WO2021004335A1 - 同步信号发送方法、终端及装置、存储介质 - Google Patents

同步信号发送方法、终端及装置、存储介质 Download PDF

Info

Publication number
WO2021004335A1
WO2021004335A1 PCT/CN2020/099326 CN2020099326W WO2021004335A1 WO 2021004335 A1 WO2021004335 A1 WO 2021004335A1 CN 2020099326 W CN2020099326 W CN 2020099326W WO 2021004335 A1 WO2021004335 A1 WO 2021004335A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
synchronization signal
pss
link
mod127
Prior art date
Application number
PCT/CN2020/099326
Other languages
English (en)
French (fr)
Inventor
任晓涛
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020227001633A priority Critical patent/KR20220020971A/ko
Priority to EP20836423.2A priority patent/EP3996396A4/en
Priority to BR112021025502A priority patent/BR112021025502A2/pt
Priority to US17/619,048 priority patent/US20220361124A1/en
Publication of WO2021004335A1 publication Critical patent/WO2021004335A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a synchronization signal sending method, terminal and device, and storage medium.
  • the terminal In the relevant NR (New Radio) V2X (Vehicle-to-Everything; Internet of Vehicles) communication, to establish synchronization between the terminal and the terminal, the terminal must first send a synchronization signal on the direct link
  • the through-link primary synchronization signal sequence S-PSS Sidelink Primary Synchronization Signal
  • the disadvantage of the related technology is that when the new m-sequence is adopted, false alarms or misdetection problems will occur, and further, it will cause a decrease in the probability of synchronization detection and an increase in synchronization delay.
  • the present disclosure provides a synchronization signal sending method, terminal, device, and storage medium, so as to solve the problem of false alarms or false detections when using m-sequences.
  • Some embodiments of the present disclosure provide a synchronization signal sending method, including:
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d6 is a positive integer
  • the frequency resource includes one or a combination of the following resources: sub-carrier, resource block, partial bandwidth BWP, carrier, frequency band.
  • Some embodiments of the present disclosure provide a terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • Transceiver used to receive and send data under the control of the processor, perform the following process:
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d6 is a positive integer
  • the frequency resource includes one or a combination of the following resources: subcarrier, resource block, BWP, carrier, frequency band.
  • Some embodiments of the present disclosure provide a synchronization signal sending device, including:
  • the synchronization signal generation module is used to generate the S-PSS sequence according to a specific polynomial, and generate the S-PSS synchronization signal according to the S-PSS sequence;
  • Sending module used to send S-PSS synchronization signal
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • Some embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored.
  • the steps of the synchronization signal sending method are implemented.
  • CS is a positive integer that is not equal to 0, 43, and 86; or, directly maintains low correlation with DL-PSS through a sequence; Or, the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS. Therefore, it is possible to maintain low correlation characteristics between the direct link synchronization signal and the NR downlink synchronization signal, thereby avoiding false alarms or false detections in the synchronization signal detection, improving the success rate of the direct link synchronization signal detection, and shortening the direct link The delay of link synchronization establishment.
  • FIG. 1 is a schematic diagram of misdetection of a direct link synchronization signal and a downlink synchronization signal in some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a direct link synchronization signal and a downlink synchronization signal after using a low-correlation synchronization signal in some embodiments of the disclosure
  • FIG. 3 is a schematic diagram of an implementation process of a synchronization signal sending method in some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a terminal structure in some embodiments of the disclosure.
  • the through link primary synchronization signal sequence S-PSS (Sidelink Primary Synchronization Signal) uses a new m sequence.
  • the m-sequence cannot effectively guarantee the low correlation characteristics between the downlink primary synchronization signal DL-PSS (Downlink Primary Synchronization Signal), and the direct link primary synchronization signal S-PSS and the downlink primary synchronization signal
  • DL-PSS Downlink Primary Synchronization Signal
  • S-PSS Downlink Primary Synchronization Signal
  • the m-sequence cannot effectively guarantee the low correlation characteristics between the downlink primary synchronization signal DL-PSS (Downlink Primary Synchronization Signal), and the direct link primary synchronization signal S-PSS and the downlink primary synchronization signal.
  • DL-PSS Downlink Primary Synchronization Signal
  • S-PSS Downlink Primary Synchronization Signal
  • S-PSS Downlink Primary Synchronization Signal
  • Figure 1 is a schematic diagram of the misdetection of the direct link synchronization signal and the downlink synchronization signal.
  • the terminal 1 transmits the direct link synchronization signal
  • a synchronization sequence with a higher correlation coefficient with the downlink synchronization signal is used, the For the terminal 3 within the coverage of the base station, the terminal 3 mistakes the direct link synchronization signal as a downlink synchronization signal and performs synchronization signal detection, which results in a decrease in the synchronization detection probability of the terminal 3 and an increase in synchronization delay.
  • some embodiments of the present disclosure will propose a transmission scheme for sidelink synchronization signals.
  • the transmitting end can follow the synchronization signal sequence given in some embodiments of the present disclosure.
  • To determine the direct link synchronization signal sequence and establish synchronization between the two devices. Since the solutions provided in some embodiments of the present disclosure can maintain low correlation characteristics between the direct link synchronization signal and the NR downlink synchronization signal, the false alarm or false detection problem in the synchronization signal detection is avoided, and the direct link synchronization signal is improved.
  • the success rate of link synchronization signal detection reduces the time delay for establishing the direct link synchronization.
  • the sending end can determine the direct link synchronization signal sequence according to the synchronization signal sequence generation scheme given by the solution, and establish synchronization between the two devices . Since the method provided by the present disclosure can maintain low correlation characteristics between the direct link synchronization signal and the NR downlink synchronization signal, the false alarm or false detection problem in the synchronization signal detection is avoided, and the success of the direct link synchronization signal detection is improved It shortens the time delay of the direct link synchronization establishment.
  • FIG. 2 is a schematic diagram of the direct link synchronization signal and the downlink synchronization signal after the low correlation synchronization signal is adopted.
  • the terminal 1 transmits the direct link synchronization signal S-PSS to the terminal 2 (receiving end), and
  • the direct link synchronization signal S-PSS keeps low correlation with the downlink synchronization signal DL-PSS.
  • the terminal 2 establishes synchronization with the terminal 1, and then the terminal 2 can communicate with the terminal 1 There is a direct link data communication between.
  • the terminal 3 will not cause false alarms or false detections.
  • Figure 3 is a schematic diagram of the implementation process of the synchronization signal sending method. As shown in the figure, it may include:
  • Step 301 Generate an S-PSS sequence according to a specific polynomial, and generate an S-PSS synchronization signal according to the S-PSS sequence;
  • Step 302 Send an S-PSS synchronization signal.
  • said generating the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • m takes the value in one of the following ways:
  • N ID (2) is the through link
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • CS is two positive integers that are not equal to 0, 43, and 86.
  • N ID (2) the index numbers of the primary synchronization signal sequence of the through link.
  • N ID (2) the index numbers
  • m takes the value in one of the following ways:
  • N ID (2) is the through link
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • N ID (2) the index numbers of the primary synchronization signal sequence of the through link.
  • N ID (2) the index numbers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127.
  • the sequence generated using this formula is a ZC (Zadoff-Chu) sequence, even if it is considered that the resistance of the ZC sequence to Doppler shift is slightly worse than that of the m sequence, it may affect the success rate of synchronization detection;
  • this scheme of generating the direct link primary synchronization signal S-PSS sequence uses the same formula for generating the LTE (Long Term Evolution) downlink primary synchronization signal DL-PSS sequence.
  • S-PSS and The multiplexing of sequences between LTE DL-PSS can reduce the standardization workload and reduce the complexity of terminal implementation.
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127.
  • the u in the above formula can be set to U1, U2.
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS.
  • this direct link main synchronization signal S - The PSS configuration scheme can maintain the low correlation between the direct link synchronization signal and the air interface downlink synchronization signal through different frequency domain resources, without the need for complex sequence design, reducing the standardization workload and reducing the complexity of terminal implementation .
  • the frequency resource may include one or a combination of the following resources: sub-carrier, resource block, BWP (Bandwidth part), carrier, and frequency band.
  • the frequency resources used by the direct link primary synchronization signal S-PSS are different from the frequency resources used by the air interface synchronization signal.
  • the different frequency resources described here include different subcarriers, resource blocks, BWPs, carriers, or frequency bands. In other words, different frequency domain resources are used to distinguish the direct link synchronization signal and the air interface downlink synchronization signal, thereby maintaining a low correlation between the direct link synchronization signal and the air interface downlink synchronization signal.
  • some embodiments of the present disclosure also provide a synchronization signal sending device, terminal, and computer-readable storage medium. Since these devices have similar principles and methods for solving problems, the implementation of these devices can be found in the method Implementation, the repetition will not be repeated.
  • Figure 4 is a schematic diagram of the terminal structure. As shown in the figure, the terminal includes:
  • the processor 400 is configured to read a program in the memory 420 and execute the following process:
  • the transceiver 410 is used to receive and send data under the control of the processor 400, and execute the following process:
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d6 is a positive integer
  • the frequency resource includes one or a combination of the following resources: subcarrier, resource block, BWP, carrier, frequency band.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 400 and various circuits of the memory represented by the memory 420 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 410 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 430 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 400 is responsible for managing the bus architecture and general processing, and the memory 420 can store data used by the processor 400 when performing operations.
  • Some embodiments of the present disclosure provide a synchronization signal sending device, including:
  • the synchronization signal generation module is used to generate the S-PSS sequence according to a specific polynomial, and generate the S-PSS synchronization signal according to the S-PSS sequence;
  • Sending module used to send S-PSS synchronization signal
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the aforementioned synchronization signal sending method are realized.
  • the generating of the S-PSS sequence according to a specific polynomial includes one of the following methods or a combination thereof:
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127; or,
  • the S-PSS synchronization signal is sent on a frequency resource different from the frequency resource occupied by the air interface DL-PSS, the air interface downlink primary synchronization signal DL-PSS is sent by the base station to the terminal, and the direct link primary synchronization signal S -PSS is sent from the terminal to the terminal.
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • m takes the value in one of the following ways:
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d1 is positive Integer
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d2 and d3 are positive integers
  • N ID (2) is the main synchronization signal of the through link Sequence index number
  • d4 and d5 are positive integers
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • D6 is a positive integer
  • N1, N2 correspond to the two index numbers N ID (2) of the main synchronization sequence of the through link
  • N1 and N2 correspond to two cyclic shifts of the m sequence used by the primary synchronization signal of the through link
  • X1 corresponds to an index number N ID (2) of the main synchronization sequence of the through link
  • X1 corresponds to the m sequence used by the main synchronization signal of the through link A cyclic shift
  • N ID (2) is the index number of the main synchronization signal sequence of the through link
  • d6 is a positive integer
  • the frequency resource includes one or a combination of the following resources: subcarrier, resource block, BWP, carrier, frequency band.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same or multiple software or hardware.
  • the first device sends a synchronization signal to the second device
  • CS is one or more positive integers that are not equal to 0, 43, and 86;
  • u is the root sequence index number, and 0 ⁇ u ⁇ 127.
  • the frequency resource used by the synchronization signal is different from the frequency resource used by the air interface synchronization signal.
  • the first device and the second device can establish synchronization according to the synchronization signal.
  • This solution can be used in the Sidelink direct link communication of the V2X system.
  • the sending end can determine the direct link synchronization signal sequence according to the synchronization signal sequence generation solution given in some embodiments of the present disclosure, and establish synchronization between the two devices.
  • the solutions provided in some embodiments of the present disclosure can maintain low correlation characteristics between the direct link synchronization signal and the NR downlink synchronization signal, thereby avoiding false alarms or misdetection problems in synchronization signal detection, and improving the direct link
  • the success rate of the synchronization signal detection shortens the time delay of the direct link synchronization establishment.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in some embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本公开公开了一种同步信号发送方法、终端及装置、存储介质,包括:按照公式 d PSS(n)=1-2x(m)或d PSS(n)=d u(n)生成直通链路主同步信号序列d PSS(n),并根据直通链路主同步信号序列产生直通链路主同步信号;发送直通链路主同步信号;或在与空口下行主同步信号不同的频率资源上发送直通链路主同步信号。

Description

同步信号发送方法、终端及装置、存储介质
相关申请的交叉引用
本申请主张在2019年7月5日在中国提交的中国专利申请号No.201910603816.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种同步信号发送方法、终端及装置、存储介质。
背景技术
在相关NR(New Radio,新空口)V2X(智能网联汽车技术,Vehicle-to-Everything;车联网)通信中,终端与终端之间要建立同步,首先需要终端在直通链路上发送同步信号,相关技术中直通链路主同步信号序列S-PSS(直通链路主同步信号,Sidelink Primary Synchronization Signal)使用的是一种新的m序列。
相关技术的不足在于:在采用该新的m序列时,会出现虚警或误检问题,进一步的,还会导致了同步检测概率降低以及同步时延增加。
发明内容
本公开提供了一种同步信号发送方法、终端及装置、存储介质,用以解决在采用m序列时出现的虚警或误检问题。
本公开的一些实施例中提供了一种同步信号发送方法,包括:
按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
发送S-PSS同步信号;其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127, n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000001
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
实施中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同 步信号序列索引号,d6为正整数。
实施中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、部分带宽BWP、载波、频带。
本公开的一些实施例中提供了一种终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
发送S-PSS同步信号;
其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000002
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
实施中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链 路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数。
实施中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、BWP、载波、频带。
本公开的一些实施例中提供了一种同步信号发送装置,包括:
同步信号生成模块,用于按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
发送模块,用于发送S-PSS同步信号;
其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种 序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000003
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
本公开的一些实施例中提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述同步信号发送方法的步骤。
本公开有益效果如下:
在本公开的一些实施例提供的技术方案中,由于采用了循环移位,更具体的,CS是不等于0、43及86的正整数;或,直接通过序列与DL-PSS保持低相关;或,在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号。因此可以使得直通链路同步信号与NR下行同步信号之间保持低相关特性,从而避免了同步信号检测中的虚警或误检问题,提升了直通链路同步信号检测的成功率,缩短了直通链路同步建立的时延。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开的一些实施例中直通链路同步信号与下行同步信号误检示意图;
图2为本公开的一些实施例中采用低相关同步信号后直通链路同步信号与下行同步信号示意图;
图3为本公开的一些实施例中同步信号发送方法实施流程示意图;以及
图4为本公开的一些实施例中终端结构示意图。
具体实施方式
无论是基站与终端之间的空口通信,还是终端与终端之间的直通通信,在进行以交换控制与数据信息为目的的通信之前,为了保证通信双方的时间基准与频率基准是对齐的,即符号与子载波的起始位置是约定好的,需要通信双方进行同步。
相关技术中直通链路主同步信号序列S-PSS(直通链路主同步信号,Sidelink Primary Synchronization Signal)使用的是一种新的m序列。
但是,该m序列并不能有效保证与下行主同步信号DL-PSS(下行主同步信号,Downlink Primary Synchronization Signal)之间的低相关特性,在直通链路主同步信号S-PSS与下行主同步信号DL-PSS之间互相关系数较高的情况下,无论对于NR空口设备,还是NR V2X设备,由于它们在初始接入时缺乏先验信息,并不知道同步信号的来源,所以都会出现虚警或误检问题,从而导致了同步检测概率降低以及同步时延增加。
下面以具体实例来进行说明。
图1为直通链路同步信号与下行同步信号误检示意图,如图所示,终端1在发送直通链路同步信号时,如果使用了与下行同步信号互相关系数较高的同步序列,对于处于基站覆盖内的终端3来说,终端3会将直通链路同步信号误认为是下行同步信号,并且进行同步信号检测,从而导致了终端3的同步检测概率降低与同步时延增加。
基于此,本公开的一些实施例中将提出一种用于直通链路(Sidelink)的同步信号的发送方案,在方案中,发送端可以根据本公开的一些实施例中给出的同步信号序列的生成方案,确定直通链路同步信号序列,并在两个设备之间建立同步。由于本公开的一些实施例中提供的方案可以使得直通链路同步信号与NR下行同步信号之间保持低相关特性,从而也就避免了同步信号检测中的虚警或误检问题,提升了直通链路同步信号检测的成功率,缩短了直通链路同步建立的时延。
采用本公开的一些实施例提供的技术方案后,相对于相关技术,发送端可以根据方案给出的同步信号序列的生成方案,确定直通链路同步信号序列, 并在两个设备之间建立同步。由于本公开提供的方法可以使得直通链路同步信号与NR下行同步信号之间保持低相关特性,从而避免了同步信号检测中的虚警或误检问题,提升了直通链路同步信号检测的成功率,缩短了直通链路同步建立的时延。
图2为采用低相关同步信号后直通链路同步信号与下行同步信号示意图,如图2所示,终端1(发送端)向终端2(接收端)发送直通链路同步信号S-PSS,并且直通链路同步信号S-PSS与下行同步信号DL-PSS保持低相关,终端2根据收到的直通链路同步信号S-PSS,与终端1之间建立同步,然后终端2就可以与终端1之间进行直通链路数据通信了。并且由于S-PSS与DL-PSS之间的低相关特性,不会导致终端3出现虚警或误检问题。
下面结合附图对本公开的具体实施方式进行说明。
图3为同步信号发送方法实施流程示意图,如图所示,可以包括:
步骤301、按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
步骤302、发送S-PSS同步信号。
其中:所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000004
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
下面对上述四种方式分别进行说明。
一、在对所述多项式进行循环移位处理后生成S-PSS序列时,按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n),其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,且CS是不等于0、43及86的一个或多个正整数。
该方式下,即使在直通链路主同步信号S-PSS与NR下行主同步信号DL-PSS使用不同的循环移位来区分后,它们之间的互相关系数会随着频偏的增加而变化,甚至影响同步检测的成功率;但是生成直通链路主同步信号S-PSS序列时,使用的生成特定多项式与NR下行主同步信号DL-PSS序列所使用的多项式相同,S-PSS与DL-PSS之间序列的复用可以减少标准化工作量,降低终端实现复杂度。
具体实施中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127时,m按如下方式之一取值:
(1)m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;具体的,例如d1=20。
实施例1:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数,比如d1=20,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={20,63}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(2)m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;具体的,例 如d2=20,d3=10。
实施例2:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数,比如d2=20,d3=10,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={10,73}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(3)m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;具体的,例如d4=20,d5=10。
实施例3:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数,比如d4=20,d5=10,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={10,23}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(4)m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;具体的,例如d6=3。
实施例4:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链 路主同步信号序列索引号,d6为正整数,比如d6=3,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={129,172}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(5)m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应。
实施例5:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位。这样如果N1=4,N2=7,那么直通链路主同步信号包括有两个同步序列,那么循环移位CS={172,301}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(6)m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位。
实施例6:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位。这样如果X1=60,直通链路主同步信号包括有一个同步序列,那么循环移位CS={60}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(7)m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通 链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位。
实施例7:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应。这样如果X2=20,X3=60,直通链路主同步信号包括有两个同步序列,那么循环移位CS={20,60}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(8)m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施例8:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成,而m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应。这样如果X4=20,X5=60,X6=100,直通链路主同步信号包括有三个同步序列,那么循环移位CS={20,60,100}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
二、在使用与所述多项式不同的多项式生成S-PSS序列时,按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n),其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的。
该方式下,即使S-PSS无法复用DL-PSS的序列,增加了标准化工作量与终端实现复杂度;但是这种生成直通链路主同步信号S-PSS序列的方式,所使用的生成特定多项式与NR下行主同步信号DL-PSS序列所使用的多项式不同并且保持了低相关,这样它们之间的互相关系数在高频偏情况下仍然 很低,从而能够提高了同步检测的成功率。
具体实施中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127时,m按如下方式之一取值:
(1)m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;具体的,例如d1=20。
实施例9:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数,比如d1=20,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={20,63}。
(2)m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;具体的,例如d2=20,d3=10。
实施例10:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数,比如d2=20,d3=10,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={10,73}。
(3)m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;具体的,例如d4=20,d5=10。
实施例11:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数,比如d4=20,d5=10,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={10,23}。
(4)m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;具体的,例如d6=3。
实施例12:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数,比如d6=3,这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={129,172}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(5)m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应。
实施例13:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位。这样如果N1=4,N2=7,那么直通链路主同步信号包括有两个同步序列,那么循环移位CS={172,301}。为了避免与下行同步信号产生高互相关性,CS是不等于0、43及86的两个正整数。
(6)m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一 个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位。
实施例14:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位。这样如果X1=60,直通链路主同步信号包括有一个同步序列,那么循环移位CS={60}。
(7)m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位。
实施例15:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应。这样如果X2=20,X3=60,直通链路主同步信号包括有两个同步序列,那么循环移位CS={20,60}。
(8)m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施例16:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应。这样如果 X4=20,X5=60,X6=100,直通链路主同步信号包括有三个同步序列,那么循环移位CS={20,60,100}。
(9)m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;具体的,例如d6=43。
实施例17:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数,比如d6=43。这样如果直通链路主同步信号包括有两个同步序列,那么N ID (2)={0,1},循环移位CS={0,43},那么循环移位CS={0,43}。
三、在以所述多项式为基础生成ZC序列后,以所述ZC序列作为S-PSS序列时,按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000005
u是根序列索引号,且0≤u<127。
该方式下,使用该公式生成的序列是一种ZC(Zadoff-Chu)序列,即使考虑到ZC序列对多普勒频移的抵抗度略差于m序列,可能会影响同步检测的成功率;但是这种生成直通链路主同步信号S-PSS序列的方案,所使用的生成公式与LTE(长期演进,Long Term Evolution)下行主同步信号DL-PSS序列所使用的公式相同,S-PSS与LTE DL-PSS之间序列的复用可以减少标准化工作量,降低终端实现复杂度。
实施例18:
直通链路主同步信号S-PSS所使用的序列d PSS(n)是按照公式d PSS(n)=d u(n)生成,其中:
Figure PCTCN2020099326-appb-000006
u是根序列索引号,且0≤u<127。
上面公式中的u可以设为U1,U2。U1和U2分别与直通链路主同步信号序列的两个索引号N ID (2)对应。这样如果U1=52,U2=74,直通链路主同步信号包括有两个同步序列,那么根序列索引号u={52,74}。
四、在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号。
该方式下,即使考虑到这种方案只能用于专用载波的场景,即直通链路和空口链路使用不同的载波的场景,使得应用场景受限;但是这种直通链路主同步信号S-PSS配置方案,可以通过不同的频域资源来保持了直通链路同步信号与空口下行同步信号的低相关性,而不需要进行复杂的序列设计,减少了标准化工作量,降低终端实现复杂度。
具体实施中,所述频率资源可以包括以下资源之一或者其组合:子载波、资源块、BWP(Bandwidth part,部分带宽)、载波、频带。
实施例19:
直通链路主同步信号S-PSS所使用的频率资源与空口同步信号所使用的频率资源不同,此处所述不同的频率资源包括有不同的子载波、资源块、BWP、载波或频带。也就是说,通过不同的频域资源来区分直通链路同步信号与空口下行同步信号,进而保持了直通链路同步信号与空口下行同步信号的低相关性。
基于同一发明构思,本公开的一些实施例中还提供了一种同步信号发送装置、终端、计算机可读存储介质,由于这些设备解决问题的原理与方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开的一些实施例提供的技术方案时,可以按如下方式实施。
图4为终端结构示意图,如图所示,终端包括:
处理器400,用于读取存储器420中的程序,执行下列过程:
按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
收发机410,用于在处理器400的控制下接收和发送数据,执行下列过程:
发送S-PSS同步信号;
其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000007
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
实施中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路 主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数。
实施中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、BWP、载波、频带。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器400代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机410可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器400负责管理总线架构和通常的处理,存储器420可以存储处理器400在执行操作时所使用的数据。
本公开的一些实施例中提供了一种同步信号发送装置,包括:
同步信号生成模块,用于按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
发送模块,用于发送S-PSS同步信号;
其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127, n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000008
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
本公开的一些实施例中还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述同步信号发送方法的步骤。
具体的,是执行如下方法的计算机程序:
按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
发送S-PSS同步信号;其中:
所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
Figure PCTCN2020099326-appb-000009
u是根序列索引号,且0≤u<127;或,
在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
实施中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
实施中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
m=(n+43×N ID (2)+d1)mod127,即CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
m=(n+(43+d2)×N ID (2)+d3)mod127,即CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
m=(n+(43-d4)×N ID (2)+d5)mod127,即CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
m=(n+43×(N ID (2)+d6))mod127,即CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
m=(n+43×{N1,N2})mod127,即CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+X1)mod127,即CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
m=(n+{X2,X3})mod127,即CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
m=(n+{X4,X5,X6})mod127,即CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
m=(n+d6×N ID (2))mod127,即CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数。
实施中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、BWP、载波、频带。
具体实施可以参见上述同步信号发送方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
综上所述,本公开的一些实施例提供的技术方案中,第一设备向第二设备发送同步信号;
同步信号所使用的序列d PSS(n)是按照公式d PSS(n)=1-2x(m)生成,其中:
x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2或者基于多项式x(i+7)=(x(i+1)+x(i))mod2生成,而m=(n+CS)mod127且0≤n<127。当使用多项式x(i+7)=(x(i+4)+x(i))mod2生成序列时,CS是不等于0、43及86的一个或多个正整数;
或者,所述第一同步信号所使用的序列是按照公式d PSS(n)=d u(n)生成,其中:
Figure PCTCN2020099326-appb-000010
u是根序列索引号,且0≤u<127。
或者,同步信号所使用的频率资源与空口同步信号所使用的频率资源不同。
然后第一设备与第二设备可以根据所述同步信号建立同步。
该方案可以使用在V2X系统的Sidelink直通链路通信中。
该方案中,发送端可以根据本公开的一些实施例中给出的同步信号序列的生成方案,确定直通链路同步信号序列,并在两个设备之间建立同步。由于本公开的一些实施例中提供的方案可以使得直通链路同步信号与NR下行同步信号之间保持低相关特性,从而避免了同步信号检测中的虚警或误检问题,提升了直通链路同步信号检测的成功率,缩短了直通链路同步建立的时延。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的一些实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和 /或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (10)

  1. 一种同步信号发送方法,包括:
    按照特定多项式生成直通链路主同步信号S-PSS序列,并根据所述S-PSS序列产生S-PSS同步信号;
    发送所述S-PSS同步信号;其中:
    所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
    按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
    Figure PCTCN2020099326-appb-100001
    u是根序列索引号,且0≤u<127;或,
    在与空口下行主同步信号DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
  2. 如权利要求1所述的方法,其中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
    m=(n+43×N ID (2)+d1)mod127,CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
    m=(n+(43+d2)×N ID (2)+d3)mod127,CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
    m=(n+(43-d4)×N ID (2)+d5)mod127,CS=(43-d4)×N ID (2)+d5,其中N ID (2) 是直通链路主同步信号序列索引号,d4和d5为正整数;或,
    m=(n+43×(N ID (2)+d6))mod127,CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
    m=(n+43×{N1,N2})mod127,CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+X1)mod127,CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
    m=(n+{X2,X3})mod127,CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+{X4,X5,X6})mod127,CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
  3. 如权利要求1所述的方法,其中,在x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
    m=(n+43×N ID (2)+d1)mod127,CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
    m=(n+(43+d2)×N ID (2)+d3)mod127,CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
    m=(n+(43-d4)×N ID (2)+d5)mod127,CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
    m=(n+43×(N ID (2)+d6))mod127,CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
    m=(n+43×{N1,N2})mod127,CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+X1)mod127,CS={X1},X1与直通链路主同步序列的一个索引号 N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
    m=(n+{X2,X3})mod127,CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+{X4,X5,X6})mod127,CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
    m=(n+d6×N ID (2))mod127,CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数。
  4. 如权利要求1所述的方法,其中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、部分带宽BWP、载波、频带。
  5. 一种终端,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
    收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
    发送S-PSS同步信号;
    其中:
    所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
    按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
    Figure PCTCN2020099326-appb-100002
    u是根序列索引号,且0≤u<127;或,
    在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
  6. 如权利要求5所述的终端,其中,在x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的时,m按如下方式之一取值:
    m=(n+43×N ID (2)+d1)mod127,CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
    m=(n+(43+d2)×N ID (2)+d3)mod127,CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
    m=(n+(43-d4)×N ID (2)+d5)mod127,CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
    m=(n+43×(N ID (2)+d6))mod127,CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
    m=(n+43×{N1,N2})mod127,CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+X1)mod127,CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
    m=(n+{X2,X3})mod127,CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+{X4,X5,X6})mod127,CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位。
  7. 如权利要求5所述的终端,其中,在x(m)是基于多项式 x(i+7)=(x(i+1)+x(i))mod2生成的时,m按如下方式之一取值:
    m=(n+43×N ID (2)+d1)mod127,CS=43×N ID (2)+d1,其中N ID (2)是直通链路主同步信号序列索引号,d1为正整数;或,
    m=(n+(43+d2)×N ID (2)+d3)mod127,CS=(43+d2)×N ID (2)+d3,其中N ID (2)是直通链路主同步信号序列索引号,d2和d3为正整数;或,
    m=(n+(43-d4)×N ID (2)+d5)mod127,CS=(43-d4)×N ID (2)+d5,其中N ID (2)是直通链路主同步信号序列索引号,d4和d5为正整数;或,
    m=(n+43×(N ID (2)+d6))mod127,CS=43×(N ID (2)+d6),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数;或,
    m=(n+43×{N1,N2})mod127,CS=43×{N1,N2},其中N1,N2是与直通链路主同步序列的两个索引号N ID (2)对应,并且N1和N2对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+X1)mod127,CS={X1},X1与直通链路主同步序列的一个索引号N ID (2)对应,并且X1对应直通链路主同步信号所使用的m序列的一个循环移位;或,
    m=(n+{X2,X3})mod127,CS={X2,X3},X2和X3分别与直通链路主同步信号序列的两个索引号N ID (2)对应,并且X2和X3分别对应直通链路主同步信号所使用的m序列的两个循环移位;或,
    m=(n+{X4,X5,X6})mod127,CS={X4,X5,X6},X4,X5和X6分别与直通链路主同步信号序列的三个索引号N ID (2)对应,并且X4、X5和X6分别对应直通链路主同步信号所使用的m序列的三个循环移位;或,
    m=(n+d6×N ID (2))mod127,CS=d6×N ID (2),其中N ID (2)是直通链路主同步信号序列索引号,d6为正整数。
  8. 如权利要求5所述的终端,其中,所述频率资源包括以下资源之一或者其组合:子载波、资源块、BWP、载波、频带。
  9. 一种同步信号发送装置,包括:
    同步信号生成模块,用于按照特定多项式生成S-PSS序列,并根据S-PSS序列产生S-PSS同步信号;
    发送模块,用于发送S-PSS同步信号;
    其中:
    所述按照特定多项式生成S-PSS序列包括如下方式之一或者其组合:
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+4)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位,且CS是不等于0、43及86的正整数;或,
    按照公式d PSS(n)=1-2x(m)生成S-PSS序列d PSS(n)其中,x(m)是基于多项式x(i+7)=(x(i+1)+x(i))mod2生成的,m=(n+CS)mod127且0≤n<127,n是第一种序列编号,m是根据n和CS生成的第二种序列编号,i是第三种序列编号,CS是循环移位;或,
    按照公式d PSS(n)=d u(n)生成S-PSS序列d PSS(n),其中:
    Figure PCTCN2020099326-appb-100003
    u是根序列索引号,且0≤u<127;或,
    在与空口DL-PSS所占用的频率资源不同的频率资源上发送S-PSS同步信号,所述空口下行主同步信号DL-PSS是由基站发送给终端的,所述直通链路主同步信号S-PSS是由终端发送给终端的。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至4中任一项所述同步信号发送方法的步骤。
PCT/CN2020/099326 2019-07-05 2020-06-30 同步信号发送方法、终端及装置、存储介质 WO2021004335A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227001633A KR20220020971A (ko) 2019-07-05 2020-06-30 동기화 신호의 송신 방법, 단말, 장치 및 저장 매체
EP20836423.2A EP3996396A4 (en) 2019-07-05 2020-06-30 SYNCHRONIZATION SIGNAL TRANSMISSION METHOD, TERMINAL AND DEVICE, AND STORAGE MEDIA
BR112021025502A BR112021025502A2 (pt) 2019-07-05 2020-06-30 Método de transmissão de sinal de sincronização, terminal e aparelho e mídia de armazenamento.
US17/619,048 US20220361124A1 (en) 2019-07-05 2020-06-30 Synchronization signal transmitting method, terminal and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910603816.6A CN112188446B (zh) 2019-07-05 2019-07-05 一种同步信号发送方法、终端及装置、存储介质
CN201910603816.6 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021004335A1 true WO2021004335A1 (zh) 2021-01-14

Family

ID=73915200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099326 WO2021004335A1 (zh) 2019-07-05 2020-06-30 同步信号发送方法、终端及装置、存储介质

Country Status (7)

Country Link
US (1) US20220361124A1 (zh)
EP (1) EP3996396A4 (zh)
KR (1) KR20220020971A (zh)
CN (1) CN112188446B (zh)
BR (1) BR112021025502A2 (zh)
TW (1) TWI753475B (zh)
WO (1) WO2021004335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794547B (zh) * 2021-08-16 2024-05-07 中科苏州微电子产业技术研究院 一种多路信号同步方法、系统、电子设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515824A (zh) * 2007-11-26 2009-08-26 美国博通公司 一种处理信号的方法和信号处理系统
CN101841507A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 主同步信道序列的生成方法、装置及其多天线发送方法
WO2015168829A1 (zh) * 2014-05-04 2015-11-12 华为技术有限公司 同步信号收发方法、装置及设备
WO2018161001A1 (en) * 2017-03-03 2018-09-07 Intel IP Corporation Transmission of synchronization signals

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451570B2 (en) * 2012-08-29 2016-09-20 Alcatel Lucent Device discovery for device-to-device communication
US9456330B2 (en) * 2013-08-09 2016-09-27 Alcatel Lucent Two-stage device-to-device (D2D) discovery procedures
CN110365366B (zh) * 2013-11-01 2021-09-03 华为技术有限公司 发送器、接收器以及生成同步信号的方法
EP3066875B1 (en) * 2013-11-08 2019-10-30 Nokia Solutions and Networks Oy Synchronization signal design for device to device operation
EP3136631B1 (en) * 2014-04-24 2020-01-15 LG Electronics Inc. Method for transmitting synchronization signal for d2d communication in wireless communication system and apparatus therefor
US20160212721A1 (en) * 2015-01-16 2016-07-21 Sharp Laboratories Of America, Inc. Method and apparatus for selecting a synchronization signal source for sidelink communcations
EP3322233B1 (en) * 2015-07-09 2020-09-09 LG Electronics Inc. Synchronization method of user equipment in wireless communication system and user equipment using method
CN107534945B (zh) * 2015-08-10 2020-06-02 华为技术有限公司 一种d2d同步方法及用户设备、网络设备
WO2017057987A1 (ko) * 2015-10-01 2017-04-06 엘지전자 주식회사 D2d 통신에서의 참조신호 송신 방법 및 단말
JP6816857B2 (ja) * 2016-01-20 2021-01-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 同期情報送信方法および装置
KR102467752B1 (ko) * 2016-04-01 2022-11-16 주식회사 아이티엘 V2x 통신에서 동기화 방법 및 장치
JP6694107B2 (ja) * 2016-09-30 2020-05-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて同期信号を送受信する方法及びこのための装置
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design
CN110383906B (zh) * 2017-04-13 2020-05-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10797842B2 (en) * 2017-04-14 2020-10-06 Qualcomm Incorporated Multiplexing broadcast channels with synchronization signals in new radio
US10763984B2 (en) * 2017-08-18 2020-09-01 Qualcomm Incorporated Frequency division multiplexing synchronization signals (SS) for wideband operation
WO2019105394A1 (en) * 2017-11-28 2019-06-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Synchronization transmission carrier selection
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN110830211A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种同步信号的传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515824A (zh) * 2007-11-26 2009-08-26 美国博通公司 一种处理信号的方法和信号处理系统
CN101841507A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 主同步信道序列的生成方法、装置及其多天线发送方法
WO2015168829A1 (zh) * 2014-05-04 2015-11-12 华为技术有限公司 同步信号收发方法、装置及设备
WO2018161001A1 (en) * 2017-03-03 2018-09-07 Intel IP Corporation Transmission of synchronization signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Sidelink Synchronization Mechanisms for NR V2X", 3GPP DRAFT; R1-1906012, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 13, XP051708054 *
See also references of EP3996396A4 *

Also Published As

Publication number Publication date
BR112021025502A2 (pt) 2022-02-01
CN112188446B (zh) 2022-04-08
CN112188446A (zh) 2021-01-05
TWI753475B (zh) 2022-01-21
EP3996396A1 (en) 2022-05-11
EP3996396A4 (en) 2022-08-03
US20220361124A1 (en) 2022-11-10
TW202106081A (zh) 2021-02-01
KR20220020971A (ko) 2022-02-21

Similar Documents

Publication Publication Date Title
WO2019096291A1 (zh) 信息发送、接收方法及装置
US11553498B2 (en) PDCCH resource configuration method, PDCCH resource determining method, network device and user equipment
WO2019196666A1 (zh) 一种定位参考信号传输方法及装置
JP7374136B2 (ja) 情報送信方法及び装置
CN108235442B (zh) 一种ue、基站中的方法和设备
CN110365461B (zh) 一种信号发送、接收方法及设备
WO2017211228A1 (zh) 一种无线通信中的方法和装置
WO2021032017A1 (zh) 通信方法和装置
IL277751B1 (en) Method and apparatus for obtaining value for marking resources
WO2020221078A1 (zh) 激活/去激活配置的方法、网络设备及终端
CN110248415A (zh) 一种时隙格式指示方法、设备及系统
CN116209052B (zh) 同步信号的发送方法、同步信号的接收方法及相关设备
WO2020143386A1 (zh) 节能信号的传输方法、终端和网络侧设备
WO2019029622A1 (zh) 一种信号处理方法及装置
WO2017076160A1 (zh) 信令配置及传输方法、站点、终端、计算机存储介质
WO2020077568A1 (zh) 直连通信的时频资源竞争方法、装置、设备及系统
WO2021004335A1 (zh) 同步信号发送方法、终端及装置、存储介质
CN109041077A (zh) 下行多用户叠加传输方法、装置、存储介质和程序产品
WO2021017729A1 (zh) 信号的发送、接收方法、终端及装置
WO2018145258A1 (zh) 一种用于动态调度的终端、基站中的方法和装置
CN109150437B (zh) 一种pbch符号映射方法及装置
CN109152045A (zh) 确定下行控制信道资源的方法、装置、用户设备及基站
CN109150462B (zh) 一种pbch专属解调参考信号传输方法及装置
US11889444B2 (en) Synchronization signal transmission method and terminal device
WO2021203961A1 (zh) 信道状态信息参考信号传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836423

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021025502

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227001633

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021025502

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211216

ENP Entry into the national phase

Ref document number: 2020836423

Country of ref document: EP

Effective date: 20220207