WO2018219296A1 - 一种指示信息的传输方法及装置 - Google Patents

一种指示信息的传输方法及装置 Download PDF

Info

Publication number
WO2018219296A1
WO2018219296A1 PCT/CN2018/089038 CN2018089038W WO2018219296A1 WO 2018219296 A1 WO2018219296 A1 WO 2018219296A1 CN 2018089038 W CN2018089038 W CN 2018089038W WO 2018219296 A1 WO2018219296 A1 WO 2018219296A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
bits
resource block
burst set
frame
Prior art date
Application number
PCT/CN2018/089038
Other languages
English (en)
French (fr)
Inventor
黄煌
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018219296A1 publication Critical patent/WO2018219296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0632Synchronisation of packets and cells, e.g. transmission of voice via a packet network, circuit emulation service [CES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting indication information.
  • NR 5G New Radio
  • Beamforming technology is used to limit the energy of the transmitted signal to a certain beam direction, thereby increasing the efficiency of signal transmission and reception.
  • Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity. Therefore, the data transmission of the physical broadcast channel (PBCH) requires beam scanning, and the data demodulation requirement of the PBCH is high reliability. Therefore, the PBCH has a code rate of at least 1/12, so the 1-bit PBCH data is encoded. After that, it became 12bits of data, which was increased by 12 times. Therefore, reducing the overhead of PBCH is extremely important.
  • PBCH physical broadcast channel
  • the application provides a method and a device for transmitting indication information to reduce the overhead of the PBCH.
  • a method for transmitting indication information including:
  • the network device generates a synchronization signal (SS block), where the SS block includes a synchronization signal (SS) resource block and a physical broadcast channel PBCH resource block, where X bits in the PBCH resource block are used. Indicates at least one of a first half frame and a second half frame of a 10 ms frame, and a plurality of synchronization signal segment sets SS burst set periods; the SS block is transmitted.
  • SS block synchronization signal
  • SS synchronization signal
  • the sync signal SS resource block may include at least one of a PSS and an SSS resource block.
  • the first half frame and the second half frame of the 10ms frame are the first half frame and the second half frame of the 10ms frame of the 5ms SS burst set period
  • the multiple SS burst set periods include at least one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, 160ms.
  • a method for transmitting indication information including:
  • the terminal device receives an SS block, where the SS block includes an SS resource block and a PBCH resource block, where X bits in the PBCH resource block are used to indicate a first half frame and a second half frame of a 10 ms frame, and a plurality of synchronization signal segment sets. At least one of SS burst set periods; demodulating the PBCH resource block to obtain period and/or field information of the corresponding SS burst set.
  • the X bits are located in the MIB of the PBCH.
  • one frame is 10 ms
  • the network device generates an SS block, where the SS block includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a PBCH resource block, where 3 bits in the PBCH resource block are used to indicate 5 ms SS.
  • the SS block is transmitted in the first half of the burst set, the second half of the 5ms SS burst set, and five SS burst set periods.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain a period and a field information of the corresponding SS burst set.
  • the synchronization is first performed according to the SS in the SS block.
  • the five SS burst set periods may include: 10 ms, 20 ms, 40 ms, 80 ms, 160 ms.
  • the field information is indicated together with the period of multiple SS burst sets, which saves the PBCH overhead.
  • a network device including:
  • a processing module configured to generate a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, where an X bit in the PBCH resource block is used to indicate a first half frame of a 10 ms frame, a second half of the 10ms frame, and at least one of a plurality of synchronization signal segment sets SS burst set periods;
  • Sending module used to send the SS block.
  • a terminal device comprising:
  • a receiving module configured to receive an SS block, where the SS block includes an SS resource block and a PBCH resource block, where an X bit in the PBCH resource block is used to indicate a first half frame of a 10 ms frame, a second half frame of a 10 ms frame, and At least one of a plurality of synchronization signal segment sets SS burst set periods;
  • Processing module used to demodulate the PBCH resource block to obtain the periodic and/or field information of the corresponding SS burst set.
  • the network device and the terminal device are completely corresponding to the network device and the terminal device in the first aspect, and the corresponding module performs corresponding steps, for example, the sending module performs the sending class step in the method embodiment, and the receiving module performs the method in the embodiment.
  • the steps of the class, the other steps are implemented by the processing module, and the specific content refers to the above method, and will not be described in detail.
  • a method for transmitting indication information including:
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, and sends the SS block;
  • the X bits in the PBCH resource block are used to indicate the number of SS blocks and/or the time index, and the N-X bits are used to indicate the system frame number; in different SS burst set periods, the values of X are different, and N is a fixed value.
  • X, N are integers.
  • the number of SS blocks can be the number of all SS blocks under the SS burst set.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain the number and/or time index of the corresponding SS block.
  • the terminal device is the initial access, the synchronization is first performed according to the SS in the SS block.
  • the X bits are located in the MIB of the PBCH.
  • the maximum number of beams is 32, and a 5-bit indication is sufficient, because 5 bits are up to 32 values; when the SS burst set period is 20 ms or more, The maximum number of beams is 64, which requires 6 bits. At this time, 1 bit can be borrowed from the system frame number, for example, the last bit of the system frame number is borrowed, thus saving the PBCH overhead.
  • the network device generates an SS block, where the SS block includes a PSS, an SSS, and a PBCH resource block, where 5 bits in the PBCH resource block are used to indicate the number or time index of the SS block of the 5ms or 10ms SS burst set;
  • the maximum number of beams for a 5ms or 10ms SS burst set is 32.
  • the 6 bits in the PBCH resource block are used to indicate the number or time index of the SS block of the SS burst set of 20 ms or more; 1 bit of the 6 bits is the last bit indicating the system frame number bit, and the SS burst of the 20 ms or more
  • the maximum beam number of set is 64.
  • the maximum number of beams of the 5ms or 10ms SS burst set is 32, indicated by 5 bits; the maximum number of beams of the SS burst set of 20ms or more is 32, which needs to be indicated by 6 bits, and 1 bit indicating the system frame number is borrowed at this time. Therefore, only 5 bits are needed, which saves PBCH overhead.
  • a network device including:
  • the processing module is configured to generate a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block; and the PBCH resource block content can refer to the above method.
  • Sending module used to send the SS block.
  • a terminal device comprising:
  • a receiving module configured to receive an SS block, where the SS block includes an SS resource block and a PBCH resource block.
  • Processing module used to demodulate the PBCH resource block to obtain the periodic and/or field information of the corresponding SS burst set.
  • the network device and the terminal device are completely corresponding to the network device and the terminal device in the second aspect, and the corresponding module performs corresponding steps, for example, the sending module performs the sending class step in the method embodiment, and the receiving module performs the method in the embodiment.
  • the steps of the class, the other steps are implemented by the processing module, and the specific content refers to the above method, and will not be described in detail.
  • a method of indicating a PBCH including:
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, and sends the SS block;
  • the X bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the 5ms SS burst set;
  • the X+1 bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the 10ms SS burst set;
  • the X+2 bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the 20ms SS burst set;
  • the X+3 bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the SS burst set above 40ms;
  • One of the X+1 bits is a borrowed half frame indication
  • 1 bit of the X+2 bits is the last 1 bit indicating the system frame number bit, and 1 bit is the borrowed half frame indication;
  • 2 of the X+3 bits are the last 2 bits indicating the system frame number bits, and 1 bit is the borrowed half frame indication.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain the number and/or time index of the corresponding SS block.
  • the terminal device is the initial access, the synchronization is first performed according to the SS in the SS block.
  • the X bits are located in the MIB of the PBCH.
  • X 3, 5ms
  • the maximum number of beams in the SS burst set is 8, which requires 3 bits to indicate; the maximum number of beams in the 10ms SS burst set is 16, which requires 4 bits to indicate that 1 bit of the half frame indication can be borrowed.
  • the maximum beam number of the 20ms SS burst set is 32, which requires 5 bits to indicate.
  • 1 bit of the half frame indication and 1 bit of the system frame number can be borrowed; the maximum beam of the SS burst set of 40ms or more (including 80ms, 160ms)
  • the number is 64, and 6 bits are required to indicate that 1 bit of the half frame indication and 2 bits of the system frame number can be borrowed at this time.
  • the number of SS blocks or the time index is indicated by the borrowed field indication and the 1 or 2 bits of the system frame number bits, which saves the overhead of the PBCH.
  • a network device including:
  • the processing module is configured to generate a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block; and the PBCH resource block content can refer to the above method.
  • Sending module used to send the SS block.
  • a terminal device comprising:
  • a receiving module configured to receive an SS block, where the SS block includes an SS resource block and a PBCH resource block;
  • Processing module used to demodulate the PBCH resource block to obtain the number and/or time index of the corresponding SS block.
  • the foregoing network device and the terminal device completely correspond to the network device and the terminal device in the third aspect, and the corresponding module performs corresponding steps, for example, the sending module performs the sending class step in the method embodiment, and the receiving module performs the method in the embodiment.
  • the steps of the class, the other steps are implemented by the processing module, and the specific content refers to the above method, and will not be described in detail.
  • a method of indicating a PBCH including:
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, and sends the SS block;
  • the X bits in the PBCH resource block are used to indicate the first half frame, the second half frame, and the 10 ms SS burst set period of the 10 ms frame in the 5 ms SS burst set period;
  • the X+1 bit in the PBCH resource block is used to indicate a 20ms SS burst set
  • the X+2 bit in the PBCH resource block is used to indicate the 40ms SS burst set period
  • the X+3 bit in the PBCH resource block is used to indicate the 80ms SS burst set period; the X+4 bit in the PBCH resource block is used to indicate the 160ms SS burst set period;
  • 1 bit of the X+1 bits is the last 1 bit of the borrowed indication system frame number bit
  • 3 bits of the X+3 bits are borrowed to indicate the last 3 bits of the system frame number bit
  • the 4 bits of the X+4 bits are the last 4 bits of the borrowed indication system frame number bits.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain a corresponding SS burst set period and/or a field indication.
  • the X bits are located in the MIB of the PBCH.
  • a network device including:
  • the processing module is configured to generate a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block; and the PBCH resource block content can refer to the above method.
  • Sending module used to send the SS block.
  • a terminal device comprising:
  • a receiving module configured to receive an SS block, where the SS block includes an SS resource block and a PBCH resource block;
  • Processing module used to demodulate the PBCH resource block to obtain a corresponding SS burst set period and/or a field indication.
  • the network device and the terminal device are completely corresponding to the network device and the terminal device in the fourth aspect, and the corresponding module performs corresponding steps, for example, the sending module performs the sending class step in the method embodiment, and the receiving module performs the method in the embodiment.
  • the steps of the class, the other steps are implemented by the processing module, and the specific content refers to the above method, and will not be described in detail.
  • the network device and the terminal device corresponding to the foregoing methods have the functions of implementing the steps performed by the network device and the terminal device in the foregoing method embodiments; the functions may be implemented by hardware, or may be implemented by hardware. .
  • the hardware or software includes one or more modules corresponding to the above-described functions, that is, the steps in the corresponding method embodiments are respectively performed by the respective functional modules.
  • the network device or the terminal device includes at least one of a processing module, a sending module, and a receiving module, and respectively performs a transmitting step and a receiving step corresponding to the foregoing aspects. Further, steps other than transmission/reception may be performed by the processing module.
  • the sending module can be replaced by a transmitter
  • the receiving module can be replaced by a receiver
  • other modules such as a processing module
  • the transmitter and receiver can form a transceiver in the transmission operation, the reception operation, and the related processing operations.
  • a network device and a terminal device comprising a processor, a memory, a transceiver and a bus, the code and the data are stored in the memory, and the processor, the memory and the transceiver are connected by a bus
  • the code in the processor running memory causes the network device to perform the methods of the various aspects described above.
  • the memory can be a stand-alone device or it can be internal to the processor.
  • Yet another aspect of the present application provides a system including the above network device and terminal device.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the demodulation reference signal sequence provided by the above aspects A generation method, or a demodulation reference signal sequence mapping method, or a demodulation reference signal sequence indication method.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods provided by the various aspects described above.
  • FIG. 1 is a schematic diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic diagram of a base station provided by the present application.
  • FIG. 3 is a schematic diagram of a terminal device provided by the present application.
  • FIG. 4 is a schematic diagram of an SS burst set provided by the present application.
  • FIG. 5 is a flowchart of a method for transmitting indication information according to the present application.
  • FIG. 6 is a schematic diagram of an SS block in different SS burst set periods of the present application.
  • FIG. 7 is a schematic structural diagram of different SS burst set period frames according to the present application.
  • FIG. 8 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another form of apparatus provided by an embodiment of the present application.
  • the terminal device in this embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device in the implementation of the present application is a network side device that performs wireless communication with the terminal device, for example, a Wireless-Fidelity (Wi-Fi) access point, a base station of a next-generation communication, such as a gNB of 5G. Or a small station, a micro station, a transmission reception point (TRP), or a relay station, an access point, an in-vehicle device, a wearable device, or the like.
  • Wi-Fi Wireless-Fidelity
  • System frame A wireless transmission frame.
  • the length of the system frame can be 10 milliseconds (ms), and the duration of one subframe is 1 ms.
  • Synchronization Signal refers to the signal used to provide synchronization.
  • the synchronization signal may include a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • Synchronization signal block In NR, a PSS symbol, an SSS symbol and two or more PBCH symbols together constitute a resource block, which is called a SS block.
  • the PSS, SSS, and PBCH symbols may be OFDM (orthogonal frequency division multiplexing) symbols, and one PSS, SSS, or PBCH resource block may include one or more OFDM symbols.
  • the locations of the PSS symbols, SSS symbols, and PBCH symbols in the sync block may be contiguous.
  • a plurality of sync signal blocks constitute a sync signal segment (SS burst), and a plurality of sync signal segments constitute a SS burst set, as shown in FIG.
  • the communication system includes a base station 101 and a terminal 102.
  • the base station 101 has a scheduling function of a shared channel, and has a function of establishing a scheduling based on a history of packet data transmitted to the terminal 102.
  • scheduling when a plurality of terminals 102 share transmission resources, a mechanism is needed to effectively allocate the physical layer. Resources to obtain statistical multiplexing gain.
  • the terminal 102 has a function of transmitting and receiving data through a communication channel established with the base station 101.
  • the terminal 102 performs transmission or reception processing of the shared channel based on the information transmitted through the scheduling control channel.
  • the terminal 102 may be a mobile phone, a tablet computer, a computer, a portable terminal, or the like.
  • the base station 101 and the terminal 102 perform data reception and transmission through a communication channel, which may be a wireless communication channel.
  • the base station includes a baseband subsystem, a medium-frequency subsystem, an antenna feeder subsystem, and some supporting structures (for example, a whole subsystem). ).
  • the baseband subsystem is used to implement operation and maintenance of the entire base station, and implement functions such as signaling processing and radio resources;
  • the central radio frequency subsystem implements functions of converting between a baseband signal, an intermediate frequency signal, and a radio frequency signal;
  • the antenna subsystem includes a connection.
  • the antenna and feeder of the radio frequency module of the base station are used for receiving and transmitting the wireless air interface signal;
  • the whole subsystem is a supporting part of the baseband subsystem and the middle RF subsystem, and provides power supply and environmental monitoring functions.
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure, where the terminal may be a mobile phone, a tablet computer, a notebook computer, or the like. As shown in FIG. 3, the terminal includes: a memory, a processor, a radio frequency (RF) circuit, and a power supply. It will be understood by those skilled in the art that the structure shown in FIG. 3 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • RF radio frequency
  • the memory can be used to store software programs and modules, and the processor can execute various functional applications and data processing of the terminal by running software programs and modules stored in the memory.
  • the memory may mainly include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may store data created according to usage of the terminal, and the like. Further, the memory may include a high speed random access memory, and may also include a nonvolatile memory or the like.
  • the processor is the control center of the terminal, and connects various parts of the entire terminal by using various interfaces and lines, and can execute the terminal by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory.
  • the processor may include one or more processing units; the processor may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, etc., and performs modulation and demodulation processing.
  • the device mainly handles wireless communication.
  • Radio frequency (RF) circuits can be used to send and receive information and receive and transmit signals during a call.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the RF circuit can communicate with the network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global mobile communication systems, general packet radio services, code division multiple access, wideband code division multiple access, long term evolution, email, short message service, and the like.
  • the terminal also includes a power supply for supplying power to the various components.
  • the power supply can be logically coupled to the processor through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the terminal may further include an input unit, a display unit, a sensor module, an audio module, a WiFi module, a Bluetooth module, and the like, and details are not described herein again.
  • the base station In the 5G NR system, the base station generates a PSS sequence and an SSS sequence for synchronization, and generates a PBCH according to a main information block (MIB), and the PBCH and the PSS, and the SSS form an SS block, and the base station can perform beam scanning.
  • the method sends one or more SS blocks.
  • the terminal When the terminal performs initial access, it first detects the PSS for synchronization, then detects the SSS to obtain the cell identifier, and finally demodulates the PBCH resource block to obtain initial access related information, including the system frame number for synchronization. At least one of (system frame number, SFN), a field indication, a time index of the SS block, and the like.
  • one PSS OFDM symbol, one SSS OFDM symbol and two or more PBCH OFDM symbols together form a resource block, which is called a sync block (SS block), a PS block symbol in an SS block, and an SSS symbol.
  • the locations of the PBCH symbols have a fixed time domain distribution and are adjacent.
  • the content of the MIB transmitted in the PBCH includes: at least part of SFN, SS burst set period, SS block time index, number of SS blocks, and half frame indication.
  • SS burst set periods there are six kinds of SS burst set periods in the NR, which are 5ms, 10ms, 20ms, 40ms, 80ms and 160ms, respectively. These 6 periodic forms require at least 3bits for indication, for 5ms SS burst. The cycle also requires 1 bit to indicate half frame information, so a total of 4 bits of data is required.
  • the transmission of the SS block is beam-scanned. Therefore, it is necessary to indicate the number of synchronization blocks (SS blocks) and/or the time index in the PBCH.
  • the maximum number of beams is 64 in the NR, so the number of SS blocks needs 6 bits for indication.
  • the time index of the SS block also needs 6 bits, which indicates that the PBCH has a relatively large overhead.
  • the present application provides a method for transmitting indication information, which can reduce the overhead of the PBCH.
  • the method includes:
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, where the X bits in the PBCH resource block are used to indicate the first half of the 10 ms frame and/or Or a second half frame, and at least one of a plurality of synchronization signal segment sets SS burst set periods;
  • the SS resource block may include at least one of a PSS and an SSS resource block.
  • the first half frame and the second half frame of the 10ms frame are the first half frame and the second half frame of the 10ms frame of the 5ms SS burst set period
  • the multiple SS burst set periods include: 5ms, 10ms, At least one of 20ms, 40ms, 80ms, 160ms.
  • the synchronization signal SS includes at least one of a PSS and an SSS
  • the synchronization signal SS resource block includes at least one of a PSS and an SSS resource block.
  • 3 bits may indicate the above various contents, but the SS block sent by the network device may indicate only at least one of them in a certain period of time, for example, only indicates a 10 ms SS burst set period, or only indicates a 5 ms SS burst set period of 10 ms. The first half of the frame.
  • the terminal device receives the SS block, where the SS block includes an SS resource block and a PBCH resource block, where the X bits in the PBCH resource block are used to indicate the first half frame and the second half frame of the 10 ms frame, and multiple synchronizations.
  • the field information is indicated together with several SS burst set periods, and the total of 8 types of data of the 3 bits are: 000, 001, 010, 011, 100, 101, 110, 111, and the SS burst set period is only 6 cases, 5 ms, 10 ms, 20 ms, 40 ms. 80ms and 160ms; one frame is 10ms, only 5ms SS burst set needs to indicate the first half frame and the second half frame, plus the remaining 5 SS burst periods, a total of 7 cases; and 3bits data has a total of 8 values, so it is enough Indicate the above 7 cases.
  • 000 indicates the first half of the 10ms frame of the 5ms SS burst set
  • 001 indicates the last half of the 10ms frame of the 5ms SS burst set
  • 010 indicates the 10ms SS burst set period
  • 011 indicates the 20ms SS burst set period
  • 100 indicates the 40ms SS burst
  • the set period 101 indicates an 80ms SS burst set period
  • 110 indicates a 160ms SS burst set period.
  • the information indicating that the data indicated by 4 bits is changed to 3 bits can be indicated.
  • the above values are just an example and different values can be used.
  • Another embodiment of the present application provides a method for transmitting indication information, which can reduce the overhead of the PBCH.
  • the method includes: the process is similar to that of FIG. 5, and includes:
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, and sends the SS block;
  • the X bits in the PBCH resource block are used to indicate the number of SS blocks and/or the time index, and the NX bits are used to indicate the system frame number; in different SS burst set periods, the values of X are different, and N is a fixed value, X. N is an integer.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain the number and/or time index of the corresponding SS block.
  • the maximum number of SS blocks in the SS burst set defined by NR is 64, so 6 bits are required to indicate the number of SS blocks or time index.
  • the number of SS blocks in the 20ms SS burst set period, the 40ms SS burst set period, the 80ms SS burst set period, and the 160ms SS burst set period in the NR is defined as a maximum of 64, and 6 bits of data is required to indicate the SS block number or the time index.
  • the maximum number of beams in the 10ms period and the 5ms period is 32, and 5 bits of data is required to indicate the number of SS blocks or the time index of the SS block.
  • At least 1 bit of the SFN is residual information, and the 1 bit can be borrowed to indicate the SS block number or time index, which can be the last bit of the SFN, and thus 6 bits. There is one bit of the last bit of the SFN, so only 5 bits are actually used, which saves the overhead of the PBCH.
  • the last 1 bit of the SFN of the 20ms SS burst set period is 0, so the 1 bit is redundant and can be used to indicate the number of SS blocks or time index, so that it can be used to indicate the number of SS blocks.
  • the 6-bits of the time index is 5 bits plus the 1-bit SFN, and the 1-bit SFN can be the last bit of the SFN; the 6-bit indication information includes the 1-bit SFN, which saves overhead.
  • the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, wherein at least one of the following cases is satisfied: the PBCH resource block
  • the X bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the 10ms SS burst set; the X bits in the PBCH resource block are used to indicate the number and/or time index of the SS block of the 10ms SS burst set;
  • the X+2 bits in the resource block are used to indicate the number and/or time index of the SS block of the 20ms SS burst set; the X+3 bits in the PBCH resource block are used to indicate the number of SS blocks of the SS burst set above 40ms and/or Or time index;
  • One of the X+1 bits is a borrowed half frame indication
  • 1 bit of the X+2 bits is the last 1 bit indicating the system frame number bit, and 1 bit is the borrowed half frame indication;
  • 2 of the X+3 bits are the last 2 bits indicating the system frame number bits, and 1 bit is the borrowed half frame indication.
  • X 3.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain the number and/or time index of the corresponding SS block.
  • the maximum number of SS blocks in the SS burst set is 64, so 6 bits are required to indicate the number of SS blocks, or 6 bits are required to indicate the time index of the SS block.
  • the present invention proposes to further subdivide the number of SS blocks on different periods, and use SFN partial data and field indication information on different periods to indicate the number of SS blocks or the time index of the SS block.
  • the maximum number of SS blocks is defined as 8 and requires 3 bits for indication; the 10 ms SS burst set period, the maximum number of SS blocks is defined as 16, requiring 4 bits for indication; 20 ms SS burst set period, The maximum number of SS blocks is defined as 32, which requires 5 bits for indication. For the 40 ms SS burst set period and above, the maximum number of SS blocks is defined as 64, which requires 6 bits for indication.
  • the field frame indication is not used, so it can be used as the SS block number or the SS block time index indication, so that the SS block number of the 10ms SS burst set period or the SS block time
  • the 4-bit data indication mode of the index is: the number of SS blocks of 3 bits or the time index of the SS block plus the half-frame indication of 1 bit.
  • the last bit of the SFN is not used.
  • the last 1 bit of the SFN of the 20ms SS burst set period is 0, indicating that the location of the SS burst set is already indicated.
  • the SFN's 1-bit information can be used as the SS block number or the SS block time index indication.
  • the number of SS blocks in the 20ms SS burst set period or the 5-bit data indication in the SS block time index is: the number of SS blocks in 3 bits. Or the time index of the SS block plus the 1st frame of the half frame plus the last bit of the SFN of 1bits.
  • the last two bits of the SFN are unchanged.
  • the last 2 bits of the SFN of the 40ms SS burst set period are all 0, indicating that the location of the SS burst set is already indicated.
  • the 2 bits of the SFN information can be used to indicate the number of SS blocks or the time index of the SS block.
  • the number of SS blocks in the 40 ms SS burst set period or the 6 bits data indication in the SS block time index is: the number of SS blocks in 3 bits. Or the time index of the SS block plus the 1st frame of the half frame plus the last two bits of the SFN of 2bits.
  • the joint indication may be implemented by combining at least one of SFN, period, and field information to save the number of bits.
  • the method is similar to that in FIG. 5, the network device generates a synchronization signal block SS block, where the SS block includes a synchronization signal SS resource block and a physical broadcast channel PBCH resource block, and sends the SS block.
  • the X bits in the PBCH resource block are used to indicate the first half frame, the second half frame, and the 10 ms SS burst set period of the 10 ms frame in the 5 ms SS burst set period;
  • the X+1 bit in the PBCH resource block is used to indicate a 20ms SS burst set
  • the X+2 bit in the PBCH resource block is used to indicate the 40ms SS burst set period
  • the X+3 bit in the PBCH resource block is used to indicate the 80ms SS burst set period; the X+4 bit in the PBCH resource block is used to indicate the 160ms SS burst set period;
  • 1 bit of the X+1 bits is the last 1 bit of the borrowed indication system frame number bit
  • 3 bits of the X+3 bits are borrowed to indicate the last 3 bits of the system frame number bit
  • the 4 bits of the X+4 bits are the last 4 bits of the borrowed indication system frame number bits.
  • the terminal device receives the SS block, and demodulates the PBCH resource block to obtain a corresponding SS burst set period.
  • the periodic and half-frame joint indication (abbreviated as A) has 2 bits, where: 00 represents the 5msSS burst set period and the first half of the 5ms SS burst set period, respectively, 01 represents 5msSS burst The set period and its second half of the 5ms SS burst set period, 10 represents the 10ms SS burst set period.
  • the SS burst set period is greater than 10ms, that is, 20, 40, 80, 160ms, it is represented by 11.
  • the frame indications at 5ms and 10ms are indicated by the SFN, that is, the frame number indicating the current SS block.
  • the values 00, 01, and 11 are only examples, and the values may be different.
  • one frame is 10 ms.
  • the period and field combination indication, and the last bit of the SFN are used to indicate the number or time index of the SS block.
  • one frame is 10 ms.
  • the period and field combination indication, and the last 2 bits of the SFN are used to indicate the number or time index of the SS block.
  • one frame is 10 ms.
  • the period and field combination indication, and the last 3 bits of the SFN are used to indicate the number or time index of the SS block.
  • the period and field combination indication, and the last 4 bits of the SFN are used to indicate the number or time index of the SS block.
  • X indicates that the frame number of the current current SS block is determined.
  • the X bits are located in the MIB of the PBCH, and the SS blocks generated by the network device may be one or more.
  • the data bits transmitted by the PBCH may pass through a DMRS (demodulation reference signal) of the SSS and/or PBCH, and/or a CRC (cyclic Redundancy Check) code, and/or scrambling, and / or RV (redundancy version redundancy version), and / or cyclic shift implicit indication, and / or display indication.
  • DMRS demodulation reference signal
  • CRC cyclic Redundancy Check
  • the application also discloses a network device. Referring to FIG. 8, the method includes:
  • Processing unit 801 configured to generate an SS block
  • the sending unit 802 is configured to send the SS block.
  • the present application also discloses a terminal device.
  • the method includes:
  • the receiving unit 901 is configured to receive an SS block
  • the processing unit 902 is configured to: demodulate a PBCH resource block in the SS block to obtain periodic and/or field information of a corresponding SS burst set; or demodulate a PBCH resource block in the SS block to obtain a corresponding SS block. Number and/or time index.
  • the foregoing network device and the terminal device are completely corresponding to the network device and the terminal device in the foregoing embodiments, and the corresponding module performs corresponding steps, for example, the sending module performs the step of sending a class in the method embodiment, and the receiving module performs the method in the embodiment.
  • the steps of the receiving class, the other steps are implemented by the processing module, and the specific content refers to the above method, and will not be described in detail.
  • each network element such as a base station, a terminal device, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present application may divide the function modules of the network device and the terminal device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the network device and the terminal device in the device embodiment corresponding to the foregoing methods have another form of embodiment.
  • the sending module can be replaced by a transmitter
  • the receiving module can be replaced by a receiver
  • other modules such as a processing module
  • the transmitting operation, the receiving operation, and the related processing operations in the respective method embodiments are respectively performed, and the transmitter and the receiver can form a transceiver.
  • the above processing unit may be a processor, and the sending unit may be a transmitter, and the receiver and the receiver may constitute a transceiver.
  • FIG. 10 is a schematic diagram showing a possible logical structure of a network device or a terminal device involved in the foregoing embodiment provided by an embodiment of the present application. Includes: processor, transceiver, memory, and bus. The processor, the transceiver, and the memory are connected to each other through a bus.
  • the processor may be a central processing unit CPU, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the transmitter and receiver can form a transceiver. It is also possible to further include an antenna, and the number of antennas may be one or more.
  • a memory may be further included for storing related information such as a program or a code, and the memory may be a single device or integrated in the processor.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as buses in the figure.
  • 10 is only a schematic diagram, and may include other components or only some components, including, for example, a transmitter and a receiver; or only a transmitter, a receiver, and a processor.
  • the various devices or parts of the device of FIG. 10 described above may be integrated into a chip for implementation, such as integration into a baseband chip.
  • a memory (not shown) may be further included for storing computer executable program code, wherein when the program code includes an instruction, when the processor executes The instructions cause the network device or terminal device to perform the corresponding steps in the method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种指示信息的传输方法及装置,该方法包括:网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;发送所述SS block,该方法及装置节省了PBCH的开销。

Description

一种指示信息的传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种指示信息的传输方法及装置。
背景技术
随着通信技术的快速发展,人们对无线通信的数据速率和效率的要求越来越高。在5G新无线(New Radio,NR)通信系统中,波束成形技术用来将传输信号的能量限制在某个波束方向内,从而增加信号发射和接收的效率。波束成形技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。因此物理广播信道(physical broadcast channel,PBCH)的数据传输需要进行波束扫描,而且PBCH的数据解调要求是高可靠性,因此PBCH的码率至少为1/12,因此1bit的PBCH数据,经过编码之后变为12bits的数据,增大了12倍。因此降低PBCH的开销具有极其重要的意义。
发明内容
本申请提供一种指示信息的传输方法及装置,以减小PBCH的开销。
一方面,公开了一种指示信息的传输方法,包括:
网络设备生成同步信号块(synchronization signal,SS block),所述SS block包括同步信号(synchronization signal,SS)资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧和后半帧,以及多种同步信号段集合SS burst set周期中至少一种;发送所述SS block。
同步信号SS资源块可以包括PSS及SSS资源块中至少一种。
例如:X=3,所述10ms帧的前半帧和后半帧为5ms SS burst set周期的10ms帧的前半帧和后半帧,所述多种SS burst set周期包括以下至少一种:5ms,10ms,20ms,40ms,80ms,160ms。
与上述一方面对应,公开了一种指示信息的传输方法,包括:
终端设备接收SS block,所述SS block包括SS资源块及PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧和后半帧,以及多种同步信号段集合SS burst set周期中至少一种;解调PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
以上方案中,X比特位于PBCH的MIB中。
以上方案中,一个帧是10ms,网络设备生成SS block,所述SS block包括主同步 信号PSS,辅同步信号SSS及PBCH资源块,其中,所述PBCH资源块中的3比特用于指示5ms SS burst set的前半帧,5ms SS burst set的后半帧,以及5种SS burst set周期,发送所述SS block。终端设备接收所述SS block,解调PBCH资源块获取相应的SS burst set的周期和半帧信息。另外,如果终端设备为初始接入,先根据SS block中的SS进行同步。
所述5种SS burst set周期可以包括:10ms,20ms,40ms,80ms,160ms。
上述方案中,将半帧信息与多个SS burst set的周期一起进行指示,节省了PBCH开销。
相应的,还公开一种网络设备,包括:
处理模块:用于生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
发送模块:用于发送所述SS block。
一种终端设备,包括:
接收模块:用于接收SS block,所述SS block包括SS资源块及PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
处理模块:用于解调PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
上述网络设备与终端设备与第一方面中的网络设备及终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送类的步骤,接收模块执行方法实施例中接收类的步骤,其它步骤由处理模块实现,具体内容参考上述方法,不再详述。
第二方面,公开了一种指示信息的传输方法,包括:
网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,发送所述SS block;
其中,PBCH资源块中的X比特用于指示SS block的数目和/或时间索引,N-X比特用于指示系统帧号;在不同SS burst set周期下,X的取值不同,N为固定值。X,N均为整数。
SS block的数目可以为SS burst set下所有SS block的数目。
与上述二方面对应,终端设备接收所述SS block,解调PBCH资源块获取相应的SS block的数目和/或时间索引。另外,如果终端设备为初始接入,先根据SS block中的SS进行同步。
以上方案中,X比特位于PBCH的MIB中。
结合上述方面,所述SS burst set周期为5ms或10ms时,X=5;或
所述SS burst set周期为20ms以上时,即20ms,40ms,80ms,160ms等,X=6。
也就是说,所述SS burst set周期为5ms或10ms时,最大波束数目为32,需要5比特指示就够了,因为5比特最多32个取值;所述SS burst set周期为20ms以上时,最大波束数目为64,需要6比特,此时可以从系统帧号中借用1比特,例如借用系统帧号的最后一位,这样,节省了PBCH的开销。
例如:网络设备生成SS block,所述SS block包括PSS,SSS及PBCH资源块,其中,PBCH资源块中的5比特用于指示5ms或10ms SS burst set的SS block的数目或时间索引;所述5ms或10ms SS burst set的最大波束数目为32。
或者
PBCH资源块中的6比特用于指示20ms以上SS burst set的SS block的数目或时间索引;所述6比特中的1比特为指示系统帧号比特的最后一位,所述20ms以上的SS burst set的最大波束数目为64。
上述方案中,5ms或10ms SS burst set的最大波束数目为32,用5比特指示;20ms以上SS burst set的最大波束数目为32,需要用6比特指示,此时借用指示系统帧号的1比特,因此只需要5比特,节省了PBCH开销。
相应的,还公开一种网络设备,包括:
处理模块:用于生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;PBCH资源块内容可以参考上面的方法。
发送模块:用于发送所述SS block。
一种终端设备,包括:
接收模块:用于接收SS block,所述SS block包括SS资源块及PBCH资源块,
处理模块:用于解调PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
上述网络设备与终端设备与第二方面中的网络设备及终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送类的步骤,接收模块执行方法实施例中接收类的步骤,其它步骤由处理模块实现,具体内容参考上述方法,不再详述。
第三方面,公开了一种PBCH的指示的方法,包括:
网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,发送所述SS block;
其中,至少满足以下一种情况:
PBCH资源块中的X比特用于指示5ms SS burst set的SS block的数目和\或时间索引;
PBCH资源块中的X+1比特用于指示10ms SS burst set的SS block的数目和\或时间索引;
PBCH资源块中的X+2比特用于指示20ms SS burst set的SS block的数目和\或时 间索引;
PBCH资源块中的X+3比特用于指示40ms以上SS burst set的SS block的数目和\或时间索引;
所述X+1比特中的1比特为借用的半帧指示;
所述X+2比特中的1比特为指示系统帧号比特的最后1位,1比特为借用的半帧指示;
所述X+3比特中的2比特为指示系统帧号比特的最后2位,1比特为借用的半帧指示。
与上述三方面对应,终端设备接收所述SS block,解调PBCH资源块获取相应的SS block的数目和/或时间索引。另外,如果终端设备为初始接入,先根据SS block中的SS进行同步。
以上方案中,X比特位于PBCH的MIB中。
例如:X=3,5ms SS burst set的最大波束数目为8,需要3比特来指示;10ms SS burst set的最大波束数目为16,需要4比特来指示,此时可以借用半帧指示的1比特;20ms SS burst set的最大波束数目为32,需要5比特来指示,此时可以借用半帧指示的1比特及系统帧号的1比特;40ms以上(包括80ms,160ms)SS burst set的最大波束数目为64,需要6比特来指示,此时可以借用半帧指示的1比特及系统帧号的2比特。
通过上述借用半帧指示及指示系统帧号比特中1比特或2比特来指示SS block的数目或时间索引,节省了PBCH的开销。
相应的,还公开一种网络设备,包括:
处理模块:用于生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;PBCH资源块内容可以参考上面的方法。
发送模块:用于发送所述SS block。
一种终端设备,包括:
接收模块:用于接收SS block,所述SS block包括SS资源块及PBCH资源块;
处理模块:用于解调PBCH资源块获取相应的SS block的数目和/或时间索引。
上述网络设备与终端设备与第三方面中的网络设备及终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送类的步骤,接收模块执行方法实施例中接收类的步骤,其它步骤由处理模块实现,具体内容参考上述方法,不再详述。
第四方面,公开了一种PBCH的指示的方法,包括:
网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,发送所述SS block;
其中,至少满足以下一种情况:
PBCH资源块中的X比特用于指示5ms SS burst set周期下的10ms帧的前半帧、后半帧、以及10ms SS burst set周期;
PBCH资源块中的X+1比特用于指示20ms SS burst set;
PBCH资源块中的X+2比特用于指示40ms SS burst set周期;
PBCH资源块中的X+3比特用于指示80ms SS burst set周期;PBCH资源块中的X+4比特用于指示160ms SS burst set周期;
所述X+1比特中的1比特为借用的指示系统帧号比特最后1位;
所述X+2比特中的2比特为借用的指示系统帧号比特最后2位;
所述X+3比特中的3比特为借用的指示系统帧号比特最后3位;
所述X+4比特中的4比特为借用的指示系统帧号比特最后4位。
例如:X=2。
相应的,终端设备接收所述SS block,解调PBCH资源块获取相应的SS burst set周期和/或半帧指示。
以上方案中,X比特位于PBCH的MIB中。
相应的,还公开一种网络设备,包括:
处理模块:用于生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;PBCH资源块内容可以参考上面的方法。
发送模块:用于发送所述SS block。
一种终端设备,包括:
接收模块:用于接收SS block,所述SS block包括SS资源块及PBCH资源块;
处理模块:用于解调PBCH资源块获取相应的SS burst set周期和/或半帧指示。
上述网络设备与终端设备与第四方面中的网络设备及终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送类的步骤,接收模块执行方法实施例中接收类的步骤,其它步骤由处理模块实现,具体内容参考上述方法,不再详述。
另外,还上述各个方法对应的网络设备及终端设备,具有实现上述各个方法实施例中网络设备及终端设备执行的步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,即由相应的功能模块分别执行相应的方法实施例中的步骤。
例如所述网络设备或终端设备,包括处理模块、发送模块及接收模块中至少一种,分别执行上述各个方面对应的发送步骤及接收步骤。进一步的,除发送/接收之外的步骤可以由处理模块执行。
上述各个方法对应的络设备与终端设备还有另一形式,发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如处理模块可以由处理器替代,分别执行各个方法实施例中的发送操作、接收操作以及相关的处理操作,发射机及接收机可 以组成收发器。
与上面各个方法对应,还提供一种网络设备及终端设备,该网络设备或终端设备包括处理器、存储器、收发器和总线,存储器中存储代码和数据,处理器、存储器和收发器通过总线连接,处理器运行存储器中的代码使得网络设备执行上述各个方面的方法。存储器可以为独立器件,也可以位于处理器内部。
本申请的又一方面提供了一种系统,该系统包括上述网络设备及终端设备。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所提供的解调参考信号序列生成方法、或者解调参考信号序列映射方法、或者解调参考信号序列指示方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所提供的方法。
可以理解地,上述提供的任一种装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请提供的一种通信系统的示意图;
图2为本申请提供的一种基站的示意图;
图3为本申请提供的一种终端设备的示意图;
图4为本申请提供的SS burst set示意图;
图5为本申请一种指示信息的传输方法流程图;
图6为本申请不同SS burst set周期下SS block示意图;
图7为本申请不同SS burst set周期帧结构示意图;
图8为本申请实施例提供的网络设备示意图;
图9为本申请实施例提供的终端设备示意图;
图10为本申请实施例提供的另一种形式的装置示意图。
具体实施方式
在介绍本申请之前,首先对本申请实施例涉及到的技术名词进行介绍说明。
本申请实施例中的终端设备可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端 等。
本申请实施中的网络设备是与所述终端设备进行无线通信的网络侧设备,例如,无线保真(Wireless-Fidelity,Wi-Fi)的接入点、下一代通信的基站,如5G的gNB或小站、微站,传输接收点(transmission reception point,TRP),还可以是中继站、接入点、车载设备、可穿戴设备等。
系统帧:即一个无线传输帧,系统帧的时间长度可以为10毫秒(ms),一个子帧持续时间为1ms。
同步信号(Synchronization Signal,SS)是指用于提供同步的信号。同步信号可以包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)。
同步信号块(SS block):在NR当中,将一个PSS符号,一个SSS符号和两个或多个PBCH符号一起构成了一个资源块,将该资源块称为同步信号块(SS block)。所述PSS、SSS、PBCH符号可以为OFDM(orthogonal frequency division multiplexing,正交频分复用)符号,一个PSS、SSS或PBCH资源块可以包括一个或多个OFDM符号。同步信号块中PSS符号,SSS符号和PBCH符号的位置可以是相邻的。多个同步信号块构成了同步信号段(SS burst),多个同步信号段构成了一个同步信号段集合(SS burst set),如图4所示。
图1为本申请的实施例所应用的通信系统的结构示意图,参见图1,该通信系统包括基站101和终端102。
其中,基站101具有共享信道的调度功能,具有基于发送到终端102的分组数据的历史来建立调度的功能,调度就是在多个终端102共用传输资源时,需要有一种机制来有效地分配物理层资源,以获得统计复用增益。
终端102具有通过与基站101之间建立的通信信道而发送和接收数据的功能。终端102根据通过调度控制信道发送的信息,进行共享信道的发送或接收处理。另外,终端102可以是手机、平板电脑、计算机以及便携终端等等。
基站101与终端102之间通过通信信道进行数据的接收和发送,该通信信道可以是无线通信信道。
图2为本申请实施例提供的一种基站的硬件结构图,如图2所示,该基站包括基带子系统、中射频子系统、天馈子系统和一些支撑结构(例如,整机子系统)。其中,基带子系统用于实现整个基站的操作维护,实现信令处理、无线资源等功能;中射频子系统实现基带信号、中频信号和射频信号之间的转换等功能;天馈子系统包括连接到基站射频模块的天线和馈线,用于实现无线空口信号的接收和发送;整机子系统,是基带子系统和中射频子系统的支撑部分,提供供电和环境监控等功能。
图3为本申请实施例的终端的结构示意图,该终端可以为手机、平板电脑、笔记本电脑等。如图3所示,该终端包括:存储器、处理器、射频(Radio Frequency,RF) 电路、以及电源等部件。本领域技术人员可以理解,图3中示出的结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图3对终端的各个构成部件进行具体的介绍:
存储器可用于存储软件程序以及模块,处理器可以通过运行存储在存储器的软件程序以及模块,从而执行终端的各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器等。
处理器是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,可以通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行终端的各种功能和处理数据。可选的,处理器可包括一个或多个处理单元;处理器可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。
射频(Radio Frequency,RF)电路可用于收发信息或通话过程中,信号的接收和发送。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,RF电路还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
终端还包括给各个部件供电的电源,优选的,电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,终端还可以包括输入单元、显示单元、传感器模块、音频模块、WiFi模块、蓝牙模块等,在此不再赘述。
5G NR系统当中,基站生成PSS序列和SSS序列,用于同步,又根据主要信息块(main information block,MIB)生成PBCH,将PBCH和PSS,以及SSS组成一个SS block,基站可以通过波束扫描的方式发送一个或多个SS block;终端进行初始接入时,首先检测PSS进行同步,再检测SSS获得小区标识,最后解调PBCH资源块,获得初始接入相关信息,包含同步用的系统帧号(system frame number,SFN)、半帧指示、SS block的时间索引等内容中的至少一种。在NR当中,将一个PSS OFDM符号,一个SSS OFDM符号和两个或多个PBCH OFDM符号一起构成一个资源块,将该资源块称为同步块(SS block),SS block中PSS符号,SSS符号和PBCH符号的位置有固定的时域分布关系,而且是相邻的。数个同步块又构成同步段(SS burst),数个SS burst又构成了一个同步段集合(SS burst set)。
PBCH里面传输MIB的内容包括:至少部分SFN、SS burst set周期,SS block时间索引,SS block数量,半帧指示等一种或几种。
目前,在NR当中,存在着6种同步信号段集合(SS burst set)周期,分别为5ms,10ms,20ms,40ms,80ms和160ms,这6种周期形式至少需要3bits进行指示,对于5ms SS burst周期,还需要1bit指示半帧信息,因此,总共需要4bits数据。
另外SS block的传输是波束扫描的,因此需要在PBCH当中指示同步块(SS block)的数目和/或时间索引,NR当中规定,最大的波束数目为64,因此SS block的数目需要6bits进行指示,SS block的时间索引也需要6bits,这两种指示造成PBCH比较大的开销。
本申请提出一种指示信息的传输方法,可以降低PBCH的开销,参考图5,该方法包括:
501、网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧和/或后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
SS资源块可以包括PSS及SSS资源块中至少一个。
502、发送所述SS block。
一个例子中,X=3bit,所述10ms帧的前半帧和后半帧为5ms SS burst set周期的10ms帧的前半帧和后半帧,所述多种SS burst set周期包括:5ms、10ms,20ms,40ms,80ms,160ms至少一种。同步信号SS包括PSS及SSS至少一个,同步信号SS资源块包括PSS及SSS资源块至少一个。
3个比特可以指示上述各种内容,但网络设备发送的SS block在某个时间段可能只指示其中至少一种,如,只指示10ms SS burst set周期,或只指示5ms SS burst set周期的10ms帧的前半帧。
相应的,终端设备接收SS block,所述SS block包括SS资源块及PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧和后半帧,以及多种同步信号段集合SS burst set周期;解调所述PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
上述实施例中,将半帧信息与几种SS burst set周期一起进行指示,3bits数据总共有8种取值分别为:000,001,010,011,100,101,110,111,而SS burst set周期只有6种情况,5ms,10ms,20ms,40ms,80ms和160ms;一个帧是10ms,只有5ms SS burst set需要指示前半帧及后半帧,加上剩余5种SS burst周期,一共7种情况;而3bits数据总共有8种取值,因此足够指示上述7种情况。
例如:000指示5ms SS burst set的10ms帧的前半帧,001指示5ms SS burst set的10ms帧的后半帧,010指示10ms SS burst set周期,011指示20ms SS burst set周期,100指示40ms SS burst set周期,101指示80ms SS burst set周期,110指示160ms SS burst set周期。这样原来需要4bits的数据指示的信息变为3bits就可以指示。上述取值只是一个举例,可以采用不同的取值。
另外,也可以000指示5ms SS burst set,001指示前半帧,010指示后半帧,011,100,101,110,111指示后面的5种周期,此时用完了3比特取值的8种情况。
本申请另一实施例提出一种指示信息的传输方法,可以降低PBCH的开销,该方法包括:流程与图5类似,包括:
网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,发送所述SS block;其中,
PBCH资源块中的X比特用于指示SS block的数目和/或时间索引,N-X比特用于指示系统帧号;在不同SS burst set周期下,X的取值不同,N为固定值,X、N均为整数。
相应的,终端设备接收SS block,解调PBCH资源块获取相应的SS block的数目和/或时间索引。
一个例子中,所述SS burst set周期为5ms或10ms时,X=5;或所述SS burst set周期为20ms以上时,X=6。
NR当中定义了SS burst set里面的最大的SS block数目为64,因此需要6bits进行指示SS block数目或时间索引。另一个实施例中提出将不同周期上的SS block数目做进一步的细分,利用不同周期上的系统帧号部分比特指示SS block数目或者时间索引。
例如将NR当中的20ms SS burst set周期,40ms SS burst set周期,80ms SS burst set周期和160ms SS burst set周期的中的SS block数目定义为最大为64,需要6bits数据指示SS block数目或者时间索引;10ms周期和5ms周期的波束数目最大为32,需要5bits数据指示SS block数目或者SS block的时间索引。
参考图6,对于20ms及以上的SS burst set周期,其SFN的至少1bit是剩余信息,可以将这1比特借用来指示SS block数目或时间索引,可以为SFN的最后一位,这样6比特中,有1比特位SFN的最后一位,因此实际只使用了5比特,节省了PBCH的开销。
例如,如图6所示,20ms SS burst set周期的SFN最后1bit都为0,因此这1bit是多余的,可以用来指示的SS block数目或者时间索引,这样就可以将用于指示SS block数目或者时间索引的6bits为5bits加上1bit的SFN,1bit的SFN可以是SFN的最后一位;6bits的指示信息中包括1bit的SFN,节省了开销。
又一个实施例中,流程与图5类似,网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中满足以下至少一种情况:PBCH资源块中的X比特用于指示5ms SS burst set的SS block的数目和/或时间索引;PBCH资源块中的X+1比特用于指示10ms SS burst set的SS block的数目和/或时间索引;PBCH资源块中的X+2比特用于指示20ms SS burst set的SS block的数目和/或时间索引;PBCH资源块中的X+3比特用于指示40ms以上SS burst set的SS  block的数目和/或时间索引;
发送所述SS block。
所述X+1比特中的1比特为借用的半帧指示;
所述X+2比特中的1比特为指示系统帧号比特的最后1位,1比特为借用的半帧指示;
所述X+3比特中的2比特为指示系统帧号比特的最后2位,1比特为借用的半帧指示。
一个实施例中X=3。
终端设备接收SS block,解调PBCH资源块获取相应的SS block的数目和/或时间索引。
NR当中定义了SS burst set里面的最大的SS block数目为64,因此需要6bits进行指示SS block数目,或者需要6bits指示SS block的时间索引。本发明提出将不同周期上的SS block数目做进一步的细分,利用不同周期上的SFN部分数据和半帧指示信息用来指示SS block数目或者SS block的时间索引。例如NR当中的5ms SS burst set周期,其SS block最大数目定义为8,需要3bits进行指示;10ms SS burst set周期,其SS block最大数目定义为16,需要4bits进行指示;20ms SS burst set周期,其SS block最大数目定义为32,需要5bits进行指示;40ms SS burst set周期及其以上,其SS block最大数目定义为64,需要6bits进行指示。
对于10ms及其以上的SS burst set周期,半帧指示是没有使用的,因此可以用来做SS block数目或者SS block的时间索引指示,这样10ms SS burst set周期的SS block数目或者SS block的时间索引的4bits数据指示方式为:3bits的SS block数目或者SS block的时间索引加上1bits的半帧指示。
对于20ms及其以上的SS burst set周期,SFN的最后一位是没有使用的,例如,如图6所示,20ms SS burst set周期的SFN最后1bit都为0,说明SS burst set的位置已经指示了SFN的1bit信息,因此可以用来做SS block数目或者SS block的时间索引指示,这样20ms SS burst set周期的SS block数目或者SS block的时间索引的5bits数据指示方式为:3bits的SS block数目或者SS block的时间索引加上1bits的半帧指示再加上1bits的SFN最后一位。
对于40ms及其以上的SS burst set周期,SFN的最后两位是没有变化的,例如,如图6所示,40ms SS burst set周期的SFN最后2bits都为0,说明SS burst set的位置已经指示了SFN的2bits信息,因此可以用来做SS block数目或者SS block的时间索引指示,这样40ms SS burst set周期的SS block数目或者SS block的时间索引的6bits数据指示方式为:3bits的SS block数目或者SS block的时间索引加上1bits的半帧指示再加上2bits的SFN最后两位。
另一个实施例中,由于SS burst set周期自身携带了部分帧信息,因此,可以结合 SFN,周期,半帧信息中至少一种来实现联合指示,以节约比特数。
该方法流程与图5类似,网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,发送所述SS block。
其中,至少满足以下一种情况:
PBCH资源块中的X比特用于指示5ms SS burst set周期下的10ms帧的前半帧、后半帧、以及10ms SS burst set周期;
PBCH资源块中的X+1比特用于指示20ms SS burst set;
PBCH资源块中的X+2比特用于指示40ms SS burst set周期;
PBCH资源块中的X+3比特用于指示80ms SS burst set周期;PBCH资源块中的X+4比特用于指示160ms SS burst set周期;
所述X+1比特中的1比特为借用的指示系统帧号比特最后1位;
所述X+2比特中的2比特为借用的指示系统帧号比特最后2位;
所述X+3比特中的3比特为借用的指示系统帧号比特最后3位;
所述X+4比特中的4比特为借用的指示系统帧号比特最后4位。
例如:X=2。
相应的,终端设备接收所述SS block,解调PBCH资源块获取相应的SS burst set周期。
例如,参考图7及下表1:周期和半帧联合指示(简写为A)有2bit,其中:00分别表示5msSS burst set周期及其5ms SS burst set周期下的前半帧,01分别表示5msSS burst set周期及其5ms SS burst set周期下的后半帧,10表示10ms SS burst set周期。当SS burst set周期大于10ms时,也就是20、40、80、160ms时,用11表示。5ms和10ms下的帧指示通过SFN进行指示,也就是指示当前SS block所在的帧号。取值00、01、11仅是实施例,取值可以采用不同方式。
参考图7,一个帧是10ms,当SS burst set周期为20ms的时候,由于SS burst set每2个帧出现一次,因此,SFN的最后1bit始终为0。所以可以通过SFN的最后一位来区分当周期大于10ms的时候,是20ms还是更大的周期。如果A=11,SFN最后一位为0,则为20ms的周期。当A=11,SFN最后一位为1,则为大于20ms的周期,如40、80、160ms周期。
因此,当SS burst set周期为20ms的时候,用周期和半帧联合指示,以及SFN的最后一位来指示SS block的数目或时间索引。
参考图7,一个帧是10ms,当SS burst set周期为40ms的时候,由于SS burst set每4个帧才出现一次,因此,SFN的倒数第2位始终为0。所以可以通过SFN的倒数第2位来区分当周期大于20ms的时候,是40ms还是更大的周期。如果A=11,SFN最后一位为1,SFN的倒数第2位为0,则为40ms的周期。如果A=11,SFN最后一 位为1,SFN的倒数第2位为1,则为大于40ms的周期,如80、160ms周期。
因此,当SS burst set周期为40ms的时候,用周期和半帧联合指示,以及SFN的最后2位来指示SS block的数目或时间索引。
参考图7,一个帧是10ms,当SS burst set周期为80ms的时候,由于SS burst set每8个帧才出现一次,因此,SFN的倒数第3位始终为0。所以可以通过SFN的倒数第3位来区分当周期大于40ms的时候,是80ms还是更大的周期。如果A=11,SFN最后一位为1,SFN的倒数第2位为1,SFN的倒数第3位为0,则为80ms的周期。如果A=11,SFN最后一位为1,SFN的倒数第2位为1,SFN的倒数第3位为1,则为大于80ms的周期,如160ms周期。
因此,当SS burst set周期为80ms的时候,用周期和半帧联合指示,以及SFN的最后3位来指示SS block的数目或时间索引。
同理,当SS burst set周期为160ms的时候,用周期和半帧联合指示,以及SFN的最后4位来指示SS block的数目或时间索引。
依次类推,可以通过SFN对大于80ms的周期进行指示。具体见下表1以及表2。
Figure PCTCN2018089038-appb-000001
表1。注意:X表示由具体当前SS block所在的帧号确定。
当然也可以通过下表2进行指示,也就是通过SFN的取值等于1来指示具体周期,而不是通过取值等于0来指示具体周期,也就是说上表1中SFN的取值0、1可以对调。
Figure PCTCN2018089038-appb-000002
表2。注意:X表示由具体当前SS block所在的帧号确定
上述各个实施例中,以上各个实施例方案中,X比特位于PBCH的MIB中,网络设备生成的SS block可以为一个或多个。
PBCH所传输的这些数据比特可以通过SSS和/或PBCH的DMRS(demodulation Reference signal、解调参考信号),和/或CRC(cyclic Redundancy Check循环冗余校验)码,和/或加扰,和/或RV(redundancy version冗余版本),和/或循环移位隐式指示,和/或显示指示。
本申请还公开了一种网络设备,参考图8,包括:
处理单元801:用于生成SS block;
发送单元802:用于发送所述SS block。
相应的,本申请还公开了一种终端设备,参考图9,包括:
接收单元901,用于接收SS block;
处理单元902:用于解调所述SS block中的PBCH资源块获取相应的SS burst set 的周期和/或半帧信息;或者解调所述SS block中的PBCH资源块获取相应的SS block的数目和/或时间索引。
所述SS block的内容可以参考上述各个方法实施例的描述,不再详述。
上述网络设备与终端设备与上述各个实施例中的网络设备及终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块执行方法实施例中发送类的步骤,接收模块执行方法实施例中接收类的步骤,其它步骤由处理模块实现,具体内容参考上述方法,不再详述。
上述主要从各个网元及网元交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上述各个方法对应的装置实施例中网络设备与终端设备还有另一形式的实施例,发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如处理模块可以由处理器替代,分别执行各个方法实施例中的发送操作、接收操作以及相关的处理操作,发射机及接收机可以组成收发器。
在硬件实现上,上述处理单元可以为处理器,发送单元可以为发送器,其与接收器可以构成收发器。
图10所示,为本申请的实施例提供的上述实施例中所涉及的网络设备或终端设备的一种可能的逻辑结构示意图。包括:处理器、收发器、存储器以及总线。处理器、收发器以及存储器通过总线相互连接。
其中,处理器可以是中央处理器单元CPU,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended  Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
发射机和接收机可以组成收发机。还可以进一步包括天线,天线的数量可以为一个或多个。
另外还可以进一步包括存储器,用于存储程序或代码等相关信息,存储器可以是一个单独的器件,也可以集成在处理器中。
上述各个组件可以通过总线耦合在一起,其中总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线。
上述图10只是示意图,还有可以包括其它元件或只包括部分元件,例如包括发射机及接收机;或者只包括发射机、接收机及处理器。
上述图10的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
进一步的,在一种具体的实施例中,还可以包括存储器(图中未示出),用于存储计算机可执行程序代码,其中,当所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述网络设备或终端设备执行方法实施例中的相应步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种指示信息的传输方法,包括:
    网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
    发送所述SS block。
  2. 如权利要求1所述的方法,其中,X=3,所述10ms帧的前半帧和后半帧为5ms SS burst set周期的10ms帧的前半帧和后半帧,所述多种SS burst set周期包括以下至少一种:5ms,10ms,20ms,40ms,80ms,160ms。
  3. 一种指示信息的传输方法,包括:
    终端设备接收同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
    解调PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
  4. 一种指示信息的传输方法,包括:
    网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;发送所述SS block;其中,
    PBCH资源块中的X比特用于指示SS block的数目或时间索引,N-X比特用于指示系统帧号;
    在不同SS burst set周期下,X的取值不同,N为固定值。
  5. 如权利要求4方法,包括:
    所述SS burst set周期为5ms或10ms时,X=5;或
    所述SS burst set周期为20ms以上时,X=6。
  6. 一种指示信息的传输方法,包括:
    网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;发送所述SS block;
    其中,至少满足以下一种情况:
    PBCH资源块中的X比特用于指示5ms SS burst set的SS block的数目和/或时间索引;
    PBCH资源块中的X+1比特用于指示10ms SS burst set的SS block的数目和/或时间索引;
    PBCH资源块中的X+2比特用于指示20ms SS burst set的SS block的数目和/或时间索引;
    PBCH资源块中的X+3比特用于指示40ms以上SS burst set的SS block的数目和/或时间索引;
    所述X+1比特中的1比特为借用的半帧指示;
    所述X+2比特中的1比特为指示系统帧号比特的最后1位,1比特为借用的半帧指示;
    所述X+3比特中的2比特为指示系统帧号比特的最后2位,1比特为借用的半帧指示。
  7. 一种指示信息的传输方法,包括:
    网络设备生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块;发送所述SS block;
    其中,至少满足以下一种情况:
    PBCH资源块中的X比特用于指示5ms SS burst set周期下的10ms帧的前半帧、后半帧、以及10ms SS burst set周期;
    PBCH资源块中的X+1比特用于指示20ms SS burst set;
    PBCH资源块中的X+2比特用于指示40ms SS burst set周期;
    PBCH资源块中的X+3比特用于指示80ms SS burst set周期;PBCH资源块中的X+4比特用于指示160ms SS burst set周期;
    所述X+1比特中的1比特为借用的指示系统帧号比特最后1位;
    所述X+2比特中的2比特为借用的指示系统帧号比特最后2位;
    所述X+3比特中的3比特为借用的指示系统帧号比特最后3位;
    所述X+4比特中的4比特为借用的指示系统帧号比特最后4位。
  8. 一种网络设备,包括:
    处理模块:用于生成同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
    发送模块:用于发送所述SS block。
  9. 如权利要求8所述的网络设备,其中,X=3,所述10ms帧的前半帧和后半帧为5ms SS burst set周期的10ms帧的前半帧和后半帧,所述多种SS burst set周期包括以下至少一种:5ms,10ms,20ms,40ms,80ms,160ms。
  10. 一种终端设备,包括:
    接收模块:用于接收同步信号块SS block,所述SS block包括同步信号SS资源块及物理广播信道PBCH资源块,其中,所述PBCH资源块中的X比特用于指示10ms帧的前半帧、10ms帧的后半帧,以及多种同步信号段集合SS burst set周期中至少一种;
    处理模块:用于解调PBCH资源块获取相应的SS burst set的周期和/或半帧信息。
  11. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-7任意一项的方法。
  12. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-7任意一项的方法。
PCT/CN2018/089038 2017-06-02 2018-05-30 一种指示信息的传输方法及装置 WO2018219296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710409964.5 2017-06-02
CN201710409964.5A CN108989005B (zh) 2017-06-02 2017-06-02 一种指示信息的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018219296A1 true WO2018219296A1 (zh) 2018-12-06

Family

ID=64454368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089038 WO2018219296A1 (zh) 2017-06-02 2018-05-30 一种指示信息的传输方法及装置

Country Status (2)

Country Link
CN (1) CN108989005B (zh)
WO (1) WO2018219296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918392B (zh) * 2019-05-08 2023-06-27 中国移动通信有限公司研究院 信息的指示方法、检测方法、网络设备及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723639A (zh) * 2013-11-27 2016-06-29 瑞典爱立信有限公司 用于分别发送和检测同步信号和相关联的信息的网络节点、无线设备及其中的方法
WO2016130175A1 (en) * 2015-02-11 2016-08-18 Intel IP Corporation Device, system and method employing unified flexible 5g air interface
WO2017035238A2 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094565A (ko) * 2011-11-18 2014-07-30 후지쯔 가부시끼가이샤 이종 네트워크에서 동기화를 향상시키기 위한 방법 및 장치
EP2978244B1 (en) * 2013-04-03 2017-06-07 Huawei Technologies Co., Ltd. Broadcast information sending and receiving method, device and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723639A (zh) * 2013-11-27 2016-06-29 瑞典爱立信有限公司 用于分别发送和检测同步信号和相关联的信息的网络节点、无线设备及其中的方法
WO2016130175A1 (en) * 2015-02-11 2016-08-18 Intel IP Corporation Device, system and method employing unified flexible 5g air interface
WO2017035238A2 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications

Also Published As

Publication number Publication date
CN108989005B (zh) 2024-05-14
CN108989005A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
US11122555B2 (en) Data transmission method, terminal device, and base station system
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
CN111356230B (zh) 一种通信方法及装置
WO2018210243A1 (zh) 一种通信方法和装置
CN109392120B (zh) 信息指示方法及相关设备
WO2019192501A1 (zh) 资源指示值的获取方法及装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
WO2021032017A1 (zh) 通信方法和装置
EP3963953A1 (en) Determining pdcch monitoring during on-duration when in power saving mode
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
JP7480417B2 (ja) 補助情報送信方法、受信方法、装置、端末及びネットワーク側機器
US20200119851A1 (en) Communication method, network device, and terminal
WO2018137700A1 (zh) 一种通信方法,装置及系统
CN113708899A (zh) 多载波调度方法、装置及设备
CN114026902A (zh) 小区配置的确定方法及装置
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
WO2021030991A1 (zh) 一种上行传输资源的确定方法及装置
WO2019192589A1 (zh) 通信方法、通信装置以及计算机可读存储介质
WO2018219296A1 (zh) 一种指示信息的传输方法及装置
WO2019149073A1 (zh) 信息指示方法、终端设备、网络设备和系统
US20190174515A1 (en) Physical Channel Sending Method and Receiving Method, Terminal Device, and Network Device
WO2020199032A1 (zh) 一种通信方法及设备
CN111418229B (zh) 数据复制传输功能的配置方法、网络设备及终端设备
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2022021023A1 (zh) 信息指示方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810291

Country of ref document: EP

Kind code of ref document: A1