WO2021003842A1 - 一种显示面板模组 - Google Patents

一种显示面板模组 Download PDF

Info

Publication number
WO2021003842A1
WO2021003842A1 PCT/CN2019/106275 CN2019106275W WO2021003842A1 WO 2021003842 A1 WO2021003842 A1 WO 2021003842A1 CN 2019106275 W CN2019106275 W CN 2019106275W WO 2021003842 A1 WO2021003842 A1 WO 2021003842A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
light source
camera
panel module
funnel shape
Prior art date
Application number
PCT/CN2019/106275
Other languages
English (en)
French (fr)
Inventor
杨勇
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/637,843 priority Critical patent/US11333923B2/en
Publication of WO2021003842A1 publication Critical patent/WO2021003842A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • the present invention relates to the technical field of flat display, in particular, one of the display panel modules provides an under-screen camera solution.
  • One aspect of the present invention is to provide a display panel module, which adopts a novel panel structure and a backlight assembly structure to combine with a camera unit arranged below it, thereby providing a novel under-screen camera solution.
  • a display panel module includes a display panel, which defines a camera area.
  • a backlight assembly (BLU) is arranged under the display panel, and a camera is arranged under the backlight assembly.
  • the backlight assembly includes a circuit backplane and light source units arranged on it at intervals. Wherein, the circuit backboard in the backlight assembly is inclined downwardly at a position corresponding to the camera area to form a hollow funnel shape with upper and lower ends opening; wherein the hollow funnel shape is defined adjacent to the
  • the upper opening of the display panel is a first opening
  • the lower opening adjacent to the camera is a second opening. The light incident from the outside of the display panel can enter the camera through the first opening and the second opening for shooting.
  • the aperture of the second opening is equal to or smaller than the aperture of the camera.
  • the aperture of the second opening is smaller than the aperture of the camera by 0-4 mm.
  • the inclination angle ⁇ of the hollow funnel shape of the circuit backplane is in the range of 30-70°C.
  • the cross section of the hollow funnel shape is an isosceles inverted trapezoid, and the inclination of the waist is in the range of 30 to 70°C. Specifically, it can be 35°C, 45°C, 50°C, 60°C, 65°C, etc., which can be determined according to actual needs and is not limited.
  • the vertical depth of the hollow funnel shape of the circuit backplane is 50-600 ⁇ m.
  • 1-10 rows of the light source units are arranged on the inclined inner side wall of the hollow funnel shape in an oblique and spaced arrangement, wherein each row of the light source units is arranged in a circular arrangement.
  • the light source unit may specifically adopt a mini-LED type light source unit, but is not limited.
  • the light-emitting angle of the light source unit ranges from 130 to 170 degrees. It is preferably about 160 degrees, but not limited to.
  • the light source units arranged on the inclined inner side wall of the hollow funnel shape are individually controlled for each row of light source units.
  • the light source unit arranged on the inclined inner side wall of the hollow funnel shape is individually controlled for each light source unit.
  • the driving voltages of the light source units of different rows arranged on the inclined inner side wall of the hollow funnel shape are different.
  • the light source units provided corresponding to the camera area are RGB three-color mini-LED light source units arranged alternately and alternately in sequence.
  • the display panel includes an array substrate, a liquid crystal cell, and a CF substrate.
  • the liquid crystal cell may be one of PDLC or PNLC, but is not limited.
  • the CF substrate includes a substrate glass, a photoresist layer, and a flat layer (OC layer) arranged in sequence; wherein the photoresist layer in the camera area includes a BM layer arranged at intervals Unit, a transparent photoresist layer unit is arranged between the BM layer units, or the flat layer directly fills down the position between the BM layer units.
  • the photoresist layer in the camera area includes a BM layer arranged at intervals Unit, a transparent photoresist layer unit is arranged between the BM layer units, or the flat layer directly fills down the position between the BM layer units.
  • the present invention relates to a display panel module, which adopts a novel panel structure and a backlight assembly structure to combine with a camera unit arranged below it, thereby providing a novel under-screen camera solution.
  • the backlight assembly adopts a hollow funnel shape in the camera area, so that external light can directly enter the camera below it, so that the camera below can perform normal shooting.
  • the CF substrate of the display panel adopts a new type of photoresist layer structure in the camera area. Compared with the usual BM layer unit, a three-color color resist is set. In terms of layer units, in this case, a transparent photoresist layer unit is used instead, or the flat layer directly fills down the space between the BM layer units.
  • This change is to correspond to the under-screen camera solution of this case , So that more light from the outside world can avoid being blocked by the colored color resist layer unit, and enter the display panel more easily through the transparent photoresist layer unit, thereby providing the camera with more sufficient light for shooting, and then Make its shooting effect better and more excellent.
  • the backlight assembly adopts a hollow funnel configuration in the camera area, it is an inclined shape, which will make its light emission in the camera area uneven, and in order to ensure the normal display effect, this case is passed
  • RGB three-color mini-LEDs are used as backlights
  • the mini-LED light source units at the positions of the inclined side walls of the funnel shape are arranged in a circular array, and each row of mini-LEDs on the side walls is controlled.
  • the driving voltage of the light source unit even the driving voltage of each mini-LED light source, adjust the driving voltage of each row of mini-LED light sources to make their luminous intensity different, and finally make each row of light source units open on the funnel shape That is, the light output at the first opening is uniform, which ensures the display effect at the camera area.
  • FIG. 1 is a schematic diagram of a partial structure of a display panel module provided in an embodiment of the present invention, in which only the cross-sectional structure at the position of the camera area is shown;
  • FIG. 2 is a schematic diagram of a partial structure of the CF substrate in the display panel shown in FIG. 1, in which only the cross-sectional structure at the position of the camera area is shown;
  • FIG. 3 is a schematic diagram of the structure of the circuit backplane of the backlight assembly shown in FIG. 1;
  • Figure 4 is an illustration of a simulation architecture constructed by applying simulation software to the structure shown in Figure 1;
  • FIG. 5 is a diagram of the simulation result of the light-emitting effect of the simulation architecture shown in FIG. 4.
  • an embodiment of the present invention provides a display panel module, which includes a display panel, a backlight assembly and a camera 30.
  • the display panel defines a camera area, which includes an array substrate 10, a liquid crystal cell 12, and a CF substrate 14.
  • the liquid crystal cell 12 may be one of PDLC or PNLC, but is not limited.
  • the CF substrate includes a substrate glass 142, a photoresist layer and a flat layer 144.
  • the photoresist layer in the camera area includes BM layer units 143 arranged at intervals, and the BM layer units 142 are arranged between the BM layer units 143 with three-color color resist layer units.
  • a transparent photoresist layer unit is used instead, or as shown in the figure, the flat layer 144 directly fills the area between the two BM layer units 143 downward.
  • the backlight assembly includes a circuit backplane 20 and a light source unit 22 provided thereon.
  • the light source unit 22 is preferably a mini-LED, but is not limited to it.
  • FIG. 3 illustrates the structure of the circuit backplane 20, which includes a white ink layer 201, a copper wiring layer 202, a first adhesive layer 203, a PI layer 204, and a second adhesive layer stacked in sequence. Layer 205 and bottom copper layer 206.
  • circuit backplane 20 in the backlight assembly is inclined downwardly at a position corresponding to the camera area to form a hollow with upper and lower ends open. Funnel shape.
  • the shape of the hollow funnel is an annular configuration with a certain inclination angle, which is surrounded by an annular inclined side wall 21, and two upper and lower openings are formed at both ends.
  • the upper opening adjacent to the display panel is defined as The first opening 23, the lower opening adjacent to the camera is the second opening 25, and the cross-sectional pattern in the middle is preferably an inverted isosceles trapezoid, and the inclination angle ⁇ is in the range of 30 to 70°C; specifically, it can be 35°C 45°C, 50°C, 60°C, 65°C, etc., can be determined as needed without limitation.
  • the aperture of the second opening 25 is equal to or smaller than the aperture of the camera 30; when it is smaller, the aperture of the second opening is kept smaller than the aperture of the camera 30 by 0 ⁇ 4 mm, It is preferably in the range of about 1 to 2 mm to remove the unnecessary lens frame of the camera 30.
  • the vertical depth H of the hollow funnel shape is 50-600 ⁇ m, and the specific value can be adjusted according to actual applications. According to the specific selection of the depth H and the inclination angle ⁇ , the number of rows of the light source units 22 arranged at intervals on the inclined inner side wall 21 is different, and can be specifically selected in the range of 1-10 rows.
  • the side wall 21 is arranged obliquely, the distances from the rows of light source units 22 arranged on the side walls to the first opening 23 are different, and the light source unit 22 adopts a mini-LED As an example, if each row of mini-LED light source units are driven by the same driving voltage, the light source units 22 of each row are emitted at the position of the first opening 23 because of the different number of rows. The unevenness in turn affects the subsequent display effect of the display panel in the camera area.
  • the present invention adopts a method of individually controlling each light source unit 22 or each row of light source units 22 arranged on the annular inner side wall 21.
  • description is made by taking individually controlling each light source unit 22 as an example.
  • the mini-LED light source unit set at the inner side wall 21 adopts three-color RGB light source units, which are arranged in rows and alternately arranged alternately, for example, a row of R color mini-LED light source units and a row of G color mini -LED light source unit, a row of B color mini-LED light source units, and so on.
  • the initial driving voltage is used to drive each mini-LED light source unit 22 arranged on the annular inclined inner side wall 21 to emit light, and the brightness and chromaticity of each point are monitored, and the chromaticity and gray scale of the monitoring points are compared.
  • the chromaticity and gray scale of the image to be output are corrected at each point, and then the driving voltage of each RGB LED on the side wall is adjusted accordingly, and the correction result is input to the IC side to drive a single LED to make it correct
  • Different light source units 22 provide different driving voltages, so that the display panel area of the camera area outputs a normal image.
  • the light source unit 22 at the position of the annular inclined inner side wall 21 needs to be designed as a single partition to achieve single control, and the partition result is different from the light source unit partition at other regions corresponding to the non-camera area.
  • FIG. 4 selects appropriate optical simulation software according to the concept of the present invention to simulate the light emission and related influence parameters at the "funnel structure" shown in FIG.
  • the lower part is a circular array light source, which simulates the light-emitting miniLED light source
  • the upper part is a receiving surface, which simulates the light receiving situation at the aperture.
  • FIG. 5 is a diagram of light emission in the simulation result after optimization of the simulation architecture parameters.
  • the number of light sources is 30, the inclination angle is 60°, the light emitting angle of the light source is 160°, and the receiving surface is 1.5 mm high from the array light source, the light output at the aperture is the most uniform.
  • the more the number of LED light sources on the ring belt the more appropriate the inclination angle of the LED light sources, the greater the light-emitting angle, the farther the receiving surface is from the array light source, and the more uniform the aperture position is.
  • the simulation result shown in FIG. 5 also shows that the design scheme of uniform light emission at the aperture of the camera can be obtained through the "funnel-shaped" structure of the present invention shown in FIG.
  • the "funnel-shaped" structure disclosed in this case is a creative concept
  • the specific structure adopted in different implementations is not limited to the simulation structure disclosed above, as shown in FIG. 4, 5.
  • the disclosed simulation model and the diagram of the homogenization result are only a verification of the concept of the present invention, but not a limitation.
  • the general technical personnel in the industry can make various specific changes that do not deviate from the creative concept of this case based on the specific actual situation and the simulation process disclosed in this case, but these changes are within the scope of the creative concept of this case.
  • the present invention relates to a display panel module, which adopts a novel structure to combine with a camera unit, thereby providing a novel under-screen camera solution.
  • the backlight assembly adopts a hollow funnel shape in the camera area, so that external light can directly enter the camera below it for normal shooting by the camera.
  • the photoresist layer of the CF substrate of the display panel is arranged in the photoresist layer of the camera area.
  • the three-color color resist layer units are arranged in this case. It is to set up a transparent photoresist layer unit, or directly fill the position between the BM layer units with the flat layer downwards.
  • This change is to correspond to the under-screen imaging scheme of this case, so that more light from outside can be To avoid being blocked by colored color resist layer units, it is easier to enter the display panel through the transparent photoresist layer unit, so as to provide enough light for the camera to shoot, thereby ensuring its shooting effect.
  • the backlight assembly adopts a hollow funnel configuration in the camera area, it is an inclined shape, which will make its light output in the camera area uneven.
  • this case By adopting RGB three-color mini-LEDs as the backlight in the camera area, and designing the circular array of the mini-LED light sources at the inclined inner side wall of the funnel shape, each row of mini-LEDs on the side wall is controlled
  • the driving voltage of the light source even the driving voltage of each mini-LED light source, adjust the driving voltage of each row of mini-LED light sources to make their luminous intensity different, and finally make each row of light sources open on the funnel shape.
  • the uniform light output at the first opening ensures the display effect at the camera area.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板模组,包括显示面板,其定义有摄像头区域。显示面板下设置有背光组件,背光组件下设置有一摄像头(30)。其中背光组件包括电路背板(20)和间隔设置在其上的光源单元(22)。其中背光组件中的电路背板(20)在对应摄像头(30)区域的位置处,向下倾斜凹陷形成一个上大下小两端开口的中空漏斗形状;其中定义中空漏斗形状临近显示面板的上开口为第一开孔(23),临近摄像头(30)的下开口为第二开孔(25)。其中从显示面板外部入射的光线能够通过第一开孔(23)和第二开孔(25)进入到摄像头(30)内以供其拍摄使用。显示面板模组,其提供了一种新型的屏下摄像解决方案。

Description

一种显示面板模组 技术领域
本发明涉及平面显示技术领域,尤其是,其中的一种显示面板模组,其提供了一种屏下摄像解决方案。
背景技术
已知,随着LTPS小尺寸显示技术的不断发展推进,全面屏技术已成为手机市场的主流技术。
但就目前而言,市场上推广的“全面屏”还处于一个伪全面屏的阶段,也就是说,其只是具有较高的屏占比,但还不是真正意义上的“全面屏”。对此,业界以全面屏为目标衍生出来的“notch型”全面屏、“美人尖型”全面屏及“盲孔型”全面屏等等技术层出不穷,其不断提升的屏占比也是不断将全面屏技术推向极致。
然而,以上提及的这三种全面屏技术依然是需要将显示屏的部分区域进行挖孔或异形化处理,以将摄像头的位置区域露出,以便使外界光线进入供拍照使用,因此,这也就是这三种技术方案无法做到真正的全面屏显示方案的一个主要原因。
为此,人们也试图通过让摄像头区域显示来进一步提升屏占比,但如何将摄像头拍照和其所在区域能够正常显示两者实现完美结合,目前业界还没有好的解决方案。
技术问题
本发明的一个方面是提供一种显示面板模组,其采用新型的面板结构、背光组件结构来结合其下方设置的摄像头单元,从而提供了一种新型的屏下摄像解决方案。
技术解决方案
本发明采用的技术方案如下:
一种显示面板模组,包括显示面板,其定义有摄像头区域。所述显示面板下设置有背光组件(BLU),背光组件下设置有一摄像头。其中所述背光组件包括电路背板和间隔设置在其上的光源单元。其中所述背光组件中的所述电路背板在对应所述摄像头区域的位置处,向下倾斜凹陷形成一个上大下小两端开口的中空漏斗形状;其中定义所述中空漏斗形状临近所述显示面板的上开口为第一开孔,临近所述摄像头的下开口为第二开孔。其中从所述显示面板外部入射的光线能够通过所述第一开孔和第二开孔进入到所述摄像头内以供其拍摄使用。
进一步的,在不同实施方式中,其中所述第二开孔的孔径等于或是小于所述摄像头的孔径。
进一步的,在不同实施方式中,其中所述第二开孔的孔径小于所述摄像头的孔径0~4mm。
进一步的,在不同实施方式中,其中所述电路背板的中空漏斗形状的倾斜角度θ在30~70℃范围内。也就是说,其中所述中空漏斗形状的剖面为一个等腰倒梯形,其腰部的倾角范围在30~70℃。具体可以是35℃、45℃、50℃、60℃、65℃等等,可随实际需要而定并无限定。
进一步的,在不同实施方式中,其中所述电路背板的中空漏斗形状的垂直深度在50~600μm。
进一步的,在不同实施方式中,其中所述中空漏斗形状的倾斜内侧壁上间隔倾斜依次排列设置有1~10排所述光源单元,其中所述每排光源单元成环形排列设置。其中所述光源单元具体可以采用mini-LED型光源单元,但不限于。
进一步的,在不同实施方式中,其中所述光源单元的发光角度范围为130 ~ 170度。优选为160度左右,但不限于。
进一步的,在不同实施方式中,其中设置在所述中空漏斗形状倾斜内侧壁上的所述光源单元为每排光源单元单独控制。
进一步的,在不同实施方式中,其中设置在所述中空漏斗形状倾斜内侧壁上的所述光源单元为每颗光源单元单独控制。
进一步的,在不同实施方式中,其中设置在所述中空漏斗形状倾斜内侧壁上的不同排的所述光源单元的驱动电压是不相同的。
进一步的,在不同实施方式中,其中对应所述摄像头区域设置的所述光源单元为依次轮换间隔排布的RGB三色mini-LED光源单元。
进一步的,在不同实施方式中,其中所述显示面板包括阵列基板、液晶盒和CF基板。其中所述液晶盒可以是PDLC或是PNLC中的一种,但不限于。
进一步的,在不同实施方式中,其中所述CF基板包括依次设置的基板玻璃、光阻层和平坦层(OC层);其中在所述摄像头区域的所述光阻层包括间隔设置的BM层单元,所述BM层单元之间设置透明光阻层单元,或者是所述平坦层直接向下填充所述BM层单元之间的位置。
有益效果
本发明涉及的一种显示面板模组,其采用新型的面板结构、背光组件结构来结合其下方设置的摄像头单元,从而提供了一种新型的屏下摄像解决方案。
进一步的,其中所述背光组件在摄像头区域采用中空漏斗形状,使得外界光线能够直接通过其进入到下方的摄像头中,以供下方的所述摄像头进行正常的拍摄。而为了进一步的保证所述摄像头更好的拍摄质量,所述显示面板的CF基板在所述摄像头区域采用了新型的光阻层结构,相对于通常的BM层单元之间设置三色的色阻层单元而言,本案则是改用设置透明光阻层单元,或者是直接所述平坦层向下填充所述BM层单元之间的空间位置,这一改变是为了对应本案的屏下摄像方案,使得外界更多的光线能够避免被有色色阻层单元的阻挡,通过所述透明光阻层单元更容易的进入到显示面板内,从而为所述摄像头提供更为足够的光线进行拍摄,进而使其拍摄效果更好、更优异。
另外,由于所述背光组件在摄像头区域采用了中空的漏斗构型,其为一个倾斜形状,这就会使得其在所述摄像头区域的出光不均匀,而为了保证正常的显示效果,本案则通过在所述摄像头区域采用RGB三色mini-LED作为背光,并将漏斗形状的倾斜侧壁位置处的mini-LED光源单元进行环形阵列排布设计,在控制所述侧壁上每排mini-LED光源单元的驱动电压,甚至是每颗mini-LED光源的驱动电压,调整每排mini-LED光源的驱动电压,使其发光强度有所不同,最终使得各排光源单元在所述漏斗形状上开口即所述第一开孔处的出光均匀化,保证了所述摄像头区域处的显示效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施方式中提供的一种显示面板模组的局部结构示意图,其中仅图示摄像头区域位置处的剖视结构;
图2为图1所示的显示面板中的CF基板的局部结构示意图,其中仅图示摄像头区域位置处的剖视结构;
图3为图1所示的背光组件的电路背板的结构示意图;
图4为应用仿真软件对图1所示的结构而构建出的仿真架构图示;以及
图5为图4所示仿真架构的出光效果的仿真结果图示。
本发明的实施方式
以下将结合附图和实施例,对本发明涉及的一种显示面板模组的技术方案作进一步的详细描述。
请参阅图1所示,本发明的一个实施方式提供了一种显示面板模组,其包括显示面板、背光组件和摄像头30。
其中所述显示面板定义有摄像头区域,其包括阵列基板10、液晶盒12和CF基板14。其中所述液晶盒12可以是PDLC或是PNLC中的一种,但不限于。
进一步的,请参阅图2所示,其中所述CF基板包括基板玻璃142、光阻层和平坦层144。其中在所述摄像头区域的所述光阻层包括间隔设置的BM层单元143,所述BM层单元142之间相对于通常的BM层单元143之间设置三色的色阻层单元而言,本案则是改用设置透明光阻层单元,或者如图中所示,直接是所述平坦层144向下填充两所述BM层单元143之间的区域。
其中所述背光组件包括电路背板20和设置在其上的光源单元22。其中所述光源单元22优选为mini-LED,但不限于。请参阅图3所示,其图示了所述电路背板20的结构,其包括依次叠置的白油墨层201、铜走线层202、第一胶层203、PI层204、第二胶层205以及底层铜层206。
进一步的,请再参阅图1中所示,其中所述背光组件中的所述电路背板20在对应所述摄像头区域的位置处,向下倾斜凹陷形成一个上大下小两端开口的中空漏斗形状。
其中所述中空漏斗形状为具有一定倾斜角度的环状构型,其由环形倾斜侧壁21包围形成,并在两端形成上、下两个开口,其中定义临近所述显示面板的上开口为第一开孔23,临近所述摄像头的下开口为第二开孔25,而其中间的剖面图形优选为倒等腰梯形,其倾角θ在30~70℃范围内;具体可以是35℃、45℃、50℃、60℃、65℃等等,可随需要而定并无限定。
进一步的,其中所述第二开孔25的孔径等于或是小于所述摄像头30的孔径;当其小于时,则保持所述第二开孔的孔径小于所述摄像头30的孔径0~4mm,优选在1~2mm左右范围,以去除所述摄像头30不必要的镜头边框处区域位置。
进一步的,其中所述中空漏斗形状的垂直深度H在50~600μm,具体数值,则可根据实际应用进行具体调整。根据所述深度H和所述倾角θ的具体选择,使得所述倾斜内侧壁21上间隔排列的光源单元22的排数有所不同,具体可在1~10排范围内选择。
进一步的,由于所述侧壁21是倾斜设置,这就使得其上设置的各排光源单元22到所述第一开孔23处的距离有所不同,以所述光源单元22采用mini- LED为例,若是各排mini- LED光源单元均采用相同的驱动电压进行驱动,则这些光源单元因为所在排数的不同,使得各排光源单元22在所述第一开孔23位置处的出光是不均匀的,进而也就影响了后续在所述摄像头区域,所述显示面板的显示效果。
对此,本发明采用了对环形内侧壁21上设置的各光源单元22或者是各排光源单元22进行单独控制的方式解决。以下以单独控制每颗光源单元22为例进行说明。
具体为,首先在所述内侧壁21处设置的mini-LED光源单元采用三色RGB光源单元,并分排依次轮换间隔设置,例如,一排R颜色mini-LED光源单元、一排G颜色mini-LED光源单元、一排B颜色mini-LED光源单元,依次类推。
然后采用初始驱动电压驱动所述环形倾斜内侧壁21上设置的各mini-LED光源单元22发光,并监测每个点位的亮度和色度,根据监测点位的色度和灰阶,并对比需要输出的画面在每个点位的色度和灰阶进行校正,然后对应调整所述侧壁上各RGB每颗LED的驱动电压,并将校正结果输入IC端驱动单颗LED,使其对不同的光源单元22给出不同的驱动电压,如此使得所述摄像头区域的显示面板区域输出正常画面。在分区设计上,所述环形倾斜内侧壁21位置处的光源单元22需要设计为单颗分区以实现单颗控制,其分区结果与对应于非摄像头区域的其他区域位置处的光源单元分区不同。
进一步的,请参阅图4所示,其为根据本发明的构思选择合适的光学仿真软件来对图1所示的“漏斗型结构”处的出光及相关影响参数进行仿真。其中如图中所示的仿真架构,其下方为一环形阵列光源,模拟发光miniLED光源,上方为一接收面,模拟孔径处光线接收情况。通过控制环形带中光源的数量、光源的倾斜角度、光源自身的发光角度及接收面距离光源的位置等参数模拟上方孔径处的出光。
图5为所述仿真架构参数优化后的仿真结果中的出光图示。其中当光源数量为30、倾角为60°、光源发光角度为160°以及接收面距离阵列光源1.5mm高时,孔径处出光最为均匀。进一步的,从变化趋势可以看出环形带上的LED光源数量越多,LED光源倾角适当,发光角度越大,接收面距离阵列光源的距离越远,孔径位置发光越均匀。由图5所示的仿真结果也表明通过图1所示的本发明涉及的所述“漏斗型”架构可得到摄像头孔径处均匀出光的设计方案。
但在不同实施方式中,本案所揭示的所述“漏斗型”结构为一创作构思,其在不同实施方式中采用的具体结构,并不限定于上述揭示的仿真结构,上述图4即5所揭示的仿真模型以及匀光结果的图示,只是对本发明涉及构思的一个验证,而非限定。业界本领域内的一般技术人员可以是根据具体的实际情况,结合本案揭示的仿真过程,做出各种不脱离本案创作构思的具体变化,但这些变化都在本案的创作构思的揭示范围内。
本发明涉及的一种显示面板模组,其采用新型的结构来结合摄像头单元,从而提供了一种新型的屏下摄像解决方案。
其中,所述背光组件在摄像头区域采用中空漏斗形状,使得外界光线能够直接通过其进入到下方的摄像头中,以供所述摄像头进行正常的拍摄。进一步的,为保证更好的拍摄质量,所述显示面板的CF基板在所述摄像头区域的光阻层,相对于通常的BM层单元之间设置三色的色阻层单元而言,本案则是改用设置透明光阻层单元,或者是直接所述平坦层向下填充所述BM层单元之间的位置,这一改变是为了对应本案的屏下摄像方案,使得外界更多的光线能够避免被有色的色阻层单元阻挡,通过所述透明光阻层单元更容易的进入到显示面板内,从而为所述摄像头提供足够的光线进行拍摄,进而保证其拍摄效果。
进一步的,由于所述背光组件在摄像头区域采用了中空的漏斗构型,其为一个倾斜形状,这就会使得其在所述摄像头区域的出光不均匀,而为了保证正常的显示效果,本案则通过在所述摄像头区域采用RGB三色mini-LED作为背光,并将漏斗形状的倾斜内侧壁位置处的mini-LED光源进行环形阵列排布设计,在控制所述侧壁上每排mini-LED光源的驱动电压,甚至是每颗mini-LED光源的驱动电压,调整每排mini-LED光源的驱动电压,使其发光强度有所不同,最终使得各排光源在所述漏斗形状上开口即所述第一开孔处的出光均匀化,保证了所述摄像头区域处的显示效果。
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种显示面板模组,包括显示面板,其定义有摄像头区域;所述显示面板下设置有背光组件,背光组件下设置有一摄像头;其中所述背光组件包括电路背板和间隔设置在其上的光源单元;
    其中所述背光组件中的所述电路背板在对应所述摄像头区域的位置处,向下倾斜凹陷形成一个上大下小两端开口的中空漏斗形状;其中定义所述中空漏斗形状临近所述显示面板的上开口为第一开孔,临近所述摄像头的下开口为第二开孔,其中从所述显示面板外部入射的光线能够通过所述第一开孔和第二开孔进入到所述摄像头内。
  2. 根据权利要求1所述的显示面板模组,其中所述电路背板的中空漏斗形状的倾斜角度θ在30~70℃范围内。
  3. 根据权利要求1所述的显示面板模组,其中所述电路背板的中空漏斗形状的垂直深度在50~600μm。
  4. 根据权利要求1所述的显示面板模组,其中所述中空漏斗形状的倾斜内侧壁上间隔倾斜依次排列设置有1~10排所述光源单元,其中所述每排光源单元成环形排列设置。
  5. 根据权利要求4所述的显示面板模组,其中设置在所述中空漏斗形状倾斜内侧壁上的所述光源单元为每排光源单元单独控制。
  6. 根据权利要求4所述的显示面板模组,其中设置在所述中空漏斗形状倾斜内侧壁上的所述光源单元为每颗光源单元单独控制。
  7. 根据权利要求1所述的显示面板模组,其中所述电路背板上设置的所述光源单元的发光角度范围130~170度。
  8. 根据权利要求1所述的显示面板模组,其中所述电路背板上对应所述摄像头区域设置的所述光源单元为依次轮换间隔排布的RGB三色mini-LED光源单元。
  9. 根据权利要求1所述的显示面板模组,其中所述显示面板包括阵列基板、液晶盒和CF基板。
  10. 根据权利要求9所述的显示面板模组,其中所述CF基板包括依次设置的基板玻璃、光阻层和平坦层;其中在所述摄像头区域的所述光阻层包括间隔设置的BM层单元,所述BM层单元之间设置透明光阻层单元,或者是所述平坦层直接向下填充所述BM层单元之间的位置。
PCT/CN2019/106275 2019-07-05 2019-09-17 一种显示面板模组 WO2021003842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/637,843 US11333923B2 (en) 2019-07-05 2019-09-17 Display panel module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910602079.8 2019-07-05
CN201910602079.8A CN110441958A (zh) 2019-07-05 2019-07-05 一种显示面板模组

Publications (1)

Publication Number Publication Date
WO2021003842A1 true WO2021003842A1 (zh) 2021-01-14

Family

ID=68428502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106275 WO2021003842A1 (zh) 2019-07-05 2019-09-17 一种显示面板模组

Country Status (3)

Country Link
US (1) US11333923B2 (zh)
CN (1) CN110441958A (zh)
WO (1) WO2021003842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951086A (zh) * 2021-02-01 2021-06-11 厦门天马微电子有限公司 显示模组及其应用方法、显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865479A (zh) * 2019-11-28 2020-03-06 维沃移动通信有限公司 显示装置及电子设备
CN113810564A (zh) * 2020-06-16 2021-12-17 中兴通讯股份有限公司 摄像头控制方法、装置以及屏下摄像头结构
CN112859440A (zh) * 2021-01-26 2021-05-28 惠州Tcl移动通信有限公司 降低lcd屏下摄像头成像杂散光串扰的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315570A1 (en) * 2009-06-11 2010-12-16 Mathew Dinesh C Portable computer display structures
CN203933788U (zh) * 2014-04-30 2014-11-05 深圳市联建光电股份有限公司 具有摄像头的显示装置
CN108594524A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 显示装置
CN108734119A (zh) * 2018-05-14 2018-11-02 维沃移动通信有限公司 一种显示模组和电子设备
CN108810199A (zh) * 2018-06-01 2018-11-13 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN109541849A (zh) * 2019-01-04 2019-03-29 京东方科技集团股份有限公司 背光模组及驱动方法、显示面板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047228A1 (en) * 2005-08-27 2007-03-01 3M Innovative Properties Company Methods of forming direct-lit backlights having light recycling cavity with concave transflector
KR101441309B1 (ko) * 2008-01-28 2014-09-17 삼성디스플레이 주식회사 디스플레이 시스템
JP7182906B2 (ja) * 2018-06-12 2022-12-05 株式会社ジャパンディスプレイ 表示装置及び電子機器
CN108646452B (zh) * 2018-06-15 2024-04-16 深圳市宏普欣电子科技有限公司 一种液晶显示装置
CN208384933U (zh) * 2018-07-10 2019-01-15 上海索晔国际贸易有限公司 一种微缩化led矩阵
CN208672986U (zh) * 2018-09-20 2019-03-29 Oppo广东移动通信有限公司 背光模组、液晶显示模组和电子装置
CN208672966U (zh) * 2018-09-20 2019-03-29 Oppo广东移动通信有限公司 电子装置
CN109215587B (zh) * 2018-11-02 2021-06-15 厦门天马微电子有限公司 一种显示装置、驱动方法及电子设备
CN109257470B (zh) * 2018-11-19 2020-09-11 Oppo广东移动通信有限公司 电子装置
CN210894924U (zh) * 2019-03-26 2020-06-30 武汉华星光电技术有限公司 一种显示面板及显示装置
CN109901327A (zh) * 2019-03-27 2019-06-18 武汉华星光电技术有限公司 背光模块及显示装置
CN109946880A (zh) * 2019-04-09 2019-06-28 深圳康佳电子科技有限公司 一种Mini-LED背光液晶模组、显示方法及电视
CN111812886B (zh) * 2019-04-10 2022-07-08 北京小米移动软件有限公司 液晶显示屏和终端
US10768356B1 (en) * 2019-05-10 2020-09-08 Wuhan China Star Optoelectronics Technology Co., Ltd. Panel device for under-display camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315570A1 (en) * 2009-06-11 2010-12-16 Mathew Dinesh C Portable computer display structures
CN203933788U (zh) * 2014-04-30 2014-11-05 深圳市联建光电股份有限公司 具有摄像头的显示装置
CN108594524A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 显示装置
CN108734119A (zh) * 2018-05-14 2018-11-02 维沃移动通信有限公司 一种显示模组和电子设备
CN108810199A (zh) * 2018-06-01 2018-11-13 Oppo广东移动通信有限公司 显示屏组件、电子设备及显示控制方法
CN109541849A (zh) * 2019-01-04 2019-03-29 京东方科技集团股份有限公司 背光模组及驱动方法、显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951086A (zh) * 2021-02-01 2021-06-11 厦门天马微电子有限公司 显示模组及其应用方法、显示装置
CN112951086B (zh) * 2021-02-01 2022-04-19 厦门天马微电子有限公司 显示模组及其应用方法、显示装置

Also Published As

Publication number Publication date
US20220004056A1 (en) 2022-01-06
US11333923B2 (en) 2022-05-17
CN110441958A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021003842A1 (zh) 一种显示面板模组
JP4172455B2 (ja) バックライト用光源ユニット、液晶表示用バックライト装置及び透過型カラー液晶表示装置
WO2020248631A1 (zh) 液晶显示装置
US7438442B2 (en) Light emitting package, backlight unit and liquid crystal display device including the same
KR101296703B1 (ko) 비디오 및 콘텐트로 제어된 백라이트
JP2022522915A (ja) 表示装置
JP2011023347A (ja) ディスプレイ装置及びテレビジョン
JP2010503149A (ja) バックライトユニット及びこれを備えた液晶表示装置
US20210341795A1 (en) Display device and display method of display device
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
KR102334243B1 (ko) 액정표시장치
CN109212833B (zh) 一种曲面显示装置
TWI599824B (zh) Display device, display device driving method
WO2011043094A1 (ja) 照明装置、及び表示装置
CN108873442B (zh) 显示装置及其驱动方法
KR20050121578A (ko) 백라이트 유닛
US20140327708A1 (en) Display device
KR101261881B1 (ko) 발광다이오드 어셈블리 및 이를 포함하는 액정표시장치모듈
WO2020191850A1 (zh) 显示面板以及显示装置
CN109507832B (zh) 液晶显示装置
TWI684047B (zh) 顯示裝置
JP2013218922A (ja) バックライト装置、表示装置、及びテレビ受信装置
US11574585B1 (en) Light emitting unit and display apparatus
KR20120063940A (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치모듈
TWI723530B (zh) 顯示裝置及其驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937056

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937056

Country of ref document: EP

Kind code of ref document: A1