67(dd,J=14.2,10.4Hz,1H),2.53(d,J=9.5Hz,1H),2.43(dd,J=14.6,4.0Hz,1H),2.20(dd,J=21.4,10.0Hz,1H),2.09-1.95(m,3H),1.83(t,J=5.5Hz,1H),1.79(d,J=5.4Hz,1H),1.66(dd,J=18.1,10.3Hz,2H),1.34(dd,J=12.2,7.8Hz,6H),1.31-1.16(m,10H),0.89-0.75(m,9H).
ESI-MS(M-H) -:720.
化合物A20-A21合成方法同A19,只需将原料N 2-boc-N 4-Trt-L-天冬酰胺换成N 2-Cbz-N 4-Trt-L-天冬酰胺和Cbz-L-色氨酸。
实施例20
化合物A20:
Figure PCTCN2020100103-appb-000045
1H NMR(400MHz,DMSO)δ8.91(s,1H),8.76(d,J=12.1Hz,2H),7.64(d,J=8.3Hz,1H),7.49-7.34(m,5H),7.30(s,2H),7.25-7.01(m,14H),5.12-5.01(m,2H),4.11(dd,J=12.5,7.2Hz,3H),2.70(dd,J=14.6,10.4Hz,1H),2.51(dt,J=3.6,1.8Hz,5H),2.25-2.16(m,1H),1.98(m,1H),1.74(m,2H),1.16(m,9H),0.85(dd,J=20.2,13.6Hz,9H).
ESI-MS(M+H) +:844.
实施例21
化合物A21
Figure PCTCN2020100103-appb-000046
1H NMR(400MHz,DMSO)δ10.89(s,1H),9.09(s,1H),7.59(dd,J=23.8,8.1Hz,2H),7.37-7.29(m,3H),7.28-7.22(m,2H),7.17(d,J=2.2Hz,1H),7.07(t,J=7.5Hz,1H),6.99(t,J=7.2Hz,1H),4.96(q,J=12.7Hz,2H),4.45-4.34(m,1H),4.11(d,J=7.0Hz,1H),3.10-3.02(m,1H),2.98(dd,J=14.4,9.1Hz, 1H),2.55(d,J=8.5Hz,1H),2.29-2.18(m,1H),2.07-1.97(m,1H),1.85(dd,J=18.0,12.3Hz,2H),1.64(dd,J=19.1,10.5Hz,2H),1.38(d,J=10.0Hz,1H),1.29(s,3H),1.22(d,J=12.5Hz,6H),0.84(t,J=6.0Hz,8H).
ESI-MS(M+H) +:586.
实施例22
化合物A22
Figure PCTCN2020100103-appb-000047
化合物A22是按如下方法合成的:
Figure PCTCN2020100103-appb-000048
1.中间体A22-1的合成:
L-亮氨酸(131mg,1mmol)和碳酸钠(159mg,1.5mmol)溶于1,4-二氧六环(3mL)和水(2mL)中,慢慢加入9-芴甲基-N-琥珀酰亚胺基碳酸酯(337mg,1mmol)的1,4-二氧六环(3mL)溶液。室温反应6h。TLC显示原料完全反应完。拉干溶剂,加稀盐酸调节pH值到3-4,有固体析出,过滤,将滤饼用乙酸乙酯洗下来,无水硫酸钠干燥,过滤,拉干,得到白色固体化合物A22-1(250mg,产率71%)。
1.化合物A22的合成
化合物A87-1(176mg,0.5mmol)和化合物A22-2(227mg,0.6mmol)溶于DCM(3mL)中,加入HATU(285mg,0.75mmol)和TEA(151mg,1.5mmol),室温反应两个小时。加水,用DCM萃取(15mL*3),合并有机相,拉干溶剂后,用中压制备纯化粗产品得到白色固体化合物 A22(18mg,产率6.4%)。
1H NMR(400MHz,DMSO)δ9.11(s,1H),7.89(d,J=7.5Hz,2H),7.71(t,J=7.7Hz,2H),7.64(d,J=8.3Hz,1H),7.41(t,J=7.4Hz,2H),7.32(dt,J=14.2,7.0Hz,2H),4.36-4.24(m,2H),4.21(t,J=6.9Hz,1H),4.13(td,J=9.7,5.1Hz,1H),4.04(d,J=6.9Hz,1H),2.57-2.51(m,1H),2.18(dd,J=12.2,9.9Hz,1H),2.05-1.92(m,1H),1.81(t,J=5.6Hz,1H),1.77(d,J=5.2Hz,1H),1.68-1.56(m,2H),1.56-1.48(m,1H),1.40(ddd,J=21.4,10.7,6.3Hz,1H),1.33(d,J=10.0Hz,1H),1.23(t,J=7.2Hz,9H),1.00(d,J=7.2Hz,3H),0.89(d,J=6.5Hz,3H),0.84(d,J=6.4Hz,4H),0.79(s,3H).
ESI-MS(M+H) +:601.
化合物A23合成方法同A22,只需将L-亮氨酸换成Boc-L-赖氨酸。
实施例23
化合物A23:
Figure PCTCN2020100103-appb-000049
1H NMR(400MHz,DMSO)δ9.04(s,1H),7.90(d,J=7.5Hz,2H),7.72(t,J=7.5Hz,2H),7.62(d,J=8.0Hz,1H),7.42(t,J=7.4Hz,2H),7.33(dd,J=12.4,7.1Hz,2H),6.76(s,1H),4.26(dd,J=23.9,6.5Hz,3H),4.05(d,J=8.4Hz,2H),2.89(d,J=6.0Hz,2H),2.55(s,1H),2.25-2.14(m,1H),2.06-1.95(m,1H), 1.83(t,J=5.5Hz,1H),1.77(s,1H),1.69-1.48(m,3H),1.37(s,13H),1.23(d,J=7.6Hz,9H),1.01(d,J=7.2Hz,3H),0.80(s,3H).
ESI-MS(M+H) +:674.
实施例24
化合物A24
Figure PCTCN2020100103-appb-000050
化合物A24是按如下方法合成的:
Figure PCTCN2020100103-appb-000051
1.中间体A24-1的合成
9-芴乙酸(224mg,1mmol)和L-亮氨酸乙酯(286mg,1.8mmol)溶于DCM(4mL)中,加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)(760mg,2mmol)和TEA(350mg,3.5mmol),室温反应两个小时。加水,用DCM萃取(20mL*3),合并有机相,拉干溶剂后,用厚制备板纯化得到白色固体化合物A24-1(145mg,产率40%)。
2.中间体A24-2的合成
化合物A24-1(145mg,0.4mmol)溶于甲醇(MeOH)(4mL),低温下加入氢氧化锂(LiOH)(1mL,1M)水溶液,室温下反应2h。TLC显示原料反应完全,拉干溶剂,加稀盐酸调pH至3-4,用乙酸乙酯萃取(10mL*3),合并有机相,拉干溶剂,得到化合物A24-2(102mg,产率75.6%)。
3.化合物A24的合成
化合物A24-2(100mg,0.3mmol)和化合物A1-2(170mg,0.45mmol)溶于DCM(3mL)中,加入HATU(228mg,0.6mmol)和TEA(120mg,1.2mmol),室温反应两个小时。加水,用DCM萃取(15mL*3),合并有机相,拉干溶剂后,用中压制备纯化粗产品得到白色固体化合物A24(25mg,产率14.3%)。
1H NMR(400MHz,DMSO)δ9.06(d,J=2.5Hz,1H),8.24(d,J=8.0Hz,1H),7.86(d,J=7.5Hz,2H),7.54(d,J=7.4Hz,1H),7.49(d,J=7.5Hz,1H),7.38(t,J=7.4Hz,2H),7.33-7.22(m,2H),4.65-4.55(m,1H),4.36(t,J=7.5Hz,1H),4.08(dd,J=8.5,1.7Hz,1H),2.69(dd,J=14.8,6.9Hz,1H),2.59(dd,J=10.6,4.6Hz,1H),2.47(d,J=8.3Hz,1H),2.26-2.14(m,1H),2.07-1.96(m,1H),1.85(t,J=5.6Hz,1H),1.81-1.69(m,2H),1.68-1.56(m,2H),1.55-1.38(m,2H),1.38-1.26(m,3H),1.24(d,J=12.3Hz,6H),0.89(dd,J=15.5,6.6Hz,12H),0.81(s,3H).
ESI-MS(M+H) +:584.
化合物A25-A38合成方法同A24,只需将第一步的原料9-芴乙酸和L-亮氨酸乙酯换成相应的酸以及氨基酸酯。
实施例25
化合物A25:
Figure PCTCN2020100103-appb-000052
1H NMR(400MHz,DMSO)δ10.85(s,1H),9.03(s,1H),7.92(dd,J=45.2, 8.1Hz,1H),7.60(d,J=7.7Hz,1H),7.31(d,J=8.0Hz,1H),7.20–7.12(m,1H),7.05(t,J=7.5Hz,1H),6.98(t,J=7.4Hz,1H),4.69(dt,J=16.4,8.3Hz,1H),4.18-4.01(m,1H),3.12-3.00(m,1H),2.99-2.88(m,1H),2.28-2.16(m,1H),2.02(d,J=6.6Hz,1H),1.90-1.84(m,1H),1.80(s,6H),1.71-1.61(m,2H),1.61(s,3H),1.45(d,J=11.6Hz,3H),1.38(s,6H),1.30(d,J=13.2Hz,4H),1.23(s,6H),0.83(d,J=5.2Hz,9H).
ESI-MS(M+H) +:628.
实施例26
化合物A26:
Figure PCTCN2020100103-appb-000053
1H NMR(400MHz,DMSO)δ10.85(d,J=5.3Hz,1H),8.78(d,J=3.0Hz,1H),7.66-7.55(m,1H),7.31(d,J=7.9Hz,2H),7.16(d,J=2.2Hz,1H),7.06(s,1H),6.98(s,1H),4.72-4.53(m,1H),4.17-4.03(m,1H),3.19-2.96(m,2H),2.30-2.14(m,1H),2.10-1.98(m,1H),1.91(s,5H),1.62(dd,J=25.6,13.3Hz,14H),1.29(d,J=6.2Hz,3H),1.24(d,J=2.7Hz,4H),0.90-0.78(m,9H).
ESI-MS(M+H) +:614.
实施例27
化合物A27:
Figure PCTCN2020100103-appb-000054
1H NMR(400MHz,DMSO)δ8.89(dd,J=77.4,3.0Hz,1H),8.03(d,J=8.1Hz,1H),7.92(d,J=8.3Hz,1H),7.69(d,J=7.6Hz,1H),7.51(s,1H),7.29(dt,J=26.5,7.3Hz,2H),5.99(dt,J=5.9,3.0Hz,1H),5.74(ddd,J=20.9,5.5,2.7Hz,1H),4.64(d,J=6.5Hz,1H),4.20-4.02(m,1H),3.16(d,J=14.3Hz,1H),3.08-2.89(m,2H),2.80(dd,J=11.2,5.3Hz,2H),2.28-2.14(m,1H),2.02(dd,J=14.2,6.7Hz,1H),1.90-1.76(m,2H),1.73-1.54(m,11H),1.39-1.26(m,5H),1.29-1.09(m,9H),0.92-0.72(m,9H).
ESI-MS(M+H) +:672.
实施例28
化合物A28:
Figure PCTCN2020100103-appb-000055
1H NMR(400MHz,DMSO)δ8.99(d,J=2.9Hz,1H),8.04(d,J=8.1Hz,1H),7.79(d,J=8.5Hz,1H),7.71(d,J=7.6Hz,1H),7.53(s,1H),7.29(dt,J= 24.3,7.0Hz,2H),4.69(dd,J=14.9,8.5Hz,1H),4.12(t,J=12.1Hz,1H),3.04(s,2H),2.59-2.53(m,1H),2.38(s,2H),2.22(dd,J=12.3,9.9Hz,1H),2.09-1.76(m,16H),1.61(s,9H),1.25(d,J=18.9Hz,9H),0.86-0.80(m,9H).
ESI-MS(M+H) +:728.
实施例29
化合物A29:
Figure PCTCN2020100103-appb-000056
1H NMR(400MHz,DMSO)δ10.87(d,J=1.7Hz,1H),9.09(s,1H),8.02(d,J=8.2Hz,1H),7.60(d,J=7.8Hz,1H),7.32(d,J=8.0Hz,1H),7.16(d,J=2.2Hz,1H),7.06(dd,J=11.1,4.0Hz,1H),6.99(dd,J=10.9,3.9Hz,1H),4.66(td,J=8.6,5.5Hz,1H),4.08(dd,J=8.5,1.8Hz,1H),3.00(ddd,J=23.6,14.5,7.2Hz,2H),2.26-2.19(m,1H),2.08-1.97(m,1H),1.94-1.88(m,2H),1.86(dd,J=11.4,6.2Hz,1H),1.83-1.78(m,2H),1.69-1.48(m,5H),1.37(d,J=7.9Hz,4H),1.29(d,J=6.2Hz,3H),1.25-1.18(m,6H),1.15-0.99(m,4H),0.82(dd,J=13.3,8.8Hz,9H).
ESI-MS(M+H) +:576.
实施例30
化合物A30
Figure PCTCN2020100103-appb-000057
1H NMR(400MHz,DMSO)δ10.86(s,1H),9.07(s,1H),8.00(d,J=8.2Hz,1H),7.59(d,J=7.8Hz,1H),7.31(d,J=8.0Hz,1H),7.15(d,J=2.2Hz,1H),7.05(t,J=7.1Hz,1H),6.98(t,J=7.4Hz,1H),4.70-4.59(m,1H),4.13-4.03(m,1H),3.00(ddd,J=23.5,14.6,7.2Hz,2H),2.27-2.14(m,1H),2.00(dd,J=9.2,5.0Hz,4H),1.84(t,J=5.6Hz,1H),1.80(d,J=5.2Hz,1H),1.70-1.34(m,10H),1.27-1.16(m,10H),1.10-0.92(m,2H),0.82(dd,J=4.5,1.7Hz,9H).
ESI-MS(M+Na) +:561.56.
实施例31
化合物A31
Figure PCTCN2020100103-appb-000058
1H NMR(400MHz,DMSO)δ10.83(s,1H),9.02-8.90(m,1H),7.98-7.83(m,1H),7.55(d,J=7.8Hz,1H),7.28(d,J=8.0Hz,1H),7.11(d,J=2.4Hz,1H),7.02(t,J=7.5Hz,1H),6.94(t,J=7.4Hz,1H),4.60(dt,J=10.4,6.7Hz,1H),4.06(d,J=6.7Hz,1H),3.09-2.97(m,1H),2.97-2.84(m,1H),2.23-2.12(m,1H),1.98(dd,J=14.5,6.8Hz,2H),1.86-1.73(m,2H),1.67-1.48(m,2H), 1.29-1.10(m,9H),0.83-0.76(m,9H).
ESI-MS(M+H) +:534.
实施例32
化合物A32
Figure PCTCN2020100103-appb-000059
1H NMR(400MHz,DMSO)δ10.92(s,1H),8.91(d,J=3.3Hz,1H),7.70(d,J=8.6Hz,1H),7.60(d,J=7.7Hz,1H),7.39-7.26(m,4H),7.19(dd,J=7.7,2.2Hz,3H),7.11-6.97(m,2H),4.18(ddd,J=39.6,24.2,10.7Hz,3H),3.91(d,J=13.7Hz,1H),3.03(ddd,J=22.1,14.4,7.2Hz,2H),2.59(d,J=9.3Hz,1H),2.26-2.17(m,1H),2.07-1.99(m,1H),1.83(dd,J=15.4,9.6Hz,2H),1.67(d,J=13.9Hz,1H),1.51-1.44(m,1H),1.36(d,J=10.2Hz,1H),1.28(s,3H),1.26-1.20(m,5H),1.20-1.16(m,1H),0.79(dd,J=6.7,3.5Hz,9H).
ESI-MS(M+H) +:606.
实施例33
化合物A33
Figure PCTCN2020100103-appb-000060
1H NMR(400MHz,DMSO)δ10.83(s,1H),9.11(d,J=2.9Hz,1H),8.92(d,J=8.2Hz,1H),8.70(dd,J=4.5,1.5Hz,2H),7.75-7.63(m,3H),7.30(d,J=8.0Hz,1H),7.22(d,J=2.2Hz,1H),7.05(t,J=7.0Hz,1H),6.98(t,J=7.4Hz,1H),4.89–4.78(m,1H),4.12(d,J=6.7Hz,1H),3.24–3.12(m,2H),2.59(t,J=7.7Hz,1H),2.27–2.15(m,1H),2.06–1.98(m,1H),1.83(dd,J=17.2,11.5Hz,2H),1.63(dd,J=13.3,7.7Hz,2H),1.32(dd,J=18.5,9.1Hz,3H),1.26(s,3H),1.22(s,4H),0.88–0.75(m,9H).
ESI-MS(M+H) +:557.
实施例34
化合物A34
Figure PCTCN2020100103-appb-000061
1H NMR(400MHz,DMSO)δ10.86(s,1H),8.94(dd,J=23.9,6.0Hz,2H),8.28-8.07(m,2H),7.72-7.52(m,3H),7.31(d,J=8.1Hz,1H),7.21(d,J=2.1Hz,1H),7.05(t,J=7.5Hz,1H),6.96(t,J=7.4Hz,1H),4.86(dt,J=13.5,6.8Hz,1H),4.18(d,J=8.6Hz,1H),3.32-3.23(m,2H),2.69(d,J=3.6Hz,1H), 2.29-2.19(m,1H),2.03(dd,J=17.1,8.9Hz,1H),1.87(t,J=5.6Hz,1H),1.80(s,1H),1.65(t,J=12.8Hz,2H),1.37-1.21(m,10H),0.90-0.76(m,8H).
ESI-MS(M+H) +:613.
实施例35
化合物A35
Figure PCTCN2020100103-appb-000062
1H NMR(400MHz,DMSO)δ10.85(s,1H),9.20-9.11(m,1H),8.99(dd,J=4.2,1.6Hz,1H),8.86(t,J=9.5Hz,1H),8.50-8.41(m,2H),8.19-8.10(m,1H),8.06(dd,J=8.8,3.1Hz,1H),7.71(d,J=7.7Hz,1H),7.62(dd,J=8.3,4.2Hz,1H),7.29(dd,J=19.5,5.1Hz,2H),7.10-6.96(m,2H),4.93(dd,J=14.7,7.9Hz,1H),4.12(d,J=6.6Hz,1H),3.27-3.15(m,2H),2.60(t,J=6.1Hz,1H),2.30-2.17(m,1H),2.05(t,J=11.3Hz,1H),1.92-1.77(m,2H),1.69-1.57(m,2H),1.34-1.19(m,9H),0.89-0.77(m,9H).
ESI-MS(M+H) +:607.
实施例36
化合物A36
Figure PCTCN2020100103-appb-000063
1H NMR(400MHz,DMSO)δ10.86(s,1H),9.30-9.09(m,2H),9.02(dd,J=20.6,8.2Hz,1H),8.78(dd,J=13.2,2.0Hz,1H),8.07(t,J=7.9Hz,2H),7.88(t,J=7.7Hz,1H),7.71(t,J=7.6Hz,2H),7.37-7.23(m,2H),7.11-6.95(m,2H),4.93(dd,J=8.6,5.4Hz,1H),4.14(t,J=6.4Hz,1H),3.24(ddd,J=15.1,9.6,5.4Hz,2H),2.60(t,J=6.5Hz,1H),2.23(s,1H),2.02(d,J=6.1Hz,1H),1.90-1.77(m,2H),1.75-1.60(m,2H),1.39(t,J=10.2Hz,1H),1.35-1.29(m,2H),1.30-1.17(m,7H),0.84(ddd,J=10.5,6.9,4.5Hz,8H).
ESI-MS(M+H) +:607.
实施例37
化合物A37
Figure PCTCN2020100103-appb-000064
1H NMR(400MHz,DMSO)δ10.86(s,1H),9.23-9.12(m,1H),8.77(dd,J=19.8,8.2Hz,1H),8.42(d,J=14.0Hz,1H),8.04-7.94(m,3H),7.89(ddd,J=12.6,8.6,1.6Hz,1H),7.72(d,J=7.7Hz,1H),7.66-7.56(m,2H),7.36-7.25(m,2H),7.04(dt,J=14.8,6.9Hz,2H),4.97-4.82(m,1H),4.18-4.06(m,1H),3.25(t,J=6.5Hz,2H),2.59(d,J=7.1Hz,1H),2.29-2.17(m,1H),2.04-1.98(m,1H),1.91-1.76(m,2H),1.73-1.60(m,2H),1.37(dd,J=22.5,12.6Hz,3H),1.29-1.21 (m,7H),0.84(ddd,J=11.4,7.0,4.0Hz,9H).
ESI-MS(M+H) +:606.
实施例38
化合物A38
Figure PCTCN2020100103-appb-000065
1H NMR(400MHz,DMSO)δ8.84(t,J=19.4Hz,1H),8.30(dd,J=23.1,7.9Hz,1H),7.86(d,J=7.5Hz,2H),7.54(t,J=8.1Hz,2H),7.33(dtd,J=25.0,7.3,2.7Hz,5H),6.97(s,1H),4.90(dd,J=13.1,8.1Hz,1H),4.33(t,J=7.3Hz,1H),4.10(d,J=6.7Hz,1H),2.63(dd,J=14.7,7.0Hz,2H),2.57-2.51(m,1H),2.49-2.40(m,2H),2.25-2.16(m,1H),2.00(dd,J=14.8,6.9Hz,1H),1.86(t,J=5.6Hz,1H),1.79(s,1H),1.72(dd,J=13.6,6.9Hz,1H),1.64(d,J=13.6Hz,1H),1.38-1.28(m,3H),1.23(s,5H),0.84(dd,J=17.2,8.0Hz,10H).
ESI-MS(M+Na) +:608.2.
实施例39
化合物A39
Figure PCTCN2020100103-appb-000066
化合物A39是按如下方法合成的:
Figure PCTCN2020100103-appb-000067
1.中间体A39-1的合成
9H-吡啶并[3,4-b]吲哚(3g,18mmol)溶于N,N-二甲基甲酰胺(DMF)(25mL)中,低温下加入氢氧化钾固体(3g,54mmol),室温反应1h。加入溴乙酸乙酯(7.4g,45mmol)后,室温反应16h。TLC显示原料反应完全,加水后用乙酸乙酯萃取(80mL*3),合并有机相,拉干溶剂,得到黄色固体化合物A39-1(1g,产率22%)。
2.中间体A39-2的合成
A39-1(1g,4mmol)溶于MeOH(15mL),低温下加入LiOH(6mL,1M)水溶液,室温下反应2h。TLC显示原料反应完全,拉干溶剂,加稀盐酸调pH至3-4,用乙酸乙酯萃取(15mL*3),合并有机相,拉干溶剂,得到化合物A39-2(790mg,产率88%)。
3.中间体A39-3的合成
A39-2(225mg,1mmol)和L-亮氨酸乙酯(353mg,1.8mmol)溶于DCM(4mL)中,加入HATU(760mg,2mmol)和TEA(350mg,3.5mmol),室温反应两个小时。加水,用DCM萃取(20mL*3),合并有机相,拉干溶剂后,用厚制备板纯化得到白色固体化合物A39-3(160mg,产率44%)。
4.中间体A39-4的合成
A39-3(160mg,0.44mmol)溶于MeOH(4mL),低温下加入LiOH(1mL,1M)水溶液,室温下反应2h。TLC显示原料反应完全,拉干溶剂,加稀盐酸调pH至3-4,用乙酸乙酯萃取(10mL*3),合并有机相,拉干溶剂,得到化合物A39-4(110mg,产率74%)。
5.化合物A39的合成
A39-4(100mg,0.3mmol)和A1-2(170mg,0.45mmol)溶于DCM(3mL)中,加入HATU(230mg,0.6mmol)和TEA(120mg,1.2mmol),室温反应两个小时。加水,用DCM萃取(15mL*3),合并有机相,拉干溶剂后,用中压制备纯化粗产品得到白色固体化合物A39(12mg,产率6.8%)。
1H NMR(400MHz,DMSO)δ9.01(s,1H),8.96(s,1H),8.78(d,J=8.3Hz,1H),8.38(d,J=5.2Hz,1H),8.30-8.24(m,2H),8.13(d,J=5.2Hz,1H),7.65-7.53(m,2H),7.29(t,J=7.3Hz,1H),5.22(q,J=16.9Hz,2H),4.43(dd,J=14.3,8.9Hz,1H),4.10(d,J=6.7Hz,1H),2.55(d,J=8.8Hz,1H),2.27-2.16(m,1H),2.08-1.95(m,2H),1.85(t,J=5.6Hz,1H),1.81(d,J=5.5Hz,1H),1.65(dd,J=16.6,9.4Hz,4H),1.58-1.40(m,3H),1.33(d,J=10.1Hz,1H),1.28(s,4H),1.22(d,J=9.9Hz,6H),0.93-0.89(m,3H),0.83(dd,J=9.6,4.4Hz,12H).
ESI-MS(M+H) +:545.
化合物A40-A41合成方法同A39,只需将第一步的9H-吡啶并[3,4-b]吲哚换成相应的胺。
实施例40
化合物A40:
Figure PCTCN2020100103-appb-000068
1H NMR(400MHz,DMSO)δ8.92(d,J=2.9Hz,1H),8.63(d,J=8.1Hz,1H),8.48(d,J=1.8Hz,2H),7.57(dt,J=18.6,5.3Hz,4H),5.11(d,J=19.7Hz, 2H),4.41(dd,J=14.4,8.8Hz,1H),4.10(d,J=6.8Hz,1H),1.86(s,2H),1.64(d,J=13.7Hz,5H),1.39-1.25(m,7H),1.23(d,J=9.3Hz,5H),0.91(d,J=6.6Hz,3H),0.88-0.75(m,12H).
ESI-MS(M+H) +:744.
实施例41
化合物A41:
Figure PCTCN2020100103-appb-000069
1H NMR(400MHz,DMSO)δ8.96(s,1H),8.73(d,J=7.9Hz,1H),8.35(dd,J=8.0,1.5Hz,2H),7.77(t,J=7.0Hz,2H),7.61(s,2H),7.35(s,2H),5.24(s,2H),4.52-4.43(m,1H),4.12(d,J=6.8Hz,1H),2.58(s,1H),2.22(d,J=11.3Hz,1H),2.01(dd,J=14.4,7.0Hz,3H),1.87(t,J=5.6Hz,1H),1.83(d,J=6.2Hz,1H),1.66(d,J=13.8Hz,3H),1.59-1.44(m,3H),1.35-1.25(m,6H),0.93(d,J=6.6Hz,3H),0.85(dd,J=6.5,4.0Hz,12H).ESI-MS(M+H) +:614.
实施例42
化合物A42
Figure PCTCN2020100103-appb-000070
化合物A42是如下方法合成的:
Figure PCTCN2020100103-appb-000071
1.中间体A42-1的合成
将9-氨基芴盐酸盐(1g,4.60mmol)溶于20mL二氯甲烷中,冰浴下向其中依次加入三乙胺(1.91mL)和三光气(550mg,1.85mmol)。搅拌30min后,向其中加入L-亮氨酸乙酯(920mg,5.04mmol)。常温反应1h后,加水(10mL)淬灭反应。用二氯甲烷萃取(20mL*3)。有机相合并干燥旋干,溶质用石油醚/乙酸乙酯混合溶液打浆,后过滤得白色固体(400mg,20%产率)。
2.中间体A42-2的合成
将A42-1(290mg,0.79mmol)溶于10mL二氧六环/水(10:1),向其中加入1滴浓硫酸。回流过夜后,冷至室温。加20mL水稀释,水相用乙酸乙酯萃取(20mL*3)后合并干燥旋干,得白色固体(200mg,74%产率)。
3.化合物A42的合成
将化合物A42-2(200mg,0.59mmol)溶于二氯甲烷(20mL)中,依次向其中加入HATU(340mg,0.89mmol),A1-2(190mg,0.71mmol)和三乙胺(0.3mL)。常温反应3h后,加水(20mL)稀释。水相用二氯甲烷萃取(20mL*3)。有机相合并干燥旋干,溶质用中压制备纯化得白色固体(45mg,13%产率)。
1H NMR(400MHz,DMSO)δ9.16(s,1H),7.84(d,J=7.5Hz,2H),7.51(d,J=7.4Hz,2H),7.41(t,J=7.4Hz,2H),7.31(dt,J=9.8,7.9Hz,2H),6.55(d,J=8.6Hz,1H),6.13(d,J=8.3Hz,1H),5.82(d,J=8.8Hz,1H),4.45(dd,J=15.3, 7.7Hz,1H),4.07(d,J=6.5Hz,1H),2.56(s,1H),2.21(d,J=11.2Hz,1H),2.00(dd,J=14.3,6.8Hz,3H),1.85(t,J=5.5Hz,1H),1.78(s,1H),1.64(d,J=11.4Hz,2H),1.50-1.35(m,4H),1.26(t,J=11.7Hz,11H),0.90(dd,J=17.8,6.5Hz,10H).
ESI-MS(M+Na) +:608.
实施例43
化合物A43
Figure PCTCN2020100103-appb-000072
化合物A43是如下方法合成的:
Figure PCTCN2020100103-appb-000073
1.中间体A43-1的合成
将9-芴甲酸(10g,47.6mmol)溶于50mL DMF中,向其中依次加入HATU(27g,71.0mmol),氯化铵(25.5g,476.6mmol)和三乙胺(66mL)。常温反应48h后,加水(200mL)稀释。水层用乙酸乙酯萃取(30 mL*3)。有机相合并干燥旋干,溶质过柱子纯化得白色固体(1.6g,16%产率)。
2.中间体A43-2的合成
将A43-1(1.4g,6.69mmol)溶于20mL THF中,加入硼烷二甲硫醚溶液(BH3·Me2S)(10M,1.35mL)后回流3h。冷至室温后,用1M HCl淬灭反应。水相用饱和碳酸氢钠调至碱性后用乙酸乙酯萃取(20mL*3)。有机相合并干燥旋干,溶质过柱子纯化得淡黄色固体(540mg,41%产率)。
3.中间体A43-3的合成
将A43-2(540mg,2.77mmol)溶于10mL二氯甲烷中,冰浴下向其中依次加入三乙胺(1.15mL)和三光气(330mg,1.11mmol)。搅拌30min后,向其中加入L-亮氨酸乙酯(590mg,3.01mmol)。常温反应1h后,加水(10mL)淬灭反应。用二氯甲烷萃取(20mL*3)。有机相合并干燥旋干,溶质用石油醚/乙酸乙酯混合溶液打浆,后过滤得白色固体(850mg,80%产率)。
4.中间体A43-4的合成
将A43-3(370mg,0.97mmol)溶于10mL二氧六环/水(10:1),向其中加入1滴浓硫酸。回流过夜后,冷至室温。加20mL水稀释,水相用乙酸乙酯萃取(20mL*3)后合并干燥旋干,得白色固体(240mg,70%产率)。
5.化合物A43的合成
将化合物A43-4(240mg,0.68mmol)溶于二氯甲烷(20mL)中,依次向其中加入HATU(460mg,1.21mmol),A27-2(250mg,0.94mmol)和三乙胺(0.4mL)。常温反应3h后,加水(20mL)稀释。水相用二氯甲烷萃取(20mL*3)。有机相合并干燥旋干,溶质用中压制备纯化得白色固体(70mg,11%产率)。
1H NMR(400MHz,DMSO)δ9.11(s,1H),7.87(d,J=7.5Hz,2H),7.60(t,J=6.7Hz,2H),7.39(td,J=7.3,2.6Hz,2H),7.31(ddd,J=15.0,7.5,3.8Hz,2H),6.30(d,J=8.5Hz,1H),6.20(t,J=5.7Hz,1H),4.31(dd,J=14.9,8.5Hz,1H),4.05(dd,J=12.1,6.6Hz,2H),3.52-3.36(m,2H),2.23-2.13(m,1H), 2.05-1.92(m,2H),1.80(dd,J=14.0,8.0Hz,2H),1.72-1.32(m,6H),1.19(d,J=13.5Hz,6H),0.84(ddd,J=13.9,12.1,7.0Hz,17H).
ESI-MS(M+Na) +:622.1.
实施例44
化合物A44
Figure PCTCN2020100103-appb-000074
化合物A44是按如下方法合成的:
Figure PCTCN2020100103-appb-000075
1.中间体A44-1的合成
将环戊胺(115mg,1.35mmol)溶于10mL二氯甲烷中,冰浴下向其中依次加入三乙胺(270mg,2.67mmol)和三光气(160mg,0.54mmol)。反应30min后,加入L-色氨酸盐酸盐(325mg,1.35mmol)。常温反应1h后,加1M HCl调至酸性。用二氯甲烷萃取(20mL*3)。有机相合并干燥旋干,得粗产物(260mg,60%)。
2.化合物A44的合成
将A44-1(260mg,0.82mmol)溶于15mL二氯甲烷中,向其中依次加入HATU(470mg,1.23mmol),A1-2(260mg,0.98mmol)和三乙胺(125mg,1.24 mmol)。常温反应2h后,加水(10mL)稀释。有机相用二氯甲烷萃取(10mL*3)后合并干燥旋干,溶质用中压制备纯化得白色固体(70mg,15%产率)。
1H NMR(400MHz,DMSO)δ10.89(s,1H),9.02(s,1H),7.57(d,J=8.0Hz,1H),7.31(d,J=8.1Hz,1H),7.14-7.02(m,2H),6.97(t,J=7.0Hz,1H),6.09(d,J=7.3Hz,1H),5.85(d,J=8.3Hz,1H),4.52(dd,J=14.9,7.0Hz,1H),4.08(d,J=6.6Hz,1H),3.80(dd,J=13.2,6.5Hz,1H),3.07-2.89(m,2H),2.49-2.45(m,2H),2.27-2.15(m,1H),2.00(d,J=7.7Hz,1H),1.85(t,J=5.6Hz,1H),1.79(s,1H),1.77-1.62(m,3H),1.61-1.42(m,5H),1.37(d,J=9.9Hz,1H),1.25-1.15(m,8H),0.82(dd,J=11.9,9.4Hz,10H).
ESI-MS(M+Na) +:585.1.
化合物A45合成方法同A44,只需将第一步原料环戊胺换成环戊醇。
实施例45
化合物A45
Figure PCTCN2020100103-appb-000076
1H NMR(400MHz,DMSO)δ10.87(s,1H),9.05(s,1H),7.60(d,J=7.7Hz,1H),7.32(d,J=8.1Hz,1H),7.24-7.12(m,2H),7.06(t,J=7.5Hz,1H),6.98(t,J=7.4Hz,1H),4.86(s,1H),4.42-4.18(m,1H),4.09(d,J=7.0Hz,1H),3.09-2.88(m,2H),2.51(s,1H),2.27-2.16(m,1H),2.02-1.94(m,1H),1.85(t,J=5.6Hz,1H),1.80(s,1H),1.76-1.40(m,10H),1.37(d,J=9.9Hz,1H),1.26-1.17(m,7H),0.86-0.79(m,9H).
ESI-MS(M+Na) +:586.2.
实施例46
化合物A46
Figure PCTCN2020100103-appb-000077
化合物A46是按如下方法合成的
Figure PCTCN2020100103-appb-000078
1.中间体A46-1的合成
将L-色氨酸甲酯(500mg,2.29mmol),苄溴(550mg,3.21mmol)和碳酸钾(640mg,4.64mmol)溶于10mL DMF中。常温反应2h后,加100mL水稀释。水相用乙酸乙酯萃取(20mL*3)。有机相合并干燥旋干,用制备板纯化得白色固体(420mg,59%产率)。
2.中间体A46-2的合成
将A46-1(420mg,1.36mmol)和LiOH(120mg,2.72mmol)溶于甲醇/水(3:1,24mL)中。70℃反应2h后,旋去甲醇,水相用2M HCl调至酸性。将所得固体过滤得白色固体(350mg,87%产率)。
3.化合A46的合成
将A46-2(350mg,1.19mmol)溶于15mL二氯甲烷中,向其中依次加入HATU(680mg,1.78mmol),A1-2(380mg,1.43mmol)和三乙胺(580mg,5.74mmol)。常温反应2h后,加水(10mL)稀释。有机相用二氯甲烷萃取(10mL*3)后合并干燥旋干,溶质用中压制备纯化得白色固体(180mg,27%产率)。
1H NMR(400MHz,DMSO)δ10.89(s,1H),9.03(s,1H),7.52(d,J=7.8Hz,1H),7.35-7.17(m,7H),7.14(d,J=2.2Hz,1H),7.05(t,J=7.0Hz,1H),6.95(t,J=7.0Hz,1H),4.09(d,J=6.7Hz,1H),3.69(dd,J=13.2,4.9Hz,1H),3.61-3.55 (m,1H),3.51(d,J=7.2Hz,1H),3.01(tt,J=14.2,6.9Hz,2H),2.44(d,J=7.6Hz,1H),2.21(s,2H),1.86(t,J=5.5Hz,1H),1.79(s,1H),1.65(d,J=13.9Hz,1H),1.49(ddd,J=48.1,21.7,8.6Hz,3H),1.29(s,4H),1.16(d,J=7.5Hz,2H),0.81(dd,J=19.4,8.4Hz,10H).
ESI-MS(M+H) +:542.2.
实施例47
化合物A47
Figure PCTCN2020100103-appb-000079
化合物A47是按如下方法合成的
Figure PCTCN2020100103-appb-000080
1.中间体A47-1的合成
将9-芴乙酸(500mg,2.23mmol),N-羟基丁二酰亚胺(256mg,2.23mmol)和DCC(460mg,2.23mmol)溶于20mL二氯甲烷中。常温反应过夜后,过滤。滤液旋干,溶质用制备板纯化得白色固体(850mg,100%)。
2.中间体A47-2的合成
将L-天冬氨酸-beta-甲酯盐酸盐(490mg,2.66mmol)和碳酸钠(850mg,7.94mmol)溶于二氧六环/水(3:1,16mL)中,冰浴下向其中加入A213-1(850mg,2.33mmol)。常温反应过夜后,旋干溶剂。水相用2M HCl调至酸性后用乙酸乙酯萃取(20mL*3)。有机相合并干燥旋干得淡黄色固体(690mg, 83%产率)。
3.化合物A47的合成
将A47-2(690mg,1.95mmol)溶于25mL二氯甲烷中,向其中依次加入HATU(1120mg,2.93mmol),A1-2(620mg,2.34mmol)和三乙胺(950mg,9.45mmol)。常温反应2h后,加水(20mL)稀释。有机相用二氯甲烷萃取(20mL*3)后合并干燥旋干,溶质用中压制备纯化得白色固体(140mg,11%产率)。
1H NMR(400MHz,DMSO)δ8.65(d,J=3.8Hz,1H),8.37(d,J=8.2Hz,1H),7.86(d,J=7.5Hz,2H),7.53(dd,J=19.1,7.6Hz,2H),7.38(t,J=7.3Hz,2H),7.29(t,J=6.9Hz,2H),4.91(dd,J=13.6,8.1Hz,1H),4.35(t,J=7.4Hz,1H),4.15(d,J=6.7Hz,1H),3.61(d,J=4.4Hz,3H),2.77-2.58(m,4H),2.46(d,J=8.1Hz,1H),2.27-2.18(m,1H),2.00(dd,J=14.5,6.9Hz,1H),1.88(t,J=5.6Hz,1H),1.80(s,1H),1.68(dd,J=22.6,10.3Hz,2H),1.40-1.24(m,8H),0.84(dd,J=17.5,8.9Hz,10H).
ESI-MS(M+Na) +:623.2.
化合物A48的合成方法同A47,只需将原料L-天冬氨酸-beta-甲酯换成L-天冬酰胺或N 4-甲基-L-天冬酰胺。
实施例48
化合物A48
Figure PCTCN2020100103-appb-000081
1H NMR(400MHz,DMSO)δ8.84(d,J=36.1Hz,1H),8.26(d,J=6.9Hz,1H),7.85(d,J=6.7Hz,2H),7.78(s,1H),7.61-7.46(m,2H),7.37(s,2H),7.29(s,2H),4.93(s,1H),4.34(s,1H),4.10(d,J=7.4Hz,1H),2.56(d,J=15.2Hz,7H),1.86 (ddd,J=65.9,58.1,43.7Hz,10H),1.38(d,J=55.7Hz,3H),1.03-0.65(m,12H).ESI-MS(M+Na) +:622.2.
实施例49
化合物A49
Figure PCTCN2020100103-appb-000082
化合物A49是按如下方法合成的:
Figure PCTCN2020100103-appb-000083
将A22-1(210mg,0.59mmol)溶于5mL二氯甲烷中,向其中依次加入HATU(340mg,0.89mmol),A49-1(229mg,0.80mmol)和三乙胺(180mg,1.78mmol)。常温反应2h后,加水(10mL)稀释。有机相用二氯甲烷萃取(10mL*3)后合并干燥旋干,溶质用中压制备纯化得白色固体(180mg,52%产率)。
1H NMR(400MHz,DMSO)δ7.90(d,J=7.5Hz,2H),7.73(d,J=7.5Hz,2H),7.68(d,J=8.2Hz,1H),7.42(t,J=7.3Hz,2H),7.37-7.28(m,2H),4.33-4.12(m,5H),3.66(t,J=8.4Hz,1H),3.38(s,1H),2.90(dd,J=10.5,6.6Hz,1H),2.33-2.21(m,1H),2.09-1.99(m,2H),1.96-1.80(m,4H),1.73-1.55(m,3H),1.53-1.44(m,1H),1.37(td,J=8.6,4.3Hz,1H),1.31(s,3H),1.28-1.19(m,5H),0.89(dd,J=11.1,6.6Hz,5H),0.80(d,J=13.1Hz,3H).
ESI-MS(M+H) +:584.
实施例50
化合物A50
Figure PCTCN2020100103-appb-000084
化合物A50是如下方法合成的
Figure PCTCN2020100103-appb-000085
将A50-1(367mg,1mmol)溶于5mL二氯甲烷中,向其中依次加入HATU(494mg,1.3mmol),A1-2(493mg,1.3mmol)和三乙胺(303mg,3mmol)。常温反应2h后,加水(10mL)稀释。有机相用二氯甲烷萃取(10mL*3)后合并干燥旋干,溶质用中压制备纯化得白色固体(58mg,9%产率)。
1H NMR(400MHz,DMSO)δ9.06(s,1H),7.92(d,J=7.5Hz,2H),7.64(d,J=7.2Hz,2H),7.44(t,J=7.4Hz,2H),7.35(t,J=7.4Hz,2H),4.77(s,1H),4.46(d,J=7.1Hz,1H),4.33(dt,J=17.2,6.3Hz,2H),4.10(d,J=8.2Hz,1H),2.74(s,3H),2.21(d,J=8.4Hz,1H),2.03(s,1H),1.83(d,J=20.3Hz,2H),1.62(ddd,J=43.2,20.8,6.4Hz,4H),1.39-1.28(m,3H),1.25(d,J=6.4Hz,7H),0.97-0.75(m,15H).
ESI-MS(M+H) +:615.
实施例51
化合物A51
Figure PCTCN2020100103-appb-000086
1H NMR(400MHz,DMSO)δ8.84(s,1H),7.89(d,J=7.5Hz,2H),7.71(d,J=7.5Hz,2H),7.65(t,J=6.1Hz,1H),7.42(t,J=7.4Hz,2H),7.33(t,J=7.3Hz,2H),4.34-4.16(m,3H),4.06(d,J=7.3Hz,1H),3.75(d,J=6.0Hz,2H),2.56(s,1H),2.23–2.13(m,1H),2.05–1.96(m,1H),1.83(t,J=5.6Hz,1H),1.80-1.73(m,1H),1.72–1.58(m,2H),1.36–1.27(m,2H),1.22(d,J=9.9Hz,7H),0.89–0.73(m,9H).
化合物A51的合成方法同化合物A22。
实施例52
化合物A52
Figure PCTCN2020100103-appb-000087
1H NMR(400MHz,DMSO)δ10.83(s,1H),9.11(d,J=10.1Hz,1H),8.61(dd,J=22.6,8.1Hz,1H),8.33(d,J=13.6Hz,1H),7.94–7.80(m,3H),7.69(d,J=7.7Hz,1H),7.36(d,J=2.1Hz,1H),7.34–7.19(m,3H),7.08-6.98(m,2H),4.95-4.84(m,1H),4.14-4.07(m,1H),3.89(s,3H),3.24-3.18(m,2H),2.61-2.55(m,1H),2.27–2.16(m,1H),2.06-1.97(m,1H),1.89–1.76(m,2H),1.72-1.60(m,2H),1.38(t,J=10.1Hz,1H),1.32–1.21(m,8H),0.85-0.80(m,9H)。
化合物A52的合成方法同化合物A24。
实施例53
化合物A53
Figure PCTCN2020100103-appb-000088
1H NMR(400MHz,DMSO)δ11.14(s,1H),9.07(d,J=7.2Hz,1H),8.95(s,1H),8.44(s,1H),8.34(d,J=8.0Hz,1H),8.08–7.98(m,1H),5.20(dd,J=12.9,5.4Hz,1H),4.63(t,J=7.2Hz,1H),4.08(d,J=6.6Hz,1H),2.98–2.84(m,1H),2.70–2.52(m,3H),2.25–2.16(m,1H),2.13–2.05(m,1H),2.04-1.97(m,1H),1.84-1.72(m,2H),1.73–1.57(m,2H),1.38(d,J=7.3Hz,3H),1.33–1.25(m,3H),1.22(t,J=4.1Hz,6H),0.89–0.74(m,9H)。
化合物A53的合成方法同化合物A24。
实施例54
化合物A54
Figure PCTCN2020100103-appb-000089
1H NMR(400MHz,DMSO)δ11.15(d,J=2.7Hz,1H),9.29(dd,J=22.3,7.3Hz,1H),8.76(d,J=3.3Hz,1H),8.08–7.91(m,3H),5.20(ddd,J=12.9,5.3,2.4Hz,1H),4.64-4.56(m,1H),4.12(d,J=8.6Hz,1H),2.98–2.82(m,1H),2.68–2.52(m,3H),2.27–2.18(m,1H),2.13–1.97(m,2H),1.86(t,J=5.4Hz,1H),1.83-1.75(m,1H),1.71-1.58(m,2H),1.36–1.32(m,4H),1.28–1.19(m,8H),0.87–0.78(m,9H).
化合物A54的合成方法同化合物A24。
实施例55
化合物A55
Figure PCTCN2020100103-appb-000090
1H NMR(400MHz,DMSO)δ8.92–8.79(m,1H),8.25–8.12(m,1H),7.24(t,J=7.9Hz,4H),7.03–6.89(m,6H),4.48–4.38(m,1H),4.38–4.29(m,2H),4.12–4.05(m,1H),2.57–2.51(m,1H),2.24–2.16(m,1H),2.05–1.97(m,1H),1.84(t,J=5.5Hz,1H),1.80–1.75(m,1H),1.71–1.60(m,2H),1.54–1.38(m,3H),1.36–1.29(m,1H),1.28–1.20(m,8H),0.87–0.72(m,15H).
化合物A55的合成方法同化合物A39。
实施例56
化合物A56
Figure PCTCN2020100103-appb-000091
1H NMR(400MHz,DMSO)δ8.94–8.82(m,1H),8.65–8.53(m,2H),8.44–8.42(m,1H),8.21(d,J=7.7Hz,1H),7.54–7.39(m,2H),7.31–7.22(m,2H),5.22–5.11(m,2H),4.47–4.37(m,1H),4.15–4.06(m,1H),2.60–2.52(m,1H),2.27–2.16(m,1H),2.08–1.98(m,1H),1.89–1.76(m,2H),1.74–1.60(m,3H),1.59–1.42(m,2H),1.34(dt,J=12.5,6.3Hz,1H),1.30–1.20(m,8H),0.95–0.76(m,15H).
化合物A56的合成方法同化合物39。
实施例57
化合物A57
Figure PCTCN2020100103-appb-000092
1H NMR(400MHz,DMSO)δ8.88(dd,J=18.4,3.1Hz,1H),8.60(dd,J=27.6,8.4Hz,1H),8.00(t,J=8.8Hz,2H),7.43(t,J=7.7Hz,1H),7.34–7.26(m,1H),7.15(t,J=7.4Hz,1H),7.09(t,J=1.9Hz,1H),6.80(dd,J=8.5,1.3Hz,1H),5.13–4.95(m,2H),4.50–4.41(m,1H),4.15–4.09(m,1H),3.85(s,3H),2.59–2.53(m,1H),2.27–2.17(m,1H),2.08–1.98(m,1H),1.89–1.78(m,2H),1.71–1.59(m,3H),1.55–1.43(m,2H),1.38–1.31(m,1H),1.28–1.18(m,8H),0.89(dd,J=6.3,5.3Hz,3H),0.84–0.80(m,12H).
化合物A57的合成方法同化合物39。
实施例58
化合物A58
Figure PCTCN2020100103-appb-000093
1H NMR(400MHz,DMSO)δ9.35(s,1H),8.98(d,J=2.9Hz,1H),8.71(d,J=8.2Hz,1H),8.45(d,J=5.8Hz,1H),8.26(d,J=7.7Hz,1H),7.58–7.53(m,2H),7.52–7.46(m,1H),7.31(t,J=7.4Hz,1H),5.13(dd,J=35.0,16.9Hz,2H),4.47–4.38(m,1H),4.14–4.05(m,1H),2.59–2.53(m,1H),2.26–2.17(m,1H),2.08–1.98(m,1H),1.89–1.77(m,2H),1.71–1.60(m,3H),1.58–1.41(m,2H),1.34(d,J=10.1Hz,1H),1.31–1.19(m,8H),0.92–0.81(m,15H).
化合物A58的合成方法同化合物39。
实施例59
化合物A59
Figure PCTCN2020100103-appb-000094
1H NMR(400MHz,DMSO)δ8.96(s,1H),8.65(d,J=7.9Hz,1H),8.33(d,J=1.7Hz,2H),7.59-7.56(m,2H),7.48-7.44(m,2H),5.11(dd,J=36.1,16.9Hz,2H),4.45–4.34(m,1H),4.09(d,J=8.5Hz,1H),2.58-2.52(m,1H),2.26-2.16(m,1H),2.07-1.97(m,1H),1.88–1.76(m,2H),1.70-1.57(m,3H),1.57–1.40(m,2H),1.33(d,J=9.9Hz,1H),1.28-1.15(m,8H),0.93–0.73(m,15H).
化合物A59的合成方法同化合物39。
实施例60
化合物A60
Figure PCTCN2020100103-appb-000095
1H NMR(400MHz,DMSO)δ9.00-8.90(m,1H),8.71-8.62(m,1H),8.16(d,J=7.8Hz,1H),8.00(dd,J=9.2,2.5Hz,1H),7.56–7.48(m,2H),7.46-7.41(m,1H),7.30–7.23(m,1H),7.20(t,J=7.4Hz,1H),5.20–4.98(m,2H),4.47-4.40(m,1H),4.16-4.09(m,1H),2.57-2.52(m,1H),2.28–2.17(m,1H),2.08–2.00(m,1H),1.90–1.78(m,2H),1.72–1.60(m,3H),1.57–1.41(m,2H),1.35(d,J=8.7Hz,1H),1.31–1.16(m,8H),0.95–0.76(m,15H).
化合物A60的合成方法同化合物39。
实施例61
化合物A61
Figure PCTCN2020100103-appb-000096
1H NMR(400MHz,DMSO)δ8.99(s,1H),8.68(d,J=8.2Hz,1H),8.37(d,J=8.0Hz,1H),8.28(d,J=7.8Hz,1H),8.16(s,1H),7.60(d,J=7.8Hz,2H),7.54(t,J=7.7Hz,1H),7.30(t,J=7.4Hz,1H),5.26–5.12(m,2H),4.44-4.37(m,1H),4.09(d,J=6.8Hz,1H),2.58-2.54(m,1H),2.26–2.17(m,1H),2.06-1.95(m,1H),1.87-1.77(m,2H),1.73-1.52(m,4H),1.49-1.40(m,1H),1.31(d,J=8.1Hz,1H),1.29-1.17(m,8H),0.94–0.78(m,15H).
化合物A61的合成方法同化合物39。
实施例62
化合物A62
Figure PCTCN2020100103-appb-000097
1H NMR(400MHz,DMSO)δ8.98(s,1H),8.65(d,J=8.3Hz,1H),8.16(d,J=7.7Hz,1H),8.10(d,J=8.3Hz,1H),7.82(d,J=1.4Hz,1H),7.52(d,J=8.2Hz,1H),7.44(t,J=7.4Hz,1H),7.34(dd,J=8.3,1.5Hz,1H),7.23(t,J=7.3Hz,1H),5.10(s,2H),4.43(dd,J=14.1,9.3Hz,1H),4.10(d,J=7.0Hz,1H),2.60– 2.53(m,1H),2.27–2.16(m,1H),2.07–2.00(m,1H),1.89-1.77(m,2H),1.75-1.52(m,4H),1.50–1.41(m,1H),1.33(d,J=10.2Hz,1H),1.28–1.22(m,8H),0.92-0.80(m,15H).
化合物A62的合成方法同化合物39。
实施例63
化合物A63
Figure PCTCN2020100103-appb-000098
1H NMR(400MHz,DMSO)δ9.00–8.85(m,1H),8.73(dd,J=19.6,8.3Hz,1H),8.56(d,J=4.5Hz,1H),8.27(d,J=7.8Hz,1H),8.13(d,J=7.3Hz,1H),7.60(ddd,J=18.2,14.1,7.3Hz,3H),7.34(t,J=7.3Hz,1H),5.31-5.12(m,2H),4.46-4.38(m,1H),4.16-4.08(m,1H),2.53(d,J=8.4Hz,1H),2.28–2.13(m,1H),2.09–2.00(m,1H),1.89–1.77(m,2H),1.71–1.58(m,3H),1.56–1.42(m,2H),1.38–1.19(m,10H),0.94–0.75(m,14H).
化合物A63的合成方法同化合物39。
实施例64
化合物A64
Figure PCTCN2020100103-appb-000099
1H NMR(400MHz,DMSO)δ8.61(dd,J=7.7,1.2Hz,2H),8.49(dd,J=4.8,1.2Hz,2H),8.44(d,J=8.2Hz,1H),7.85(t,J=5.5Hz,1H),7.34(dd,J=7.6,4.9Hz,2H),5.15(q,J=16.5Hz,2H),4.23(t,J=7.5Hz,1H),3.06(qd,J=13.1,6.0Hz,2H),2.23(ddd,J=17.1,16.7,7.4Hz,1H),2.03–1.74(m,2H),1.72–1.40(m,5H),1.32–1.18(m,9H),0.85(ddd,J=15.9,11.4,5.2Hz,16H).
化合物A64的合成方法同化合物39。
实施例65
化合物A65
Figure PCTCN2020100103-appb-000100
化合物A65是如下方法合成的:
Figure PCTCN2020100103-appb-000101
将原料A10(150mg,0.25mmol)和化合物异丁基硼酸(102mg,1mmol)溶于甲醇中,加入稀盐酸(1N,1.5mL),70℃下反应6h。点板监测,原料反应完全。拉干溶剂,直接用中压制备纯化,得到白色固体(42mg,36%产率)。
1H NMR(400MHz,CD 3OD)δ7.85(d,J=7.6Hz,1H),7.66(t,J=6.8Hz,1H),7.41(t,J=7.4Hz,1H),7.31(td,J=7.4,2.3Hz,1H),4.33-4.14(m,4H),3.95(dd,J=9.0,6.0Hz,1H),3.00(dd,J=9.1,5.8Hz,1H),1.57-1.44(m,2H),1.44-1.34(m,2H),1.34-1.16(m,3H),0.85(d,J=6.5Hz,3H),0.82-0.72(m,9H).
ESI-MS(M+H) +:467.
化合物A66-A83合成方法同A65,只需将A10换成相应的硼酸酯。
实施例66
化合物A66:
Figure PCTCN2020100103-appb-000102
1H NMR(400MHz,MeOD)δ7.57(d,J=7.8Hz,1H),7.37-7.24(m,6H),7.14-7.07(m,2H),7.03(t,J=7.3Hz,1H),5.05(q,J=12.4Hz,2H),4.64(t,J=7.6Hz,1H),3.25(dt,J=16.2,8.0Hz,2H),2.55(dd,J=9.5,5.6Hz,1H),1.25-1.16(m,1H),1.12-0.99(m,2H),0.77(t,J=6.0Hz,6H).
ESI-MS(M+H) +:452.
实施例67
化合物A67:
Figure PCTCN2020100103-appb-000103
1H NMR(400MHz,MeOD)δ7.78(d,J=7.5Hz,2H),7.55(t,J=9.9Hz,1H),7.48(d,J=7.5Hz,1H),7.36(t,J=7.4Hz,2H),7.33-7.23(m,2H),4.72(dd,J=9.7,5.2Hz,1H),4.38(t,J=7.4Hz,1H),2.77(dd,J=14.6,7.0Hz,2H),2.58(dd,J=14.7,8.0Hz,1H),1.73-1.53(m,4H),1.37(dd,J=12.9,5.5Hz,2H),0.97(dd,J=15.0,6.6Hz,12H).
ESI-MS(M+H) +:451.
实施例68
化合物A68:
Figure PCTCN2020100103-appb-000104
1H NMR(400MHz,CD 3OD)δ7.61(d,J=7.6Hz,1H),7.32(dd,J=7.9,3.5Hz,1H),7.14(s,1H),7.11-7.00(m,2H),4.93(d,J=8.0Hz,1H),3.17(dd,J=18.1,12.0Hz,1H),2.67-2.57(m,1H),1.95-1.86(m,2H),1.81(d,J=19.8Hz,3H),1.64(t,J=14.0Hz,3H),1.56-1.37(m,7H),1.31(d,J=12.0Hz,5H),1.13(d,J=5.6Hz,1H),0.89(d,J=6.8Hz,3H),0.85–0.78(m,3H).
ESI-MS(M+H) +:494.
实施例69
化合物A69
Figure PCTCN2020100103-appb-000105
1H NMR(400MHz,MeOD)δ7.60(d,J=7.7Hz,1H),7.33(d,J=8.0Hz,1H),7.18-7.00(m,3H),4.87(d,J=8.4Hz,1H),3.28-3.16(m,2H),2.65-2.54(m,1H),2.22-2.16(m,2H),1.75-1.44(m,6H),1.32-0.95(m,6H),0.90-0.76(m,6H).
ESI-MS(M+Na) +:450.0.
实施例70
化合物A70
Figure PCTCN2020100103-appb-000106
1H NMR(400MHz,DMSO)δ10.83(d,J=26.1Hz,1H),8.67(s,1H),7.92(dd,J=37.5,8.2Hz,1H),7.53(s,1H),7.32(d,J=8.1Hz,1H),7.15(dd,J=21.9,1.9Hz,1H),7.05(t,J=7.4Hz,1H),6.96(dd,J=15.9,7.9Hz,1H),4.67(dd,J=13.5,8.3Hz,1H),4.55–4.45(m,1H),3.25–3.07(m,1H),3.01(dd,J=14.7,8.7Hz,1H),2.90(t,J=11.8Hz,1H),2.64(s,1H),2.06–1.90(m,2H),1.59(ddd,J=25.0,13.3,6.3Hz,1H),1.44–1.16(m,3H),0.84(d,J=6.2Hz,6H).
ESI-MS(M+H) +:400.
实施例71
化合物A71
Figure PCTCN2020100103-appb-000107
1H NMR(400MHz,MeOD)δ7.50(d,J=7.8Hz,1H),7.37-7.27(m,4H),7.22(dd,J=7.7,1.6Hz,2H),7.14-7.03(m,3H),4.24(dd,J=8.4,7.1Hz,1H),4.11(d,J=13.8Hz,1H),4.01(d,J=13.8Hz,1H),3.21(dd,J=14.1,8.5Hz, 1H),3.11(dd,J=14.1,6.9Hz,1H),2.58(dd,J=9.8,5.4Hz,1H),1.18(dq,J=12.7,6.4Hz,1H),1.12-0.96(m,2H),0.81-0.72(m,6H).
ESI-MS(M+H) +:472.
实施例72
化合物A72
Figure PCTCN2020100103-appb-000108
1H NMR(400MHz,MeOD)δ8.68(dd,J=4.5,1.6Hz,2H),7.73(dd,J=4.5,1.6Hz,2H),7.64(d,J=7.8Hz,1H),7.34(d,J=8.0Hz,1H),7.17(s,1H),7.08(ddd,J=14.9,13.9,7.0Hz,2H),5.05(dd,J=8.5,7.3Hz,1H),3.45-3.33(m,2H),2.61(dd,J=9.6,5.6Hz,1H),1.35-1.19(m,2H),1.10-1.04(m,1H),0.79(t,J=6.4Hz,6H).
ESI-MS(M+H) +:423.
实施例73
化合物A73
Figure PCTCN2020100103-appb-000109
1H NMR(400MHz,MeOD)δ8.09(dt,J=12.6,6.5Hz,2H),7.72-7.49(m, 3H),7.34(d,J=8.0Hz,1H),7.21(d,J=4.3Hz,1H),7.07(dt,J=25.7,7.2Hz,2H),5.10(dd,J=15.9,8.6Hz,1H),3.54-3.37(m,2H),2.64(dd,J=9.2,6.2Hz,1H),1.31(dd,J=14.1,6.7Hz,2H),1.18-1.09(m,1H),0.83(ddd,J=20.3,6.4,4.2Hz,6H).
ESI-MS(M+H) +:479.
实施例74
化合物A74
Figure PCTCN2020100103-appb-000110
1H NMR(400MHz,MeOD)δ8.95(dd,J=4.3,1.6Hz,1H),8.45(d,J=8.4Hz,1H),8.39(d,J=1.7Hz,1H),8.12(dt,J=19.3,5.4Hz,2H),7.68(d,J=7.7Hz,1H),7.63(dd,J=8.3,4.3Hz,1H),7.36(d,J=8.0Hz,1H),7.20(s,1H),7.09(dt,J=23.0,7.0Hz,2H),5.12(t,J=7.8Hz,1H),3.55-3.39(m,2H),2.63(dd,J=9.6,5.7Hz,1H),1.27(d,J=19.9Hz,3H),1.13-1.05(m,2H),0.80(t,J=6.6Hz,6H).
ESI-MS(M+H) +:473.
实施例75
化合物A75
Figure PCTCN2020100103-appb-000111
1H NMR(400MHz,MeOD)δ9.14(d,J=20.0Hz,1H),8.66(d,J=34.7Hz,1H),8.12-7.93(m,2H),7.87(d,J=5.5Hz,1H),7.68(t,J=7.3Hz,2H),7.35(d,J=8.1Hz,1H),7.22(d,J=5.1Hz,1H),7.08(dt,J=13.7,6.7Hz,2H),5.18(dt,J=15.3,7.4Hz,1H),3.54-3.35(m,2H),2.73-2.58(m,1H),1.39-1.21(m,2H),1.16-1.06(m,1H),0.92-0.74(m,6H).
ESI-MS(M+H) +:473.
实施例76
化合物A76
Figure PCTCN2020100103-appb-000112
1H NMR(400MHz,MeOD)δ8.29(d,J=28.9Hz,1H),7.98-7.88(m,3H),7.82(ddd,J=16.7,8.6,1.8Hz,1H),7.69(t,J=7.1Hz,1H),7.63-7.51(m,2H),7.36(d,J=7.8Hz,1H),7.21(d,J=4.6Hz,1H),7.16-7.03(m,2H),5.24-5.07(m,1H),3.57-3.38(m,2H),2.72-2.56(m,1H),1.37-1.26(m,2H),1.14-1.06(m,1H),0.91-0.75(m,6H).
ESI-MS(M+H) +:472.
实施例77
化合物A77
Figure PCTCN2020100103-appb-000113
1H NMR(400MHz,MeOD)δ7.60(d,J=7.7Hz,1H),7.33(d,J=8.0Hz,1H),7.14-7.00(m,3H),4.74(t,J=7.4Hz,1H),3.92(p,J=6.4Hz,1H),3.19(d,J=7.4Hz,2H),2.57(dd,J=9.5,5.8Hz,1H),1.87(dt,J=12.8,6.5Hz,2H),1.73-1.53(m,4H),1.35-1.20(m,3H),1.17-1.01(m,2H),0.79(dd,J=6.5,4.1Hz,6H).
ESI-MS(M+Na) +:450.9.
实施例78
化合物A78
Figure PCTCN2020100103-appb-000114
1H NMR(400MHz,MeOD)δ7.59(d,J=7.8Hz,1H),7.34(d,J=8.0Hz,1H),7.17–7.00(m,3H),4.96(d,J=19.7Hz,1H),4.61(t,J=7.6Hz,1H),3.28-3.12(m,2H),2.57(dd,J=9.5,5.4Hz,1H),1.89-1.45(m,8H),1.31-0.99(m,3H),0.79(t,J=6.3Hz,6H).
ESI-MS(M+Na) +:452.2.
实施例79
化合物A79
Figure PCTCN2020100103-appb-000115
1H NMR(400MHz,MeOD)δ7.52(d,J=7.8Hz,1H),7.34(d,J=8.1Hz,1H),7.30-7.18(m,5H),7.13-7.06(m,2H),7.04-6.97(m,1H),3.74(dd,J=14.8,10.2Hz,2H),3.62(d,J=13.1Hz,1H),3.24-3.15(m,2H),2.56(dd,J=9.8,5.5Hz,1H),1.24(dd,J=12.6,6.4Hz,1H),1.18-1.00(m,2H),0.80(dd,J=6.5,4.8Hz,6H).
ESI-MS(M-H 2O) +:390.1.
实施例80
化合物A80
Figure PCTCN2020100103-appb-000116
1H NMR(400MHz,MeOD)δ7.78(d,J=7.5Hz,2H),7.53(dd,J=17.4,7.4Hz,2H),7.37(t,J=7.4Hz,2H),7.30(td,J=7.4,2.7Hz,2H),5.11(t,J=6.7Hz,1H),4.39(t,J=7.4Hz,1H),3.70(s,3H),2.88(d,J=6.7Hz,2H),2.83-2.70(m,2H),2.60(dd,J=14.8,7.9Hz,1H),1.69(dt,J=13.6,6.7Hz,1H),1.38(t,J=7.3Hz,2H),0.93(t,J=9.8Hz,6H).
ESI-MS(M+Na) +:489.
实施例81
化合物A81
Figure PCTCN2020100103-appb-000117
1H NMR(400MHz,MeOD)δ7.78(d,J=7.4Hz,2H),7.54(dd,J=17.9,7.5Hz,2H),7.36(t,J=7.5Hz,2H),7.31(dt,J=11.7,3.7Hz,2H),5.11(t,J=6.6Hz,1H),4.59(s,4H),4.39(t,J=7.4Hz,1H),2.83-2.68(m,4H),2.67-2.57(m,1H),1.68(dd,J=13.5,7.0Hz,1H),1.39(dd,J=15.2,7.5Hz,2H),0.93(t,J=9.4Hz,6H).
ESI-MS(M+Na) +:474.
实施例82
化合物A82
Figure PCTCN2020100103-appb-000118
1H NMR(400MHz,MeOD)δ7.80(d,J=7.5Hz,2H),7.70-7.58(m,2H),7.39(t,J=7.4Hz,2H),7.32(q,J=7.4Hz,2H),4.46-4.37(m,2H),4.21(t,J=6.6Hz,1H),3.72(t,J=9.6Hz,1H),3.41(dd,J=17.1,9.9Hz,1H),3.07(dd,J=11.2,6.4Hz,1H),2.85(d,J=7.2Hz,1H),2.14(d,J=9.9Hz,1H),2.03-1.88(m,2H),1.76-1.42(m,4H),0.94(dt,J=18.1,9.1Hz,5H).
ESI-MS(M+H) +:451.
实施例83
化合物A83
Figure PCTCN2020100103-appb-000119
1H NMR(400MHz,MeOD)δ7.80(d,J=7.5Hz,2H),7.61(t,J=6.6Hz,2H),7.40(t,J=7.4Hz,2H),7.31(t,J=7.4Hz,2H),5.02-4.90(m,1H),4.57(d,J=6.5Hz,2H),4.48(d,J=5.8Hz,1H),4.26(t,J=5.8Hz,1H),2.78(d,J=29.8Hz,3H),2.65(t,J=7.5Hz,1H),1.78(s,1H),1.62(ddd,J=20.6,13.7,7.7Hz,2H),1.40-1.26(m,3H),0.93(dd,J=17.9,6.5Hz,12H).
ESI-MS(M+H) +:481.
实施例84
化合物A84
Figure PCTCN2020100103-appb-000120
1H NMR(400MHz,CD3OD)δ7.80(d,J=7.5Hz,2H),7.64(t,J=13.9Hz,2H),7.39(t,J=7.4Hz,2H),7.31(t,J=7.4Hz,2H),4.47–4.32(m,2H),4.23(t,J=6.8Hz,1H),4.01(s,2H),2.70(t,J=7.6Hz,1H),1.71-1.61(m,1H),1.34(t,J=7.3Hz,2H),0.91(d,J=6.6Hz,6H).
化合物A84合成方法同化合物A51。
实施例85
化合物A85
Figure PCTCN2020100103-appb-000121
1H NMR(400MHz,CD3OD)δ7.80(d,J=7.5Hz,2H),7.71–7.60(m,2H),7.39(t,J=7.4Hz,2H),7.32(t,J=7.4Hz,2H),4.47–4.31(m,3H),4.22(t,J=6.6Hz,1H),2.68(t,J=7.5Hz,1H),1.72-1.62(m,1H),1.39(t,J=9.8Hz,3H),1.34(t,J=7.3Hz,2H),0.91(d,J=6.6Hz,6H).
化合物A85合成方法同化合物A51。
实施例86
化合物A86
Figure PCTCN2020100103-appb-000122
1H NMR(400MHz,CD3OD)δ7.80(d,J=7.5Hz,2H),7.67(t,J=6.8Hz,2H),7.39(t,J=7.4Hz,2H),7.32(t,J=7.4Hz,2H),4.44–4.33(m,3H),4.22(t,J=6.7Hz,1H),2.69(t,J=7.6Hz,1H),1.70-1.58(m,1H),1.41(d,J=7.2Hz,3H),1.32(t,J=7.3Hz,2H),0.91(d,J=6.6Hz,6H).
化合物A86合成方法同化合物A51。
实施例87
化合物A87
Figure PCTCN2020100103-appb-000123
1H NMR(400MHz,CD3OD)δ8.26–8.14(m,1H),7.87–7.74(m,3H),7.69(dd,J=7.2,6.3Hz,1H),7.36(d,J=7.9Hz,1H),7.28(dd,J=5.2,2.5Hz,1H),7.23–7.16(m,2H),7.16–7.00(m,2H),5.21–5.07(m,1H),3.93(s,3H),3.55–3.34(m,2H),2.67-2.61(m,1H),1.38–1.31(m,1H),1.30–1.02(m,2H),0.89-0.78(m,6H).
化合物A87合成方法同化合物A51。
实施例88
化合物A88
Figure PCTCN2020100103-appb-000124
1H NMR(400MHz,CD3OD)δ8.10(d,J=25.3Hz,1H),7.72–7.63(m,3H),7.55(t,J=8.3Hz,1H),7.36(d,J=7.8Hz,1H),7.20(d,J=3.5Hz,1H),7.15–7.02(m,3H),6.97(dd,J=4.5,2.2Hz,1H),5.17-5.07(m,1H),3.50-3.36(m,2H),2.68-2.59(m,1H),1.65-1.54(m,1H),1.39-1.31(m,2H),0.91-0.78(m,6H).
化合物A88合成方法同化合物A51。
实施例89
化合物A89
Figure PCTCN2020100103-appb-000125
1H NMR(400MHz,CD3OD)δ7.79(d,J=7.4Hz,2H),7.65(dd,J=7.1,3.2Hz,2H),7.39(t,J=7.4Hz,2H),7.33–7.15(m,17H),4.68(dd,J=7.6,5.4Hz,1H),4.47-4.37(m,2H),4.21(t,J=6.5Hz,1H),2.94–2.67(m,3H),1.69–1.56(m,1H),1.38-1.27(m,2H),0.93–0.81(m,6H).
化合物A89合成方法同化合物A51。
实施例90
化合物A90
Figure PCTCN2020100103-appb-000126
1H NMR(400MHz,CD3OD)δ8.37(d,J=0.7Hz,1H),8.32(dd,J=7.8,1.5Hz,1H),8.00(dd,J=7.8,0.6Hz,1H),5.18(dd,J=12.5,5.5Hz,1H),4.81–4.76(m,1H),2.94–2.69(m,4H),2.22–2.11(m,1H),1.73–1.60(m,1H),1.56(d,J=8.6Hz,3H),1.36(t,J=7.3Hz,2H),0.93(d,J=6.6Hz,6H).
化合物A90合成方法同化合物A51。
实施例91
化合物A91
Figure PCTCN2020100103-appb-000127
1H NMR(400MHz,CD3OD)δ8.17–8.07(m,2H),7.99(t,J=7.6Hz,1H),5.25(dd,J=12.6,5.5Hz,1H),4.59(s,1H),3.00–2.86(m,1H),2.85–2.70(m,3H),2.26-2.17(m,1H),1.77–1.62(m,1H),1.56(d,J=10.9Hz,3H),1.46–1.32(m,2H),0.98–0.89(m,6H).
化合物A91合成方法同化合物A51。
实施例92
化合物A92
Figure PCTCN2020100103-appb-000128
1H NMR(400MHz,CD3OD)δ8.86(s,1H),8.36(d,J=5.3Hz,1H),8.24(d,J=7.9Hz,1H),8.15(d,J=5.3Hz,1H),7.67–7.60(m,1H),7.56(d,J=8.3Hz,1H),7.34(t,J=7.4Hz,1H),5.31–5.11(m,2H),4.64–4.57(m,1H),2.66(t,J=7.6Hz,1H),1.82–1.66(m,2H),1.65–1.55(m,2H),1.28(t,J=7.3Hz,2H),0.98(d,J=6.3Hz,3H),0.92(d,J=6.3Hz,3H),0.88(d,J=6.6Hz,6H).
化合物A92合成方法同化合物A51。
实施例93
化合物A93
Figure PCTCN2020100103-appb-000129
1H NMR(400MHz,CD3OD)δ7.26(t,J=7.9Hz,4H),7.08–7.01(m,4H),6.98(t,J=7.4Hz,2H),4.72–4.63(m,1H),4.48–4.34(m,2H),2.74–2.62(m,1H),1.72–1.59(m,2H),1.58–1.37(m,2H),1.40–1.29(m,2H),0.92–0.82(m,12H).
化合物A93合成方法同化合物A51。
实施例94
化合物A94
Figure PCTCN2020100103-appb-000130
1H NMR(400MHz,CD3OD)δ8.49(dd,J=7.7,1.1Hz,1H),8.41(dt,J=4.9,1.6Hz,1H),8.15(d,J=7.8Hz,1H),7.56–7.45(m,2H),7.34–7.24(m,2H),5.28–5.14(m,2H),4.72–4.61(m,1H),2.67(t,J=7.6Hz,1H),1.78–1.57(m,4H),1.36–1.27(m,2H),1.00–0.85(m,12H).
化合物A94合成方法同化合物A51。
实施例95
化合物A95
Figure PCTCN2020100103-appb-000131
1H NMR(400MHz,CD3OD)δ7.95(dd,J=12.0,8.1Hz,2H),7.40–7.29(m,2H),7.18(dd,J=10.7,4.5Hz,1H),6.95(t,J=2.2Hz,1H),6.84(dd,J=8.5,1.6Hz,1H),5.09–4.96(m,2H),4.73–4.63(m,1H),3.90(s,3H),2.70–2.61(m,1H),1.75–1.54(m,4H),1.32–1.27(m,2H),0.96–0.86(m,12H).
化合物A95合成方法同化合物A51。
实施例96
化合物A96
Figure PCTCN2020100103-appb-000132
1H NMR(400MHz,CD3OD)δ9.29(s,1H),8.54–8.37(m,1H),8.26(d,J=7.8Hz,1H),7.64–7.53(m,3H),7.44–7.35(m,1H),5.28–5.10(m,2H),4.67–4.62(m,1H),2.68(t,J=7.6Hz,1H),1.84–1.68(m,2H),1.66–1.54(m,2H),1.32–1.27(m,2H),1.01–0.86(m,12H).
化合物A96合成方法同化合物A51。
实施例97
化合物A97
Figure PCTCN2020100103-appb-000133
1H NMR(400MHz,CD3OD)δ8.09(s,2H),7.43(s,4H),5.08(q,J=16.9Hz,2H),4.63-4.59(m,1H),2.67(t,J=7.5Hz,1H),1.80–1.54(m,4H),1.31-1.27(m,2H),1.02–0.85(m,12H).
化合物A97合成方法同化合物A51。
实施例98
化合物A98
Figure PCTCN2020100103-appb-000134
1H NMR(400MHz,CD3OD)δ8.07(d,J=7.8Hz,1H),7.80(d,J=8.9Hz,1H),7.50–7.38(m,3H),7.24-7.17(m,2H),5.14-5.02(m,2H),4.67-4.61(m,1H),2.67(t,J=7.3Hz,1H),1.77–1.52(m,4H),1.38-1.24(m,2H),1.01–0.87(m,12H).
化合物A98合成方法同化合物A51。
实施例99
化合物A99
Figure PCTCN2020100103-appb-000135
1H NMR(400MHz,CD3OD)δ8.06(dd,J=12.1,8.1Hz,2H),7.50–7.40(m,3H),7.24(dd,J=10.6,5.1Hz,1H),7.20(d,J=8.3Hz,1H),5.13-5.02(m,2H),4.67-4.63(m,1H),2.71-2.63(m,1H),1.78–1.55(m,4H),1.33-1.26(m,2H),1.02–0.88(m,12H).
化合物A99合成方法同化合物A51。
实施例100
化合物A100
Figure PCTCN2020100103-appb-000136
1H NMR(400MHz,CD3OD)δ8.04(d,J=8.3Hz,2H),7.51(d,J=1.6Hz,2H),7.23(dd,J=8.3,1.7Hz,2H),5.07(s,2H),4.68-4.64(m,1H),2.68(t,J=7.6Hz,1H),1.77–1.56(m,4H),1.29–1.25(m,2H),1.01–0.89(m,12H).
化合物A100合成方法同化合物A51。
实施例101
化合物A101
Figure PCTCN2020100103-appb-000137
1H NMR(400MHz,CD3OD)δ8.26(d,J=8.0Hz,1H),8.20(d,J=7.9Hz,1H),7.90(s,1H),7.55-7.52(m,3H),7.32(t,J=7.3Hz,1H),5.24–5.10(m,2H),4.63(dd,J=9.5,5.5Hz,1H),2.67(t,J=7.6Hz,1H),1.81–1.67(m,2H),1.66-1.56(m,2H),1.31-1.27(m,2H),1.03–0.87(m,12H).
化合物A101合成方法同化合物A51。
实施例102
化合物A102
Figure PCTCN2020100103-appb-000138
1H NMR(400MHz,CD3OD)δ8.08(d,J=7.8Hz,1H),7.99(d,J=8.3Hz,1H),7.64(d,J=1.4Hz,1H),7.50–7.41(m,2H),7.34(dd,J=8.3,1.5Hz,1H),7.29–7.21(m,1H),5.13–5.01(m,2H),4.67–4.60(m,1H),2.68(t,J=7.6Hz,1H),1.80–1.66(m,2H),1.67–1.56(m,2H),1.32-1.28(m,2H),1.02–0.85(m,12H).
化合物A102合成方法同化合物A51。
实施例103
化合物A103
Figure PCTCN2020100103-appb-000139
1H NMR(400MHz,CD3OD)δ8.07-8.04(m,2H),7.45–7.38(m,2H),7.27–7.16(m,2H),7.00-6.94(m,1H),5.06(q,J=17.2Hz,2H),4.67-4.63(m,1H),2.67(t,J=7.6Hz,1H),1.82–1.55(m,4H),1.34–1.28(m,2H),1.01–0.84(m,12H).
化合物A103合成方法同化合物A51。
实施例104
化合物A104
Figure PCTCN2020100103-appb-000140
1H NMR(400MHz,CD3OD)δ8.45(d,J=4.7Hz,1H),8.32(d,J=7.8Hz,1H),7.97–7.89(m,1H),7.62–7.44(m,3H),7.34(t,J=7.4Hz,1H),5.23–5.06(m,2H),4.72-4.60(m,1H),2.67(t,J=7.6Hz,1H),1.81–1.55(m,4H),1.29(t,J=7.3Hz,2H),1.00–0.83(m,12H).
化合物A104合成方法同化合物A51。
实施例105
化合物A105
Figure PCTCN2020100103-appb-000141
1H NMR(400MHz,CD3OD)δ7.96(t,J=8.1Hz,2H),7.49(d,J=7.3Hz,2H),7.42–7.29(m,5H),7.18(t,J=7.2Hz,1H),7.06(d,J=2.1Hz,1H),6.92(dd,J=8.5,2.1Hz,1H),5.21–5.13(m,2H),5.09–4.97(m,2H),4.66-4.62(m,1H),2.66(t,J=7.6Hz,1H),1.76–1.51(m,4H),1.35-1.26(m,2H),0.95-0.85(m,12H).
化合物A105合成方法同化合物A51。
实施例106
化合物A106
Figure PCTCN2020100103-appb-000142
1H NMR(400MHz,CD3OD)δ7.94(d,J=7.7Hz,1H),7.86(d,J=8.4Hz,1H), 7.36-7.29(m,2H),7.20–7.11(m,1H),6.80–6.70(m,2H),5.06–4.91(m,2H),4.69-4.64(m,1H),2.68(t,J=7.6Hz,1H),1.77–1.50(m,4H),1.31–1.24(m,2H),1.00–0.85(m,12H).
化合物A106合成方法同化合物A51。
实施例107
化合物A107
Figure PCTCN2020100103-appb-000143
1H NMR(400MHz,CD3OD)δ8.56(dd,J=7.7,1.4Hz,2H),8.49(dd,J=5.0,1.4Hz,2H),7.36(dd,J=7.7,5.0Hz,2H),5.39–5.25(m,2H),4.63(dd,J=9.4,5.4Hz,1H),2.67(t,J=7.2Hz,1H),1.85–1.61(m,4H),1.15(t,J=7.2Hz,3H),1.00-0.86(m,12H).
化合物A107合成方法同化合物A51。
效果例1:本发明化合物的抗癌活性测试
实验方法:
1.细胞培养方法。
细胞培养基:洛维斯培养基RPMI-1640(+左旋谷氨酰胺)中加入10%胎牛血清,每毫升100单位青霉素、100μg链霉素。
细胞培养条件:5%CO 2,95%湿度,37℃恒温培养。
2.细胞接种、加药培养。
将对数生长期的HL-60、人慢性髓系白血病细胞(K562)、人食管鳞癌细胞(KYSE510)、人大细胞肺癌细胞(H460)细胞接种至96-孔细胞培养板中,每孔2×10 4细胞。加入不同浓度的活性化合物(溶于二甲亚砜 (DMSO)储液),DMSO终浓度为0.2%,对照组为DMSO。每组重复三次。
3.MTT实验。
培养72小时后,每孔加入20μL的噻唑蓝(MTT)(5mg/ml,现配现用,溶于细胞培养用1×PBS),37℃孵育3小时。
离心96孔细胞培养板,1000rpm,10分钟。弃去上清,每孔加入200μL的DMSO,摇匀5分钟。
用酶标仪检测每孔在570nm波长处的吸收值,计算化合物的IC50。
表1:本发明化合物对HL60细胞抑制作用的IC50值
化合物编号 HL60/IC50 化合物编号 HL60/IC50
A1 A A55 C
A2 A A56 C
A3 C A57 C
A4 A A58 B
A5 A A59 C
A6 A A60 C
A7 A A61 B
A8 A A62 B
A9 B A63 B
A10 A A64 C
A11 B A65 A
A12 A A66 A
A13 A A67 A
A14 A A68 B
A15 A A69 A
A16 A A70 A
A17 A A71 A
A18 A A72 C
A19 B A73 A
A20 A A74 A
A21 A A75 A
A22 B A76 A
A23 B A77 A
A24 A A78 A
A25 A A79 B
A26 C A80 A
A27 A A81 B
A28 C A82 D
A29 A A83 D
A30 A A84 A
A31 A A85 B
A32 A A86 A
A33 C A87 A
A34 B A88 A
A35 B A89 B
A36 A A90 D
A37 A A91 D
A38 B A92 B
A39 C A93 C
A40 C A94 C
A41 C A95 C
A42 A A96 B
A43 A A97 C
A44 A A98 C
A45 A A99 B
A46 B A100 C
A47 A A101 B
A48 A A102 B
A49 D A103 C
A50 D A104 B
A51 A A105 B
A52 A A106 B
A53 D A107 C
A54 D    
注:A代表化合物IC50在100nM以下,B代表化合物IC50在100~500nM,C代表化合物IC50在500nM~2μM,D代表化合物IC50在2~10μM之间。
表1,2实验结果显示了本发明化合物对HL60、K562、KYSE510、H460细胞均具有优异的抑制效果,可用于癌症的预防和治疗。
表2:本发明化合物对其他c-Myc高表达细胞抑制作用的IC50值
化合物序号 K562/IC50 KYSE510/IC50 H460/IC50
A10 A A A
A67 A A A
A69 A A A
注:A代表化合物IC50在100nM以下。
效果例2:本发明化合物对C-myc蛋白的结合效果测试
1.实验准备
将10×PBS-P稀疏成1.05×PBS-P缓冲液备用。将c-Myc370-412-biotin多肽溶解于色谱纯DMSO配制成1mM储液。活性分子溶解于色谱纯DMSO配制成10mM储液。将部分1.05×PBS-P缓冲液加入色谱纯DMSO配制成1.00×PBS-P缓冲液(5%DMSO,现配现用)。
分别测试每个小分子在1.00×PBS-P缓冲液(5%DMSO)体系中可达到的最高溶解度。将该溶解度作为小分子活性测试的最高浓度。
2.蛋白固定
将c-Myc370-412-biotin多肽储液加入1.05×PBS-P缓冲液配制成50μM溶液,再用1.00×PBS-P缓冲液(5%DMSO)稀释至1μg/ml用于固定蛋白。
使用1.00×PBS-P缓冲液(5%DMSO)冲洗芯片样品道和参比道后,选用自动模式固定蛋白在样品道。目标固定蛋白量为500RU。固定成功。缓冲液继续冲洗至平衡。
3.小分子活性测试。
使用缓冲液配置不同浓度的小分子化合物用于样品测试,体系为1.00×PBS-P缓冲液(5%DMSO)。检测小分子流经样品道和参比道响应的差值。
实验条件为流速30μL/min,结合时间为120秒,解离时间为240秒。在每一次结合解离测试后使用50%DMSO冲洗管路,10mM glycine-HCl缓冲液(pH 2.1)冲洗芯片表面以洗去残留的化合物分子。
表2:本发明化合物c-Myc蛋白结合常数测定
化合物编号 SPR Kd 化合物编号 SPR Kd
A2 B A5 B
A3 B A6 A
A4 A A7 A
注:A代表化合物Kd在100nM以下,B代表化合物Kd在100~500nM
本发明内容仅仅举例说明了要求保护的一些具体实施方案,其中一个或更多个技术方案中所记载的技术特征可以与任意的一个或多个技术方案相组合,这些经组合而得到的技术方案也在本申请保护范围内,就像这些经组合而得到的技术方案已经在本发明公开内容中具体记载一样。

Claims (14)

  1. 式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药:
    Figure PCTCN2020100103-appb-100001
    其中:
    T选自CHR 4,CR 4R 5
    W为BZ 1Z 2
    R 1选自:RAC(=O)-、RANHC(=O)-、RAOC(=O)-、RACH 2C(=O)-、RAS(=O) 2-或RA;
    RA选自:C 1-C 4烷基、C 3-C 8环烷基、C 3-C 8任含O、S、SO 2、N或NHC(=O)R 8的杂环基、芳基、杂芳基、芳基-环烷基、芳基-杂环基、环烷基-杂环基、杂环基-杂环基,RA可任选的被一个或多个R 6取代;
    R 2选自:氢、C 1-C 3烷基、C 3-C 6环烷基;
    R 3选自:氢、C 1-C 6的烷基、C 3-C 6环烷基、苯基或苄基,所述烷基、环烷基、苯基或者苄基任选的被1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代,R 3可与R 11形成C 4-C 6的环烷基;
    R 4、R 5分别独立的选自:羟基、氨基、R 7NHC(=O)R 8、R 7C(=O)OR 8、C 1-C 6的烷基、C 1-C 6烷氧基、C 1-C 6烷硫基、C 1-C 6烷胺基、C 3-C 8环烷基,芳基、含有1-3个杂原子的5-6元杂芳基或含有1-3个杂原子的3-10元杂环基,所述烷基、烷氧基、烷胺基、烷硫基、环烷基、芳基、杂芳基、杂环基任选的被1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代,其中R 4和R 5可以成C 3-C 6的饱和环或任含O、S、SO 2、N或NHC(=O)R 8的饱和杂环;
    R 6选自:氢、卤素、羟基、氰基、氨基、R 7NHC(=O)R 8、R 7C(=O)OR 8、C 1-C 6烷基、C 1-C 6的烷氧基、C 1-C 6的烷硫基、C 1-C 6的烷胺基、C 3-C 8的环烷基、C 2-C 8的烯基、C 2-C 8的炔基、芳基、含有1-3个杂原子的5-6元杂芳基或含有1-3个杂原子的3-10元杂环基,所述烷基、烷氧基、烷胺基、烷硫基、环烷基、芳基、杂芳基、杂环基任选被1-3个分别选自卤素、氰基、C 1-C 3烷基或C 1-C 3烷氧基的基团取代;
    R 7选自:C 1-C 4的烷基;
    R 8选自:氢、C 1-C 4的烷基、烯丙基或苄基;
    R 11为氢、C 1-C 3的烷基、C 3环烷基;
    Z 1、Z 2分别独立的选自:羟基、C 1-C 10烷基、C 1-C 10烷氧基或芳氧基,B、Z 1和Z 2可以一起形成含N、S或O的杂环基。
  2. 根据权利要求1所述的式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药,其中所述药学上可接受的盐选自:盐酸盐、磷酸盐、磷酸氢盐、磷酸二氢盐、硫酸盐、硝酸盐、碳酸氢盐、碳酸盐、戊二酸盐、氢溴酸盐、醋酸盐、枸橼酸盐、乳酸盐、马来酸盐、苯甲酸盐、甲磺酸盐、草酸盐、苯磺酸盐、对甲苯磺酸盐、酒石酸、苹果酸盐、琥珀酸盐、抗坏血酸盐、葡萄糖酸盐、乳酸盐,所述溶剂化物选自:半水合物、一水合物、二水合物;所述立体异构体选自:对应异构体或非对应异构体。
  3. 根据权利要求1或2所述的式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药,其中Z 1和Z 2可一起形成含N、S或O的杂环基。
  4. 根据权利要求1-3任一项所述的式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药,其中W为
    Figure PCTCN2020100103-appb-100002
  5. 根据权利要求1-4任一项所述的式(I)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药,其中R 1选自:RAC(=O)-、RANHC(=O)-、RAOC(=O)-、RACH 2C(=O)-、RAS(=O) 2-或RA;RA选自:C 1-C 4烷基、C 3-C 8环烷基、C 3-C 8任含O、S、SO 2、N或NHC(=O)R 8 的杂环基、芳基、杂芳基、芳基-环烷基、芳基-杂环基、环烷基-杂环基、杂环基-杂环基,其中RA可任选的被一个或多个R 6取代。
  6. 式(II)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药:
    Figure PCTCN2020100103-appb-100003
    其中T、R 1、R 2、R 3、R 11取代基定义同权利要求1。
  7. 式(III)所示的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药:
    Figure PCTCN2020100103-appb-100004
    其中T、R 1、R 2、R 3、R 11取代基定义同权利要求1。
  8. 权利要求1-7任一项所述的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药,所述化合物具有如下结构:
    Figure PCTCN2020100103-appb-100005
    Figure PCTCN2020100103-appb-100006
    Figure PCTCN2020100103-appb-100007
    Figure PCTCN2020100103-appb-100008
    Figure PCTCN2020100103-appb-100009
    Figure PCTCN2020100103-appb-100010
    Figure PCTCN2020100103-appb-100011
    Figure PCTCN2020100103-appb-100012
  9. 一种药物组合物,其包含药学上可接受的载体和权利要求1-8任一项所述的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药。
  10. 权利要求1-8任一项所述的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药在制备c-Myc蛋白抑制剂中的用途。
  11. 权利要求1-8任一项所述的化合物或其药学上可用的盐、溶剂化物、立体异构体和前药在制备治疗c-Myc蛋白失调相关疾病药物中的用途。
  12. 根据权利要求11所述的用途,其中所述c-Myc蛋白失调选自c-Myc蛋白过表达或蛋白稳定性增强。
  13. 根据权利要求11所述的用途,其中所述c-Myc蛋白失调相关疾病选自:癌症、心脑血管疾病、病毒感染相关疾病。
  14. 根据权利要求12所述的用途,其中所述癌症选自:肝癌、肺癌、肾癌、胰腺癌、口腔癌、胃癌、食道癌、喉癌、鼻咽癌、皮肤癌、乳腺癌、结肠癌、直肠癌、宫颈癌、卵巢癌、前列腺癌、脑癌、神经癌、粒细胞性白血病、横纹肌肉瘤、成骨肉瘤、软骨肉瘤、白血病、淋巴癌;所述病毒感染相关疾病选自:HIV、乙肝、丙肝、甲肝、流感、流行性乙脑炎、疱疹。
PCT/CN2020/100103 2019-07-08 2020-07-03 一种c-Myc蛋白抑制剂及其制备方法和用途 WO2021004391A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/597,311 US20220324884A1 (en) 2019-07-08 2020-07-03 C-myc protein inhibitor, and preparation method therefor and use thereof
CN202080049295.5A CN114072413B (zh) 2019-07-08 2020-07-03 一种c-Myc蛋白抑制剂及其制备方法和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910610585.1 2019-07-08
CN201910610585 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021004391A1 true WO2021004391A1 (zh) 2021-01-14

Family

ID=74115025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100103 WO2021004391A1 (zh) 2019-07-08 2020-07-03 一种c-Myc蛋白抑制剂及其制备方法和用途

Country Status (3)

Country Link
US (1) US20220324884A1 (zh)
CN (1) CN114072413B (zh)
WO (1) WO2021004391A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268066A1 (zh) 2021-06-22 2022-12-29 苏州开拓药业股份有限公司 一种蛋白降解剂
WO2024027795A1 (zh) * 2022-08-04 2024-02-08 苏州开拓药业股份有限公司 包含Myc蛋白降解剂类生物活性化合物的抗体药物偶联物及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099132A1 (en) * 2007-10-16 2009-04-16 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US20140296307A1 (en) * 2013-03-27 2014-10-02 University Of Maryland, Baltimore Potent analogues of the c-myc inhibitor 10074-g5 with improved cell permeability
CN107522700A (zh) * 2017-08-03 2017-12-29 中山大学 一种喹唑啉酮与α,β‑不饱和酮轭合衍生物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099132A1 (en) * 2007-10-16 2009-04-16 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US20140296307A1 (en) * 2013-03-27 2014-10-02 University Of Maryland, Baltimore Potent analogues of the c-myc inhibitor 10074-g5 with improved cell permeability
CN107522700A (zh) * 2017-08-03 2017-12-29 中山大学 一种喹唑啉酮与α,β‑不饱和酮轭合衍生物及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOANNE TAN ET AL.: "De Novo Design of Boron-Based Peptidomimetics as Potent Inhibitors of Human ClpP in the Presence of Human ClpX", JOURNAL OF MEDICINAL CHEMISTRY, vol. 62, 12 June 2019 (2019-06-12), XP055772401, DOI: 20200917095947X *
MENG LEI ET AL.: "3D-QSAR-aided Design, Synthesis, In Vitro and In Vivo Evaluation of Dipeptidyl Boronic Acid Proteasome Inhibitors and Mechanism Studies", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 24, 13 April 2016 (2016-04-13), XP029527578, DOI: 20200917094304X *
STANLEY C.XIE ET AL.: "Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome", JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, 29 October 2018 (2018-10-29), XP055772397, DOI: 20200917094851X *
YONGQIANG ZHU ET AL.: "Design, Synthesis, Biological Evaluation, and Structure-Activity Relationship (SAR) Discussion of Dipeptidyl Boronate Proteasome Inhibitors, Part I:Comprehensive Understanding of the SAR of r-Amino Acid Boronates", JOURNAL OF MEDICINAL CHEMISTRY, vol. 52, no. 14, 18 June 2009 (2009-06-18), XP002638799, DOI: 20200917093616X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268066A1 (zh) 2021-06-22 2022-12-29 苏州开拓药业股份有限公司 一种蛋白降解剂
WO2024027795A1 (zh) * 2022-08-04 2024-02-08 苏州开拓药业股份有限公司 包含Myc蛋白降解剂类生物活性化合物的抗体药物偶联物及其制备方法和用途

Also Published As

Publication number Publication date
CN114072413A (zh) 2022-02-18
CN114072413B (zh) 2024-04-16
US20220324884A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
EP2949647B1 (en) Deuterated phenyl amino pyrimidine compound and pharmaceutical composition containing same
AU2016284383B2 (en) Crystal of (6S,9aS)-N-benzyl-8-({6-[3-(4-ethylpiperazin-1- yl)azetidin-1-yl]pyridin-2-yl}methyl)-6-(2-fluoro-4- hydroxybenzyl)-4,7-dioxo-2-(prop-2-en-1-yl)hexahydro-2Hpyrazino[ 2,1-c][1,2,4]triazine-1-(6H)-carboxamide
JP2018528199A (ja) Parp阻害剤の製造方法、結晶型、及びその使用
WO2021004391A1 (zh) 一种c-Myc蛋白抑制剂及其制备方法和用途
JP7100625B2 (ja) 置換2-h-ピラゾール誘導体の結晶形、塩型及びその製造方法
CN112300153B (zh) 一种杂环化合物、药物组合物和用途
CN112010839B (zh) 靶向丝/苏氨酸激酶抑制剂的晶型
WO2022166570A1 (zh) 同时诱导egfr和parp蛋白降解的化合物及制备方法和应用
WO2015117551A1 (zh) 吡咯取代吲哚酮类衍生物、其制备方法、包含该衍生物的组合物、及其用途
CN113024544A (zh) 一种含氰基并杂环化合物及其用途
WO2015021894A1 (zh) 新型羟肟酸衍生物及其医疗应用
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
WO2022089556A1 (zh) 一种c-Myc蛋白抑制剂及其制备方法和用途
CN108456214B (zh) 含噁唑或咪唑结构的喹唑啉类化合物及其应用
WO2020192637A1 (zh) 固体形式的brd4抑制剂化合物及其制备方法与应用
US9499552B2 (en) Pyrazolo[1,5-A]pyrimidine derivative and use of anti-tumor thereof
CN112209884B (zh) 1-h苯并咪唑衍生物、制备方法及其应用
CN111108083B (zh) 氨基亚甲基环己烷1,3-二酮化合物的用途
JP2022517396A (ja) Egfr阻害剤の塩、結晶形及びその製造方法
EP4091670A1 (en) Crystal of imidazopyridinone compound or salt thereof
CN113831346B (zh) 多靶点抗肿瘤小分子及其衍生物、制法、药物组合物和应用
CN114539129B (zh) 烯丙胺类双功能化合物及其用途
CN110143948B (zh) Cdk4/6抑制剂、其药物组合物、制备方法及应用
CN115340526B (zh) 邻二甲酰亚胺类化合物及其药物组合物、制备方法和用途
WO2023109761A1 (zh) 吡唑并嘧啶酮类化合物及其盐的结晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837051

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837051

Country of ref document: EP

Kind code of ref document: A1