WO2021003613A1 - 可移动平台及其控制方法、装置、底盘、云台和控制设备 - Google Patents

可移动平台及其控制方法、装置、底盘、云台和控制设备 Download PDF

Info

Publication number
WO2021003613A1
WO2021003613A1 PCT/CN2019/094927 CN2019094927W WO2021003613A1 WO 2021003613 A1 WO2021003613 A1 WO 2021003613A1 CN 2019094927 W CN2019094927 W CN 2019094927W WO 2021003613 A1 WO2021003613 A1 WO 2021003613A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
chassis
tilt
user
operation state
Prior art date
Application number
PCT/CN2019/094927
Other languages
English (en)
French (fr)
Inventor
龚鼎
刘力源
陈逸奇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/094927 priority Critical patent/WO2021003613A1/zh
Priority to CN201980032145.0A priority patent/CN112204490B/zh
Publication of WO2021003613A1 publication Critical patent/WO2021003613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to the field of control of a movable platform, in particular to a movable platform and a control method, device, chassis, pan-tilt and control equipment thereof.
  • the chassis In a movable platform with a PTZ, the chassis is generally responsible for the overall movement, and the PTZ is responsible for its own rotation. In order to ensure that the first angle of view quickly keeps up with the user's manipulation, the pan/tilt with a camera and/or shooting device will rotate faster, and the chassis is generally set to follow the movement of the pan/tilt.
  • the gimbal after receiving the user's instruction, the gimbal first rotates, and then the chassis rotates according to the joint angle feedback between the gimbal and the chassis until the joint angle between the gimbal and the chassis (that is, the joint angle of the gimbal and the chassis The difference between the joint angles) is reduced to a preset joint angle (such as 0 degrees) to complete the function of the chassis following the movement of the gimbal.
  • a preset joint angle such as 0 degrees
  • the use of the aforementioned chassis-following gimbal motion mode may cause problems such as involuntary follow-up of the gimbal during following, resistance to user manipulation, and/or crazy rotation of the gimbal and chassis following each other.
  • the chassis cannot meet the real expectations of the user control, and the user control experience is poor.
  • the invention provides a movable platform and its control method, device, chassis, pan-tilt and control equipment.
  • the present invention is implemented through the following technical solutions:
  • a method for controlling a movable platform comprising:
  • the following mode between the chassis and the pan/tilt is controlled.
  • a movable platform control device including a movable chassis and a pan/tilt provided on the chassis, the device including:
  • Storage device for storing program instructions
  • One or more processors call program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following operations:
  • the following mode between the chassis and the pan/tilt is controlled.
  • a movable platform is provided, and the movable platform includes:
  • Storage device for storing program instructions
  • One or more processors call program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following operations:
  • the following mode between the chassis and the pan/tilt is controlled.
  • a chassis of a movable platform comprising:
  • the fuselage is used to carry the PTZ of the movable platform
  • a driving device installed on the fuselage and used to provide power for the chassis
  • Storage device for storing program instructions
  • One or more processors call program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following operations:
  • the following mode between the chassis and the pan/tilt is controlled.
  • Storage device for storing program instructions
  • One or more processors call program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following operations:
  • the following mode between the chassis and the pan/tilt is controlled.
  • a control device for a movable platform includes a movable chassis and a pan/tilt provided on the chassis, and the control device includes:
  • Storage device for storing program instructions
  • One or more processors call program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following operations:
  • the following mode between the chassis and the pan/tilt is controlled.
  • the present invention controls the follow mode between the chassis and the pan/tilt based on the recognition of the user's real manipulation behavior, so that different follow modes can be switched for different user operating states, so that the chassis and The following movement between the pan/tilt is more friendly, and the movement of the chassis and the pan/tilt is close to the control that the user really expects, which improves the user's control experience.
  • Figure 1 is a schematic structural diagram of a movable platform in an embodiment of the present invention
  • FIG. 2 is a method flowchart of a method for controlling a movable platform in an embodiment of the present invention
  • FIG. 3 is a flowchart of an implementation manner of parsing the instruction state and determining the user operation state in an embodiment of the present invention
  • FIG. 4 is a flowchart of an implementation manner of parsing the instruction state and determining the user operation state in another embodiment of the present invention
  • FIG. 5 is a method flowchart of a movable platform control method in a specific embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a movable platform control device in an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a movable platform in an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a chassis in an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a pan-tilt in an embodiment of the present invention.
  • Fig. 10 is a structural block diagram of a control device of a movable platform in an embodiment of the present invention.
  • Using the existing chassis to follow the gimbal movement mode may cause the gimbal to resist the user’s real expectations, the chassis resists the user’s real expectations, the chassis does not follow instructions, the chassis and the gimbal follow each other leading to crazy rotation, and/or the chassis will turn when the chassis follows the gimbal. This causes the gimbal to shake in a small range, making it impossible to fine-tune the aiming.
  • the pan/tilt will resist the real expectations of the user. For example, when the pan/tilt performs closed-loop control based on the world angle, no matter how the pan/tilt is moved, the pan/tilt will always output torque to return to the initial position. The movement produced a very large resistance.
  • the chassis will resist the real expectations of the user. For example, when the pan/tilt is moved or the chassis is lifted to turn the pan/tilt or chassis, the chassis will continue to follow the joint angle between the pan/tilt and chassis, and follow the rotation of the pan/tilt. When returning to center, the chassis will also return to center after rotating, resulting in unnecessary movement and energy waste.
  • the chassis may not follow instructions. For example, when the chassis is suspended in the air, if the gimbal uses the IMU attitude as the source input, when the offset of the IMU gradually increases, the gimbal is now The locked angle will drift accordingly, and the joint angle will gradually be generated at this time, and the joint angle will gradually be enlarged. Since the chassis follows the joint angle in real time, the overhead chassis will drive the wheels to continuously rotate in the hope that it can follow the gimbal. At this time, due to the overhead, the feedback cannot be offset, and the controller will quickly output the wheel speed to the maximum value. This poses a certain risk of damage to the user and the chassis.
  • chassis and the gimbal when there is some abnormal synchronization between the chassis and the gimbal, it may cause the chassis and the gimbal to follow each other. At this time, the chassis and the gimbal may spin wildly in place.
  • the embodiment of the present invention controls the follow mode between the chassis and the pan/tilt based on the recognition of the user's real manipulation behavior, so that different follow modes can be switched for different user operating states, so that the chassis and the pan/tilt follow the movement. It is more friendly, and makes the movement of the chassis and the PTZ close to the control that the user really expects, and improves the user control experience.
  • the movable platform 100 of the embodiment of the present invention includes a movable chassis 110 and a pan/tilt 120 provided on the chassis 110.
  • the pan/tilt 120 may be a single-axis pan/tilt, a two-axis pan/tilt or a three-axis pan/tilt. Yuntai etc.
  • the pan-tilt 120 is used to carry a camera, and the camera can perform target recognition.
  • the pan-tilt 120 is used to carry a shooting device, which may be a projectile shooting device or a light emitting device, such as an infrared light emitting device.
  • the movable platform 100 of this embodiment may be a movable robot, a remote control vehicle or other movable platforms.
  • Fig. 3 is a method flowchart of a movable platform control method in an embodiment of the present invention. As shown in FIG. 3, the movable platform control method may include the following steps:
  • the execution subject of step S201 can be the chassis 110 or the pan/tilt 120 or the control device or an independent controller provided on the movable platform 100; optionally, the execution subject of step S201 is the chassis 110 or the pan/tilt 120 or is provided on the movable platform 100
  • the independent controller on the chassis 110 or the pan-tilt 120 or the independent controller on the movable platform 100 monitors the data information of the signal port on the movable platform 100 that communicates with the control device to realize the command status of the control device
  • the execution subject of step S201 is the control device, and the control device monitors the command status of the control device by monitoring the signal output by the control device.
  • control device may include one of a remote control, a smart terminal (such as a mobile phone, a tablet computer, etc.), and a smart bracelet; of course, the control device may also be another terminal capable of controlling the movable platform 100.
  • the instruction state can be used to indicate that the control device is not currently outputting a user instruction, or used to indicate that the control device is currently outputting a user instruction, wherein, when the instruction state is used to indicate that the control device is not currently outputting a user instruction, the movable platform 100 will not receive User instruction; when the instruction state is used to indicate that the control device is currently outputting a user instruction, the control device sends the user instruction to the movable platform 100 to control the movement of the chassis 110 and/or the pan/tilt head 120.
  • the user instruction may include a manual control instruction and/or an automatic control instruction.
  • the manual control instruction is generated by the user operating the control device, and the automatic control instruction may be a preset control command or the control device is controlling the movable platform 100.
  • the tracking instruction generated during target tracking.
  • the user instruction output by the control device can be used to instruct to control the movement of at least one axis of the pan/tilt 120 and/or to control the movement of the chassis 110.
  • the user instruction may include a control instruction of the pan/tilt 120 and a chassis control instruction, wherein the control instruction of the pan/tilt 120 can be mapped to a corresponding The attitude control component of the axis and the angular velocity control component of the corresponding axis, and the chassis control command can be mapped to the speed control component in the preset direction. That is, the user instruction includes multiple control components.
  • control components include at least two of the following: the attitude control component of at least one axis of the pan/tilt 120, the angular velocity control component of at least one axis of the pan/tilt 120, and the chassis 110 At least one velocity control component in a preset direction.
  • control components include: gimbal pitch axis attitude control component, gimbal yaw axis attitude control component, gimbal pitch axis angular velocity control component, gimbal yaw axis angular velocity control component, and chassis 110
  • the speed control component in the x direction and the speed control component of the chassis 110 in the y direction can be set to 0.
  • the x direction and y direction can be customized directions; optionally, the x direction and the y direction are on the same horizontal plane, and the x direction and the y direction are perpendicular to each other.
  • control components of the 4 channels (the control component of the gimbal pitch axis, the control component of the gimbal yaw axis, the speed control component of the chassis 110 in the x direction and the speed control of the chassis 110 in the y direction, respectively The component) is mapped to each signal port of the movable platform 100, and the real control behavior of the user is obtained by real-time monitoring of the control components of the 4 channels.
  • the rod amount output by the remote control will be normalized to the range of [-1,1], and then mapped to each real signal port. This is because when used to operate different rods, different rod amounts correspond to The angle of rotation may be different.
  • levers have a lever amount of 1 degree, and the pan/tilt 120 or chassis 110 can rotate 15 degrees; other levers have a lever amount of 1 degree, and the gimbal 120 or chassis 110 can rotate 30 degrees.
  • Normalizing the rod amount can unify the conversion standard of the rod amount and the rotation angle; of course, the rod amount output by the remote control does not need to be normalized, but directly mapped to each real signal port.
  • the user's operating state reflects the user's real control behavior.
  • the user operation state is one of the following: an operation stop state, an operation continuous state, a first operation state, and a second operation state.
  • the operation stop state is used to indicate that the user has no control behavior, that is, the user stops controlling the chassis 110 and the pan-tilt 120;
  • the operation continuous state is used to indicate the user to continue the current control behavior, and the current control behavior may be corresponding to the first operation state
  • the user control behavior can also be the user control behavior corresponding to the second operation state.
  • the user Since there is a time interval between user operations corresponding to two adjacent user instructions, the user does not operate the control device during this time interval, but in fact the current user
  • the control behavior is still continuous;
  • the first operating state is a fast response control behavior, which is used to instruct the movable platform 100 to quickly respond to user operations;
  • the second operating state is a slow and precise control behavior, which is used to instruct the movable platform 100 to slowly and accurately control
  • the pan-tilt 120 takes aim.
  • the user operation status may also include others.
  • At least some of the user's operating states correspond to different follow-up modes, so that the following movement between the chassis 110 and the pan/tilt 120 is more friendly, and the movement of the chassis 110 and the pan/tilt 120 is close to the actual control desired by the user. Improved user control experience.
  • the implementation process of parsing the instruction state and determining the user operation state may include but is not limited to the following steps:
  • a counter can be used to count the duration of the control device not outputting a user instruction.
  • other existing methods can also be used to count the duration of the control device not outputting a user instruction.
  • S301 Determine the user operation state according to the duration
  • the duration is greater than or equal to the preset duration, it is determined that the user's operating state is the operation stopped state, that is, when the user has not operated the control device for a duration greater than or equal to the preset duration, it is determined that the user has no control behavior; if the duration is sustained If the duration is less than the preset duration, it is determined that the user operation state is the continuous operation status, that is, when the duration of the user's current to last operation of the control device is less than the preset duration, it is determined that the user is continuously operating.
  • the preset duration can be set by the user to meet different user needs; of course, the preset actual operation can also be the default value.
  • the implementation process of parsing the instruction status and determining the user operation status may include but not limited to the following steps:
  • the user's operating state is directly determined according to the user's instruction.
  • the user instruction in this embodiment includes multiple control components, and the user operation state can be determined according to the size of the multiple control components and/or related information of the multiple control components.
  • any control component is greater than the first preset component, and the maximum change rate of the control component greater than the first preset component in the preset time period is greater than the first preset change rate .
  • the user operating state is determined as the first operating state.
  • the size of any one of the multiple control components is greater than the first preset component, and the maximum rate of change of the control component greater than the first preset component in the preset time period is greater than the first preset rate of change, it indicates that the user’s
  • the lever operation speed is relatively fast, and the chassis 110 and the pan-tilt 120 are required to quickly respond to the user's lever operation.
  • the first preset component and/or the first preset rate of change can be set by the user to meet different user requirements; of course, the first preset component and/or the first preset rate of change may also be a default value.
  • the user operation state is determined It is the second operating state.
  • the largest component of the multiple control components is less than the second preset component, and the maximum rate of change of the largest component in the preset time period is less than the second preset rate of change, it indicates that the user’s lever operation is relatively slow, usually for control
  • the pan/tilt 120 moves slightly to aim at the target.
  • the second preset component and/or the second preset rate of change can be set by the user to meet different user requirements; of course, the second preset component and/or the second preset rate of change may also be a default value.
  • the preset time period is a time period during which the control device continuously outputs user instructions.
  • control component may include at least two of the following: the attitude control component of at least one axis of the gimbal 120, the angular velocity control component of at least one axis of the gimbal 120, and the speed control component of the chassis 110 in at least one preset direction. .
  • the process of determining the user operation state according to the user instruction may include: determining whether the user operation state is the second operation state according to the user instruction; if not, determining the user operation state as the first operation status. In this embodiment, firstly, it is determined whether the user operation state corresponding to the user instruction currently output by the control device is the second operation state, so that whether the user operation is a precise aiming operation can be recognized more quickly.
  • S203 Control the following mode between the chassis 110 and the pan-tilt 120 according to the user's operating state.
  • the following mode between the chassis 110 and the pan-tilt 120 may include: a working mode of the chassis 110 and/or a working mode of the pan-tilt 120.
  • the working mode of the chassis 110 may include:
  • the working mode of the pan-tilt 120 may include:
  • the first working mode when the pan-tilt 120 is in the first working mode, the joint angle between the pan-tilt 120 and the chassis 110 is maintained at the joint angle between the pan-tilt 120 and the chassis 110; that is, when the pan-tilt 120 is When 120 is in the first working mode, the yaw relative joint angle of the gimbal 120 is always stored in the current yaw joint angle between the gimbal 120 and the chassis 110, and the pitch relative joint angle of the gimbal 120 is always stored in the current gimbal 120
  • the pitch joint angle with the chassis 110, the yaw relative joint angle and the pitch relative joint angle of the gimbal 120 do not change with the movement of the chassis 110.
  • the second working mode can also be called the normal working mode.
  • the absolute angle of the pan-tilt 120 in the preset absolute coordinate system corresponds to the real-time user command That is, when the gimbal 120 is in the second working mode, the absolute yaw angle of the gimbal 120 is always the expected absolute yaw angle corresponding to the real-time user command, that is, the yaw attitude of the gimbal 120 Always point to the position of the desired absolute yaw angle corresponding to the real-time user command.
  • the absolute yaw angle of the gimbal 120 does not change with the movement of the chassis 110; when the gimbal 120 is in the second working mode, the absolute pitch angle of the gimbal 120 is always It is the desired absolute pitch angle corresponding to the real-time user command.
  • the angle of the chassis 110 relative to the horizontal direction changes, the angle of the gimbal 120 relative to the horizontal direction also changes, so that the pitch attitude of the gimbal 120 always points to the expectation corresponding to the real-time user command.
  • the position of the absolute pitch angle can be a world coordinate system or other absolute coordinate systems.
  • the following mode between the chassis 110 and the pan-tilt 120 corresponding to the operating state of each user may be used to switch the current following mode between the chassis 110 and the pan-tilt 120.
  • the control platform 120 when the user operation state is the operation stop state, the control platform 120 is in the first working mode.
  • the joint angle between the gimbal 120 and the chassis 110 will remain at the joint angle between the gimbal 120 and the chassis 110, that is, when the user toggles the gimbal 120
  • the size of the real-time joint angle between the platform 120 and the chassis 110 makes the platform 120 stay at the position corresponding to the real-time posture of the platform 120 when the user toggles the platform 120.
  • the movement of the platform 120 is close to the user's real expectations, bringing more to the user. Excellent control experience.
  • pan/tilt 120 When the user controls the pan/tilt of a movable platform to shoot through the remote control lever, when the user releases the lever for a long time, it means that the user no longer operates the pan/tilt to shoot. At this time, set the working mode of the pan/tilt 120 Set to the first working mode. In the first working mode, if the user manually toggles the pan-tilt 120, the pan-tilt will remain at the current position and will not return to the position of the pan-tilt before the toggle.
  • the pan/tilt 120 when the pan/tilt 120 is in the first working mode, if the chassis 110 rotates, the pan/tilt 120 will follow the chassis 110 to rotate, so that the joint angle between the pan/tilt 120 and the chassis 110 is maintained before the chassis 110 rotates. The size of the joint angle between the chassis 110.
  • the chassis 110 when the user operation state is the operation stop state, the chassis 110 is controlled to be in the non-following mode, so that the chassis 110 does not follow the rotation of the pan/tilt head 120.
  • the chassis 110 when the user toggles the pan/tilt 120 or lifts the chassis 110 to rotate the pan/tilt 120 or the chassis 110, since the chassis 110 is in the non-following mode, the chassis 110 will not rotate with the rotation of the pan/tilt 120, thereby avoiding the chassis 110.
  • the above two strategies for controlling the follow mode between the chassis 110 and the pan-tilt 120 can be combined.
  • the pan-tilt 120 is controlled to be in the first working mode and controlled
  • the chassis 110 is in the non-following mode, which realizes that when the user has no control behavior, the following movement between the pan/tilt 120 and the chassis 110 is more friendly, and the movement of the pan/tilt 120 and the chassis 110 is closer to the purpose of the user's real expectations.
  • the pan/tilt 120 and the chassis 110 it is necessary for the pan/tilt 120 and the chassis 110 to quickly respond to user control behaviors, so that the pan/tilt 120 can target the user's real desired position more quickly.
  • control the chassis 110 and In the follow mode between the pan/tilt heads 120 specifically, the pan/tilt head 120 is controlled to be in the second working mode, and the chassis 110 is controlled to be in the follow mode.
  • the chassis 110 follows the movement of the pan/tilt 120, the movement of the chassis 110 accelerates the movement of the pan/tilt 120, so that the pan/tilt 120 moves to a position that the user really desires more quickly.
  • the user operation status corresponding to the above usage scenarios can be divided into the following situations:
  • the user operation state is the operation continuous state, that is, when the user operation state is the operation continuous state, the pan-tilt 120 is controlled to be in the second working mode, and the chassis 110 is controlled to be in the follow mode.
  • the user operation state is the first operation state, that is, when the user operation state is the first operation state, the pan-tilt 120 is controlled to be in the second working mode, and the chassis 110 is controlled to be in the follow mode.
  • the user control behavior corresponding to the first operating state is a fast response control behavior.
  • the fast response control behavior requires the pan-tilt 120 to quickly reach the position that the user really expects.
  • the accuracy requirement for the pan-tilt 120 is low.
  • the following mode is set to that the pan/tilt 120 is in the second working mode, and the chassis 110 is in the following mode, so that the movement speed of the pan/tilt 120 is consistent with the user's operating speed, and the movement of the pan/tilt 120 is closer to the user's real expectations.
  • the user operating state is the second operating state, and the absolute value of the joint angle between the pan-tilt 120 and the chassis 110 is greater than the preset angle, that is, when the user operating state is the second operating state, and the pan-tilt 120 and
  • the pan-tilt 120 is controlled to be in the second working mode, and the chassis 110 is controlled to be in the following mode.
  • the user control behavior corresponding to the second operating state is a slow precise control behavior.
  • the slow precise control behavior instructs the gimbal 120 to perform precise aiming, which requires high aiming accuracy of the gimbal 120, and the joint between the gimbal 120 and the chassis 110
  • the absolute value of the angle is greater than the preset angle, indicating that the joint angle between the pan-tilt 120 and the chassis 110 is relatively large, and the chassis 110 needs to follow the movement of the pan-tilt 120 to speed up the movement of the pan-tilt 120 and make the pan-tilt 120 reach the user’s reality more quickly Desired location.
  • the preset angle size can be set according to needs, optionally, the preset angle is 30 degrees; of course, the preset angle can also be set to other angle sizes.
  • the operation of controlling the pan/tilt 120 in the second working mode and the operation of controlling the chassis 110 in the follow mode can be performed simultaneously.
  • the operation of controlling the pan/tilt 120 in the second working mode and the operation of controlling the chassis 110 in the following mode can also be performed in sequence. Sequence execution.
  • the operation of controlling the chassis 110 to be in the follow mode is performed after the operation of controlling the pan/tilt 120 to be in the second working mode.
  • the pan/tilt 120 in the second working mode fails, or when the pan/tilt 120 is controlled in the second working mode, the pan/tilt 120 is switched to the first working mode due to misoperation, etc.
  • the working mode of the pan-tilt 120 is not confirmed and the chassis 110 is directly controlled to be in the follow mode, it may happen that the pan-tilt 120 is in the first working mode and the chassis 110 is switched to the follow mode.
  • the pan-tilt 120 will rotate, and the chassis 110 will also rotate with the pan-tilt 120. Therefore, the pan-tilt 120 and the chassis 110 may follow each other to cause rotation.
  • the mobile platform control method of this embodiment further includes: after controlling the pan-tilt 120 to be in the second working mode, detecting whether the pan-tilt 120 is in the first working mode.
  • the chassis 110 is controlled to be in the follow mode. It is detected that the pan-tilt 120 is not in the first working mode, which indicates that the operation of controlling the pan-tilt 120 in the second working mode is successful. The pan-tilt 120 is currently in the second working mode. At this time, the control chassis 110 is in the follow mode, which avoids cloud The table 120 and the chassis 110 follow each other to cause rotation.
  • the chassis 110 is controlled to be in a non-following mode so that the chassis 110 does not follow the pan-tilt 120 to rotate, thereby avoiding the pan-tilt 120 and the chassis 110 from following each other and causing rotation. If it is detected that the pan/tilt 120 is in the first working mode, it means that the operation of controlling the pan/tilt 120 in the second working mode has failed, or when the pan/tilt 120 is controlled in the second working mode, the pan/tilt 120 is switched to the first mode due to misoperation.
  • the mobile platform control method of this embodiment further includes: when detecting that the pan/tilt 120 is in the first working mode, outputting an abnormal state switching indication to prompt the user that the operation of controlling the pan/tilt 120 in the second working mode fails, Or when the pan/tilt 120 is controlled to be in the second working mode, the pan/tilt 120 is switched to the first working mode due to misoperation, thereby reminding the user that the pan/tilt 120 and the chassis 110 cannot follow normally.
  • the state switching abnormal indication can be realized by one of text, image, and voice, or a combination of at least two.
  • the user is loose) or the user is hitting a lot or the user is slightly hitting and the absolute value of the joint angle between the pan-tilt 120 and the chassis 110 exceeds 30 degrees, set the working mode of the pan-tilt 120 to second Working mode, when the pan/tilt 120 is in the second working mode, the pan/tilt 120 will rotate to the desired position corresponding to the user's current stroke amount; at the same time, the user strokes a lot or the user strokes slightly and the pan/tilt 120 and the chassis 110 If the absolute value of the joint angle exceeds 30 degrees, it indicates that the user’s stroke speed is faster and the gimbal needs to reach quickly, or although the user stroke speed is slower, the joint angle between the gimbal 120 and the chassis 110 is relatively large.
  • the joint angle between the pan-tilt 120 and the chassis 110 is reduced. Therefore, the chassis 110 is set to follow the pan-tilt 120 to rotate. Since the chassis 110 is responsible for the overall movement, the rotation of the chassis 110 will speed up the rotation of the pan-tilt 120 and reduce the pan-tilt 120 and the chassis 110. The joint angle between the two enables the pan-tilt 120 to rotate to a desired position faster, and the rotation speed of the pan-tilt 120 conforms to the user's control behavior.
  • the pan/tilt 120 when the user's operating state is the second operating state and the joint angle between the pan/tilt 120 and the chassis 110 is within the preset angle range, the pan/tilt 120 is controlled to be in the second working mode and the chassis 110 is controlled In non-follow mode.
  • the user control behavior corresponding to the second operating state is a slow and precise control behavior.
  • the slow and precise control behavior instructs the gimbal 120 to accurately aim, which requires high aiming accuracy for the gimbal 120.
  • the joint angle between the gimbal 120 and the chassis 110 Within the preset angle range, it means that the joint angle between the pan/tilt 120 and the chassis 110 is small.
  • the chassis 110 is controlled to be in the follow mode, it may happen that the pan/tilt 120 is in a small range during the rotation of the chassis 110 following the pan/tilt 120 Shaking makes the pan-tilt 120 unable to achieve refined aiming.
  • the pan/tilt 120 when the user operating state is the second operating state and the joint angle between the pan/tilt 120 and the chassis 110 is within the preset angle range, the pan/tilt 120 is controlled to be in the second working mode and the chassis 110 is controlled not to follow
  • the rotation of the pan/tilt 120 can prevent the pan/tilt 120 from shaking in a small range during the rotation of the chassis 110 following the rotation of the pan/tilt 120, which makes the pan/tilt 120 unable to achieve refined aiming, so that the pan/tilt 120 can achieve refined aiming to meet the needs of users. Aiming at the need for control.
  • the pan-tilt 120 when the user controls the gimbal of the movable platform to shoot through the remote control lever, the user slightly presses the lever and the absolute value of the joint angle between the gimbal 120 and the chassis 110 does not exceed 30 degrees, and the operating mode of the gimbal 120 Set to the second working mode, when the pan-tilt 120 is in the second working mode, the pan-tilt 120 will rotate to the desired position corresponding to the amount of the user's current stick; at the same time, the absolute value of the joint angle between the pan-tilt 120 and the chassis 110 No more than 30 degrees, indicating that the user’s lever speed is slow, and the joint angle between the pan/tilt 120 and the chassis 110 is small.
  • the rotation of the chassis 110 is likely to cause the pan/tilt 120 to become smaller.
  • the platform 120 rotates, and the chassis 110 is in a stationary state, and the rotation of the pan-tilt 120 will not be disturbed by the outside, and refined aiming can be realized.
  • the joint angle between the pan-tilt 120 and the chassis 110 when the joint angle between the pan-tilt 120 and the chassis 110 is not within the preset angle range, it means that the absolute value of the joint angle between the pan-tilt 120 and the chassis 110 is greater than the preset angle.
  • the preset angle range can be set as required.
  • the preset angle range is greater than or equal to -30 degrees and less than or equal to 30 degrees; of course, the preset angle range can also be set to other angle intervals.
  • FIG. 5 is a method flowchart of a movable platform control method in a specific embodiment of the present invention.
  • the movable platform control method in the embodiment shown in FIG. 5 may include the following steps:
  • step (3) Determine whether the control device outputs user instructions according to the instruction status; if the control device does not output user instructions, go to step (3); if the control device outputs user instructions, go to step (5);
  • Step (3) Determine whether there is no user control behavior; if there is no user control behavior, that is, the user operation state is the operation stop state, then go to step (4); if there is user control behavior, that is, the user operation state is the operation continuous state, then enter Step (9);
  • step (8) Determine whether the user operation state is the second operation state according to the user instruction currently output by the control device; if the user operation state is the second operation state, go to step (6); if the user operation state is not the second operation state, Then go to step (8);
  • step (6) Determine whether the joint angle between the gimbal and the chassis is within the preset angle range. If the joint angle between the gimbal and the chassis is within the preset angle range, go to step (7); If the joint angle is not within the preset angle range, go to step (9);
  • step (9) According to the user instruction currently output by the control device, determine whether the user operation state is the first operation state, and if the user operation state is the first operation state, proceed to step (9);
  • step (10) After controlling the pan-tilt to be in the second working mode, judge whether the pan-tilt is in the first working mode; if the pan-tilt is not in the first working mode, that is, the pan-tilt is in the second working mode, go to step (11); If the pan/tilt is in the first working mode, go to step (12) and step (13);
  • step (12) and step (13) can be interchanged, and step (12) and step (13) can also be executed simultaneously.
  • the follow mode between the chassis 110 and the pan/tilt 120 can be controlled, so that different follow modes can be switched for different user operating states, making the following movement between the chassis 110 and the pan/tilt 120 more friendly, and The movement of the chassis 110 and the pan-tilt 120 is close to the control actually desired by the user, and the user control experience is improved.
  • the execution body of the movable platform control method of this embodiment may include one of the main controller of the movable platform 100, the chassis controller, the pan/tilt controller, and the controller of the control device.
  • the movable platform controls may also be a combination of at least two of the above-mentioned controllers.
  • the first switch controls the pan/tilt 120 to be in the second working mode and controls the chassis 110 to be in the follow mode; when the user needs the pan/tilt 120 to achieve refined aiming, the second switch is triggered to control the pan/tilt 120 to be in the second working mode, and The chassis 110 is controlled to be in the non-following mode; when the user does not need to control the movable platform 100, the third switch is triggered to control the pan/tilt 120 to be in the first working mode and the chassis 110 to be in the non-following mode.
  • the selection of different follow modes between the chassis 110 and the pan/tilt head 120 by triggering the switch is not limited to the above implementation.
  • an embodiment of the present invention also provides a movable platform control device.
  • the movable platform control device includes a storage device and one or more processors.
  • the storage device is used to store program instructions; one or more processors call the program instructions stored in the storage device.
  • the one or more processors are individually or collectively configured for Implement the following operations: monitor the command status of the control device, where the control device is used to control the movable platform 100; analyze the command status to determine the user operation status; control the follow mode between the chassis 110 and the pan-tilt 120 according to the user operation status .
  • the processor of the movable platform control device can implement the movable platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention. Refer to the movable platform control method of the above embodiment for the description of this embodiment. The movable platform control device is explained.
  • the embodiment of the present invention also provides a movable platform.
  • the movable platform 100 includes a movable chassis 110 and a cloud on the chassis 110.
  • the station 120 a storage device, and one or more processors.
  • the storage device is used to store program instructions; one or more processors call the program instructions stored in the storage device.
  • the one or more processors are individually or collectively configured for Implement the following operations: monitor the command status of the control device, where the control device is used to control the movable platform 100; analyze the command status to determine the user operation status; control the follow mode between the chassis 110 and the pan-tilt 120 according to the user operation status .
  • the processor of the movable platform 100 can implement the movable platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention.
  • FIG. 2 The processor of the movable platform 100 can implement the movable platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention.
  • FIG. 5 The processor of the movable platform 100 can implement the movable platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention.
  • the mobile platform 100 will be described.
  • the processor of the movable platform 100 may be a chassis controller, or a pan-tilt 120 controller, or a main controller of the movable platform 100, or a combination of at least two of the above controllers.
  • an embodiment of the present invention also provides a movable platform chassis.
  • the chassis 110 includes a body, a driving device, a storage device, and one or more processor.
  • the fuselage is used to carry the pan/tilt 120 on the movable platform 100.
  • the pan/tilt 120 is detachably installed on the top of the chassis 110.
  • the driving device is installed on the fuselage to provide power to the chassis 110; optionally, the driving device includes a driving wheel installed on the fuselage and a power device for driving the driving wheel to rotate, and the power device may be a motor
  • the power device may also be other types of driving devices.
  • the storage device is used to store program instructions; one or more processors call the program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following Operation: monitor the command status of the control device, where the control device is used to control the movable platform 100; analyze the command status to determine the user's operating status; according to the user's operating status, control the follow mode between the chassis 110 and the pan-tilt 120.
  • the processor of the chassis 110 can implement the movable platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention. Refer to the movable platform control method of the above embodiment to perform the control method on the chassis 110 of this embodiment. Description.
  • an embodiment of the present invention also provides a pan-tilt.
  • the pan-tilt 120 is mounted on the chassis 110 of the movable platform 100.
  • the pan/tilt head 120 includes a main body, a shooting device and/or shooting device mounted on the main body, a storage device, and one or more processors.
  • the storage device is used to store program instructions; one or more processors call the program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following Operation: monitor the command status of the control device, where the control device is used to control the movable platform 100; analyze the command status to determine the user's operating status; according to the user's operating status, control the follow mode between the chassis 110 and the pan-tilt 120.
  • the processor of the pan-tilt 120 can implement the mobile platform control method of the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 of the present invention. Please refer to the mobile platform control method of the above-mentioned embodiment for the control method of the mobile platform in this embodiment. 120 for description.
  • an embodiment of the present invention also provides a movable platform control device.
  • the control device includes a storage device and one or more processors.
  • the storage device is used to store program instructions; one or more processors call the program instructions stored in the storage device, and when the program instructions are executed, the one or more processors are individually or collectively configured to implement the following Operation: monitor the command status of the control device, where the control device is used to control the movable platform 100; analyze the command status to determine the user's operating status; according to the user's operating status, control the follow mode between the chassis 110 and the pan-tilt 120.
  • the processor of the control device can implement the movable platform control method of the embodiment shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5 of the present invention. Refer to the movable platform control method of the above embodiment to perform the control device of this embodiment. Description.
  • control device may be a video transmission device of the movable platform 100, or may be other terminals capable of communicating with the movable platform 100, such as a smart mobile terminal, a wearable smart terminal, a remote control, and so on.
  • the aforementioned storage device may include volatile memory, such as random-access memory (RAM); the storage device may also include non-volatile memory, such as flash memory ( flash memory, hard disk drive (HDD) or solid-state drive (SSD); the storage device 110 may also include a combination of the foregoing types of memory.
  • volatile memory such as random-access memory (RAM)
  • non-volatile memory such as flash memory ( flash memory, hard disk drive (HDD) or solid-state drive (SSD)
  • SSD solid-state drive
  • the storage device 110 may also include a combination of the foregoing types of memory.
  • the foregoing processor may be a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuit (ASIC), field-programmable gate array (FPGA) ) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the movable platform control method of the foregoing embodiment are implemented.
  • the computer-readable storage medium may be the movable platform, chassis, pan-tilt, or internal storage unit of the control device of the movable platform described in any of the foregoing embodiments, such as a hard disk or a memory.
  • the computer-readable storage medium may also be an external storage device of a movable platform, a chassis, a pan-tilt, or a control device of the movable platform, such as a plug-in hard disk or a smart media card (Smart Media Card, equipped on the device). SMC), SD card, Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of a movable platform, a chassis, a pan-tilt or a control device of the movable platform, and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the movable platform, chassis, pan-tilt or control device of the movable platform, and can also be used to temporarily store the output or The data to be
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种可移动平台及其控制方法、装置、底盘、云台和控制设备。可移动平台(100)包括可移动的底盘(110)以及设于底盘上的云台(120),方法包括:监控控制设备的指令状态,其中,控制设备用于控制可移动平台(S201);对指令状态进行解析,确定用户操作状态(S202);根据用户操作状态,控制底盘和云台间的跟随模式(S203)。基于对用户真实操纵行为的识别来控制底盘和云台间的跟随模式,从而可针对不同的用户操作状态切换不同的跟随模式,使底盘和云台间的跟随运动更加友好,并使底盘和云台的运动接近用户真实期望的控制,提高了用户控制体验。

Description

可移动平台及其控制方法、装置、底盘、云台和控制设备 技术领域
本发明涉及可移动平台的控制领域,尤其涉及一种可移动平台及其控制方法、装置、底盘、云台和控制设备。
背景技术
在带云台的可移动平台中,一般由底盘负责整体的运动,云台负责自身的转动。为了保证第一视角快速跟上用户的操控,带有拍摄装置和/或射击装置的云台会转动的更加快速,而底盘一般设置为跟随云台运动。具体的,在接收到用户指令后,云台先转动,然后,底盘根据云台和底盘间的关节角反馈进行转动,直到将云台和底盘间的关节角(即云台的关节角与底盘的关节角的差值)缩减为预设关节角大小(如0度),以此来完成底盘跟随云台运动的功能。然而,在一些使用场景中,使用上述底盘跟随云台运动模式,可能会导致云台跟随期间的不自主跟随、反抗用户操控和/或云台和底盘互相跟随导致疯转等问题,云台和底盘无法满足用户真实期望的控制,用户控制体验较差。
发明内容
本发明提供一种可移动平台及其控制方法、装置、底盘、云台和控制设备。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种可移动平台控制方法,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述方法包括:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
根据本发明的第二方面,提供一种可移动平台控制装置,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述装置包括:
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
根据本发明的第三方面,提供一种可移动平台,所述可移动平台包括:
可移动的底盘;
设于所述底盘上的云台;
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
根据本发明的第四方面,提供一种可移动平台的底盘,所述底盘包括:
机身,用于搭载所述可移动平台的云台;
驱动装置,安装在所述机身上,用于为所述底盘提供动力;
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
根据本发明的第五方面,提供一种云台,所述云台搭载在可移动平台的底盘上;所述云台包括:
本体;
搭载在所述本体上的拍摄装置和/或射击装置;
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
根据本发明的第六方面,提供一种可移动平台的控制设备,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述控制设备包括:
存储装置,用于存储程序指令;以及
一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
对所述指令状态进行解析,确定用户操作状态;
根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
由以上本发明实施例提供的技术方案可见,本发明基于对用户真实操纵行为的识别来控制底盘和云台间的跟随模式,从而可针对不同的用户操作状态切换不同的跟随模式,使底盘和云台间的跟随运动更加友好,并使底盘和云台的运动接近用户真实期望的控制,提高了用户控制体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的可移动平台的结构示意图;
图2是本发明一实施例中的可移动平台控制方法的方法流程图;
图3是本发明一实施例中对指令状态进行解析,确定用户操作状态的实现方式的流程图;
图4是本发明另一实施例中对指令状态进行解析,确定用户操作状态的实现方式的流程图;
图5是本发明一具体实施例中的可移动平台控制方法的方法流程图;
图6是本发明一实施例中的可移动平台控制装置的结构框图;
图7是本发明一实施例中的可移动平台的结构框图;
图8是本发明一实施例中的底盘的结构框图;
图9是本发明一实施例中的云台的结构框图;
图10是本发明一实施例中的可移动平台的控制设备的结构框图。
附图标记:100:可移动平台;110:底盘;120:云台。
具体实施方式
使用现有底盘跟随云台运动模式,可能会导致云台抵抗用户真实期望、底盘抵抗用户真实期望、底盘无指令跟随、底盘和云台互相跟随导致疯转、和/或底盘跟随云台期间会导致云台小范围晃动,使得云台无法精细化瞄准等问题。
例如,在一些使用场景下,云台会抵抗用户真实期望,如云台基于世界角进行闭环控制时,无论怎么拨动云台,云台都会始终输出力矩以回到初始位置,对用户的拨动产生了非常大的阻力。
在一些使用场景下,底盘会抵抗用户真实期望,如当拨动云台或者抬起底盘转动云台或底盘时,由于底盘持续跟随云台和底盘之间的关节角,随着云台的转动和回中,底盘也会出现转动后回中的现象,产生没有必要的运动和能量浪费。
在一些使用场景下,底盘会出现无指令跟随的情况,如当把底盘架起悬空时,若此时云台使用IMU姿态作为源输入,当IMU的偏置逐渐加大时,云台此时锁定的角度也会随之漂移,这时将逐渐产生关节角,并且关节角逐步放大。由于底盘实时跟随关节角,架空的底盘将会驱动轮子不断的转动以期望能够跟随到云台,而此时由于架空,无法将反馈抵消,控制器将会很快将轮子转速输出至最大值,这对用户和底盘都存在一定损坏的风险。
在一些使用场景下,当底盘和云台之间出现某些状态同步异常,可能导致底盘和云台的互相跟随,此时会出现底盘和云台原地疯转的情况。
基于上述问题,本发明实施例基于对用户真实操纵行为的识别来控制底盘和云台间的跟随模式,从而可针对不同的用户操作状态切换不同的跟随模式,使底盘和云台间的跟随运动更加友好,并使底盘和云台的运动接近用户真实期望的控制,提高了用户控制体验。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图1所示,本发明实施例的可移动平台100包括可移动的底盘110以及设于底盘110上的云台120,该云台120可以为单轴云台、两轴云台或三轴云台等。在某些实施例中,云台120用于搭载拍摄装置,可以通过该拍摄装置进行目标识别。在某些实施例中,云台120用于搭载射击装置,该射击装置可以为弹丸射击装置,也可以为光发射装置,如红外光发射装置。
本实施例的可移动平台100可以为可移动机器人、遥控车辆或其他可移动平台。
图3是本发明一实施例中的可移动平台控制方法的方法流程图。如图3所示,所述可移动平台控制方法可以包括如下步骤:
S201:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;
步骤S201执行主体可以为底盘110或云台120或控制设备或设于可移动平台100上的独立控制器;可选的,步骤S201执行主体为底盘110或云台120或设于可移动平台100上的独立控制器,底盘110或云台120或设于可移动平台100上的独立控制器通过监控可移动平台100上与控制设备进行通信的信号端口的数据信息,实现对控制设备的指令状态的监控;可选的,步骤S201执行主体为控制设备,控制设备通过监控该控制设备输出的信号,实现对该控制设备的指令状态的监控。
本实施例中,控制设备可以包括遥控器、智能终端(如手机、平板电脑等)和智能手环中的一个;当然,控制设备也可以为其他能够控制可移动平台100的终端。
指令状态可以用于指示控制设备当前未输出用户指令,或用于指示控制设备当前输出用户指令,其中,当指令状态用于指示控制设备当前未输出用户指令时,可移动平台100不会接收到用户指令;当指令状态用于指示控制设备当前输出用户指令时,控制设备发送用户指令至可移动平台100,以控制底盘110和/或云台120运动。
可选的,用户指令可以包括手动控制指令和/或自动控制指令,其中,手动控制指令由用户操作控制设备产生,自动控制指令可以为预先设定的控制命令或者控制设备在控制可移动平台100进行目标跟踪时,产生的跟踪指令。
控制设备输出的用户指令可用于指示控制云台120至少一个轴运动和/或控制底盘110运动,用户指令可以包括云台120控制指令和底盘控制指令,其中,云台120控制指令可以映射为对应轴的姿态控制分量和对应轴的角速度控制分量,底盘控制指令可以映射为预设方向上的速度控制分量。也即,用户指令包括多个控制分量,可选的,控制分量包括以下中的至少两个:云台120至少一个轴的姿态控制分量、云台120至少一个轴的角速度控制分量和底盘110在至少一个预设方向的速度控制分量。
作为一种可行的实现方式,控制分量包括:云台俯仰轴姿态控制分量、云台偏航轴姿态控制分量、云台俯仰轴角速度控制分量、云台偏航轴角速度控制分量、以及底盘110在x方向的速度控制分量、底盘110在y方向的速度控制分量。其中,对于无需改变的控制分量,用户指令中该控制分量的大小设置为0即可。x方向、y方向可以为自定义方向;可选的,x方向和y方向位于同一水平面,且x方向和y方向相互垂直。
本实现方式中,将4个通道的控制分量(分别为云台俯仰轴的控制分量、云台偏航轴的控制分量、底盘110在x方向的速度控制分量和底盘110在y方向的速度控制 分量)映射到可移动平台100的各个信号端口中,通过对4个通道的控制分量的实时监控,获得用户的真实控制行为。通常,遥控器输出的杆量一般会归一化到[-1,1]的范围后,再映射到各个真实的信号端口中,这是由于用于操作不同杆时,不同杆的杆量对应的角度转动大小可能不同,例如,一些杆的杆量为1度,云台120或底盘110对应转动15度;另外一些杆的杆量为1度,云台120或底盘110对应转动30度,将杆量进行归一化能够统一杆量与转动角度的换算标准;当然,遥控器输出的杆量也可也不用归一化,而是直接映射到各个真实的信号端口中。
S202:对指令状态进行解析,确定用户操作状态;
其中,用户操作状态即反映了用户的真实控制行为。
在某些实施例中,用户操作状态为以下中的一种:操作停止状态、操作持续状态、第一操作状态和第二操作状态。其中,操作停止状态用于指示用户无控制行为,即用户停止对底盘110和云台120的控制;操作持续状态用于指示用户持续当前控制行为,该当前控制行为可以为第一操作状态对应的用户控制行为,也可以为第二操作状态对应的用户控制行为,由于两个相邻的用户指令对应的用户操作存在时间间隔,在该时间间隔内,用户未操作控制设备,但实际上当前用户控制行为还是持续的;第一操作状态为快速响应控制行为,用于指示可移动平台100快速响应用户操作;第二操作状态为慢速精准控制行为,用于指示可移动平台100慢速精准控制云台120进行瞄准。当然,用户操作状态也可以包括其他。
本实施例中,至少部分用户操作状态对应的跟随模式不相同,从而使得底盘110和云台120间的跟随运动更加友好,并使底盘110和云台120的运动接近用户真实期望的控制,提高了用户控制体验。
在对指令状态进行解析,确定用户操作状态时,可以基于控制设备当前是否输出用户指令采用不同的策略,如图3和图4所示,分别是对指令状态进行解析,确定用户操作状态的实现方式的流程图。
其中,图3所示实施例中,对指令状态进行解析,确定用户操作状态的实现过程可以包括但不限于以下步骤:
S301:若指令状态用于指示控制设备当前未输出用户指令,则统计控制设备未输出用户指令持续时长;
可以采用计数器来统计控制设备未输出用户指令持续时长,当然,也可以采用其他现有方式来统计控制设备未输出用户指令持续时长。
S301:根据持续时长,确定用户操作状态;
具体的,若持续时长大于或等于预设时长,则确定用户操作状态为操作停止状态,也即,用户未操作控制设备的时长大于或等于预设时长时,判定用户无控制行为;若 持续时长小于预设时长,则确定用户操作状态为操作持续状态,也即,用户当前至最近一次操作控制设备的时长小于预设时长时,判定用户持续操作中。预设时长能够由用户设定,从而满足不同的用户需求;当然,预设实操,也可以为默认数值大小。
图4所示实施例中,对指令状态进行解析,确定用户操作状态的实现过程可以包括但不限于以下步骤:
S401:若指令状态用于指示控制设备当前输出用户指令,则根据用户指令,确定用户操作状态。
本实施例中,根据用户指令,直接确定用户操作状态。本实施例的用户指令包括多个控制分量,可以根据多个控制分量的大小和/或多个控制分量的相关信息,确定用户操作状态。
可选的,在某些实施例中,若任一控制分量大于第一预设分量,且该大于第一预设分量的控制分量在预设时间段的最大变化速率大于第一预设变化速率,则将用户操作状态确定为第一操作状态。当多个控制分量中任何一个控制分量的大小大于第一预设分量,同时大于第一预设分量的控制分量在预设时间段的最大变化速率大于第一预设变化速率时,表明用户的打杆操作速度较快,需要底盘110和云台120快速响应用户的打杆操作。第一预设分量和/或第一预设变化速率能够由用户设定,从而满足不同的用户需求;当然,第一预设分量和/或第一预设变化速率也可以为默认数值大小。
在某些实施例中,若多个控制分量中的最大分量小于第二预设分量,且该最大分量在预设时间段的最大变化速率小于第二预设变化速率,则将用户操作状态确定为第二操作状态。当多个控制分量中的最大分量小于第二预设分量,且该最大分量在预设时间段的最大变化速率小于第二预设变化速率时,表明用户的打杆操作较为缓慢,通常为控制云台120微动以瞄准目标。第二预设分量和/或第二预设变化速率能够由用户设定,从而满足不同的用户需求;当然,第二预设分量和/或第二预设变化速率也可以为默认数值大小。
上述实施例中,预设时间段为控制设备持续输出用户指令的时间段。
本实施例中,控制分量可以包括以下中的至少两个:云台120至少一个轴的姿态控制分量、云台120至少一个轴的角速度控制分量和底盘110在至少一个预设方向的速度控制分量。
另外,在某些实施例中,根据用户指令,确定用户操作状态的过程可以包括:根据用户指令,判断用户操作状态是否为第二操作状态;若否,则将用户操作状态确定为第一操作状态。本实施例中,先判断控制设备当前输出的用户指令对应的用户操作状态是否为第二操作状态,能够更快识别用户操作是否为精确瞄准操作。
S203:根据用户操作状态,控制底盘110和云台120间的跟随模式。
底盘110和云台120间的跟随模式可以包括:底盘110的工作模式和/或云台120的工作模式。
其中,底盘110的工作模式可以包括:
(1)跟随模式:当底盘110处于跟随模式时,底盘110跟随云台120转动。
(2)非跟随模式:当底盘110处于非跟随模式时,底盘110不跟随云台120转动。
云台120的工作模式可以包括:
(1)第一工作模式:当云台120处于第一工作模式时,云台120和底盘110间的关节角保持在云台120当前和底盘110间的关节角大小;也即,当云台120处于第一工作模式时,云台120的偏航相对关节角始终保存在云台120当前和底盘110间的偏航关节角大小,云台120的俯仰相对关节角始终保存在云台120当前和底盘110间的俯仰关节角大小,云台120的偏航相对关节角和俯仰相对关节角不随底盘110运动而变化。
(2)第二工作模式:第二工作模式也可称作正常工作模式,当云台120处于第二工作模式时,云台120在预设的绝对坐标系下的绝对角为实时用户指令对应的期望绝对角大小;也即,当云台120处于第二工作模式时,云台120的偏航绝对角始终为实时用户指令对应的期望偏航绝对角大小,即云台120的偏航姿态始终指向实时用户指令对应的期望偏航绝对角的位置,云台120的偏航绝对角不随底盘110的运动而变化;当云台120处于第二工作模式时,云台120的俯仰绝对角始终为实时用户指令对应的期望俯仰绝对角大小,当底盘110相对水平方向的角度变化时,云台120相对水平方向的角度也产生变化,使得云台120的俯仰姿态始终指向实时用户指令对应的期望俯仰绝对角的位置。其中,该绝对坐标系可以为世界坐标系,也可以为其他绝对坐标系。
本实施例中,可以采用与各用户操作状态对应的底盘110和云台120间的跟随模式来切换当前底盘110和云台120间的跟随模式。
可选的,在某些实施例中,当用户操作状态为操作停止状态时,控制云台120处于第一工作模式。这样设置后,当用户手动拨动云台120时,由于云台120和底盘110间的关节角会保持在云台120当前和底盘110间的关节角大小,即用户拨动云台120时云台120和底盘110间的实时关节角大小,使得云台120停留在用户拨动云台120时云台120的实时姿态对应的位置,云台120的运动接近用户真实期望,给用户带来更佳的控制体验。例如,在用户通过遥控器打杆控制可移动平台的云台进行射击时,当用户松杆的时间较长,则表明用户不再操作云台进行射击,此时,将云台120的工作模式设置为第一工作模式,在第一工作模式下,用户手动拨动云台120,云台会保留在当前位置,而不会回到拨动前云台所在位置。另外,此时,云台120在第一工作模式下,若底盘110转动,云台120会跟随底盘110转动,使得云台120和底盘110间的关节角保持在底盘110转动前云台120和底盘110间的关节角大小。
在某些实施例中,当用户操作状态为操作停止状态时,控制底盘110处于非跟随模式,使得底盘110不跟随云台120转动。这样设置后,当用户拨动云台120或抬起底盘110转动云台120或底盘110时,由于底盘110处于非跟随模式,底盘110不会跟随云台120转动而转动,从而避免了底盘110产生没有必要的运动和能量浪费的情况发生,使得底盘110的运动接近用户真实期望,给用户带来更佳的控制体验;并且,当把底盘110架起悬空,且云台120使用IMU姿态作为源输入时,云台120使用IMU姿态作为源输入,即使云台120由于IMU偏置产生角度漂移,从而产生关节角,由于底盘110不跟随云台120转动,故底盘110不会出现无指令跟随的情况,避免了底盘110无指令跟随对用户存在的风险和对底盘110本身造成损坏的风险。
可以理解地,可以将上述两种控制底盘110和云台120间的跟随模式的策略进行组合,具体的,当用户操作状态为操作停止状态时,控制云台120处于第一工作模式,并控制底盘110处于非跟随模式,实现了用户无控制行为时,云台120和底盘110间的跟随运动更加友好,云台120和底盘110的运动更接近用户真实期望的目的。
在一些使用场景中,需要云台120和底盘110快能够速响应用户控制行为,使得云台120更快速地瞄准用户真实期望的位置,对于上述使用场景对应的用户操作状态,在控制底盘110和云台120间的跟随模式时,具体的,控制云台120处于第二工作模式,并控制底盘110处于跟随模式。此时,由于底盘110跟随云台120运动,底盘110的运动,加快了云台120的运动,使得云台120更快地运动至用户真实期望的位置。上述使用场景对应的用户操作状态可以分为如下几种情况:
(1)用户操作状态为操作持续状态,也即,当用户操作状态为操作持续状态时,控制云台120处于第二工作模式,并控制底盘110处于跟随模式。
(2)用户操作状态为第一操作状态,也即,当用户操作状态为第一操作状态时,控制云台120处于第二工作模式,并控制底盘110处于跟随模式。第一操作状态对应的用户控制行为是快速响应控制行为,快速响应控制行为需要云台120快速到达用户真实期望的位置,对云台120瞄准的精度要求较低,将底盘110和云台120间的跟随模式设置为云台120处于第二工作模式,底盘110处于跟随模式,使得云台120的运动速度与用户的操作速度保持一致,云台120的运动更接近用户真实期望。
(3)用户操作状态为第二操作状态,且云台120和底盘110间的关节角的绝对值大于预设角度大小,也即,当用户操作状态为第二操作状态,且云台120和底盘110间的关节角的绝对值大于预设角度大小时,控制云台120处于第二工作模式,并控制底盘110处于跟随模式。第二操作状态对应的用户控制行为是慢速精准控制行为,慢速精准控制行为指示云台120进行精确瞄准,对云台120瞄准的精度要求较高,而云台120和底盘110间的关节角的绝对值大于预设角度大小,说明云台120和底盘110间的关节角较大,需要底盘110跟随云台120运动,以加快云台120运动,使得云台 120更快地达到用户真实期望的位置。预设角度大小可根据需要设置,可选的,预设角度为30度;当然,预设角度也可以设置为其他角度大小。
控制云台120处于第二工作模式的操作和控制底盘110处于跟随模式的操作可以同步执行,当然,控制云台120处于第二工作模式的操作和控制底盘110处于跟随模式的操作也可以按照先后顺序执行。
本实施例中,控制底盘110处于跟随模式的操作在控制云台120处于第二工作模式的操作之后执行。当控制云台120处于第二工作模式的操作失败、或者在控制云台120处于第二工作模式时,由于误操作将云台120切换成第一工作模式等情况发生时,在控制云台120处于第二工作模式之后,若不对云台120的工作模式进行确认,直接控制底盘110处于跟随模式,可能出现云台120处于第一工作模式下,将底盘110切换至跟随模式的情况发生。然而,云台120处于第一工作模式时,若底盘110处于跟随模式,若云台120和底盘110间的关节角变化,由于云台120维持云台120当前和底盘110间的关节角,故云台120会转动,底盘110也会跟随云台120转动,故可能出现云台120和底盘110相互跟随引起旋转的情况。
针对上述问题,本实施例中,在控制云台120处于第二工作模式之后,控制底盘110处于跟随模式之前,还需进一步确认云台120是否处于第一工作模式,以决定是否控制底盘110跟随云台120转动,从而避免云台120和底盘110相互跟随引起旋转。本实施例的可移动平台控制方法还包括:控制云台120处于第二工作模式之后,检测云台120是否处于第一工作模式。
若检测到云台120不处于第一工作模式,则控制底盘110处于跟随模式。检测到云台120不处于第一工作模式,这说明控制云台120处于第二工作模式的操作成功,云台120当前处于第二工作模式,此时,控制底盘110处于跟随模式,避免了云台120和底盘110相互跟随引起旋转的情况发生。
若检测到云台120处于第一工作模式,则控制底盘110处于非跟随模式,使得底盘110不跟随云台120转动,从而避免云台120和底盘110相互跟随引起旋转。检测到云台120处于第一工作模式,则说明控制云台120处于第二工作模式的操作失败,或者在控制云台120处于第二工作模式时,由于误操作将云台120切换至第一工作模式,若云台120处于第一工作模式时,底盘110跟随云台120转动,则存在云台120和底盘110相互跟随引起旋转的风险,本实施例在检测到云台120处于第一工作模式时,控制底盘110不跟随云台120转动,有效避免了云台120和底盘110相互跟随引起旋转的情况发生。更进一步的,本实施例的可移动平台控制方法还包括:在检测到云台120处于第一工作模式时,输出状态切换异常指示,提示用户控制云台120处于第二工作模式的操作失败、或者在控制云台120处于第二工作模式时,由于误操作将云台120切换成第一工作模式,进而提醒用户云台120和底盘110无法正常跟随。其 中,状态切换异常指示可以通过文字、图像、语音中的一个或至少两个的组合实现。
例如,在用户通过遥控器打杆控制可移动平台的云台进行射击时,用户虽然松杆,但实际还处于控制控制云台120射击的操作(通常是用户连续打杆会存在一个空挡,在该空挡时间内,用户是松杆的)或用户大量打杆或用户轻微打杆且云台120和底盘110间的关节角的绝对值超过30度,将云台120的工作模式设置为第二工作模式,云台120处于第二工作模式时,云台120会转动至用户当前打杆的杆量对应的期望位置;同时,用户大量打杆或用户轻微打杆且云台120和底盘110间的关节角的绝对值超过30度,说明用户打杆速度较快,需要云台快速到达,或者,虽然用户打杆速度较慢,但由于云台120和底盘110间的关节角较大,需要缩小云台120和底盘110间的关节角大小,因此,设置底盘110跟随云台120转动,由于底盘110负责整体的运动,底盘110转动会加快云台120的转动并缩小云台120和底盘110间的关节角大小,使得云台120能够更快地转动至期望位置,云台120的转动速度符合用户控制行为。
在某些实施例中,当用户操作状态为第二操作状态,且云台120和底盘110间的关节角在预设角度范围内时,控制云台120处于第二工作模式,且控制底盘110处于非跟随模式。第二操作状态对应的用户控制行为是慢速精准控制行为,慢速精准控制行为指示云台120进行精确瞄准,对云台120瞄准的精度要求较高,云台120和底盘110间的关节角在预设角度范围内,说明云台120和底盘110间的关节角较小,此时,若控制底盘110处于跟随模式,则可能会出现底盘110跟随云台120转动期间导致云台120小范围晃动,从而使得云台120无法实现精细化瞄准的情况。本实施例中,当用户操作状态为第二操作状态,且云台120和底盘110间的关节角在预设角度范围内时,控制云台120处于第二工作模式,且控制底盘110不跟随云台120转动,能够避免底盘110跟随云台120转动期间导致云台120小范围晃动,使得云台120无法实现精细化瞄准的情况发生,使得云台120能够实现精细化瞄准,满足用户精细化瞄准控制的需求。
例如,在用户通过遥控器打杆控制可移动平台的云台进行射击时,用户轻微打杆且云台120和底盘110间的关节角的绝对值不超过30度,将云台120的工作模式设置为第二工作模式,云台120处于第二工作模式时,云台120会转动至用户当前打杆的杆量对应的期望位置;同时,云台120和底盘110间的关节角的绝对值不超过30度,说明用户打杆速度较慢,且云台120和底盘110间的关节角较小,若设置底盘110跟随云台120,则底盘110的转动很可能会导致云台120的小范围晃动,这样云台就无法实现精细化瞄准,故在用户轻微打杆且云台120和底盘110间的关节角的绝对值不超过30度时,设置底盘110不跟随云台120转动,云台120转动,底盘110处于静止状态,云台120的转动不会受到外部干扰,能够实现精细化瞄准。本实施例中,当云台120和底盘110间的关节角不在预设角度范围内,即表明云台120和底盘110间的关节角的绝对值大于预设角度大小。预设角度范围可根据需要设置,可选的,预设角 度范围为大于等于-30度且小于等于30度;当然,预设角度范围也可以设置为其他角度区间。
图5是本发明一具体实施例中的可移动平台控制方法的方法流程图;图5所示实施例的可移动平台控制方法可以包括如下步骤:
(1)监控控制设备的指令状态;
(2)根据指令状态,判断控制设备是否输出用户指令;若控制设备未输出用户指令,则进入步骤(3);若控制设备输出用户指令,则进入步骤(5);
(3)判断是否无用户控制行为;若不存在用户控制行为,即用户操作状态是操作停止状态,则进入步骤(4);若存在用户控制行为,即用户操作状态是操作持续状态,则进入步骤(9);
(4)控制云台处于第一工作模式,控制底盘处于非跟随模式;
(5)根据控制设备当前输出的用户指令,判断用户操作状态是否为第二操作状态;若用户操作状态是第二操作状态,则进入步骤(6);若用户操作状态不是第二操作状态,则进入步骤(8);
(6)判断云台和底盘间的关节角是否在预设角度范围内,若云台和底盘间的关节角在预设角度范围内,则进入步骤(7);若云台和底盘间的关节角不在预设角度范围内,则进入步骤(9);
(7)控制云台处于第二工作模式,控制底盘处于非跟随模式
(8)根据控制设备当前输出的用户指令,判断用户操作状态是否为第一操作状态,若用户操作状态是第一操作状态,则进入步骤(9);
(9)控制云台处于第二工作模式;
(10)在控制云台处于第二工作模式后,判断云台是否处于第一工作模式;若云台不处于第一工作模式,即云台处于第二工作模式,则进入步骤(11);若云台处于第一工作模式,则进入步骤(12)和步骤(13);
(11)控制底盘处于跟随模式;
(12)控制底盘处于非跟随模式;
(13)输出状态切换异常指示。
其中,步骤(12)和步骤(13)的执行顺序可以互换,也可也同步执行步骤(12)和步骤(13)。
基于对用户真实操纵行为的识别来控制底盘110和云台120间的跟随模式,从而可针对不同的用户操作状态切换不同的跟随模式,使底盘110和云台120间的跟随运 动更加友好,并使底盘110和云台120的运动接近用户真实期望的控制,提高了用户控制体验。
需要说明的是,本实施例的可移动平台控制方法的执行主体可以包括可移动平台100的主控器、底盘控制器、云台控制器、控制设备的控制器中的一个,可移动平台控制方法的执行主体也可以为上述控制器中的至少两个的组合。
还需要说明的是,还可以通过在控制设备上设置开关,直接通过触发开关来选择不同的底盘110和云台120间的跟随模式,例如,当用户需要云台120快速到达期望位置时,触发第一开关,控制云台120处于第二工作模式,并控制底盘110处于跟随模式;当用户需要云台120实现精细化瞄准时,触发第二开关,控制云台120处于第二工作模式,且控制底盘110处于非跟随模式;当用户不需要控制可移动平台100时,触发第三开关,控制云台120处于第一工作模式,并控制底盘110处于非跟随模式。可以理解地,通过触发开关来选择不同的底盘110和云台120间的跟随模式并不限于上述实现方式。
对应于上述实施例的可移动平台控制方法,本发明实施例还提供一种可移动平台控制装置,参见图6,该可移动平台控制装置包括:存储装置和一个或多个处理器。
其中,存储装置,用于存储程序指令;一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施如下操作:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;对指令状态进行解析,确定用户操作状态;根据用户操作状态,控制底盘110和云台120间的跟随模式。
可移动平台控制装置的处理器可以实现如本发明图2、图3、图4和图5所示实施例的可移动平台控制方法,可参见上述实施例的可移动平台控制方法对本实施例的可移动平台控制装置进行说明。
对应于上述实施例的可移动平台控制方法,本发明实施例还提供一种可移动平台,结合图1和图7,该可移动平台100包括可移动的底盘110、设于底盘110上的云台120、存储装置和一个或多个处理器。
其中,存储装置,用于存储程序指令;一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施如下操作:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;对指令状态进行解析,确定用户操作状态;根据用户操作状态,控制底盘110和云台120间的跟随模式。
可移动平台100的处理器可以实现如本发明图2、图3、图4和图5所示实施例的可移动平台控制方法,可参见上述实施例的可移动平台控制方法对本实施例的可移动平台100进行说明。
可移动平台100的处理器可以为底盘控制器,也可以为云台120控制器,还可以为可移动平台100的主控制器,也可以为上述控制器中至少两个的组合。
对应于上述实施例的可移动平台控制方法,本发明实施例还提供一种可移动平台的底盘,结合图1和图8,该底盘110包括机身、驱动装置、存储装置和一个或多个处理器。其中,机身用于搭载可移动平台100的云台120,可选的,云台120可拆卸安装在底盘110的顶部。驱动装置安装在机身上,用于为底盘110提供动力;可选的,驱动装置包括安装在机身上的驱动轮以及用于驱动所述驱动轮转动的动力装置,该动力装置可以为电机动力装置,也可以为其他类型的驱动装置。
存储装置,用于存储程序指令;一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施如下操作:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;对指令状态进行解析,确定用户操作状态;根据用户操作状态,控制底盘110和云台120间的跟随模式。
底盘110的处理器可以实现如本发明图2、图3、图4和图5所示实施例的可移动平台控制方法,可参见上述实施例的可移动平台控制方法对本实施例的底盘110进行说明。
对应于上述实施例的可移动平台控制方法,本发明实施例还提供一种云台,如图1所示,云台120搭载在可移动平台100的底盘110上。结合图1和图9,该云台120包括本体、搭载在所述本体上的拍摄装置和/或射击装置、存储装置和一个或多个处理器。
存储装置,用于存储程序指令;一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施如下操作:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;对指令状态进行解析,确定用户操作状态;根据用户操作状态,控制底盘110和云台120间的跟随模式。
云台120的处理器可以实现如本发明图2、图3、图4和图5所示实施例的可移动平台控制方法,可参见上述实施例的可移动平台控制方法对本实施例的云台120进行说明。
对应于上述实施例的可移动平台控制方法,本发明实施例还提供一种可移动平台的控制设备,参见图10,该控制设备包括存储装置和一个或多个处理器。
存储装置,用于存储程序指令;一个或多个处理器,调用存储装置中存储的程序指令,当程序指令被执行时,一个或多个处理器单独地或共同地被配置成用于实施如下操作:监控控制设备的指令状态,其中,控制设备用于控制可移动平台100;对指令状态进行解析,确定用户操作状态;根据用户操作状态,控制底盘110和云台120 间的跟随模式。
控制设备的处理器可以实现如本发明图2、图3、图4和图5所示实施例的可移动平台控制方法,可参见上述实施例的可移动平台控制方法对本实施例的控制设备进行说明。
可选的,该控制设备可以为可移动平台100的图传设备,也可以为其他能够与可移动平台100通信的终端,如智能移动终端,可穿戴智能终端,遥控器等等。
上述存储装置可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储装置110还可以包括上述种类的存储器的组合。
上述处理器可以是中央处理器(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例的可移动平台控制方法的步骤。
所述计算机可读存储介质可以是前述任一实施例所述的可移动平台、底盘、云台或可移动平台的控制设备的内部存储单元,例如硬盘或内存。所述计算机可读存储介质也可以是可移动平台、底盘、云台或可移动平台的控制设备的外部存储设备,例如所述设备上配备的插接式硬盘、智能存储卡(Smart Media Card,SMC)、SD卡、闪存卡(Flash Card)等。进一步的,所述计算机可读存储介质还可以既包括可移动平台、底盘、云台或可移动平台的控制设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述可移动平台、底盘、云台或可移动平台的控制设备所需的其他程序和数据,还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (49)

  1. 一种可移动平台控制方法,其特征在于,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述方法包括:
    监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
    对所述指令状态进行解析,确定用户操作状态;
    根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
  2. 根据权利要求1所述的方法,其特征在于,所述用户操作状态为以下中的一种:
    操作停止状态、操作持续状态、第一操作状态和第二操作状态;
    其中,至少部分所述用户操作状态对应的所述跟随模式不相同。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式,包括:
    当所述用户操作状态为所述操作停止状态时,控制所述云台处于第一工作模式;
    其中,当所述云台处于所述第一工作模式时,所述云台和所述底盘间的关节角保持在所述云台当前和所述底盘间关节角大小。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式,包括:
    当所述用户操作状态为操作停止状态时,控制所述底盘处于非跟随模式,使得所述底盘不跟随所述云台转动。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式,包括:
    当所述用户操作状态为操作持续状态,或所述用户操作状态为第一操作状态,或所述用户操作状态为第二操作状态,且所述云台和所述底盘间的关节角的绝对值大于预设角度大小时,控制所述云台处于第二工作模式,并控制所述底盘处于跟随模式;
    其中,当所述云台处于所述第二工作模式时,所述云台在预设的绝对坐标系下的绝对角为实时用户指令对应的期望绝对角大小;
    当所述底盘处于所述跟随模式时,所述底盘跟随所述云台转动。
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述底盘处于跟随模式的操作在所述控制所述云台处于第二工作模式的操作之后执行。
  7. 根据权利要求6所述的方法,其特征在于,所述控制所述云台处于第二工作模式之后,还包括:
    检测所述云台是否处于第一工作模式;
    若否,控制所述底盘处于所述跟随模式;
    其中,当所述云台处于所述第一工作模式时,所述云台和所述底盘间的关节角保持在所述云台当前和所述底盘间关节角大小。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在检测到所述云台处于所述第一工作模式时,控制所述底盘处于非跟随模式,使 得所述底盘不跟随所述云台转动。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在检测到所述云台处于所述第一工作模式时,输出状态切换异常指示。
  10. 根据权利要求2所述的方法,其特征在于,所述根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式,包括:
    当所述用户操作状态为第二操作状态,且所述云台和所述底盘间的关节角在预设角度范围内时,控制所述云台处于第二工作模式,且控制所述底盘处于非跟随模式;
    其中,当所述云台处于所述第二工作模式时,所述云台在预设的绝对坐标系下的绝对角为实时用户指令对应的期望绝对角大小;
    当所述底盘处于所述非跟随模式时,所述底盘不跟随所述云台转动。
  11. 根据权利要求10所述的方法,其特征在于,所述预设角度范围为大于等于-30度且小于等于30度。
  12. 根据权利要求1或2所述的方法,其特征在于,所述对所述指令状态进行解析,确定用户操作状态,包括:
    若所述指令状态用于指示所述控制设备当前未输出用户指令,则统计所述控制设备未输出用户指令持续时长;
    根据所述持续时长,确定所述用户操作状态。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述持续时长,确定所述用户操作状态,包括:
    若所述持续时长大于或等于预设时长,则确定所述用户操作状态为操作停止状态。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述持续时长,确定所述用户操作状态,包括:
    若所述持续时长小于预设时长,则确定所述用户操作状态为操作持续状态。
  15. 根据权利要求13或14所述的方法,其特征在于,所述预设时长能够由用户设定。
  16. 根据权利要求1或2所述的方法,其特征在于,所述对所述指令状态进行解析,确定用户操作状态,包括:
    若所述指令状态用于指示所述控制设备当前输出用户指令,则根据所述用户指令,确定所述用户操作状态。
  17. 根据权利要求16所述的方法,其特征在于,所述用户指令包括多个控制分量;
    所述根据所述用户指令,确定所述用户操作状态,包括:
    若任一控制分量大于第一预设分量,且该大于第一预设分量的控制分量在预设时间段的最大变化速率大于第一预设变化速率,则将所述用户操作状态确定为第一操作状态。
  18. 根据权利要求17所述的方法,其特征在于,所述第一预设分量和/或所述第一预设变化速率能够由用户设定。
  19. 根据权利要求16所述的方法,其特征在于,所述用户指令包括多个控制分量;
    所述根据所述用户指令,确定所述用户操作状态,包括:
    若所述多个控制分量中的最大分量小于第二预设分量,且该最大分量在预设时间段的最大变化速率小于第二预设变化速率,则将所述用户操作状态确定为第二操作状态。
  20. 根据权利要求19所述的方法,其特征在于,所述第二预设分量和/或所述第二预设变化速率能够由用户设定。
  21. 根据权利要求17或19所述的方法,其特征在于,所述控制分量包括以下中的至少两个:
    所述云台至少一个轴的姿态控制分量、所述云台至少一个轴的角速度控制分量和所述底盘在至少一个预设方向的速度控制分量。
  22. 根据权利要求1所述的方法,其特征在于,所述根据所述用户指令,确定所述用户操作状态,包括:
    根据所述用户指令,判断所述用户操作状态是否为第二操作状态;
    若否,则将所述用户操作状态确定为第一操作状态。
  23. 一种可移动平台控制装置,其特征在于,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述装置包括:
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施如下操作:
    监控控制设备的指令状态,其中,所述控制设备用于控制所述可移动平台;
    对所述指令状态进行解析,确定用户操作状态;
    根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式。
  24. 根据权利要求23所述的装置,其特征在于,所述用户操作状态为以下中的一种:
    操作停止状态、操作持续状态、第一操作状态和第二操作状态;
    其中,至少部分所述用户操作状态对应的所述跟随模式不相同。
  25. 根据权利要求24所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式时,具体用于实施如下操作:
    当所述用户操作状态为所述操作停止状态时,控制所述云台处于第一工作模式;
    其中,当所述云台处于所述第一工作模式时,所述云台和所述底盘间的关节角保持在所述云台当前和所述底盘间关节角大小。
  26. 根据权利要求24或25所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式时,具体用于实施如下操作:
    当所述用户操作状态为操作停止状态时,控制所述底盘处于非跟随模式,使得所述底盘不跟随所述云台转动。
  27. 根据权利要求24所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式时,具体用于实施如下操作:
    当所述用户操作状态为操作持续状态,或所述用户操作状态为第一操作状态,或所述用户操作状态为第二操作状态,且所述云台和所述底盘间的关节角的绝对值大于预设角度大小时,控制所述云台处于第二工作模式,并控制所述底盘处于跟随模式;
    其中,当所述云台处于所述第二工作模式时,所述云台在预设的绝对坐标系下的绝对角为实时用户指令对应的期望绝对角大小;
    当所述底盘处于所述跟随模式时,所述底盘跟随所述云台转动。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器控制所述底盘处于跟随模式在所述处理器控制所述云台处于第二工作模式之后执行。
  29. 根据权利要求28所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成控制所述云台处于第二工作模式之后,还用于实施如下操作:
    检测所述云台是否处于第一工作模式;
    若否,控制所述底盘处于所述跟随模式;
    其中,当所述云台处于所述第一工作模式时,所述云台和所述底盘间的关节角保持在所述云台当前和所述底盘间关节角大小。
  30. 根据权利要求29所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被进一步配置成用于实施如下操作:
    在检测到所述云台处于所述第一工作模式时,控制所述底盘处于非跟随模式,使得所述底盘不跟随所述云台转动。
  31. 根据权利要求29所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被进一步配置成用于实施如下操作:
    在检测到所述云台处于所述第一工作模式时,输出状态切换异常指示。
  32. 根据权利要求24所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述用户操作状态,控制所述底盘和所述云台间的跟随模式时,具体用于实施如下操作:
    当所述用户操作状态为第二操作状态,且所述云台和所述底盘间的关节角在预设角度范围内时,控制所述云台处于第二工作模式,且控制所述底盘处于非跟随模式;
    其中,当所述云台处于所述第二工作模式时,所述云台在预设的绝对坐标系下的绝对角为实时用户指令对应的期望绝对角大小;
    当所述底盘处于所述非跟随模式时,所述底盘不跟随所述云台转动。
  33. 根据权利要求32所述的装置,其特征在于,所述预设角度范围为大于等于-30度且小于等于30度。
  34. 根据权利要求23或24所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成对所述指令状态进行解析,确定用户操作状态时,具体用于实施如下操作:
    若所述指令状态用于指示所述控制设备当前未输出用户指令,则统计所述控制设备未输出用户指令持续时长;
    根据所述持续时长,确定所述用户操作状态。
  35. 根据权利要求34所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述持续时长,确定所述用户操作状态时,具体用于实施如下操作:
    若所述持续时长大于或等于预设时长,则确定所述用户操作状态为操作停止状态。
  36. 根据权利要求35所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述持续时长,确定所述用户操作状态时,具体用于实施如下操作:
    若所述持续时长小于预设时长,则确定所述用户操作状态为操作持续状态。
  37. 根据权利要求35或36所述的装置,其特征在于,所述预设时长能够由用户设定。
  38. 根据权利要求23或24所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成对所述指令状态进行解析,确定用户操作状态时,具体用于实施如下操作:
    若所述指令状态用于指示所述控制设备当前输出用户指令,则根据所述用户指令,确定所述用户操作状态。
  39. 根据权利要求38所述的装置,其特征在于,所述用户指令包括多个控制分量;
    所述一个或多个处理器单独地或共同地被配置成根据所述用户指令,确定所述用户操作状态时,具体用于实施如下操作:
    若任一控制分量大于第一预设分量,且该大于第一预设分量的控制分量在预设时间段的最大变化速率大于第一预设变化速率,则将所述用户操作状态确定为第一操作状态。
  40. 根据权利要求39所述的装置,其特征在于,所述第一预设分量和/或所述第一预设变化速率能够由用户设定。
  41. 根据权利要求38所述的装置,其特征在于,所述用户指令包括多个控制分量;
    所述一个或多个处理器单独地或共同地被配置成根据所述用户指令,确定所述用户操作状态时,具体用于实施如下操作:
    若所述多个控制分量中的最大分量小于第二预设分量,且该最大分量在预设时间段的最大变化速率小于第二预设变化速率,则将所述用户操作状态确定为第二操作状态。
  42. 根据权利要求41所述的装置,其特征在于,所述第二预设分量和/或所述第 二预设变化速率能够由用户设定。
  43. 根据权利要求39或41所述的装置,其特征在于,所述控制分量包括以下中的至少两个:
    所述云台至少一个轴的姿态控制分量、所述云台至少一个轴的角速度控制分量和所述底盘在至少一个预设方向的速度控制分量。
  44. 根据权利要求23所述的装置,其特征在于,所述一个或多个处理器单独地或共同地被配置成根据所述用户指令,确定所述用户操作状态时,具体用于实施如下操作:
    根据所述用户指令,判断所述用户操作状态是否为第二操作状态;
    若否,则将所述用户操作状态确定为第一操作状态。
  45. 一种可移动平台,其特征在于,所述可移动平台包括:
    可移动的底盘;
    设于所述底盘上的云台;
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施权利要求1-22之一所述的方法。
  46. 一种可移动平台的底盘,其特征在于,所述底盘包括:
    机身,用于搭载所述可移动平台的云台;
    驱动装置,安装在所述机身上,用于为所述底盘提供动力;
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施权利要求1-22之一所述的方法。
  47. 一种云台,其特征在于,所述云台搭载在可移动平台的底盘上;所述云台包括:
    本体;
    搭载在所述本体上的拍摄装置和/或射击装置;
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执行时,所述一个或多个处理器单独地或共同地被配置成用于实施权利要求1-22之一所述的方法。
  48. 一种可移动平台的控制设备,其特征在于,所述可移动平台包括可移动的底盘以及设于所述底盘上的云台,所述控制设备包括:
    存储装置,用于存储程序指令;以及
    一个或多个处理器,调用所述存储装置中存储的程序指令,当所述程序指令被执 行时,所述一个或多个处理器单独地或共同地被配置成用于实施权利要求1-22之一所述的方法。
  49. 根据权利要求48所述的控制设备,其特征在于,所述控制设备为图传设备。
PCT/CN2019/094927 2019-07-05 2019-07-05 可移动平台及其控制方法、装置、底盘、云台和控制设备 WO2021003613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/094927 WO2021003613A1 (zh) 2019-07-05 2019-07-05 可移动平台及其控制方法、装置、底盘、云台和控制设备
CN201980032145.0A CN112204490B (zh) 2019-07-05 2019-07-05 可移动平台及其控制方法、装置、底盘、云台和控制设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094927 WO2021003613A1 (zh) 2019-07-05 2019-07-05 可移动平台及其控制方法、装置、底盘、云台和控制设备

Publications (1)

Publication Number Publication Date
WO2021003613A1 true WO2021003613A1 (zh) 2021-01-14

Family

ID=74004770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094927 WO2021003613A1 (zh) 2019-07-05 2019-07-05 可移动平台及其控制方法、装置、底盘、云台和控制设备

Country Status (2)

Country Link
CN (1) CN112204490B (zh)
WO (1) WO2021003613A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612730A (zh) * 2009-07-24 2009-12-30 北京工业大学 轮式智能自主移动服务机器人
US20110082606A1 (en) * 2009-10-07 2011-04-07 General Electric Company Vehicle suspension control system and method
CN104914864A (zh) * 2015-05-22 2015-09-16 深圳市大疆创新科技有限公司 一种移动装置、移动装置控制系统及控制方法
CN108733083A (zh) * 2018-03-21 2018-11-02 北京猎户星空科技有限公司 机器人转动的控制方法、装置、机器人及存储介质
CN108733419A (zh) * 2018-03-21 2018-11-02 北京猎户星空科技有限公司 智能设备的持续唤醒方法、装置、智能设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978441A (zh) * 2016-06-15 2016-09-28 零度智控(北京)智能科技有限公司 无人机、电机控制装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612730A (zh) * 2009-07-24 2009-12-30 北京工业大学 轮式智能自主移动服务机器人
US20110082606A1 (en) * 2009-10-07 2011-04-07 General Electric Company Vehicle suspension control system and method
CN104914864A (zh) * 2015-05-22 2015-09-16 深圳市大疆创新科技有限公司 一种移动装置、移动装置控制系统及控制方法
CN108443680A (zh) * 2015-05-22 2018-08-24 深圳市大疆灵眸科技有限公司 一种移动装置、移动装置控制系统及控制方法
CN108733083A (zh) * 2018-03-21 2018-11-02 北京猎户星空科技有限公司 机器人转动的控制方法、装置、机器人及存储介质
CN108733419A (zh) * 2018-03-21 2018-11-02 北京猎户星空科技有限公司 智能设备的持续唤醒方法、装置、智能设备和存储介质

Also Published As

Publication number Publication date
CN112204490A (zh) 2021-01-08
CN112204490B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US8554462B2 (en) Unmanned aerial vehicle and method for controlling the unmanned aerial vehicle
EP3369936B1 (en) Fan, method and device for controlling the fan
US20200271269A1 (en) Method of controlling gimbal, gimbal, and unmanned aerial vehicle
WO2019119201A1 (zh) 一种云台控制方法、无人机、云台及存储介质
WO2015157023A1 (en) Mount that facilitates positioning and orienting a mobile computing device
WO2021026753A1 (zh) 云台控制方法、云台及计算机可读存储介质
US20110102586A1 (en) Ptz camera and controlling method of the ptz camera
WO2017177369A1 (zh) 一种稳定器的跟踪拍摄控制方法及系统
US11968450B2 (en) Method and apparatus for controlling handheld gimbal, and handheld gimbal
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
US9729835B2 (en) Method for switching viewing modes in a camera
WO2021003613A1 (zh) 可移动平台及其控制方法、装置、底盘、云台和控制设备
WO2021026764A1 (zh) 拍摄终端控制方法、系统、手持云台及可读存储介质
WO2021217408A1 (zh) 无人机系统及其控制方法和装置
WO2020087346A1 (zh) 拍摄控制方法、可移动平台、控制设备及存储介质
WO2021232273A1 (zh) 无人机及其控制方法和装置、遥控终端、无人机系统
WO2019148348A1 (zh) 云台控制方法和装置
WO2021102800A1 (zh) 智能设备的控制方法、装置、系统和存储介质
US20220266134A1 (en) Method, device, and storage medium for controlling object
WO2020037617A1 (zh) 云台控制方法、云台和云台控制系统
KR101330048B1 (ko) 병렬형 로봇 제어 장치 및 방법
CN105100591A (zh) Ip摄像机的精确远程ptz控制的系统和方法
WO2021146908A1 (zh) 云台及其控制方法
JP2014011566A (ja) 画像表示装置及び監視カメラシステム
US20210216068A1 (en) Control method, control device, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936798

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936798

Country of ref document: EP

Kind code of ref document: A1