WO2021004321A1 - 阵列基板、显示装置及其显示方法 - Google Patents

阵列基板、显示装置及其显示方法 Download PDF

Info

Publication number
WO2021004321A1
WO2021004321A1 PCT/CN2020/098855 CN2020098855W WO2021004321A1 WO 2021004321 A1 WO2021004321 A1 WO 2021004321A1 CN 2020098855 W CN2020098855 W CN 2020098855W WO 2021004321 A1 WO2021004321 A1 WO 2021004321A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric elastomer
light intensity
array substrate
voltage
reflective layer
Prior art date
Application number
PCT/CN2020/098855
Other languages
English (en)
French (fr)
Inventor
陈伟雄
张乐
刘汉青
李鑫
宋勇
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/264,867 priority Critical patent/US20210294157A1/en
Publication of WO2021004321A1 publication Critical patent/WO2021004321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • the embodiment of the present disclosure relates to an array substrate, a display device and a display method thereof.
  • a liquid crystal display is generally formed by a pair of an upper substrate and a lower substrate, and liquid crystal is encapsulated in the space between the two substrates. Since the liquid crystal molecules themselves do not emit light, the display needs a light source in order to display images. According to the type of light source used, liquid crystal displays can be divided into transmissive, reflective, and transflective.
  • the transmissive liquid crystal display uses a backlight as a light source, and the light emitted by the backlight passes through a transparent electrode and a liquid crystal layer to display images, which can display images in a dark environment.
  • the reflective liquid crystal display uses external ambient light as a light source, and the ambient light enters the display screen and then reflects and displays images. Therefore, it cannot display images in a dark environment.
  • the transflective liquid crystal display has the characteristics of both transmissive and reflective liquid crystal displays. A transmissive area and a reflective area are set in the panel at the same time, which can be used in a bright environment or a dark environment.
  • the embodiments of the present disclosure provide an array substrate, a display panel, a display device and a display method thereof.
  • the array substrate can adjust its own reflectivity according to the environmental light intensity, thereby optimizing the display effect.
  • At least one embodiment of the present disclosure provides an array substrate, including: a base substrate; a plurality of pixel units located on the base substrate, at least one of the plurality of pixel units includes a reflective layer; and a dielectric elastomer , Located on the side of the reflective layer close to the base substrate, and configured to change the unevenness of the surface on the side close to the reflective layer under the action of a voltage, thereby changing the unevenness of the reflective layer.
  • the reflective layer is conformally formed on the dielectric elastomer.
  • At least one of the plurality of pixel units further includes a transmissive area located outside the reflective layer.
  • the array substrate further includes a control line electrically connected to the dielectric elastomer and configured to apply a voltage to the dielectric elastomer.
  • the dielectric elastomer includes a plurality of dielectric elastomer blocks arranged in a matrix, each dielectric elastomer block is located in an area where at least one pixel unit is located, and the control line includes a plurality of control lines , Each of the dielectric elastomer blocks is connected to at least one of the control lines.
  • the dielectric elastomer is provided with a light-transmitting area in an area corresponding to the transmitting area.
  • the dielectric elastomer includes a conductive layer and a dielectric elastic material layer that are stacked, and the conductive layer is electrically connected to the control line and is configured to apply a voltage to the dielectric elastic material layer, The dielectric elastic material layer is configured to change the unevenness of the side away from the base substrate according to the voltage applied by the conductive layer.
  • the conductive layer includes a first conductive layer and a second conductive layer, which are respectively located on two sides of the dielectric elastic material layer in a direction perpendicular to the base substrate, and the first conductive layer One of the second conductive layers is electrically connected to the control line, and the other is configured to apply a common voltage.
  • the changing the unevenness of the surface close to the reflective layer includes forming protrusions or changing the height of the protrusions.
  • the reflective layer is a colored reflective layer.
  • the dielectric elastomer and the reflective layer are insulated from each other.
  • At least one embodiment of the present disclosure provides a display device including the above-mentioned array substrate.
  • the display device further includes a controller and a photosensitive element, the controller is electrically connected to the photosensitive element and the dielectric elastomer, and the photosensitive element is configured to detect the intensity of ambient light
  • the controller provides a light intensity signal, and the controller applies a corresponding voltage to the dielectric elastomer according to the light intensity signal.
  • At least one embodiment of the present disclosure provides a display method of a display device, including: detecting the intensity of ambient light; according to the light intensity, applying a corresponding voltage to the dielectric elastomer to change the proximity of the dielectric elastomer to the The unevenness on one side of the reflective layer changes the reflectivity of the reflective layer.
  • At least one of the plurality of pixel units includes a transmissive area
  • the display device further includes a backlight unit
  • applying a corresponding voltage to the dielectric elastomer according to the light intensity includes: When the light intensity is less than the first preset light intensity, turn on the backlight unit and stop applying voltage to the dielectric elastomer; when the light intensity is greater than or equal to the first preset light intensity and less than the second preset When the light intensity is applied, a voltage in the first voltage range is applied to the dielectric elastomer to make the surface unevenness of the dielectric elastic body greater than a predetermined unevenness; when the light intensity is greater than or equal to a second preset When the light intensity is applied, a voltage in the second voltage range is applied to the dielectric elastomer, so that the surface unevenness of the dielectric elastic body is less than the predetermined unevenness; the second preset light intensity is greater than For the first preset light intensity, the voltage value in the first voltage value range is greater than the voltage
  • FIG. 1 is a schematic structural diagram of an array substrate according to at least one embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of the array substrate shown in FIG. 1 along the line A-A';
  • FIG. 3 is a schematic structural diagram of another array substrate according to at least one embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the array substrate shown in FIG. 3 along the line B-B';
  • FIG. 5 is a schematic structural diagram of yet another array substrate according to at least one embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the block design of the dielectric elastomer of the array substrate according to at least one embodiment of the present disclosure
  • Fig. 7 is a schematic structural diagram of a dielectric elastomer block according to at least one embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of protrusions of a dielectric elastomer according to at least one embodiment of the present disclosure
  • FIG. 9 is a color reflective layer pattern according to at least one embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display panel according to at least one embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of block control of a display device according to at least one embodiment of the present disclosure.
  • FIG. 12A is a schematic diagram of the structure of the dielectric elastomer and the reflective layer when no voltage is applied to the dielectric elastomer according to at least one embodiment of the present disclosure
  • FIG. 12B is a schematic diagram of the structure of the dielectric elastomer and the reflective layer when the dielectric elastomer according to at least one embodiment of the present disclosure is applied with a voltage in the first voltage range;
  • 12C is a schematic diagram of the protrusions of the dielectric elastomer and the reflective layer when the dielectric elastomer according to at least one embodiment of the present disclosure is applied with a voltage in the second voltage range.
  • the technical principle of the transflective liquid crystal display is to set a transmissive area in the reflective metal, divide each pixel into a transmissive part and a reflective part, and introduce a backlight to achieve the technical effect of transflective.
  • the reflective metal of the reflective part is used to reflect the ambient light for display; in a dark environment, the transmitted light mode is used and the light from the backlight is used for display.
  • transflective liquid crystal displays also have some problems. For example, due to the presence of the transmissive area, the area of the reflective area will be reduced accordingly, so that its reflectivity in a bright environment will decrease; if the area of the reflective area is increased, it will Reduce the area of the transmission area, so that its transmittance in a dark environment will also decrease.
  • the embodiments of the present disclosure provide an array substrate, a display panel, a display device and a display method thereof.
  • the array substrate can increase the reflectivity without reducing the transmission area, and can adjust its own reflectivity according to the environmental light intensity, thereby optimizing the display effect.
  • FIG. 1 is a schematic structural diagram of an array substrate according to at least one embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structural diagram of the array substrate shown in FIG. 1 along the line A-A'.
  • At least one embodiment of the present disclosure provides an array substrate, which can be used in a reflective liquid crystal display panel.
  • the array substrate includes: a base substrate 101, a plurality of pixel units P, a reflective layer 102 and a dielectric elastomer 103.
  • a plurality of pixel units P are located on the base substrate 101, and at least one of the plurality of pixel units P includes a reflective area P1.
  • the reflective area P1 includes a reflective layer 102, which is configured to reflect light from outside; the dielectric elastomer 103 is located on the side of the reflective layer 102 close to the base substrate 101, and is configured to change closer to the reflection under the action of voltage The unevenness of the surface on one side of the layer 102 changes the unevenness of the reflective layer 102.
  • the unevenness is used to evaluate the unevenness of the surface.
  • the unevenness of the surface can be obtained by measuring the height difference between multiple high points and low points on the surface, and calculating the arithmetic average of the multiple height differences.
  • the height of a high point or a low point refers to the distance between a point on the surface and the reference plane.
  • the surface of the dielectric elastomer away from the reflective area is used as the reference plane.
  • the point with a large distance is a high point, and a small distance is a low point.
  • the embodiments of the present disclosure are not limited to this, as long as the unevenness of the surface can be evaluated, other unevenness evaluation methods can also be used.
  • Dielectric elastomers include electro-deformable elastomer materials, which can change their shape or volume under the action of an external electric field, and restore their original shape or volume after the external electric field is removed.
  • the embodiments of the present disclosure adjust the reflectivity of the array substrate by applying the dielectric elastomer to the array substrate, thereby improving the display effect.
  • the reflective layer 102 is conformally formed on the dielectric elastomer 103. That is, the reflective layer 102 is configured to deform as the dielectric elastic body 103 deforms, and is consistent with the deformation of the surface of the dielectric elastic body 103 near the reflective layer 102. In this way, when the dielectric elastomer 103 changes the unevenness of the surface close to the reflective layer 102 under the action of voltage, the unevenness of the surface of the reflective layer 102 can be changed.
  • the entire dielectric elastic body 103 may be deformed, so that the unevenness of the surface of the dielectric elastic body 103 close to the reflective layer 102 is changed.
  • the unevenness of the surface of the dielectric elastomer 103 is positively correlated with the voltage applied to it. That is, the higher the voltage applied to the dielectric elastomer, the greater the unevenness of its surface.
  • the dielectric elastomer can change the unevenness of the surface close to the reflective layer under the action of voltage, the unevenness of the surface of the reflective layer is changed to change the unevenness of the reflective layer. The reflectivity can therefore improve the display effect of the display panel using the array substrate.
  • the base substrate 101 may be a transparent or non-transparent insulating substrate.
  • the base substrate 101 may be a glass substrate, a quartz substrate, or a substrate made of other suitable materials.
  • the array substrate further includes gate lines 104, data lines 105 and switching elements 106.
  • the gate line 104 and the data line 105 are located on the base substrate 101 and cross each other and are insulated from each other to define a plurality of pixel units P; the switching element 106 is located in the pixel unit P and is connected to the gate line 104 and the data line 105.
  • the switching element 106 is located on the side of the dielectric elastic body 103 close to the base substrate 101.
  • the switching element 106 is a thin film transistor, and includes a gate 1061, a source 1063, a drain 1062, a semiconductor layer 1064, and a gate insulating layer 1065.
  • the semiconductor layer 1063 is located directly above the gate 1061 and is connected to the source 1063 and the drain 1062 respectively.
  • the gate insulating layer 1065 covers the gate 1061 and is configured to insulate the gate 1061 from the source 1063, the drain 1062, and the semiconductor layer 1064 from each other.
  • FIG. 2 only takes the thin film transistor as a bottom-gate thin film transistor as an example, but it can also be other types of thin film transistors, such as top-gate thin film transistors, double-gate thin film transistors, and the like.
  • the array substrate further includes a first insulating layer 108.
  • the first insulating layer 108 is located between the reflective layer 102 and the dielectric elastomer 103, and is configured to insulate the reflective layer 102 and the dielectric elastomer 103 from each other without affecting the reflective layer 102 and the dielectric elasticity. Conformity of body 103. That is, the first insulating layer 108 may be conformally formed on the dielectric elastomer 103, and the reflective layer 102 may be conformally formed on the first insulating layer 108. Therefore, the first insulating layer can be made of a material with a lower hardness, and the thickness of the first insulating layer can be set to be smaller without affecting the insulation.
  • the array substrate further includes a second insulating layer 109.
  • the second insulating layer 109 is located between the switching element 106 and the dielectric elastic body 103 and covers the switching element 106, and is configured to insulate the switching element 106 and the dielectric elastic body 103.
  • both the first insulating layer 108 and the second insulating layer 109 may be transparent or non-transparent insulating layers.
  • the reflective layer 102 is a conductive reflective layer.
  • the material can be metal conductive materials such as silver, copper, aluminum, molybdenum, or other suitable materials.
  • the array substrate further includes a first via hole 110 located on the first insulating layer 108 and penetrating the dielectric elastomer 103 and the second insulating layer 109, so that the reflective layer 102 passes through the first via hole 110 and One of the source or drain of the thin film transistor is electrically connected, and the data line 105 is electrically connected to the other of the source or drain.
  • the reflective layer 102 is electrically connected to the drain electrode 1062
  • the data line 105 is electrically connected to the source electrode 1063
  • the gate line 104 is electrically connected to the gate electrode 1061.
  • the switching element 106 is configured to turn on or disconnect the electrical connection between the data line 105 and the reflective layer 102 according to the scan signal provided by the gate line 104.
  • the reflective layer 102 functions as a pixel electrode, that is, provides a pixel voltage for the pixel unit P.
  • the array substrate of at least one embodiment of the present disclosure may also be used in a transflective liquid crystal display panel.
  • FIG. 3 is a schematic structural diagram of yet another array substrate according to at least one embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional structural diagram of the array substrate shown in FIG. 3 along the line B-B'.
  • the array substrate shown in FIG. 3 is similar in structure to the array substrate shown in FIG. 1, and their difference is that the pixel unit P of the array substrate shown in FIG. 3 further includes a transmission area P2. Therefore, the same names and reference numerals are used for elements having the same or similar structure.
  • At least one of the plurality of pixel units P further includes a transmission area P2 located outside the reflection area P1, and the reflection area P1 and the transmission area P2 constitute the pixel unit P.
  • the transmission area P2 light can penetrate the array substrate.
  • the reflective layer 102 is only located in the reflective region P1, and the transmissive region P2 does not include the reflective layer 102; the area ratio of the reflective region to the transmissive region can be designed according to actual needs, which is not limited in the present disclosure.
  • the dielectric elastomer is arranged under the reflective layer of the reflective area, the reflection of the reflective area can be realized through the dielectric elastomer without changing the area ratio of the reflective area to the transmissive area. The purpose of rate adjustment.
  • the array substrate further includes a transmissive electrode 112.
  • the transmissive electrode 112 is electrically connected to the source or drain for driving the liquid crystal molecules located in the transmissive region to rotate.
  • the transmissive electrode 112 is electrically connected to the drain 1062 and at least partially overlaps the transmissive region P2 in a direction perpendicular to the base substrate 101. It should be noted that the transmissive electrode 112 and the reflective layer 102 may be located on the same layer and connected to each other.
  • both the reflective layer and the transmissive electrode in the above embodiments are electrically connected to the drain, and can be inputted with display signals during display to provide pixel voltages for the liquid crystal molecules in the reflective area and transmissive area respectively, so both serve as the pixel electrode. effect.
  • the array substrate includes the transmissive region
  • the base substrate 101, the first insulating layer 108, the gate insulating layer 1065, and the second insulating layer 109 are transparent insulating layers.
  • the transmissive electrode 112 is made of a transparent conductive material.
  • it can be made of transparent metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide and the like.
  • FIG. 5 is a schematic structural diagram of another array substrate according to at least one embodiment of the present disclosure.
  • the array substrate further includes a control line 113, located between the dielectric elastic body 103 and the reflective layer 102, electrically connected to the dielectric elastic body 103 and insulated from the reflective layer 102, and configured to be dielectric elastic A voltage is applied to the body 103 to control the dielectric elastic body 103 to change the surface unevenness on the side close to the reflective layer 102.
  • the control line can be connected to the controller, so that the amount of change in the surface unevenness of the dielectric elastomer can be controlled by controlling the voltage applied to the dielectric elastomer.
  • the dielectric elastomer 103 includes a conductive layer 1031 and a dielectric elastic material layer 1032 that are stacked.
  • the conductive layer 1031 and the control line 113 are electrically connected through the second via 114, and are configured to apply a voltage to the dielectric elastic material layer 1032; the dielectric elastic material layer 1032 is configured to change the proximity to the reflective layer according to the voltage applied by the conductive layer 1031 The unevenness of side 102.
  • Both the conductive layer 1031 and the reflective layer 102 are conformal to the dielectric elastic material layer 1032. Therefore, the conductive layer can be made of a conductive material with a smaller hardness, and the thickness of the conductive layer can be set to be smaller without affecting the conductive effect.
  • the embodiment of the present disclosure does not particularly limit the hardness and thickness of the conductive layer, as long as the surface unevenness can be changed with the deformation of the dielectric elastomer.
  • the conductive layer 1031 includes a first conductive layer 1031a and a second conductive layer 1031b that are insulated from each other, and the first conductive layer 1031a is located on the side of the dielectric elastic material layer 1032 close to the base substrate 101 , The second conductive layer 1031b is located on the side of the dielectric elastic material layer 1032 away from the base substrate 101.
  • the second conductive layer 1031b is electrically connected to the control line 113 through the second via 114, and a first voltage is applied by the control line 113; the first conductive layer 1031a is connected to a common power source and is configured to apply a common voltage.
  • the first conductive layer 1031a may be electrically connected to the peripheral power supply through via holes in the peripheral area of the display area.
  • the first conductive layer and the second conductive layer are respectively disposed on both sides of the dielectric elastic material layer as an example.
  • the embodiments of the present disclosure are not limited thereto.
  • the first conductive layer and the second conductive layer may be arranged on the same side of the dielectric elastic material layer, and the first conductive layer and the second conductive layer are electrically insulated from each other, and at least one of them is a patterned electrode, so that the A voltage is applied between a conductive layer and a second conductive layer to generate an electric field acting on the dielectric elastic material layer.
  • the first conductive layer is a patterned electrode
  • the second conductive layer is a plate electrode
  • the first conductive layer is located between the second conductive layer and the dielectric elastic material layer.
  • the first conductive layer and the second conductive layer are both patterned electrodes, and the first conductive layer and the second conductive layer may be provided on the same layer or different layers.
  • the first conductive layer and the second conductive layer are located on the same side of the dielectric elastic material layer, they may be located on the side of the dielectric elastic material layer away from the reflective layer.
  • the reflective layer may also be in direct contact with the dielectric elastic material layer, so that the deformation of the dielectric elastic material layer can be better transmitted to the reflective layer.
  • the material of the control wire 113 may be, for example, silver, silver alloy, copper, copper alloy, aluminum, aluminum alloy, and other suitable materials.
  • the material of the dielectric elastic material layer 1032 may be silicon rubber, polyurethane or polyacrylate, or a composite material of silicon rubber, polyurethane or polyacrylate, or other suitable materials.
  • Different dielectric elastic materials have different properties. For example, polyacrylate has high energy density and is easy to process, but has a higher driving voltage and slow response speed; silicone rubber has a fast response speed and a wide applicable temperature range. Therefore, a suitable dielectric elastic material can be selected according to actual needs, which is not limited in the present disclosure.
  • the first insulating layer 108 includes a first sub-insulating layer 1081 and a second sub-insulating layer 1082 that are stacked, and the first sub-insulating layer 1081 is located on the second sub-insulating layer 1082 close to the dielectric
  • the control line 113 is located between the first sub-insulating layer 1081 and the second sub-insulating layer 1082.
  • the second via hole 114 is opened on the first sub-insulating layer 1081 so that the control line 113 is electrically connected to the second conductive layer 1031 b of the dielectric elastomer 103.
  • the positions of the first conductive layer 1031a and the second conductive layer 1031b can be interchanged.
  • FIG. 5 shows that the control line 113 is located above the dielectric elastomer 103, the control line 113 can also be located below the dielectric elastomer 103, as long as one of the first conductive layer 1031a and the second conductive layer 1031b is connected to the control Line 113 is electrically connected, and the other is electrically connected to the public power supply.
  • the second insulating layer 109 can be divided into two insulating layers with a structure similar to that shown in FIG. 5, and the control line 113 is located in the two insulating layers divided by the second insulating layer 109.
  • the insulating layers are electrically connected to one of the first conductive layer 1031a and the second conductive layer 1031b through via holes.
  • the first via hole 110 passes through the second sub-insulating layer 1082, the first sub-insulating layer 1081, the second conductive layer 1031b, the dielectric elastic material layer 1032, and the first conductive layer 1031a.
  • the reflective layer 102 is electrically connected to the drain 1062 of the thin film transistor.
  • FIG. 6 is a schematic diagram of a block design of a dielectric elastomer of an array substrate according to at least one embodiment of the present disclosure.
  • the dielectric elastomer 103 is divided into a plurality of dielectric elastomer blocks 1033 arranged in a matrix that are insulated from each other.
  • the number of control lines 113 is multiple, and the dielectric elastomer block 1033 and the control line 113 are one One corresponds to the electrical connection.
  • FIG. 6 shows that although FIG. 6 shows that the dielectric elastomer block 1033 is electrically connected to the control line 113 through a second via 114, the dielectric elastomer block 1033 also passes through a plurality of second vias 114 and the control line 113. Electric connection.
  • the multiple second via holes are more conducive to achieving electrical connection between the dielectric elastomer block and the control line, and the voltage signal loss can be reduced by connecting multiple connection points in parallel.
  • each dielectric elastomer block 1033 covers at least one pixel unit P.
  • the dielectric elastomer block 1033 may correspond to the pixel units P in one-to-one correspondence, or one dielectric elastomer block 1033 may cover multiple pixel units P.
  • FIG. 7 is a schematic structural diagram of a dielectric elastomer block 1033 according to at least one embodiment of the present disclosure.
  • a dielectric elastomer block 1033 covers 9 pixel units P as an example.
  • the area of the dielectric elastomer block 1033 corresponding to the transmission area P2 is provided with a light transmission area 115, that is, the area where the dielectric elastomer block 1033 overlaps the transmission area P2 in the direction perpendicular to the base substrate 101
  • a light-transmitting area 115 is provided.
  • the light-transmitting area 115 may be formed by opening a hole in the dielectric elastomer block 1033.
  • the area of the light-transmitting area 115 may be greater than, less than or equal to the area of the corresponding transmission area P2.
  • the light-transmitting area 115 can avoid or reduce the influence of the dielectric elastomer block 1033 on the light-transmitting property of the transmission area P2.
  • each dielectric elastomer block By dividing the dielectric elastomer into a plurality of dielectric elastomer blocks, independent control of each dielectric elastomer block can be achieved, so as to achieve the purpose of adjusting the reflectivity of different positions on the array substrate, so that the optimal use of the The display effect of the display panel of the array substrate.
  • FIG. 8 is a schematic diagram of protrusions of a dielectric elastomer according to at least one embodiment of the present disclosure.
  • the surface on one side of the dielectric elastic body 103 forms a wave-shaped protrusion.
  • H1 represents the high point thickness of the dielectric elastomer after the bumps are formed
  • H2 represents the low point thickness of the dielectric elastomer after the bumps are formed
  • H1-H2 represents the height of the bumps. The higher the height of the bump, the higher the surface unevenness and the higher the reflectivity.
  • protrusions of the dielectric elastomer may also have other shapes, which are not limited in the present disclosure.
  • the present disclosure obtains a relationship between protrusion height and reflectivity through experimental methods.
  • Table 1 is a relationship table of protrusion height and reflectance according to at least one embodiment of the present disclosure. It can be seen from Table 1 that as the height of the protrusion increases, the reflectivity will be significantly improved. For example, when the protrusion height is 0, the reflectivity is 12%; when the protrusion height is 1.58 ⁇ m, the reflectivity is 38%.
  • the above-mentioned protrusion height, reflectivity and the relationship between the two are only an example, and the purpose is to make it easier for readers to understand.
  • the bump height, reflectivity, and the relationship between the two are also affected by factors such as the dielectric elastomer and the reflective layer's materials and voltage, so they are not limited to Table 1.
  • the reflective layer may also be a color reflective layer to achieve color reflection, thereby achieving color display.
  • the reflective layer may also be a color reflective layer to achieve color reflection, thereby achieving color display.
  • An implementation method of the colored reflective layer may be, for example, coating the surface of the reflective layer with photoresist of three colors, such as red, green, and blue, and etching the photoresist in layers to obtain a pattern of the colored reflective layer.
  • FIG. 9 is a color reflective layer pattern according to at least one embodiment of the present disclosure. As shown in FIG. 9, the reflective layers of three adjacent pixel units are a red reflective layer R, a green reflective layer G, and a blue reflective layer B, respectively. The reflective layers of all pixel units form a color reflective layer, thereby realizing color display.
  • At least one embodiment of the present disclosure further provides a display panel, including the array substrate provided in any of the foregoing embodiments.
  • FIG. 10 is a schematic structural diagram of a display panel according to at least one embodiment of the present disclosure.
  • the display panel further includes a counter substrate opposite to the array substrate and a liquid crystal layer 301 located between the array substrate and the counter substrate.
  • the counter substrate includes a second base substrate 201, a color filter layer 202, and a black matrix 203.
  • the color filter layer 202 and the black matrix 203 are disposed on the second base substrate 201, for example, on the side of the second base substrate 201 facing the array substrate.
  • the color reflection layer since the color reflection layer is provided on the array substrate, it can play a role of color display, so the color filter layer 202 may not be provided on the counter substrate.
  • the display panel provided by at least one embodiment of the present disclosure has the same beneficial effects as the array substrate provided by the foregoing embodiment, and will not be repeated here.
  • At least one embodiment of the present disclosure further provides a display device, including the display panel provided in any of the foregoing embodiments.
  • FIG. 11 is a schematic diagram of block control of a display device according to at least one embodiment of the present disclosure.
  • the display device also includes a controller 400 and a photosensitive element 401.
  • the controller 400 is located at the periphery of the display area and is electrically connected to the photosensitive element 401 and the dielectric elastomer 1033 respectively; the photosensitive element 401 may be located in the display area or outside the display area, as long as it can receive ambient light.
  • the photosensitive element 401 is configured to detect the ambient light intensity and provide a light intensity signal to the controller 400, and the controller 400 applies a corresponding voltage to the dielectric elastomer block 1033 according to the light intensity signal.
  • the controller 400 is connected to the array substrate through a bonding area and a flexible lead circuit board, and each control line 113 of the array substrate is electrically connected to the controller 400.
  • the controller 400 is, for example, an integrated circuit (IC) chip.
  • each dielectric elastomer block By separately connecting each dielectric elastomer block to the controller, independent control of each dielectric elastomer block can be achieved, thereby achieving the effect of adjustable reflectivity at different positions of the display device.
  • the photosensitive element can provide the controller with an ambient light intensity signal, which can make the reflectance adjustment more adaptable to the environment, thereby optimizing the display effect.
  • the display device can be implemented, for example, as any product or component with a display function such as a liquid crystal panel, electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • a display function such as a liquid crystal panel, electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • At least one embodiment of the present disclosure further provides a display method of the display device provided in the above embodiment, which includes the following steps:
  • the display device is a transflective display device, that is, at least one of the plurality of pixel units P of the display device includes a transmissive area P2, the display device further includes a backlight unit, which is connected to the controller 400, and the backlight unit The opening or closing of the controller 400 is controlled by the controller 400.
  • applying a corresponding voltage to the dielectric elastomer 103 according to the detected ambient light intensity includes:
  • the controller 400 determines that the display device is in a dark environment, activates the transmission mode, stops applying voltage to the dielectric elastomer 103, turns on the backlight unit, and displays the image by the light provided by the backlight unit .
  • FIG. 12A is a schematic diagram of the structure of the dielectric elastomer and the reflective layer when no voltage is applied to the dielectric elastomer according to at least one embodiment of the present disclosure.
  • the dielectric elastomer 103 and the reflective layer 102 are shown in the figure.
  • the dielectric elastic body 103 and the reflective layer 102 are in a flat state.
  • the surface of the reflective layer is flat and the reflectance is low. In this state, the backlight can be used for display.
  • step S2 applying a corresponding voltage to the dielectric elastomer 103 according to the detected ambient light intensity includes:
  • the second preset light intensity is greater than the first preset light intensity
  • the voltage value in the first voltage value range is greater than the voltage value in the second voltage value range.
  • the numerical value or range of the first preset light intensity and the second preset light intensity, the first voltage value range and the second voltage value range, and the predetermined unevenness can be obtained through calculation, testing or experience, and the present disclosure does not limit this .
  • the controller 400 determines that the display device is in a situation of insufficient light in the external environment. At this time, the controller 400 increases the reflectivity of the array substrate by applying a voltage in the first voltage range to the dielectric elastomer 103, thereby increasing the brightness of the display device.
  • FIG. 12B is a schematic diagram of the structure of the dielectric elastomer and the reflective layer when the dielectric elastomer is applied with a voltage in the first voltage range.
  • the dielectric elastic body 103 and the reflective layer 102 are in the first convex state.
  • the surface unevenness of the reflective layer 102 is large, and thus the reflectivity is high.
  • the controller 400 determines that the display device is in a situation where the external environment light is sufficient. At this time, the controller 400 reduces the reflectance of the array substrate by applying a voltage in the second voltage range to the dielectric elastomer 103, thereby reducing the brightness of the display device, so as to avoid excessive brightness and irritating eyes.
  • FIG. 12C is a schematic diagram of the protrusions of the dielectric elastomer and the reflective layer when the dielectric elastomer is applied with a voltage in the second voltage range according to at least one embodiment of the present disclosure.
  • the dielectric elastic body 103 is in the second convex state, and the height h1 of the first convexity is greater than the height of the second convexity h2.
  • the unevenness of the surface of the reflective layer 102 is moderate, and thus the reflectivity is moderate. While making full use of reflected light for display, avoid excessively high intensity reflected light from irritating the eyes.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板,包括:衬底基板(101)、多个像素单元(P)、反射层(102)以及介电弹性体(103)。多个像素单元(P)位于衬底基板(101)上,多个像素单元(P)的至少之一包括反射层(102);介电弹性体(103)位于反射层(102)靠近衬底基板(101)的一侧,且被配置为在电压的作用下改变靠近反射层(102)一侧表面的不平坦度,从而改变反射层(102)的不平坦度。阵列基板可根据环境光照强度而调节自身的反射率,从而优化显示效果。还提供一种显示装置及其显示方法。

Description

阵列基板、显示装置及其显示方法
本申请要求于2019年7月5日递交的第201910605630.4号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种阵列基板、显示装置及其显示方法。
背景技术
液晶显示器一般由上基板和下基板对盒形成,两个基板之间的空间中封装有液晶。由于液晶分子本身不发光,所以显示器需要光源以便显示图像。根据采用的光源类型,液晶显示器可分为透射式、反射式和半透半反式。透射式液晶显示器使用背光作为光源,由背光发出的光线经过透明电极及液晶层而显示图像,其可以在暗环境下显示图像。反射式液晶显示器使用外界环境光作为光源,外界环境光射入显示屏后经过反射而显示图像,因此其在暗环境下不能显示图像。半透半反式液晶显示器兼具透射式和反射式液晶显示器的特点,在面板内同时设置透射区和反射区,既可以在亮环境使用,也可以在暗环境使用。
发明内容
本公开的实施例提供一种阵列基板、显示面板、显示装置及其显示方法。该阵列基板可根据环境光照强度而调节自身的反射率,从而优化显示效果。
本公开至少一个实施例提供一种阵列基板,包括:衬底基板;多个像素单元,位于所述衬底基板上,所述多个像素单元的至少之一包括反射层;以及介电弹性体,位于所述反射层靠近所述衬底基板的一侧,且被配置为在电压的作用下改变靠近所述反射层一侧表面的不平坦度,从而改变所述反射层的不平坦度。
在一些示例中,所述反射层共形地形成在所述介电弹性体上。
在一些示例中,所述多个像素单元的至少之一还包括位于所述反射层之外的透射区。
在一些示例中,所述阵列基板还包括控制线,与所述介电弹性体电连接, 被配置为向所述介电弹性体施加电压。
在一些示例中,所述介电弹性体包括多个按矩阵排列的介电弹性体块,每个介电弹性体块位于至少一个像素单元所在的区域内,所述控制线包括多条控制线,每个所述介电弹性体块连接至少一条所述控制线。
在一些示例中,所述介电弹性体在对应于所述透射区的区域开设有透光区。
在一些示例中,所述介电弹性体包括层叠设置的导电层和介电弹性材料层,所述导电层与所述控制线电连接,被配置为向所述介电弹性材料层施加电压,所述介电弹性材料层被配置为根据所述导电层施加的电压而改变远离所述衬底基板的一侧的不平坦度。
在一些示例中,所述导电层包括第一导电层和第二导电层,分别位于所述介电弹性材料层在垂直于所述衬底基板的方向上的两侧,所述第一导电层与所述第二导电层之一与所述控制线电连接,另一个被配置为施加公共电压。
在一些示例中,所述改变靠近反射层一侧表面的不平坦度包括形成凸起或改变所述凸起的高度。
在一些示例中,所述反射层为彩色反射层。
在一些示例中,所述介电弹性体与所述反射层彼此绝缘。
本公开至少一个实施例提供一种显示装置,包括上述阵列基板。
在一些示例中,所述显示装置还包括控制器以及感光元件,所述控制器分别与所述感光元件和所述介电弹性体电连接,所述感光元件配置为检测环境光照强度并向所述控制器提供光照强度信号,所述控制器根据所述光照强度信号向所述介电弹性体施加相应的电压。
本公开至少一个实施例提供一种显示装置的显示方法,包括:检测环境光照强度;根据所述光照强度,向所述介电弹性体施加相应的电压,改变所述介电弹性体靠近所述反射层一侧的不平坦度,从而改变所述反射层的反射率。
在一些示例中,所述多个像素单元的至少之一包括透射区,所述显示装置还包括背光单元,根据所述光照强度,向所述介电弹性体施加相应的电压包括:当所述光照强度小于第一预设光照强度时,开启所述背光单元,并停止向所述介电弹性体施加电压;当所述光照强度大于或等于第一预设光照强度,并且小于第二预设光照强度时,向所述介电弹性体施加第一电压值范围的电压以使所述介电弹性体的表面不平坦度大于预定不平坦度;当所述光照强度大于或等于 第二预设光照强度时,向所述介电弹性体施加第二电压值范围的电压,以使所述介电弹性体的表面不平坦度小于所述预定不平坦度;所述第二预设光照强度大于所述第一预设光照强度,所述第一电压值范围中的电压值大于所述第二电压值范围中的电压值。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开至少一个实施例的阵列基板的结构示意图;
图2为图1所示的阵列基板的沿A-A’线的剖视结构示意图;
图3为根据本公开至少一个实施例的又一阵列基板的结构示意图;
图4为图3所示的阵列基板的沿B-B’线的剖视结构示意图;
图5为根据本公开至少一个实施例的又一阵列基板的结构示意图;
图6为根据本公开至少一个实施例的阵列基板的介电弹性体的分块设计示意图;
图7为根据本公开至少一个实施例的介电弹性体块的结构示意图;
图8为根据本公开至少一个实施例的介电弹性体的凸起示意图;
图9为根据本公开至少一个实施例的一种彩色反射层图案;
图10为根据本公开至少一个实施例的一种显示面板的结构示意图;
图11为根据本公开至少一个实施例的显示装置的分块控制示意图;
图12A为根据本公开至少一个实施例的在介电弹性体未施加电压时介电弹性体和反射层的结构示意图;
图12B为根据本公开至少一个实施例的介电弹性体被施加第一电压值范围的电压时介电弹性体和反射层的结构示意图;
图12C为根据本公开至少一个实施例的介电弹性体被施加第二电压值范围的电压时介电弹性体和反射层的凸起示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所 描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
半透半反式液晶显示器的技术原理是在反射金属内设置透射区域,将每个像素分为透射部分与反射部分,并引入背光源,实现半透半反的技术效果。在亮环境时,利用反射部分的反射金属来反射环境光线以进行显示;在暗环境时,使用透射光模式,利用背光源的光线来进行显示。
但是半透半反式液晶显示器也存在一些问题,例如,由于存在透射区域,反射区域的面积相应地会减少,从而其在亮环境下的反射率降低;如果增大反射区域的面积,则会减少透射区域的面积,从而其在暗环境下的透过率也会降低。
本公开的实施例提供一种阵列基板、显示面板、显示装置及其显示方法。该阵列基板可在不减小透射面积的情况下提高反射率,并且可以根据环境光照强度调节自身的反射率大小,从而优化显示效果。
下面结合附图对本公开的实施例进行详细说明。需要说明的是,不同的附图中相同的附图标记用于指代已描述的相同或相似的元件。
图1为根据本公开至少一个实施例的阵列基板的结构示意图,图2为图1所示的阵列基板的沿A-A’线的剖视结构示意图。
如图1和图2所示,本公开的至少一个实施例提供一种阵列基板,该阵列基板可用于反射式液晶显示面板。该阵列基板包括:衬底基板101、多个像素单元P、反射层102以及介电弹性体103。多个像素单元P位于衬底基板101 上,多个像素单元P的至少一个包括反射区P1。反射区P1包括反射层102,反射层102被配置为反射外界射入的光线;介电弹性体103位于反射层102靠近衬底基板101的一侧,被配置为在电压的作用下改变靠近反射层102一侧表面的不平坦度,从而改变反射层102的不平坦度。
在本公开的实施例中,不平坦度用来评定表面的不平坦程度。例如,表面的不平坦度可以通过测量表面上多个高点与低点的高度差,并计算多个高度差的算术平均值得到。高点或低点的高度是指表面上一点距离基准平面的距离,例如以介电弹性体远离反射区的表面作为基准平面,距离大的点为高点,距离小的为低点。然而,本公开实施例并不限制于此,只要能够评定表面的不平坦程度,也可以采用其他的不平坦度评定方法。
介电弹性体包括电致变形弹性体材料,其可以在外加电场的作用下改变形状或体积,撤销外加电场后会恢复到原来的形状或体积。本公开的实施例通过把介电弹性体应用到阵列基板中来调节其反射率,从而提高其显示效果。
在一些示例中,反射层102共形地(conformally)形成在介电弹性体103上。即,反射层102被配置为随介电弹性体103变形而变形,并且与介电弹性体103靠近反射层102一侧表面的变形一致。如此,当介电弹性体103在电压的作用下改变靠近反射层102一侧表面的不平坦度时,可以使得反射层102的表面不平坦度变化。
例如,也可以是介电弹性体103整体发生变形,从而使得介电弹性体103的靠近反射层102的一侧表面的不平坦度发生变化。
在一些示例中,介电弹性体103表面不平坦度与其上被施加的电压正相关。即,介电弹性体被施加的电压越高,其表面不平坦度越大。在本公开至少一个实施例提供的阵列基板中,由于介电弹性体能够在电压的作用下改变靠近反射层一侧表面的不平坦度,从而改变反射层的表面不平坦度以改变反射层的反射率,因此可以提高使用了该阵列基板的显示面板的显示效果。
在一些示例中,衬底基板101可以是透明或非透明的绝缘基板。例如,衬底基板101可以是玻璃基板或石英基板,或其他适合的材料制作的基板。
在一些示例中,如图1和图2所示,该阵列基板还包括栅线104、数据线105和开关元件106。栅线104和数据线105位于衬底基板101上,相互交叉且相互绝缘以界定多个像素单元P;开关元件106位于像素单元P内,与栅线104和数据线105连接。另外,如图2所示,开关元件106位于介电弹性体103 靠近衬底基板101的一侧。
在一些示例中,如图2所示,开关元件106为薄膜晶体管,包括栅极1061、源极1063、漏极1062、半导体层1064以及栅绝缘层1065。半导体层1063位于栅极1061的正上方,并且分别与源极1063和漏极1062连接。栅绝缘层1065覆盖栅极1061,被配置为使栅极1061与源极1063、漏极1062和半导体层1064相互绝缘。
需要说明的是,图2仅以薄膜晶体管为底栅型薄膜晶体管为例进行说明,但其还可以为其他类型的薄膜晶体管,例如顶栅型薄膜晶体管、双栅型薄膜晶体管等。
在一些示例中,该阵列基板还包括第一绝缘层108。如图2所示,第一绝缘层108位于反射层102和介电弹性体103之间,被配置为使反射层102和介电弹性体103相互绝缘,并且不影响反射层102和介电弹性体103的共形性。即,第一绝缘层108可以共形地形成在介电弹性体103上,且反射层102共形地形成在第一绝缘层108上。因此,第一绝缘层可以选用硬度较小的材料,并且在不影响绝缘性的前提下第一绝缘层的厚度可以设置的较小。
在一些示例中,如图2所示,该阵列基板还包括第二绝缘层109。第二绝缘层109位于开关元件106和介电弹性体103之间,并覆盖开关元件106,配置为使开关元件106与介电弹性体103绝缘。
在一些示例中,第一绝缘层108和第二绝缘层109均可以是透明或非透明的绝缘层。
在一些示例中,反射层102为导电反射层。例如其材料可以是银、铜、铝、钼等金属导电材料或者其他合适的材料。
在一些示例中,该阵列基板还包括第一过孔110,位于第一绝缘层108上,并且穿透介电弹性体103和第二绝缘层109,使得反射层102通过第一过孔110与薄膜晶体管的源极或漏极中的一个电连接,数据线105与源极或漏极中的另一个电连接。在如图2所示的示例中,反射层102与漏极1062电连接,数据线105与源极1063电连接,栅线104与栅极1061电连接。开关元件106被配置为根据栅线104提供的扫描信号导通或断开数据线105与反射层102之间的电连接。此时,反射层102起到像素电极的作用,即为像素单元P提供像素电压。
在一些示例中,本公开至少一个实施例的阵列基板还可以用于半透半反式 的液晶显示面板。图3为根据本公开至少一个实施例的又一阵列基板的结构示意图,图4为图3所示的阵列基板的沿B-B’线的剖视结构示意图。图3所示的阵列基板与图1所示的阵列基板结构相似,它们的不同在于图3所示的阵列基板的像素单元P还包括透射区P2。因此,相同的名称和附图标记用于具有相同或相似结构的元件。
如图3和图4所示,多个像素单元P的至少一个还包括位于反射区P1之外的透射区P2,反射区P1和透射区P2组成像素单元P。在透射区P2内,光线能够穿透阵列基板。需要说明的是,反射层102仅位于反射区P1内,透射区P2不包括反射层102;反射区与透射区的面积比可以根据实际需要进行设计,本公开对此不做限定。
对于包括透射区的阵列基板,由于反射区的反射层下设置有介电弹性体,因此可以在不改变反射区与透射区的面积比的前提下,通过介电弹性体实现对反射区的反射率进行调节的目的。
在一些示例中,该阵列基板还包括透射电极112。透射电极112与源极或漏极电连接,用于驱动位于透射区的液晶分子转动。在图4所示的示例中,透射电极112与漏极1062电连接,并且在垂直于衬底基板101的方向上与透射区P2至少部分重叠。需要说明的是,透射电极112也可以与反射层102位于同一层且相互连接。
例如,上述实施例中的反射层和透射电极均与漏极电连接,在进行显示时可以被输入显示信号,分别为反射区和透射区的液晶分子提供像素电压,因此均起到像素电极的作用。
在一些示例中,由于阵列基板包括透射区,因此衬底基板101、第一绝缘层108、栅绝缘层1065和第二绝缘层109是透明绝缘层。
在一些示例中,透射电极112采用透明导电材料制作。例如可以采用氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓锌等透明金属氧化物制作。
图5为根据本公开至少一个实施例的又一阵列基板的结构示意图。如图5所示,该阵列基板还包括控制线113,位于介电弹性体103与反射层102之间,与介电弹性体103电连接并且与反射层102绝缘,被配置为向介电弹性体103施加电压,从而控制介电弹性体103改变靠近反射层102一侧的表面不平坦度。在使用了该阵列基板的显示装置中,控制线可以连接到控制器,从而实现通过控制施加在介电弹性体上的电压控制介电弹性体的表面不平坦度的改变量。
在一些示例中,如图5所示,介电弹性体103包括层叠设置的导电层1031和介电弹性材料层1032。导电层1031与控制线113通过第二过孔114电连接,被配置为向介电弹性材料层1032施加电压;介电弹性材料层1032被配置为根据导电层1031施加的电压而改变靠近反射层102一侧的不平坦度。导电层1031和反射层102均与介电弹性材料层1032共形。因此,导电层可以选用硬度较小的导电材料,并且在不影响导电效果的前提下导电层的厚度可以设置的较小。然而,本公开的实施例对于导电层的硬度和厚度均没有特别限定,只要能够随着介电弹性体的变形而产生表面不平坦度的变化即可。
在一些示例中,如图5所示,导电层1031包括彼此绝缘的第一导电层1031a和第二导电层1031b,第一导电层1031a位于介电弹性材料层1032靠近衬底基板101的一侧,第二导电层1031b位于介电弹性材料层1032远离衬底基板101的一侧。第二导电层1031b通过第二过孔114与控制线113电连接,被控制线113施加第一电压;第一导电层1031a与公共电源连接,被配置为施加公共电压。例如,第一导电层1031a可以在显示区域的周边区通过过孔与周边电源电连接。
以上以第一导电层和第二导电层分别设置在介电弹性材料层的两侧为例进行了描述,然而,本公开的实施例不限于此。例如,第一导电层和第二导电层可以设置在介电弹性材料层的同一侧,且第一导电层和第二导电层彼此电绝缘且其中至少之一为图案化电极,从而能够在第一导电层和第二导电层之间施加电压而产生作用于介电弹性材料层上的电场。例如,第一导电层为图案化电极,第二导电层为板状电极,第一导电层位于第二导电层和介电弹性材料层之间。或者,第一导电层和第二导电层均为图案化电极,第一导电层和第二导电层可以设置在同一层或不同层。例如,在第一导电层和第二导电层位于介电弹性材料层同一侧的情况下,它们可以位于介电弹性材料层远离反射层的一侧。此时,反射层也可以与介电弹性材料层直接接触,从而,能够将介电弹性材料层的变形更好地传递到反射层。
在一些示例中,控制线113的材料例如可以是银、银合金、铜、铜合金、铝、铝合金以及其他合适的材料。
在一些示例中,介电弹性材料层1032的材料例如可以是硅橡胶、聚氨酯或聚丙烯酸酯,也可以是硅橡胶、聚氨酯或聚丙烯酸酯的复合材料或其他合适的材料。不同的介电弹性材料具有不同的性能,例如,聚丙烯酸酯能量密度高、 易加工,但驱动电压较高、响应速度慢;硅橡胶响应速度快、适用温度范围广。因此,可根据实际需要选择合适的介电弹性材料,本公开对此不做限定。
在一些示例中,如图5所示,第一绝缘层108包括层叠设置的第一子绝缘层1081和第二子绝缘层1082,第一子绝缘层1081位于第二子绝缘层1082靠近介电弹性体103的一侧,控制线113位于第一子绝缘层1081和第二子绝缘层1082之间。第二过孔114开设在第一子绝缘层1081上,使得控制线113与介电弹性体103的第二导电层1031b电连接。
需要说明的是,第一导电层1031a与第二导电层1031b的位置可以互换。另外,虽然图5示出控制线113位于介电弹性体103的上方,但是控制线113还可以位于介电弹性体103的下方,只要第一导电层1031a和第二导电层1031b其中一个与控制线113电连接,另一个与公共电源电连接即可。当控制线113位于介电弹性体103的下方时,采用类似图5所示的结构,可将第二绝缘层109分为两层绝缘层,控制线113位于第二绝缘层109分为的两层绝缘层之间并通过过孔与第一导电层1031a和第二导电层1031b其中一个实现电连接。
在一些示例中,如图5所示,第一过孔110穿过第二子绝缘层1082、第一子绝缘层1081、第二导电层1031b、介电弹性材料层1032和第一导电层1031a,使反射层102与薄膜晶体管的漏极1062电连接。
图6为根据本公开至少一个实施例的阵列基板的介电弹性体的分块设计示意图。
如图6所示,介电弹性体103被划分为彼此绝缘的按矩阵排列的多个介电弹性体块1033,控制线113的数量为多个,介电弹性体块1033与控制线113一一对应电连接。需要说明的是,虽然图6示出介电弹性体块1033通过一个第二过孔114与控制线113电连接,但是介电弹性体块1033也通过多个第二过孔114与控制线113电连接。多个第二过孔更有利于实现介电弹性体块与控制线之间的电连接,通过多个连接点之间的并联,可以减小电压信号损失。
在一些示例中,每个介电弹性体块1033覆盖至少一个像素单元P。介电弹性体块1033可以与像素单元P一一对应,也可以一个介电弹性体块1033覆盖多个像素单元P。
图7为根据本公开至少一个实施例的介电弹性体块1033的结构示意图。图7以一个介电弹性体块1033覆盖9个像素单元P为例。如图7所示,介电弹性体块1033对应于透射区P2的区域开设有透光区115,即介电弹性体块1033 在沿垂直于衬底基板101方向上与透射区P2重叠的区域开设有透光区115。例如,透光区115可以通过在介电弹性体块1033上开孔形成。透光区115的面积可以大于、小于或等于对应的透射区P2的面积。透光区115可以避免或减小介电弹性体块1033对透射区P2的透光性的影响。
通过将介电弹性体划分为多个介电弹性体块,可以实现对每个介电弹性体块的独立控制,从而实现阵列基板不同位置的反射率可调的目的,从而可以优化使用了该阵列基板的显示面板的显示效果。
在一些示例中,对于上述的介电弹性体103,改变一侧的表面不平坦度是指在一侧表面形成凸起或改变形成的凸起的高度。图8为根据本公开至少一个实施例的介电弹性体的凸起示意图。如图8所示,介电弹性体103一侧的表面形成波浪形的凸起。其中,H1表示形成凸起后介电弹性体的高点厚度,H2表示形成凸起后介电弹性体的低点厚度,H1-H2表示凸起的高度。凸起的高度越高,表面不平坦度越高,反射率也越高。
需要说明的是,介电弹性体的凸起还可以是其他形状,本公开对此不做限定。
在一些示例中,本公开通过试验的方法得到一种凸起高度与反射率的关系。表1为根据本公开至少一个实施例的一种凸起高度与反射率的关系表。从表1可以看出,随着凸起高度增加,反射率会得到明显的提高。例如,凸起高度为0时,反射率为12%;当凸起高度为1.58μm时,反射率为38%。
表1
Figure PCTCN2020098855-appb-000001
需要说明的是,上述凸起高度、反射率以及二者之间的关系仅为一种示例,目的是让读者更容易理解。但是,凸起高度、反射率以及二者之间的关系还受到介电弹性体和反射层的材料、电压等因素影响,因此并不局限于表1。
在一些示例中,对于图1和图2所示的可用于反射式液晶显示面板的阵列基板,所述反射层还可以为彩色反射层,以实现彩色反射,从而实现彩色显示。 这样一来,当该阵列基板用于显示面板时,与阵列基板对置的基板上可以不用设置彩色滤光层,从而简化制备工艺。
彩色反射层的一种实现方法例如可以为:在反射层表面涂覆例如红、绿、蓝三种颜色的光刻胶,对光刻胶进行分层蚀刻,以得到彩色反射层图案。
图9为根据本公开至少一个实施例的一种彩色反射层图案。如图9所示,三个相邻像素单元的反射层分别为红色反射层R、绿色反射层G、蓝色反射层B。所有像素单元的反射层组成彩色反射层,从而实现彩色显示。
本公开至少一个实施例还提供一种显示面板,包括上述任一实施例提供的阵列基板。
图10为根据本公开至少一个实施例的一种显示面板的结构示意图。如图10所示,该显示面板还包括与阵列基板相对的对置基板和位于阵列基板和对置基板之间的液晶层301。对置基板包括第二衬底基板201、彩色滤光层202和黑矩阵203。彩色滤光层202和黑矩阵203设置于第二衬底基板201上,例如位于第二衬底基板201朝向阵列基板的一侧。
在一些示例中,对于采用了上述彩色反射层的阵列基板,由于阵列基板上设置有彩色反射层,可以起到彩色显示的作用,因此对置基板上也可以不设置彩色滤光层202。
本公开至少一个实施例提供的显示面板,具有和上述实施例提供的阵列基板相同的有益效果,此处不再赘述。
本公开至少一个实施例还提供一种显示装置,包括上述任一实施例提供的显示面板。
图11为根据本公开至少一个实施例的显示装置的分块控制示意图。该显示装置还包括控制器400以及感光元件401。控制器400位于显示区域的外围,分别与感光元件401和介电弹性体1033电连接;感光元件401可以位于显示区域内也可以位于显示区域之外,只要能接收到环境光即可。感光元件401被配置为检测环境光照强度并向控制器400提供光照强度信号,控制器400根据光照强度信号向介电弹性体块1033施加相应的电压。该控制器400例如通过绑定区以及柔性引线电路板连接到阵列基板之上,阵列基板的每条控制线113都电连接到控制器400。该控制器400例如为集成电路(IC)芯片。
通过将每个介电弹性体块分别连接到控制器,可以实现对每个介电弹性体块的独立控制,从而实现显示装置不同位置的反射率可调的效果。另外,感光 元件可为控制器提供环境光照强度信号,可以使反射率调节更能适应环境,从而优化显示效果。
该显示装置例如可以实现为液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开至少一个实施例还提供一种上述实施例提供的显示装置的显示方法,包括以下步骤:
S1、通过感光元件401检测环境光照强度;
S2、根据检测到的环境光照强度,向介电弹性体103施加相应的电压,改变介电弹性体103靠近反射层102一侧的不平坦度,从而改变反射层102的反射率。
在一些示例中,显示装置为半透半反式显示装置,即显示装置的多个像素单元P的至少一个包括透射区P2,显示装置还包括背光单元,背光单元与控制器400连接,背光单元的打开或关闭由控制器400控制。此时,在上述步骤S2中,根据检测到的环境光照强度,向介电弹性体103施加相应的电压包括:
S21、当环境光照强度小于第一预设光照强度时,开启背光单元,并停止向介电弹性体103施加电压。
当环境光照强度小于第一预设光照强度时,控制器400判定显示装置处于黑暗环境,启用透射模式,停止向介电弹性体103施加电压,打开背光单元,依靠背光单元提供的光照来显示图像。
图12A为根据本公开至少一个实施例的在介电弹性体未施加电压时介电弹性体和反射层的结构示意图。为了清楚且简便的说明,图中仅仅示出了介电弹性体103和反射层102。此时,如图12A所示,介电弹性体103和反射层102处于平坦状态。此时,反射层的表面平坦,反射率较低。在该状态下可以采用背光光源进行显示。
在一些示例中,在上述步骤S2中,根据检测到的环境光照强度,向介电弹性体103施加相应的电压包括:
S22、当环境光照强度大于或等于第一预设光照强度,并且小于第二预设光照强度时,向介电弹性体施加第一电压值范围的电压以使介电弹性体的表面不平坦度大于预定不平坦度;
S23、当环境光照强度大于或等于第二预设光照强度时,向介电弹性体施加第二电压值范围的电压,以使介电弹性体的表面不平坦度小于所述预定不平 坦度。
例如,第二预设光照强度大于第一预设光照强度,第一电压值范围中的电压值大于第二电压值范围中的电压值。第一预设光照强度和第二预设光照强度的数值或范围、第一电压值范围和第二电压值范围、预定不平坦度可以通过计算、测试或经验得到,本公开对此不做限定。
在S22的情况下,即当环境光照强度大于或等于第一预设光照强度,并且小于第二预设光照强度时,控制器400判定显示装置处于外界环境光照不足的情况。此时,控制器400通过向介电弹性体103施加第一电压值范围的电压来提高阵列基板的反射率,从而提高显示装置的亮度。
例如,图12B为介电弹性体被施加第一电压值范围的电压时介电弹性体和反射层的结构示意图。此时,如图12B所示,介电弹性体103和反射层102处于第一凸起状态。在这种情况下,反射层102的表面不平坦度较大,从而反射率较高。
在S23的情况下,即当环境光照强度大于或等于第二预设光照强度时,控制器400判定显示装置处于外界环境光照充足的情况。此时,控制器400通过向介电弹性体103施加第二电压值范围的电压来降低阵列基板的反射率,从而降低显示装置的亮度,以避免亮度过高而刺激眼睛。
图12C为根据本公开至少一个实施例介电弹性体被施加第二电压值范围的电压时介电弹性体和反射层的凸起示意图。此时,如图12C所示,介电弹性体103处于第二凸起状态,第一凸起的高度h1大于第二凸起h2的高度。在这种情况下,反射层102的表面不平坦度适中,从而反射率适中。在充分利用反射光进行显示的同时,避免过高强度的反射光刺激眼睛。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种阵列基板,包括:
    衬底基板;
    多个像素单元,位于所述衬底基板上,所述多个像素单元的至少之一包括反射层;以及
    介电弹性体,位于所述反射层靠近所述衬底基板的一侧,且被配置为在电压的作用下改变靠近所述反射层一侧表面的不平坦度,从而改变所述反射层的不平坦度。
  2. 根据权利要求1所述的阵列基板,其中,所述反射层共形地形成在所述介电弹性体上。
  3. 根据权利要求1或2所述的阵列基板,其中,所述多个像素单元的至少之一还包括位于所述反射层之外的透射区。
  4. 根据权利要求1-3任一项所述的阵列基板,还包括控制线,与所述介电弹性体电连接,被配置为向所述介电弹性体施加电压。
  5. 根据权利要求4所述的阵列基板,其中,所述介电弹性体包括多个矩阵排列的介电弹性体块,每个介电弹性体块位于至少一个像素单元所在的区域内,所述控制线包括多条控制线,每个所述介电弹性体块连接至少一条所述控制线。
  6. 根据权利要求3-5任一项所述的阵列基板,其中,所述介电弹性体在对应于所述透射区的区域开设有透光区。
  7. 根据权利要求4-6任一项所述的阵列基板,其中,所述介电弹性体包括层叠设置的导电层和介电弹性材料层,
    所述导电层与所述控制线电连接,被配置为向所述介电弹性材料层施加电压,
    所述介电弹性材料层被配置为根据所述导电层施加的电压而改变远离所述衬底基板的一侧的不平坦度。
  8. 根据权利要求7所述的阵列基板,其中,所述导电层包括第一导电层和第二导电层,分别位于所述介电弹性材料层的在垂直于所述衬底基板的方向上的两侧,所述第一导电层与所述第二导电层之一与所述控制线电连接,另一个被配置为施加公共电压。
  9. 根据权利要求1-8任一项所述的阵列基板,其中,所述改变靠近反射层一侧表面的不平坦度包括形成凸起或改变所述凸起的高度。
  10. 根据权利要求1-9任一项所述的阵列基板,其中,所述反射层为彩色反射层。
  11. 根据权利要求1-10任一项所述的阵列基板,其中,所述介电弹性体与所述反射层彼此绝缘。
  12. 一种显示装置,包括根据权利要求1-11中任一项所述的阵列基板。
  13. 根据权利要求12所述的显示装置,还包括控制器以及感光元件,所述控制器分别与所述感光元件和所述介电弹性体电连接,
    所述感光元件配置为检测环境光照强度并向所述控制器提供光照强度信号,所述控制器根据所述光照强度信号向所述介电弹性体施加相应的电压。
  14. 一种根据权利要求13所述的显示装置的显示方法,包括:
    检测环境光照强度;
    根据所述光照强度,向所述介电弹性体施加相应的电压,改变所述介电弹性体靠近所述反射层一侧的不平坦度,从而改变所述反射层的反射率。
  15. 根据权利要求14所述的方法,其中,所述多个像素单元的至少之一包括透射区,所述显示装置还包括背光单元,
    根据所述光照强度,向所述介电弹性体施加相应的电压包括:
    当所述光照强度小于第一预设光照强度时,开启所述背光单元,并停止向所述介电弹性体施加电压;
    当所述光照强度大于或等于第一预设光照强度,并且小于第二预设光照强度时,向所述介电弹性体施加第一电压值范围的电压以使所述介电弹性体的表面不平坦度大于预定不平坦度;
    当所述光照强度大于或等于第二预设光照强度时,向所述介电弹性体施加第二电压值范围的电压,以使所述介电弹性体的表面不平坦度小于所述预定不平坦度,
    其中,所述第二预设光照强度大于所述第一预设光照强度,所述第一电压值范围中的电压值大于所述第二电压值范围中的电压值。
PCT/CN2020/098855 2019-07-05 2020-06-29 阵列基板、显示装置及其显示方法 WO2021004321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,867 US20210294157A1 (en) 2019-07-05 2020-06-29 Array substrate, display device and display method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910605630.4 2019-07-05
CN201910605630.4A CN110262118B (zh) 2019-07-05 2019-07-05 阵列基板、显示装置及其显示方法

Publications (1)

Publication Number Publication Date
WO2021004321A1 true WO2021004321A1 (zh) 2021-01-14

Family

ID=67924707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098855 WO2021004321A1 (zh) 2019-07-05 2020-06-29 阵列基板、显示装置及其显示方法

Country Status (3)

Country Link
US (1) US20210294157A1 (zh)
CN (1) CN110262118B (zh)
WO (1) WO2021004321A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262118B (zh) * 2019-07-05 2022-09-09 京东方科技集团股份有限公司 阵列基板、显示装置及其显示方法
CN113534441B (zh) * 2021-07-26 2023-10-31 北京京东方技术开发有限公司 一种反射率调节结构、制作方法及显示面板
CN114898657B (zh) * 2022-03-24 2023-11-28 深圳市华星光电半导体显示技术有限公司 显示装置及拼接显示设备
CN117480439A (zh) * 2022-05-27 2024-01-30 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675593B2 (en) * 2007-05-23 2010-03-09 Samsung Electronics Co., Ltd. Display pixel using electroactive polymer and display apparatus employing the same
CN103984175A (zh) * 2013-02-08 2014-08-13 瀚宇彩晶股份有限公司 半穿透式半反射式液晶显示器及其制造方法
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法
US20180348553A1 (en) * 2015-12-02 2018-12-06 Sharp Kabushiki Kaisha Liquid crystal display device
CN109116647A (zh) * 2018-09-17 2019-01-01 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN110262118A (zh) * 2019-07-05 2019-09-20 京东方科技集团股份有限公司 阵列基板、显示装置及其显示方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118324A (zh) * 2006-08-04 2008-02-06 奇美电子股份有限公司 半透射半反射式液晶显示装置、液晶面板及其制造方法
US8059239B2 (en) * 2008-12-12 2011-11-15 Sony Ericsson Mobile Communications Ab Transflective liquid crystal display
EP2795689B1 (en) * 2011-12-21 2017-07-12 Philips Lighting Holding B.V. Controllable polymer actuator
CN202657950U (zh) * 2012-06-25 2013-01-09 浙江大学 一种实时颜色动态调控微器件
WO2017072634A1 (en) * 2015-10-30 2017-05-04 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and method for manufacturing display device and electronic device
KR102642016B1 (ko) * 2016-11-29 2024-02-28 엘지디스플레이 주식회사 반사 영역을 포함하는 디스플레이 장치
CN107230699A (zh) * 2017-06-05 2017-10-03 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675593B2 (en) * 2007-05-23 2010-03-09 Samsung Electronics Co., Ltd. Display pixel using electroactive polymer and display apparatus employing the same
CN103984175A (zh) * 2013-02-08 2014-08-13 瀚宇彩晶股份有限公司 半穿透式半反射式液晶显示器及其制造方法
US20180348553A1 (en) * 2015-12-02 2018-12-06 Sharp Kabushiki Kaisha Liquid crystal display device
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法
CN109116647A (zh) * 2018-09-17 2019-01-01 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN110262118A (zh) * 2019-07-05 2019-09-20 京东方科技集团股份有限公司 阵列基板、显示装置及其显示方法

Also Published As

Publication number Publication date
CN110262118B (zh) 2022-09-09
CN110262118A (zh) 2019-09-20
US20210294157A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2021004321A1 (zh) 阵列基板、显示装置及其显示方法
US9933667B2 (en) Liquid crystal panel and manufacture method thereof
WO2018119932A1 (zh) 一种显示面板及其阵列基板
WO2017124810A1 (zh) 阵列基板、液晶显示面板及显示装置
CN101276087B (zh) 液晶显示装置
US8482689B2 (en) Liquid crystal display device
KR101305071B1 (ko) 어레이 기판 및 이를 갖는 표시패널
CN111290182A (zh) 液晶显示面板
TW201643517A (zh) 顯示裝置
TW202016632A (zh) 顯示裝置
JP4608424B2 (ja) 液晶表示装置及びその製造方法
WO2013037236A1 (zh) 阵列基板及液晶显示面板
WO2011104941A1 (ja) 表示パネルおよび表示装置
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
JP7045794B2 (ja) 表示パネル
JPH11337974A (ja) 液晶表示装置およびその作製方法
CN109212832B (zh) 一种液晶显示面板及其制作方法、液晶显示装置
JP4957232B2 (ja) 電気光学装置
CN110297366A (zh) 一种显示面板及驱动方法、显示装置及驱动方法
CN106940503B (zh) 显示设备
US20200004072A1 (en) Touch panel and method for manufacturing the same
WO2021103785A1 (zh) 显示基板、显示面板和电子设备
KR101108313B1 (ko) 표시장치
CN112130388A (zh) 阵列基板及其制造方法、触控显示面板及触控显示装置
WO2020220529A1 (zh) Tft 阵列基板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837045

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837045

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837045

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20837045

Country of ref document: EP

Kind code of ref document: A1