WO2021003856A1 - 薄膜电致发光器件及其制备方法、电子设备 - Google Patents

薄膜电致发光器件及其制备方法、电子设备 Download PDF

Info

Publication number
WO2021003856A1
WO2021003856A1 PCT/CN2019/108903 CN2019108903W WO2021003856A1 WO 2021003856 A1 WO2021003856 A1 WO 2021003856A1 CN 2019108903 W CN2019108903 W CN 2019108903W WO 2021003856 A1 WO2021003856 A1 WO 2021003856A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light
thin film
electroluminescent device
Prior art date
Application number
PCT/CN2019/108903
Other languages
English (en)
French (fr)
Inventor
王煦
张月
李先杰
李们在
李涛
潘君友
谭甲辉
杨曦
Original Assignee
武汉华星光电半导体显示技术有限公司
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司, 广州华睿光电材料有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/971,058 priority Critical patent/US11818908B2/en
Publication of WO2021003856A1 publication Critical patent/WO2021003856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the invention relates to the field of display technology, in particular to a thin-film electroluminescence device, a preparation method thereof, and electronic equipment.
  • Electroluminescence display equipment is a type of self-luminous display device, which generates excitons through the transfer and recombination of carriers between various functional layers, and emits light by relying on organic compounds or metal complexes with high quantum efficiency. It has the characteristics of self-luminescence, high brightness, high efficiency, high contrast, and high responsiveness.
  • the present invention provides a thin film electroluminescent device, a preparation method thereof, and electronic equipment.
  • the thin film electroluminescent device is improved by vacuum evaporation of a coating layer with ionic compounds on the thin film electroluminescent device. High luminous efficiency, while reducing the difficulty of preparing thin film electroluminescent devices.
  • the present invention provides a thin film electroluminescent device, which includes a first electrode; a functional structure layer arranged on the first electrode; a second electrode arranged on the functional structure layer; And a covering layer, arranged on the side of the second electrode away from the first electrode, the covering layer has an ionic compound, the chemical formula of the ionic compound is AX 2 , wherein A is selected from divalent metals, and X is selected from halogen.
  • the divalent metal is one of zinc, magnesium, and tin
  • the halogen is one of fluorine, chlorine, bromine, and iodine.
  • the extinction coefficient of the cover layer for visible light is less than or equal to 0.1, and the transmittance of the cover layer for visible light is greater than or equal to 70%.
  • the thin film electroluminescent device further includes a light extraction layer, which is provided between the second electrode and the cover layer; the cover layer is vacuum-evaporated on the light extraction layer away from the light extraction layer.
  • the side of the second electrode; the material used for the light extraction layer is selected from at least one of the ionic compound, carbazole derivative, diphenylfuran derivative, arylamine derivative, and triazine derivative.
  • the material used for the first electrode and the second electrode is at least one of metal or its compound, metal alloy, and conductive polymer.
  • the functional structure layer includes a hole injection layer, which is provided on the first electrode; a hole transport layer, which is provided on the hole injection layer; and a light emitting layer, which is provided on the On the hole transport layer; the electron transport layer is provided on the light-emitting layer; the electron injection layer is provided on the electron transport layer; the second electrode is provided on the electron injection layer.
  • the light-emitting layer has a host material and a dopant material, and the structural formula of the host material is as follows:
  • the structural formula of the doping material is as follows:
  • the mass ratio of the host material and the doping material is 7:1:-9:1.
  • the present invention also provides a preparation method for preparing the thin film electroluminescence device, including the following steps: providing a conductive glass with the first electrode on the surface; forming the functional structure by a vacuum evaporation method Layer on the side of the conductive glass with the first electrode; forming the second electrode on the side of the functional structure layer away from the first electrode by vacuum evaporation; forming the second electrode by vacuum evaporation
  • the covering layer is on the side of the second electrode away from the first electrode; the covering layer has an ionic compound, the chemical formula of the ionic compound is AX 2 , wherein A is selected from divalent metals and X is selected from halogens.
  • the step of providing the conductive glass includes ultrasonic cleaning the conductive glass with deionized water, acetone, and isopropanol, and then cleaning the conductive glass with a plasma cleaner.
  • the step of forming the functional structure layer includes sequentially forming a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer by a vacuum evaporation method.
  • the present invention also provides an electronic device with the thin film electroluminescent device.
  • the thin-film electroluminescent device and its preparation method and electronic equipment of the present invention effectively improve the luminous efficiency of the thin-film electroluminescent device by providing a covering layer on the cathode.
  • the covering layer has an ionic compound, and the ionic compound is a halide. For bromide or chloride, it can effectively reduce the difficulty of preparing thin film electroluminescent devices.
  • Fig. 1 is a structural diagram of a thin film electroluminescent device according to an embodiment of the present invention.
  • 3a hole injection layer 3b hole transport layer;
  • 3c light-emitting layer 3d electronic transmission layer
  • the thin film electroluminescent device 10 of the present invention includes a first electrode 2, a functional structure layer 3, a second electrode 4, a light extraction layer 5 and a cover layer 6.
  • the first electrode 2 is arranged on one side of the conductive glass 1, and the first electrode 2 is an anode.
  • the functional structure layer 3 includes a hole injection layer 3a, a hole transport layer 3b, and a light emitting layer 3c. Wherein the hole injection layer 3a is provided on the first electrode 2; the hole transport layer 3b is provided on the hole injection layer 3a; the light emitting layer 3c is provided on the hole transport layer 3b Above, the second electrode 4 is directly arranged on the light-emitting layer 3c, and the second electrode 4 is a cathode.
  • the functional structure layer 3 may also be provided with an electron transport layer 3d and an electron injection layer 3e; the electron transport layer 3d is provided on the light-emitting layer 3c; the electron injection layer 3e is provided on the electron On the transport layer 3d; the second electrode 4 is provided on the electron injection layer 3e.
  • an electron blocking layer (not shown in the figure) may be further provided in the functional structure layer 3, which is provided between the first electrode 2 and the second electrode 4.
  • the electron blocking layer may be disposed between the light emitting layer 3c and the hole transport layer 3b, so that when a current is applied between the anode and the cathode, the electron blocking layer prevents electrons from leaking in the organic light emitting layer 3c.
  • a hole blocking layer (not shown in the figure) may be further provided in the functional structure layer 3, which is provided between the first electrode 2 and the second electrode 4.
  • the hole blocking layer may be arranged between the electron transport layer 3d and the light emitting layer 3c, so that when a current is applied between the anode and the cathode, the hole blocking layer can confine carriers and excitons in the light emitting layer.
  • layer 3c may be further provided in the functional structure layer 3, which is provided between the first electrode 2 and the second electrode 4.
  • it may be arranged between the electron transport layer 3d and the light emitting layer 3c, so that when a current is applied between the anode and the cathode, the hole blocking layer can confine carriers and excitons in the light emitting layer.
  • the absolute value of the difference between the HOMO energy level or the valence band energy level of the p-type semiconductor material of the layer 3a or the hole transport layer 3b or the hole injection layer 3a or the electron blocking layer is less than 0.5 eV, preferably Less than 0.2eV.
  • the anode material may be conductive metal or metal oxide or conductive polymer, for example, aluminum copper, gold, silver, magnesium, iron, cobalt, nickel, molybdenum, palladium, platinum, indium tin oxide, aluminum doped zinc oxide, etc. .
  • Other suitable anode materials are known, and those of ordinary skill in the art can easily select and use them.
  • the anode material can be deposited using any suitable technology, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam) deposition methods, and the like.
  • the anode is patterned and structured.
  • the patterned indium tin oxide conductive glass 1 is commercially available and can be used to prepare the device of the present invention.
  • the cathode may be conductive metal or metal oxide or metal alloy or conductive polymer.
  • all materials that can be used as the cathode of the thin film electroluminescent device 10 can be used as the cathode material of the thin film electroluminescent device 10 of the present invention, such as aluminum, gold, silver, calcium, barium, magnesium, and fluoride.
  • the cathode can easily inject electrons into the electron injection layer 3e or the electron transport layer 3d or directly into the light emitting layer 3c.
  • the work function of the cathode and the LUMO energy of the luminous body in the light-emitting layer 3c or the electron injection layer 3e or the electron transport layer 3d or the n-type semiconductor material of the hole blocking layer The absolute value of the difference in energy level or conduction band energy level is less than 0.5 eV, preferably less than 0.2 eV.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam) deposition methods, and the like.
  • the light-emitting layer 3c is an organic light-emitting layer 3c, in which organic light-emitting materials are doped, and the organic light-emitting materials are selected from singlet light-emitting bodies, triplet light-emitting bodies, or thermally activated delayed fluorescence light-emitting materials (TADF).
  • TADF thermally activated delayed fluorescence light-emitting materials
  • quantum dot light-emitting materials singlet light-emitting bodies, triplet light-emitting bodies and thermally activated delayed fluorescence light-emitting materials (TADF).
  • TADF thermally activated delayed fluorescence light-emitting materials
  • luminescent quantum dots can emit light with a wavelength between 380 nanometers and 2500 nanometers.
  • the emission wavelength of a quantum dot with a CdS core is in the range of about 400 nm to 560 nm; the emission wavelength of a quantum dot with a CdSe core is in the range of about 490 nm to 620 nm; the emission wavelength of a quantum dot with CdTe core Located in the range of about 620 nanometers to 680 nanometers; the emission wavelength of quantum dots with InGaP core is in the range of about 600 nanometers to 700 nanometers; the emission wavelength of quantum dots with PbS core is in the range of about 800 nanometers to 2500 nanometers; the quantum dots with PbSe core The emission wavelength of the dot is in the range of about 1200 nm to 2500 nm; the emission wavelength of the quantum dot with CuInGaS core is in the range of about 600 nm to 6
  • the quantum dot material contains at least one kind of blue light with a peak wavelength of 450nm-460nm, green light with a peak wavelength of 520nm-540nm, or red light with a peak wavelength of 615nm-630nm. , Or a mixture of them.
  • the included quantum dots can be selected from special chemical composition, topography and/or size, so as to emit light of the desired wavelength under electrical stimulation.
  • the narrow particle size distribution of quantum dots enables quantum dots to have a narrower emission spectrum.
  • the size of the quantum dots needs to be adjusted within the above-mentioned size range to obtain the desired wavelength of light-emitting properties.
  • the quantum dots are semiconductor nanocrystals.
  • the size of semiconductor nanocrystals is in the range of about 5 nanometers to about 15 nanometers.
  • the size of the quantum dots needs to be adjusted within the above-mentioned size range to obtain the desired wavelength of light-emitting properties.
  • the semiconductor nanocrystals include at least one semiconductor material, wherein the semiconductor material can be selected from Group IV, Group II-VI, Group II-V, Group III-V, Group III-VI, Group IV-VI, Periodic Table of Elements, Group I-III-VI, Group II-IV-VI, Group II-IV-V binary or multiple semiconductor compounds or their mixtures.
  • semiconductor materials include, but are not limited to: IV semiconductor compounds, consisting of elemental Si, Ge, C and binary compounds SiC, SiGe; II-VI semiconductor compounds, including binary compounds including CdSe, CdTe, CdO, CdS, CdSe, ZnS, ZnSe, ZnTe, ZnO, HgO, HgS, HgSe, HgTe, ternary compounds including CdSeS, CdSeTe, CdSTe, CdZnS, CdZnSe, CdZnTe, CgHgS, CdHgSe, Te, ZnSeS, ZnSe HgSeS, HgSeTe, HgSTe, HgZnS, HgSeSe and quaternary compounds include CgHgSeS, CdHgSeTe, CgHgSTe, CdZnSeS, CdZnSeTe, HgZnS
  • the quantum dots may include II-VI group semiconductor materials, preferably selected from CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe and any combination thereof.
  • this material is used for visible light emitting quantum dots due to the relatively mature synthesis of CdSe.
  • the quantum dots may also contain III-V semiconductor materials, preferably selected from InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe and Any combination of them.
  • the quantum dots may also contain IV-VI group semiconductor materials, preferably selected from PbSe, PbTe, PbS, PbSnTe, T12SnTe5 and any combination thereof.
  • the quantum dot is a core-shell structure.
  • the core and the shell respectively include one or more semiconductor materials the same or different.
  • the nucleus of the quantum dot can be selected from the above-mentioned Periodic Table of Elements IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II -IV-VI group, II-IV-V group binary or multi-component semiconductor compound.
  • quantum dot cores include but are not limited to ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and alloys or mixtures of any combination thereof.
  • the shells of the quantum dots are selected from semiconductor materials with the same core or different cores.
  • the semiconductor materials that can be used for the shell include groups IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI of the Periodic Table of Elements Group, II-IV-V group binary or multiple semiconductor compound.
  • quantum dot cores include but are not limited to ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and alloys or mixtures of any combination thereof.
  • the shell may include a single-layer or multi-layer structure.
  • the shell includes one or more semiconductor materials that are the same or different from the core.
  • the shell has a thickness of about 1 to 20 layers.
  • the shell has a thickness of about 5 to 10 layers.
  • the semiconductor material used for the shell has a larger band gap than the core.
  • the shell core has an I-type semiconductor heterojunction structure.
  • the semiconductor material used for the shell has a smaller band gap than the core.
  • the semiconductor material used for the shell has an atomic crystal structure the same as or close to that of the core. This choice helps reduce the stress between the core and the shell and makes the quantum dots more stable.
  • the core-shell quantum dots used are (but not limited to):
  • Red light CdSe/CdS, CdSe/CdS/ZnS, CdSe/CdZnS, etc.;
  • Green light CdZnSe/CdZnS, CdSe/ZnS, etc.
  • Blue light CdS/CdZnS, CdZnS/ZnS, etc.
  • the preferred method for preparing quantum dots is the colloidal growth method.
  • the method for preparing monodisperse quantum dots is selected from hot-inject and/or heating-up.
  • the surface of the quantum dot may optionally contain an organic ligand.
  • Organic ligands can control the growth process of quantum dots, regulate the appearance of quantum dots and reduce quantum dot surface defects, thereby improving the luminous efficiency and stability of quantum dots.
  • the organic ligand can be selected from pyridine, pyrimidine, furan, amine, alkyl phosphine, alkyl phosphine oxide, alkyl phosphonic acid or alkyl phosphinic acid, alkyl mercaptan and the like.
  • organic ligands include, but are not limited to, tri-n-octyl phosphine, tri-n-octyl phosphine oxide, trihydroxypropyl phosphine, tributyl phosphine, tris(dodecyl) phosphine, dibutyl phosphite , Tributyl phosphite, octadecyl phosphite, trilauryl phosphite, tri(dodecyl) phosphite, triisodecyl phosphite, bis(2-ethylhexyl) phosphate, Tri(tridecyl) phosphate, hexadecylamine, oleylamine, octadecylamine, dioctadecylamine, thirty-octadecylamine, bis(2-ethylhexyl) pho
  • the surface of the quantum dots may also optionally contain inorganic ligands.
  • Quantum dots protected by inorganic ligands can be obtained by ligand exchange with organic ligands on the surface of quantum dots.
  • examples of specific inorganic ligands include, but are not limited to: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, NH2-, PO43-, MoO42- and the like.
  • inorganic ligand quantum dots please refer to documents: J. Am. Chem. Soc. 2011, 133, 10612-10620; ACS Nano, 2014, 9, 9388-9402. The entire contents of the files listed above are hereby incorporated into this article for reference.
  • the surface of the quantum dot has one or more of the same or different ligands.
  • the luminescence spectrum exhibited by monodisperse quantum dots has a symmetrical peak shape and a narrow half-width.
  • the half width of the quantum dot is less than 70 nanometers; more preferably, the half width of the quantum dot is less than 40 nanometers; most preferably, the half width of the quantum dot is less than 30 nanometers.
  • the quantum dots have a luminous quantum efficiency of 10%-100%.
  • the quantum dot has a luminescence quantum efficiency greater than 50%; more preferably, the quantum dot has a luminescence quantum efficiency greater than 80%; most preferably, the quantum dot has a luminescence quantum efficiency greater than 90%.
  • the singlet light emitter may be selected from monostyrylamine, distyrylamine, tertiary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound which contains an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound that contains two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound which contains three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound containing four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding definitions of phosphines and ethers are similar to those of amines.
  • An arylamine or aromatic amine refers to a compound containing three unsubstituted or substituted aromatic rings or heterocyclic ring systems directly linked to nitrogen.
  • At least one of these aromatic or heterocyclic ring systems is preferred to the fused ring system, and preferably has at least 14 aromatic ring atoms.
  • aromatic anthracene amine aromatic anthracene diamine, aromatic pyrene amine, aromatic pyrene diamine, aromatic pyrene diamine, and aromatic pyrene diamine.
  • An aromatic anthracene amine refers to a compound in which a dibasic aryl amine group is directly linked to the anthracene, preferably at the 9 position.
  • An aromatic anthracene diamine refers to a compound in which two divalent aryl amine groups are directly linked to the anthracene, preferably at the 9, 10 positions.
  • aromatic pyrene amine aromatic pyrene diamine
  • aromatic pyrene diamine aromatic pyrene diamine
  • aromatic pyrene diamine aromatic pyrene diamine
  • divalent aryl amine group is preferably linked to the 1, or 1, 6 position of pyrene.
  • Singlet luminophores can be selected from indenofluorene-amine and indenofluorene-diamine, fluorene-based fused ring systems, pyrene derivatives, pyrene triarylamine derivatives, and other triarylamine derivatives of pyrene with specific structures Things.
  • polycyclic aromatic hydrocarbon compounds especially derivatives of the following compounds: anthracene such as 9,10-bis(2-naphthanthracene), naphthalene, tetracene, xanthene, phenanthrene , Pyrene (such as 2,5,8,11-tetra-t-butylperylene), indenopyrene, phenylene such as (4,4'-bis(9-ethyl-3-carbazole vinyl)-1 , 1'-biphenyl), diindenopyrene, decacycloene, hexabenzocene, fluorene, spirobifluorene, arylpyrene, arylene ethylene, cyclopentadiene such as tetraphenylcyclopentadiene, Rubrene, coumarin, rhodamine, quinacridone, pyran such as 4(dicyanom)
  • Triplet emitters are also called phosphorescent emitters.
  • the triplet emitter is a metal complex with the general formula M(L) n , where M is a metal atom, and L can be the same or different each time it appears. It is an organic ligand that passes through one or more positions Bonded or coordinated to the metal atom M, n is an integer between 1 and 6.
  • the triplet luminophore contains a chelating ligand, that is, a ligand, which is coordinated to the metal through at least two binding points. It is particularly preferred that the triplet luminophore contains two or three identical or different doubles. Tooth or multidentate ligands. Chelating ligands help to improve the stability of metal complexes.
  • the metal atom M is selected from transition metal elements or lanthanides or actinides, preferably iridium, platinum, palladium, gold, rhodium, ruthenium, osmium, rhenium , Copper, silver, nickel, cobalt, tungsten or europium, especially iridium, gold, platinum, tungsten or osmium.
  • TDF Thermally activated delayed fluorescent material
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and the triplet excitons can be converted into singlet excitons to emit light through the inter-system crossing. This can make full use of the singlet and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the properties are stable, the price is cheap and no precious metals are needed, and the application prospects in the OLED field are broad.
  • the thermally activated delayed fluorescent material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3eV, next best ⁇ Est ⁇ 0.2eV, best ⁇ Est ⁇ 0.1eV, the existing thermal
  • the activated delayed fluorescent light-emitting material can be used for the thermally activated delayed fluorescent light-emitting material (TADF) of the present invention, so that the light-emitting layer 3c has better fluorescence quantum efficiency.
  • the light extraction layer 5 is provided on the side of the second electrode 4 away from the first electrode 2.
  • the light extraction layer 5 needs to have a suitable energy level structure.
  • the singlet energy (S1) of the light extraction layer 5 is greater than or equal to 2.7 eV and less than or equal to 3.1 eV; preferably, greater than or Equal to 2.85eV, less than or equal to 3.0eV.
  • S1 singlet energy
  • the light extraction layer 5 needs a small extinction coefficient, and the extinction coefficient at a wavelength of 430 nm is less than 0.1; preferably, less than 0.003. More preferably, it is less than 0.001. It has high transmittance to visible light, reducing the impact on the light output efficiency of the device.
  • the light extraction layer 5 has a larger extinction coefficient in a wavelength range of ⁇ 400nm; preferably, the extinction coefficient at a wavelength of 350nm is ⁇ 0.3; preferably ⁇ 0.5, more preferably ⁇ 0.7, most preferably ⁇ 1.0 .
  • the light extraction layer 5 has a relatively high refractive index, can beneficially derive the emission of visible light, and improve the luminous efficiency of the organic electronic light-emitting device.
  • the refractive index of the material constituting the light extraction layer 5 is preferably larger than the refractive index of the adjacent electrode.
  • the refractive index of the light extraction layer 5 in the visible light range (400nm-800nm) is greater than 1.5.
  • the refractive index of the light extraction layer 5 at a wavelength of 630 nm is greater than 1.7; more preferably, greater than 1.8; most preferably, greater than 1.9.
  • the thickness of the light extraction layer 5 is 10 nm-200 nm; generally, the thickness of the light extraction layer 5 is 20 nm to 150 nm, preferably 30 nm to 100 nm, more preferably 40 nm to 90 nm.
  • the light extraction layer 5 has a higher glass transition temperature, which improves the thermal stability of the material of the light extraction layer 5, and its glass transition temperature Tg ⁇ 100°C, optionally Tg ⁇ 120°C, Tg ⁇ 140°C, Tg ⁇ 160 °C, Tg ⁇ 180°C.
  • the material of the light extraction layer 5 can be selected from carbazole derivatives, diphenylfuran derivatives, arylamine derivatives, triazine derivatives, and other organic compounds comprising the following structural formulas:
  • Ar4 and Ar5 are selected from substituted or unsubstituted aromatic groups or heteroaromatic groups with 5 to 60 ring atoms; or non-aromatic ring systems with substituted or unsubstituted 3-25 ring atoms.
  • the material of the light extraction layer 5 can also be selected from one or a combination of the following compounds:
  • the covering layer 6 is arranged on the side of the second electrode 4 away from the first electrode 2, and the covering layer 6 has an ionic compound, the chemical formula of the ionic compound is AX 2 , wherein A is selected from divalent metals , X is selected from halogen.
  • the material of the covering layer 6 and the light extraction layer 5 can also be the same, for example, the ionic compound can be used both.
  • the divalent metal is one of zinc, magnesium, and tin
  • the halogen is one of fluorine, chlorine, bromine, and iodine.
  • the covering layer material is selected from the ionic compound AX2, A is selected from zinc, magnesium, tin, and X is selected from fluorine, chlorine, bromine, and iodine.
  • the covering layer 6 may be selected from magnesium chloride, magnesium bromide, zinc chloride, zinc bromide, stannous chloride, and stannous bromide.
  • the melting point of the covering layer material is lower than 750°C, and the boiling point is lower than 1420°C; preferably, the melting point is lower than 600°C, and the boiling point is lower than 1300°C; preferably, the melting point is lower than 400°C, and The boiling point is below 750°C.
  • the melting point of the magnesium chloride is 714°C and the boiling point is 1412°C; the melting point of the magnesium bromide is 700°C and the boiling point is 1230°C; the melting point of the zinc chloride is 283°C and the boiling point is 732°C; the melting point of the zinc bromide is 394°C, boiling point 697°C; the melting point of stannous chloride is 247°C, boiling point is 623°C; stannous bromide melting point is 215°C, boiling point is 639°C; compared with lithium fluoride (melting point 848°C, boiling point 1681 °C), the evaporation temperature of such compounds is lower, and the evaporation rate can also be faster, which reduces the difficulty of device preparation.
  • the cover layer 6 basically has no absorption in the visible light range, and the extinction coefficient at 430 nm is less than 0.1.
  • the visible light transmittance of the cover layer 6 is greater than 70%; preferably, the transmittance is greater than 80%; more preferably, the transmittance is greater than 90%.
  • the thickness of the covering layer 6 may be 10 nm-300 nm; preferably, 10-200 nm.
  • the present invention also provides a preparation method for preparing the thin film electroluminescence device 10, including the following steps:
  • the step of providing a conductive glass 1 with the first electrode 2 on the surface includes ultrasonic cleaning with deionized water, acetone, and isopropanol in sequence
  • the conductive glass 1 is then cleaned with a plasma cleaner to improve the work function of the electrode.
  • the functional structure layer 3 is formed on the side of the conductive glass 1 with the first electrode 2 by a vacuum evaporation method.
  • the hole injection layer 3a is sequentially formed by a vacuum evaporation method.
  • the evaporation rate is The thickness of the hole injection layer 3a formed after the evaporation is completed is 5 nm.
  • the hole transport material is vapor-deposited on the hole injection layer 3a by a vacuum evaporation method, and the thickness of the hole transport layer 3b formed is 80 nm.
  • the light-emitting layer 3c material is vapor-deposited on the hole transport layer 3b.
  • the light-emitting layer 3c material includes a host material and a dopant material, and the mass ratio of the host material and the dopant material is 7:1:- 9:1.
  • the thickness of the light-emitting layer 3c formed was 40 nm.
  • the material of the electron transport layer 3d is evaporated by a vacuum evaporation method, and the thickness of the electron transport layer 3d formed is 30 nm.
  • a material of the electron injection layer 3e is vacuum-evaporated to form the electron injection layer 3e with a thickness of 1 nm.
  • the structural formula of the material of the hole injection layer 3a is as follows:
  • the structural formula of the hole transport layer 3b material is as follows:
  • the structural formula of the host material in the light-emitting layer 3c is as follows:
  • the structural formula of the doping material in the light-emitting layer 3c is as follows:
  • the electron transport layer 3d has two materials, the mass ratio of the two materials is 1:1, and the structural formulas of the two materials are as follows:
  • the material of the electron injection layer 3e is ytterbium.
  • the second electrode 4 is formed on the side of the functional structure layer 3 away from the first electrode 2 by a vacuum evaporation method; on the electron injection layer 3e, a cathode is vacuum evaporated.
  • the cathode is a magnesium-silver alloy layer, the doping ratio of magnesium and silver is 9:1, and the thickness of the cathode is 15 nm.
  • the material of the light extraction layer 5 is vapor-deposited by a vacuum evaporation method, and the thickness of the light extraction layer 5 is 60 nm.
  • the material structure formula of the light extraction layer 5 is as follows:
  • the cover layer 6 is formed on the side of the second electrode 4 away from the first electrode 2 by a vacuum evaporation method; specifically, a cover layer 6 of zinc chloride is evaporated on the light extraction layer 5 to form a cover Layer 6, the thickness of the covering layer 6 is 50 nm.
  • the thin film electroluminescent device 10 is formed.
  • the difference between this method example and method example 1 is that the material of the covering layer 6 is zinc bromide, and the thin film electroluminescent device 10 is finally produced.
  • the difference between this method example and method example 1 is that the material used for the covering layer 6 is tin chloride, and the thin film electroluminescent device 10 is finally produced.
  • the difference between this method example and method example 1 is that the material used for the covering layer 6 is tin bromide, and the thin film electroluminescent device 10 is finally produced.
  • the difference between this method example and method example 1 is that the material used for the cover layer 6 is lithium fluoride, and the thin film electroluminescent device 10 is finally produced.
  • Table 1 The relative value of the time required for vapor deposition of the coating layer 6 with the same thickness and the relative value of the luminous efficiency in the method example 2 and the comparative example 1.
  • the luminous efficiency is the data obtained when the current density is 10 mA/cm 2 . It can be seen from Table 1 that compared with Comparative Example 1, the compound involved in the electroluminescent device of the present invention has a lower melting point (less than 400°C) and boiling point (less than 750°C) than lithium fluoride. Without affecting the efficiency of the device, the time required for the evaporation of the covering layer 6 can be effectively reduced, the production efficiency of the device is improved, and the difficulty of the device preparation is reduced.
  • the present invention also provides an electronic device 100 having the thin film electroluminescent device 10 described above.
  • the main design point of the present invention is the thin-film electroluminescent device 10, and other structures will not be repeated.
  • the electronic equipment 100 of the present invention includes all electronic equipment 100 having the thin-film electroluminescent device 10 of the present invention, including display equipment, lighting equipment, light sources, sensors and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种薄膜电致发光器件及其制备方法、电子设备,薄膜电致发光器件包括第一电极(2);功能结构层(3),设于所述第一电极上(2);第二电极(4),设于所述功能结构层(3)上;以及覆盖层(6),设于所述第二电极(4)远离所述第一电极(2)的一侧,所述覆盖层(6)中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。

Description

薄膜电致发光器件及其制备方法、电子设备 技术领域
本发明涉及显示技术领域,具体为一种薄膜电致发光器件及其制备方法、电子设备。
背景技术
电致发光显示设备是一类自发光型的显示装置,通过载流子在各个功能层间的转移、复合产生激子,依靠高量子效率的有机化合物或金属配合物发光。其具有自发光、高亮度、高效率、高对比度、高响应性等特点。
近些年,有机电致发光二极管(OLED)的发光效率有了很大的提升,但是其内部量子效率已经接近理论极限。因此提高光取出效率成为进一步提高器件稳定性和电流效率的有效手段(如发射层金属配合物的堆积、各功能层间折射率的匹配等)。在2003年,Riel等人已尝试将具有高折射率的无机化合物,如硒化锌,蒸镀于阴极上,利用功能层之间折射率的差异提高光取出效率,但受限于无机材料蒸发温度高、蒸发速率慢等原因,这类化合物并未在薄膜电致发光器件中得到更多应用。对于器件的后续封装中所接触的高能量等离子体或紫外线,更需要一类稳定的材料可以避免电致发光设备的内部材料受到损害。
因此,一类提高电致发光器件稳定性及器件制备效率的化合物需要进一步的筛选。
技术问题
为解决上述技术问题:本发明提供一种薄膜电致发光器件及其制备方法、电子设备,通过在薄膜电致发光器件上真空蒸镀一具有离子化合物的覆盖层,以提高薄膜电致发光器件的发光效率,同时降低薄膜电致发光器件的制备难度。
技术解决方案
解决上述问题的技术方案是:本发明提供一种薄膜电致发光器件,包括第一电极;功能结构层,设于所述第一电极上;第二电极,设于所述功能结构层上;以及覆盖层,设于所述第二电极远离所述第一电极的一侧,所述覆盖层中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。
在本发明一实施例中,所述二价金属为锌、镁、锡中的一种,所述卤素为氟、氯、溴、碘中的一种。
在本发明一实施例中,所述覆盖层对可见光的消光系数小于等于0.1,对可见光的透射率大于等于70%。
在本发明一实施例中,所述的薄膜电致发光器件还包括光取出层,设于所述第二电极和覆盖层之间;所述覆盖层真空蒸镀于所述光取出层远离所述第二电极的一面;所述光取出层所用材料选择所述离子化合物、咔唑衍生物、二苯基呋喃衍生物、芳胺衍生物、三嗪衍生物中的至少一种。
在本发明一实施例中,所述第一电极和所述第二电极所用材料为金属或其化合物、金属合金、导电聚合物中的至少一种。
在本发明一实施例中,所述功能结构层包括空穴注入层,设于所 述第一电极上;空穴传输层,设于所述空穴注入层上;发光层,设于所述空穴传输层上;电子传输层,设于所述发光层上;电子注入层,设于所述电子传输层上;所述第二电极设于所述电子注入层上。
在本发明一实施例中,所述发光层中具有主体材料和掺杂材料,其中所述主体材料的结构式如下:
Figure PCTCN2019108903-appb-000001
所述掺杂材料的结构式如下:
Figure PCTCN2019108903-appb-000002
所述主体材料和所述掺杂材料的质量比为7:1:-9:1。
本发明还提供了一种制备方法,用以制备所述的薄膜电致发光器件,包括以下步骤提供一导电玻璃,其表面具有所述第一电极的;通过真空蒸镀法形成所述功能结构层于所述导电玻璃具有所述第一电极的一面;通过真空蒸镀法形成所述第二电极于所述功能结构层远离 所述第一电极的一侧;通过真空蒸镀法形成所述覆盖层于所述第二电极远离所述第一电极的一侧;所述覆盖层中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。
在本发明一实施例中,在所述的提供一所述导电玻璃步骤中,包括依次用去离子水、丙酮、异丙醇超声清洗所述导电玻璃,然后用等离子体清洗器清洗所述导电玻璃;在所述的形成所述功能结构层步骤中,包括通过真空蒸镀法依次形成空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
本发明还提供了一种电子设备,具有所述的薄膜电致发光器件。
有益效果
本发明的薄膜电致发光器件及其制备方法、电子设备,通过在阴极上设置覆盖层,有效的提高了薄膜电致发光器件的发光效率,覆盖层具有离子化合物,离子化合物为卤化物,特别是对于溴化物或者氯化物来说,能够有效降低薄膜电致发光器件的制备难度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合附图和实施例对本发明作进一步解释。
图1是本发明实施例的薄膜电致发光器件结构图。
10薄膜电致发光器件;              100电子设备;
1导电玻璃;                       2第一电极;
3功能结构层;                     4第二电极;
5光取出层;                       6覆盖层;
3a空穴注入层;                    3b空穴传输层;
3c发光层;                        3d电子传输层;
3e电子注入层。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
如图1所示,在本发明一实施例中,本发明的薄膜电致发光器件10,包括第一电极2、功能结构层3、第二电极4、光取出层5以及覆盖层6。
所述第一电极2设置在导电玻璃1的一面,所述第一电极2为阳极。所述功能结构层3包括空穴注入层3a、空穴传输层3b、发光层 3c。其中所述空穴注入层3a设于所述第一电极2上;所述空穴传输层3b设于所述空穴注入层3a上;所述发光层3c设于所述空穴传输层3b上,所述第二电极4直接设置于所述发光层3c上,第二电极4为阴极。
本实施例中,所述功能结构层3还可以设置电子传输层3d、电子注入层3e;所述电子传输层3d设于所述发光层3c上;所述电子注入层3e设于所述电子传输层3d上;所述第二电极4设于所述电子注入层3e上。
本实施例中,所述功能结构层3中还可以设置电子阻挡层(图未示),设于所述第一电极2和所述第二电极4之间。例如可以设置在发光层3c和所述空穴传输层3b之间,使得当电流施加至阳极和阴极之间时,电子阻挡层防止电子在有机发光层3c中泄漏。
本实施例中,所述功能结构层3中还可以设置空穴阻挡层(图未示),设于所述第一电极2和所述第二电极4之间。例如可以设置在所述电子传输层3d和所述发光层3c之间,使得当电流施加至阳极和阴极之间时,所述空穴阻挡层能够将载流子和激子限制在所述发光层3c中。
由于所述阳极可以容易地注入空穴到空穴注入层3a或空穴传输层3b或发光层3c中,所述阳极的功函数和所述发光层3c中的发光体或所述空穴注入层3a或所述空穴传输层3b或所述空穴注入层3a或所述电子阻挡层的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,最好是小于0.2eV。
所述阳极材料可选用导电金属或金属氧化物或导电聚合物,例如选择铝铜、金、银、镁、铁、钴、镍、钼、钯、铂、氧化铟锡、铝掺杂氧化锌等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。所述阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射、真空热蒸发、电子束(e-beam)沉积方法等。所述阳极是图案结构化的。图案化的氧化铟锡导电玻璃1可在市场上买到,并且可以用来制备本发明的器件。
所述阴极可选用导电金属或金属氧化物或金属合金或导电聚合物。原则上,所有可用作所述薄膜电致发光器件10的阴极的材料都可能作为本发明薄膜电致发光器件10的阴极材料,例如:铝、金、银、钙、钡、镁、氟化锂和铝、镁银合金、氟化钡和铝、铜、铁、钴、镍、钼、钯、铂、氧化铟锡等。所述阴极可以容易地注入电子到电子注入层3e或电子传输层3d或直接到发光层3c中。在一个实施例中,所述阴极的功函数和所述发光层3c中发光体或所述电子注入层3e或所述电子传输层3d或所述空穴阻挡层的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,最好是小于0.2eV。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射、真空热蒸发、电子束(e-beam)沉积方法等。
所述发光层3c为有机发光层3c,其中掺杂有机发光材料,有机发光材料选自单重态发光体、三重态发光体或者热激活延迟荧光发光材料(TADF)。
下面对量子点发光材料、单重态发光体、三重态发光体及热激活 延迟荧光发光材料(TADF)作一些较详细描述。
量子点发光材料
一般地,发光量子点可以在波长380纳米到2500纳米之间发光。例如,已发现,具有CdS核的量子点的发光波长位于约400纳米到560纳米范围;具有CdSe核的量子点的发光波长位于约490纳米到620纳米范围;具有CdTe核的量子点的发光波长位于约620纳米到680纳米范围;具有InGaP核的量子点的发光波长位于约600纳米到700纳米范围;具有PbS核的量子点的发光波长位于约800纳米到2500纳米范围;具有PbSe核的量子点的发光波长位于约1200纳米到2500纳米范围;具有CuInGaS核的量子点的发光波长位于约600纳米到680纳米范围;具有ZnCuInGaS核的量子点的发光波长位于约500纳米到620纳米范围;具有CuInGaSe核的量子点的发光波长位于约700纳米到1000纳米范围。
本实施例中,所述的量子点材料包含至少一种能够发出发光峰值波长位于450nm~460nm的蓝光、或发光峰值波长位于520nm~540nm的绿光、或发光峰值波长位于615nm~630nm的红光,或它们的混合物。
所包含的量子点可以选自特殊的化学组成、形貌结构和/或大小尺寸,以获得在电刺激下发出所需波长的光。量子点的窄的粒径分布能使量子点具有更窄的发光光谱。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
所述量子点是半导体纳米晶体。半导体纳米晶体的尺寸为约5纳 米到约15纳米的范围内。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
所述的半导体纳米晶体包括至少一种半导体材料,其中半导体材料可选为元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物或他们的混合物。具体所述的半导体材料的实例包括,但不限制于:IV族半导体化合物,由单质Si、Ge、C和二元化合物SiC、SiGe组成;II-VI族半导体化合物,由二元化合物包括CdSe、CdTe、CdO、CdS、CdSe、ZnS、ZnSe、ZnTe、ZnO、HgO、HgS、HgSe、HgTe,三元化合物包括CdSeS、CdSeTe、CdSTe、CdZnS、CdZnSe、CdZnTe、CgHgS、CdHgSe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgSeSe及四元化合物包括CgHgSeS、CdHgSeTe、CgHgSTe、CdZnSeS、CdZnSeTe、HgZnSeTe、HgZnSTe、CdZnSTe、HgZnSeS、组成;III-V族半导体化合物,由二元化合物包括AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb,三元化合物包括AlNP、AlNAs、AlNSb、AlPAs、AlPSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、InNP、InNAs、InNSb、InPAs、InPSb、和四元化合物包括GaAlNAs、GaAlNSb、GaAlPAs、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb组成;IV-VI族半导体化合物,由二元化合物包括SnS、SnSe、SnTe、PbSe、PbS、PbTe,三元化合物包括SnSeS、SnSeTe、SnSTe、SnPbS、SnPbSe、SnPbTe、 PbSTe、PbSeS、PbSeTe和四元化合物包括SnPbSSe、SnPbSeTe、SnPbSTe组成。
所述量子点可以包含有II-VI族半导体材料,优先选自CdSe,CdS,CdTe,ZnO,ZnSe,ZnS,ZnTe,HgS,HgSe,HgTe,CdZnSe及它们的任何组合。在合适的实施方案中,由于CdSe的合成相对成熟而将此材料用于可见光的发光量子点。
所述量子点也可以包含有III-V族半导体材料,优先选自InAs,InP,InN,GaN,InSb,InAsP,InGaAs,GaAs,GaP,GaSb,AlP,AlN,AlAs,AlSb,CdSeTe,ZnCdSe及它们的任何组合。
所述量子点也可以包含有IV-VI族半导体材料,优先选自PbSe,PbTe,PbS,PbSnTe,Tl2SnTe5及它们的任何组合。
所述量子点为一核壳结构。核与壳分别相同或不同地包括一种或多种半导体材料。
所述量子点的核可以选自上述的元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括但不限制于ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及它们任意组合的合金或混合物。
所述量子点的壳选自于核相同或不同的半导体材料。可用于壳的半导体材料包括元素周期表IV族、II-VI族、II-V族、III-V族、 III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括但不限制于ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及它们任意组合的合金或混合物。
所述的具有核壳结构的量子点,壳可以包括单层或多层的结构。壳包括一种或多种与核相同或不同的半导体材料。在一个优选的实施例中,壳具有约1到20层的厚度。在一个更为优选的实施例中,壳具有约5到10层的厚度。在一些实施例中,在量子点核的表面包含有两种或两种以上的壳。用于壳的半导体材料具有比核更大的带隙。特别优先的,壳核具有I型的半导体异质结结构。用于壳的半导体材料具有比核更小的带隙。用于壳的半导体材料具有与核相同或接近的原子晶体结构。这样的选择有利于减小核壳间的应力,使量子点更为稳定。所采用的核壳量子点为(但不限制于):
红光:CdSe/CdS,CdSe/CdS/ZnS,CdSe/CdZnS等;
绿光:CdZnSe/CdZnS,CdSe/ZnS等;
蓝光:CdS/CdZnS,CdZnS/ZnS等。
优选的量子点的制备方法是胶状生长法。在一个优选的实施例中,制备单分散的量子点的方法选自热注射法(hot-inject)和/或加热法(heating-up)。
本实施例中,所述量子点的表面可以选择包含有有机配体。有机 配体可以控制量子点的生长过程,调控量子点的相貌和减小量子点表面缺陷从而提高量子点的发光效率及稳定性。所述的有机配体可以选自吡啶,嘧啶,呋喃,胺,烷基膦,烷基膦氧化物,烷基膦酸或烷基次膦酸,烷基硫醇等。具体的有机配体的实例包括但不限制于三正辛基膦,三正辛基氧化膦,三羟基丙基膦,三丁基膦,三(十二烷基)膦,亚磷酸二丁酯,亚磷酸三丁酯,亚磷酸十八烷基酯,亚磷酸三月桂酯,亚磷酸三(十二烷基)酯,亚磷酸三异癸酯,双(2-乙基己基)磷酸酯,三(十三烷基)磷酸酯,十六胺,油胺,十八胺,双十八胺,三十八胺,双(2-乙基己基)胺,辛胺,二辛胺,三辛胺,十二胺,双十二胺,三十二胺,十六胺,苯基磷酸,己基磷酸,四癸基磷酸,辛基磷酸,正十八烷基磷酸,丙烯二磷酸,二辛醚,二苯醚,辛硫醇,十二烷基硫醇。
本实施例中,所述量子点的表面还可以选择包含有无机配体。由无机配体保护的量子点可以通过对量子点表面有机配体进行配体交换得到。具体的无机配体的实例包括但不限制于:S2-,HS-,Se2-,HSe-,Te2-,HTe-,TeS32-,OH-,NH2-,PO43-,MoO42-等。该类无机配体量子点的例子可以参考文件:J.Am.Chem.Soc.2011,133,10612-10620;ACS Nano,2014,9,9388-9402。特此将上述列出的文件中的全部内容并入本文作为参考。
当然量子点表面具有一种或多种相同或不同的配体。
具有单分散的量子点所表现出的发光光谱具有对称的峰形和窄的半峰宽。一般地,量子点的单分散性越好,其所表现的发光峰越对 称,且半峰宽越窄。优选地,所述的量子点的半峰宽小于70纳米;更优选地,所述的量子点的半峰宽小于40纳米;最优选地,所述的量子点的半峰宽小于30纳米。
所述的量子点具有10%-100%的发光量子效率。优选地,量子点具有大于50%的发光量子效率;更加优选地,量子点具有大于80%的发光量子效率;最优选地,量子点具有大于90%的发光量子效率。
单重态发光体
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,在WO2008/00644和WO2007/140847中公开的茚并芴及其衍生物及在US7233019、KR2006-0006760中公开的芘的三芳胺衍生物。
单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统 中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺、芳香蒽二胺、芳香芘胺、芳香芘二胺、芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上。
单重态发光体可选于茚并芴-胺和茚并芴-二胺、基于芴的稠环体系、芘的衍生物、芘的三芳胺衍生物以及其它具有特定结构的芘的三芳胺衍生物。其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽)、萘,四苯、氧杂蒽、菲、芘(如2,5,8,11-四-t-丁基苝)、茚并芘、苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯)、二茚并芘、十环烯、六苯并苯、芴、螺二芴、芳基芘、亚芳香基乙烯、环戊二烯如四苯基环戊二烯、红荧烯、香豆素、若丹明、喹吖啶酮、吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃、双(吖嗪基)亚胺硼化合物、双(吖嗪基)亚甲基化合物、喹诺酮类化合物、噁嗪酮、苯并恶唑、苯并噻唑、苯并咪唑及吡咯并吡咯二酮。
三重态发光体
三重态发光体也称磷光发光体。三重态发光体是具有通式M(L) n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不 同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是1至6之间的整数。优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
可用作三重态发光体的金属络合物有如下形式:金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择铱、铂、钯、金、铑、钌、锇、铼、铜、银、镍、钴、钨或铕,特别优先选择铱,金,铂,钨或锇。
热激活延迟荧光发光材料(TADF)
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
热激活延迟荧光发光材料(TADF)需要具有较小的单线态-三线 态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.2eV,最好是ΔEst<0.1eV,现有的热激活延迟荧光发光材料(TADF)均可用以本发明的热激活延迟荧光发光材料(TADF),以使发光层3c具有较好的荧光量子效率。
所述光取出层5设于所述第二电极4远离所述第一电极2的一侧。所述光取出层5需要有合适能级结构,本实施例中,所述光取出层5的单线态能量(S1)要大于或等于2.7eV,且小于或等于3.1eV;优选地,大于或等于2.85eV,小于或等于3.0eV。在波长小于400nm的区域有较强的吸收,波长大于400nm的可见光则吸收弱或接近零,避免器件内部材料在后续过程中受到高能光线照射而造成损伤。
所述光取出层5需要较小的消光系数,在波长为430nm时的消光系数小于0.1;优选地,小于0.003。更优选地,小于0.001。对可见光有较高的透射率,降低对设备出光效率的影响。所述光取出层5在≤400nm的波长范围有较大的消光系数;优先的,在波长为350nm时的消光系数≥0.3;较好是≥0.5,更好是≥0.7,最好是≥1.0。
所述光取出层5拥有较高的折射率,能够对可见光的发射进行有益导出,提高有机电子发光器件的发光效率。光取出层5材料与相邻电极之间的界面的反射率大时,光干涉的影响大,因此构成光取出层5材料的折射率优选大于相邻的电极的折射率。光取出层5在可见光范围(400nm-800nm)折射率大于1.5。本实施例中,所述光取出层5在波长630nm处折射率大于1.7;更优选地,大于1.8;最优选地,大于1.9。
所述光取出层5的厚度为10nm-200nm;一般光取出层5厚度为20nm至150nm,较好为30nm至100nm,更好为40nm至90nm。
所述光取出层5具有较高的玻璃化温度,提升光取出层5材料的热稳定性,其玻璃化温度Tg≥100℃,可选为Tg≥120℃、Tg≥140℃、Tg≥160℃、Tg≥180℃。
本实施例中,所述光取出层5材料可选自咔唑衍生物,二苯基呋喃衍生物、芳胺衍生物、三嗪衍生物等包含如下结构式的有机化合物:
Figure PCTCN2019108903-appb-000003
上述结构式中,X是CR 1或N;W选自CR 2R 3、NR 4、C(=O)、O、S、Se等基团或离子。
Ar4、Ar5选自取代或未取代的环原子数为5至60的芳香基团或杂芳香基团;或者具有取代或未取代的环原子数为3-25的非芳香族环系。
R 1-R 4每次出现时,分别独立选自氢或具有1至30个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至30个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或甲硅烷基,或具有1至30个C原子的酮基,或具有2至30个C原子的烷氧基羰基,或具有7至30个C原子的芳氧基羰基、氰基(-CN)、氨基甲酰基(-C(=O)NH 2)、卤甲酰基、甲酰基(-C(=O)-H)、异氰基、异氰酸酯、硫氰酸酯或异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团,或者具有5至60个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至60个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。
本实施例中,所述光取出层5材料还可以选择如下基团类的化合物的一种或者组合:
Figure PCTCN2019108903-appb-000004
所述覆盖层6设于所述第二电极4远离所述第一电极2的一侧, 所述覆盖层6中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。本实施例中,所述覆盖层6和所述光取出层5的材料也可以相同,如都可以采用所述离子化合物。
所述二价金属为锌、镁、锡中的一种,所述卤素为氟、氯、溴、碘中的一种。所述覆盖层材料选自离子化合物AX2中A选自锌、镁、锡,X选自氟、氯、溴、碘。具体的,所述覆盖层6可以选自氯化镁、溴化镁、氯化锌、溴化锌、氯化亚锡、溴化亚锡。
本实施例中,所述覆盖层材料的熔点低于750℃,且沸点低于1420℃;优选的,熔点低于600℃,且沸点低于1300℃;优选的,熔点低于400℃,且沸点低于750℃。所述氯化镁熔点为714℃,沸点为1412℃;所述溴化镁熔点为700℃,沸点为1230℃;所述氯化锌熔点为283℃,沸点为732℃;所述溴化锌熔点为394℃,沸点为697℃;所述氯化亚锡熔点为247℃,沸点为623℃;溴化亚锡熔点为215℃,沸点为639℃;相比氟化锂(熔点848℃,沸点1681℃),此类化合物蒸镀温度更低,蒸镀速率也可以更快,降低了器件制备的难度。
所述的覆盖层6在可见光范围基本无吸收,在430nm处消光系数小于0.1。
所述的覆盖层6对可见光透射率大于70%;优选的,透射率大于80%;更优选的,透射率大于90%。所述的覆盖层6厚度可以为10nm-300nm;优选的,10-200nm。
方法示例1
本发明还提供了一种制备方法,用以制备所述的薄膜电致发光器 件10,包括以下步骤:
提供一表面具有所述第一电极2的导电玻璃1;具体的,在提供一表面具有所述第一电极2的导电玻璃1步骤中,包括依次用去离子水、丙酮、异丙醇超声清洗所述导电玻璃1,然后用等离子体清洗器清洗所述导电玻璃1;以提高电极功函。
通过真空蒸镀法形成所述功能结构层3于所述导电玻璃1具有所述第一电极2的一面。具体的,通过真空蒸镀法依次形成空穴注入层3a,蒸镀空穴注入层3a材料时,蒸镀速率
Figure PCTCN2019108903-appb-000005
蒸镀完成后形成的空穴注入层3a的厚度为5nm。所述在空穴注入层3a上,通过真空蒸镀方式蒸镀空穴传输材料,形成的空穴传输层3b的厚度为80nm。在所述空穴传输层3b之上蒸镀发光层3c材料,所述发光层3c材料包括主体材料、掺杂材料,所述主体材料和所述掺杂材料的质量比为7:1:-9:1。形成的所述发光层3c的厚度为40nm。在所述发光层3c之上,通过真空蒸镀方式蒸镀电子传输层3d材料,形成的所述电子传输层3d的厚度为30nm。在所述电子传输层3d之上,真空蒸镀电子注入层3e材料,形成的电子注入层3e的厚度为1nm。
本实施例中,所述空穴注入层3a材料的结构式如下:
Figure PCTCN2019108903-appb-000006
所述空穴传输层3b材料的结构式如下:
Figure PCTCN2019108903-appb-000007
所述发光层3c中主体材料的结构式如下:
Figure PCTCN2019108903-appb-000008
所述发光层3c中掺杂材料的结构式如下:
Figure PCTCN2019108903-appb-000009
所述电子传输层3d中具有两种材料,两种材料的质量比为1:1,,两种材料的结构式分别如下:
Figure PCTCN2019108903-appb-000010
所述电子注入层3e的材料为镱。
通过真空蒸镀法形成所述第二电极4于所述功能结构层3远离所述第一电极2的一侧;在所述电子注入层3e之上,真空蒸镀阴极,本实施例中,所述阴极为镁银合金层,镁、银的掺杂比例为9:1,所述阴极的厚度15nm。
在所述阴极之上,通过真空蒸镀方式蒸镀光取出层5材料,所述光取出层5的厚度为60nm。所述光取出层5的材料结构式如下:
Figure PCTCN2019108903-appb-000011
通过真空蒸镀法形成所述覆盖层6于所述第二电极4远离所述第一电极2的一侧;具体的,在所述光取出层5上蒸镀覆盖层6氯化锌形成覆盖层6,所述覆盖层6的厚度为50nm。
最终形成薄膜电致发光器件10。
方法示例2
本方法示例与方法示例1的区别在于,所述覆盖层6所用材料为溴化锌,最终制得薄膜电致发光器件10。
方法示例3
本方法示例与方法示例1的区别在于,所述覆盖层6所用材料为氯化锡,最终制得薄膜电致发光器件10。
方法示例2
本方法示例与方法示例1的区别在于,所述覆盖层6所用材料为溴化锡,最终制得薄膜电致发光器件10。
比较例1
本方法示例与方法示例1的区别在于,所述覆盖层6所用材料为氟化锂,最终制得薄膜电致发光器件10。
下面比较方法示例2与比较例1在蒸镀相同厚度的覆盖层6所需时间的相对值以及发光效率相对值,并绘制成表1:
表1:方法示例2与比较例1在蒸镀相同厚度的覆盖层6所需时间的相对值以及发光效率相对值。
Figure PCTCN2019108903-appb-000012
表1中,发光效率是电流密度为10mA/cm 2时所得数据。从表1可以看出相比比较例1,本发明的电致发光器件中所涉及的化合物相比氟化锂具备更低的熔点(小于400℃)及沸点(小于750℃)。在不影响器件效率的情况下,可以有效的减少覆盖层6蒸镀所需时间,提高器件的制备效率,降低了器件制备的难度。
本发明还提供了一种电子设备100,具有所述的薄膜电致发光器件10。本发明的主要设计要点在于薄膜电致发光器件10,至于其他结构就不再一一赘述。本发明的所述电子设备100,包括具有本发明的薄膜电致发光器件10所有电子设备100,包括显示设备,照明设备,光源,传感器等等。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种薄膜电致发光器件,其包括
    第一电极;
    功能结构层,设于所述第一电极上;
    第二电极,设于所述功能结构层上;以及
    覆盖层,设于所述第二电极远离所述第一电极的一侧,所述覆盖层中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。
  2. 根据权利要求1所述的薄膜电致发光器件,其中,所述二价金属为锌、镁、锡中的一种,所述卤素为氟、氯、溴、碘中的一种。
  3. 根据权利要求1所述的薄膜电致发光器件,其中,所述覆盖层对可见光的消光系数小于等于0.1,对可见光的透射率大于等于70%。
  4. 根据权利要求1所述的薄膜电致发光器件,其还包括光取出层,设于所述第二电极和所述覆盖层之间;所述覆盖层真空蒸镀于所述光取出层远离所述第二电极的一面;所述光取出层所用材料选择所述离子化合物、咔唑衍生物、二苯基呋喃衍生物、芳胺衍生物、三嗪衍生物中的至少一种。
  5. 根据权利要求1所述的薄膜电致发光器件,其中,所述第一电极和所述第二电极所用材料为金属或其化合物、金属合金、导电聚合物中的至少一种。
  6. 根据权利要求1所述的薄膜电致发光器件,其中,所述功能结构层包括
    空穴注入层,设于所述第一电极上;
    空穴传输层,设于所述空穴注入层上;
    发光层,设于所述空穴传输层上;
    电子传输层,设于所述发光层上;
    电子注入层,设于所述电子传输层上;
    所述第二电极设于所述电子注入层上。
  7. 根据权利要求1所述的薄膜电致发光器件,其中,所述发光层中具有主体材料和掺杂材料,其中所述主体材料的结构式如下:
    Figure PCTCN2019108903-appb-100001
    所述掺杂材料的结构式如下:
    Figure PCTCN2019108903-appb-100002
    所述主体材料和所述掺杂材料的质量比为7:1:-9:1。
  8. 一种制备方法,用以制备如权利要求1所述的薄膜电致发光器件, 其包括以下步骤
    提供一导电玻璃,其表面具有所述第一电极;
    通过真空蒸镀法形成所述功能结构层于所述导电玻璃具有所述第一电极的一面;
    通过真空蒸镀法形成所述第二电极于所述功能结构层远离所述第一电极的一侧;
    通过真空蒸镀法形成所述覆盖层于所述第二电极远离所述第一电极的一侧;所述覆盖层中具有离子化合物,该离子化合物的化学式为AX 2,其中A选自二价金属,X选自卤素。
  9. 根据权利要求8所述的制备方法,其中,在所述的提供所述导电玻璃的步骤中,包括依次用去离子水、丙酮、异丙醇超声清洗所述导电玻璃,然后用等离子体清洗器清洗所述导电玻璃;
    在所述的形成所述功能结构层的步骤中,包括通过真空蒸镀法依次形成空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
  10. 一种电子设备,其具有如权利要求1所述的薄膜电致发光器件。
PCT/CN2019/108903 2019-07-05 2019-09-29 薄膜电致发光器件及其制备方法、电子设备 WO2021003856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/971,058 US11818908B2 (en) 2019-07-05 2019-09-29 Thin film electroluminescent device, preparation method thereof, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910603093.XA CN110429187B (zh) 2019-07-05 2019-07-05 薄膜电致发光器件及其制备方法、电子设备
CN201910603093.X 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021003856A1 true WO2021003856A1 (zh) 2021-01-14

Family

ID=68408991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108903 WO2021003856A1 (zh) 2019-07-05 2019-09-29 薄膜电致发光器件及其制备方法、电子设备

Country Status (3)

Country Link
US (1) US11818908B2 (zh)
CN (1) CN110429187B (zh)
WO (1) WO2021003856A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668285B (zh) * 2020-07-13 2023-09-05 武汉华星光电半导体显示技术有限公司 Oled显示装置及制备方法
AU2022380979A1 (en) 2021-11-02 2024-06-06 Flare Therapeutics Inc. Pparg inverse agonists and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138636A1 (en) * 2012-11-20 2014-05-22 Samsung Display Co., Ltd. Organic light emitting display device having improved light emitting efficiency
CN105374847A (zh) * 2014-08-14 2016-03-02 三星显示有限公司 有机发光显示器
CN106129266A (zh) * 2015-05-06 2016-11-16 三星显示有限公司 有机发光二极管显示器
CN106298848A (zh) * 2015-06-25 2017-01-04 三星显示有限公司 有机发光二极管显示器
CN108511630A (zh) * 2018-05-31 2018-09-07 云谷(固安)科技有限公司 显示面板及显示器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058126A (ko) * 2009-11-25 2011-06-01 삼성모바일디스플레이주식회사 유기 발광 표시 장치
WO2019013435A1 (ko) * 2017-07-14 2019-01-17 주식회사 엘지화학 유기 발광 소자
CN109400488A (zh) * 2018-11-29 2019-03-01 长春海谱润斯科技有限公司 一种芳胺类衍生物及其有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140138636A1 (en) * 2012-11-20 2014-05-22 Samsung Display Co., Ltd. Organic light emitting display device having improved light emitting efficiency
CN105374847A (zh) * 2014-08-14 2016-03-02 三星显示有限公司 有机发光显示器
CN106129266A (zh) * 2015-05-06 2016-11-16 三星显示有限公司 有机发光二极管显示器
CN106298848A (zh) * 2015-06-25 2017-01-04 三星显示有限公司 有机发光二极管显示器
CN108511630A (zh) * 2018-05-31 2018-09-07 云谷(固安)科技有限公司 显示面板及显示器件

Also Published As

Publication number Publication date
US11818908B2 (en) 2023-11-14
US20210143355A1 (en) 2021-05-13
CN110429187B (zh) 2020-12-08
CN110429187A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
JP7265893B2 (ja) 電界発光素子及び表示装置
CN110289360B (zh) 电致发光器件、包括其的显示设备、及其形成方法
WO2021017624A1 (zh) 一种电致发光器件
US11818907B2 (en) Quantum-dot light emitting device comprising solution processed charge generation junction and manufacturing method thereof
US11793011B2 (en) Quantum dot device and display device
EP3546532B1 (en) Printing ink composition, preparation method therefor, and uses thereof
EP3537491B1 (en) Quantum dot device and electronic device
US11812627B2 (en) Quantum dot device and electronic device
US20180327622A1 (en) Printing formulation and application thereof
US10818858B2 (en) Electroluminescent device and display device comprising the same
US20180354934A1 (en) Terbenzocyclopentadiene compound, high polymer, mixture, composition and organic electronic device
KR20190110046A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR102618343B1 (ko) 양자점 발광소자
KR102673642B1 (ko) 반도체 나노결정-리간드 복합체 및 상기 복합체를 포함하는 소자
CN108137972B (zh) 印刷电子组合物、包含其的电子器件及功能材料薄膜的制备方法
CN108137971B (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2021003856A1 (zh) 薄膜电致发光器件及其制备方法、电子设备
US20230121473A1 (en) Electroluminescent device, and display device comprising thereof
CN106257703A (zh) 一种包含有金属纳米团簇的电致发光器件
US11555128B2 (en) Printing composition, electronic device comprising same and preparation method for functional material thin film
KR20190074211A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
US12035560B2 (en) Organic light-emitting diode
KR102673655B1 (ko) 양자점 소자 및 전자 장치
CN116367578A (zh) 发光器件、发光器件的制备方法以及显示装置
CN118215318A (zh) 复合材料及其制备方法、发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937057

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937057

Country of ref document: EP

Kind code of ref document: A1