WO2021002672A1 - 사출 성형품 - Google Patents

사출 성형품 Download PDF

Info

Publication number
WO2021002672A1
WO2021002672A1 PCT/KR2020/008592 KR2020008592W WO2021002672A1 WO 2021002672 A1 WO2021002672 A1 WO 2021002672A1 KR 2020008592 W KR2020008592 W KR 2020008592W WO 2021002672 A1 WO2021002672 A1 WO 2021002672A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
less
eyewear
injection molded
injection
Prior art date
Application number
PCT/KR2020/008592
Other languages
English (en)
French (fr)
Inventor
임은정
오동현
김진홍
김민준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021574911A priority Critical patent/JP2022539680A/ja
Priority to US17/623,421 priority patent/US20220350172A1/en
Priority to CN202080047660.9A priority patent/CN114072265B/zh
Priority to EP20834491.1A priority patent/EP3995302A4/en
Publication of WO2021002672A1 publication Critical patent/WO2021002672A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present application relates to an injection molded article.
  • the injection molding method is a typical plastic molding method.
  • Injection molding is one of the molding methods of plastic using a mold, and after heating and melting a material such as plastic, it is injected into a mold and cooled to obtain a product having a desired shape.
  • 1 is an example of an injection molding machine.
  • the injection molding machine is composed of a hopper (C) for introducing a material, a cylinder (A) in which the introduced material is melted by heating, a nozzle (B) for injecting the molten material into the mold (D), etc. I can.
  • the material is injected into the hopper (C) using an injection molding machine as shown in Fig. 1, and after melting in the cylinder (A), it is injected into the mold (D) using the nozzle (B).
  • the mold D is opened, but the mold D may be closed at the time when the material is injected, and the mold D may be opened after cooling of the material to obtain a product.
  • the injection molding machine and the injection molding method illustrated in FIG. 1 are an example, and injection-molded products may be obtained in various ways using various molding machines in addition to the above.
  • This injection molding method has the advantage of being able to obtain a desired product at low cost compared to other methods such as extrusion method, which is the same plastic processing method.
  • a large amount of stress is applied to the material, and the direction in which the stress is applied is also random, so that a large amount of retardation occurs in the product, and the optical axis direction is also random. Accordingly, when the injection-molded product is a product that is worn or used outdoors such as glasses or goggles, it causes a defect called a rainbow phenomenon outdoors.
  • FIG. 2 and 3 are photographs of a product manufactured in the form of goggles
  • FIG. 2 is a photograph of a product manufactured by an injection molding method
  • FIG. 3 is a photograph of a product manufactured by an extrusion method. 2 and 3 are cases in which the goggles are observed under a polarization source, respectively.
  • a product manufactured by an injection molding method (FIG. 2) has a severe rainbow phenomenon.
  • This application relates to an injection molded article. Specifically, the present application relates to an optically compensated injection molded article, and relates to an injection molded article that eliminates optical defects such as a rainbow phenomenon occurring in the injection molded article.
  • the terms vertical, parallel, orthogonal or horizontal to define an angle and a numerical value of an angle mean substantially vertical, parallel, orthogonal, or horizontal and substantially a value of the angle within a range that does not impair the target effect. Accordingly, the range of values of vertical, parallel, orthogonal or horizontal and angle may include errors such as manufacturing errors or variations.
  • the above properties are properties measured at room temperature unless otherwise specified in the case where the measurement temperature affects the properties.
  • room temperature is a temperature in a state that is not particularly heated or reduced in temperature, and is any one temperature within the range of about 10°C to 30°C, for example, about 15°C or more, 18°C or more, 20°C or more, or about 23°C or more , It may mean a temperature of about 27 °C or less.
  • the unit of temperature referred to in this specification is °C.
  • phase difference and refractive index referred to in the present specification means a phase difference and a refractive index for light of about 550 nm wavelength, respectively, unless otherwise specified.
  • angles referred to in this specification are positive numbers.
  • one of the angles measured in the clockwise direction and the angle measured in the counterclockwise direction is indicated as a positive number, and the other The angle of can also be expressed as a negative number.
  • injection-molded product and injection-molded body refer to different objects.
  • the injection molded article is an object obtained by applying a plastic material to injection molding, and the injection molded article refers to a product including the object and other components (eg, retardation film, etc.) together.
  • the in-plane retardation of the retardation film is a physical quantity derived by Equation 1 below
  • the retardation in the thickness direction is a physical quantity derived by Equation 2 below.
  • Rin d ⁇ (nx-ny)
  • Equations 1 and 2 d is the thickness of the retardation film, and nx, ny, and nz are the refractive indexes of the retardation film in the slow axis direction, the refractive indexes in the fast axis direction, and the thickness direction, respectively.
  • the meaning of the slow axis and the fast axis is as known in the industry.
  • optical defects occurring in the injection molded body can be eliminated by applying a predetermined retardation film together with the injection molded body in a predetermined arrangement.
  • the optically compensating injection molded body of the present application may include an injection molded body and a retardation film formed or disposed on at least one surface of the injection molded body.
  • the specific type of the injection molded body is not particularly limited, and as various types of known injection molded bodies, all types of injection molded bodies in which optical defects such as a rainbow phenomenon are confirmed may be applied in the present application.
  • an injection molded article that is worn or used outdoors, such as eyewear, where optical defects are more problematic is an example of a typical injection molded article to which the present application is applied.
  • the specific shape of the eyewear is not particularly limited, and may have, for example, the shape shown in FIGS. 2 or 3.
  • the shape of the injection molded article is also not particularly limited, and may have a two-dimensional shape such as a film or a sheet, or a three-dimensional shape or other complex shape.
  • the injection molded article applied in the present application may have, for example, a retardation with respect to a wavelength of 550 nm in a range of 800 nm to 3,000 nm.
  • a phase difference may be expressed by oriented plastic as a material due to stress applied during the formation of an injection molded body.
  • the phase difference may be about 850 nm or more, 900 nm or more, 950 nm or more, 1000 nm or more, 1100 nm or more, 1200 nm or more, 1300 nm or more, 1400 nm or more, 1500 nm or more, 1600 nm or more, 1700 nm in other examples.
  • phase difference of the injection molded article is a result of measurement by the method described in the Examples of the present specification.
  • the phase difference may be an in-plane phase difference of the injection molded body.
  • the in-plane direction of the injection-molded article is a direction substantially parallel to the in-plane direction of the retardation film applied to the injection-molded article.
  • the slow axis is also formed randomly, and thus a constant slow axis cannot be defined.
  • the type of material forming the injection molded body is not particularly limited, and all plastic materials that are usually applied to the manufacture of the injection molded body may be applied in the present application.
  • Such materials include polyvinyl chloride, polyolefin, polyester, nylon, polyamide, polysulfone, polyetherimide, polyether sulfone, polyphenylene sulfide, polyether ketone, polyether ether ketone, ABS resin (acrylonitrile butadiene styrene).
  • the injection molded body may include the plastic.
  • the mixing of two or more of the plastics exemplified above includes a case in which two or more types of the polymer are simply mixed and a modified resin or a copolymer prepared by polymerizing monomers constituting each polymer with each other.
  • an optical defect such as the rainbow phenomenon occurring in the injection molded body alone may be eliminated by arranging a retardation film having a high optical anisotropy at a predetermined position.
  • the retardation film having high optical anisotropy may be referred to as an asymmetric retardation film.
  • a phase difference film having a large optical anisotropy may have anisotropic mechanical properties in general.
  • the optically large anisotropy of the retardation film means a case in which the retardation film has an in-plane retardation to be described later.
  • the in-plane retardation of the retardation film may be about 1,000 nm or more.
  • the in-plane retardation is a value for light having a wavelength of 550 nm, and is a physical quantity defined by Equation 1 above.
  • the in-plane retardation of the retardation film is 1500 nm or more, 2000 nm or more, 2500 nm or more, 3000 nm or more, 3500 nm or more, 4000 nm or more, 4500 nm or more, 5000 nm or more, 5500 nm or more, 6000 nm or more , 6500 nm or more, 7000 nm or more, 7500 nm or more, 8000 nm or more, 8500 nm or more, 9000 nm or more, or 9500 nm or more, 100000 nm or less, 90000 nm or less, 80000 nm or less, 70000 nm or less, 60000 nm or less
  • the specific type of the retardation film applicable in the present application is no particular limitation on the specific type of the retardation film applicable in the present application as long as it indicates the in-plane retardation within the above-mentioned range.
  • an anisotropic polymer film or sheet, a liquid crystal film, or a liquid crystal coating layer to which optical anisotropy is imparted by stretching may be used as the retardation film.
  • a polymer film for example, a polyolefin film such as a polyethylene film or a polypropylene film, a cyclic olefin polymer (COP) film such as a polynorbornene film, a polyvinyl chloride film, a polyacrylonitrile film, a poly Two or more of a cellulose ester-based polymer film such as a sulfone film, a polyacrylate film, a poly(vinyl alcohol) (PVA) film or a triacetyl cellulose (TAC) film, a polyester film or a polycarbonate film, or a monomer forming the polymer A copolymer film of monomers and the like may be exemplified.
  • a liquid crystal film or a liquid crystal coating layer is a retardation film formed using a liquid crystal polymer or a polymerizable liquid crystal compound (so-called RM (Reactive MEsogen)).
  • a polyester film such as a PET (ethylene terephthalate) (PET) film may be applied. That is, films exhibiting in-plane retardation within the above-described range are known in the industry, and in the case of polymer films, such films exhibit large optical anisotropy as well as mechanical properties due to high stretching in the manufacturing process. .
  • PET ethylene terephthalate
  • a typical example of such a retardation film known in the art is a stretched polyester film such as a stretched PET (ethylene terephthalate) (PET) film.
  • a polyester film such as a PET film may be applied as the retardation film, but the type of retardation film applicable in the present application is not limited thereto.
  • the retardation in the thickness direction of the retardation film there is no particular limitation on the retardation in the thickness direction of the retardation film. That is, for optical compensation of the injection molded article, the in-plane retardation and the slow axis arrangement of the retardation film should be controlled, and the retardation in the thickness direction may be appropriately selected within a range that does not impair a desired effect.
  • the retardation in the thickness direction of the retardation film is usually in the range of -10000 nm to 10000 nm (based on a 550 nm wavelength).
  • the retardation in the thickness direction is -9000nm or more, -8000nm or more, -7000nm or more, -6000nm or more, -5000nm or more, -4000nm or more, -3000nm or more, -2000nm or more, -1000nm or more, -900nm or more, -800nm Or more, -700nm or more, -600nm or more, -500nm or more, -400nm or more, -300nm or more, -200nm or more, -100nm or more or -50nm or more, 9000nm or less, 8000nm or less, 7000nm or less, 6000nm or less, 5000nm or less, It may be 4000 nm or less, 3000 nm or less, 2000 nm or less, 1000 nm or less, 900 nm or less, 800 nm or less, 700 nm or less, 600
  • Such a retardation film is a so-called +A film (a film that satisfies Equation 3 below), a -A film (a film that satisfies Equation 4 below), a film +B (a film that satisfies Equation 5 below), and a Z film (the following equation) 6) or -B film (a film satisfying Equation 7 below).
  • Equations 3 to 7 The definitions of nx, ny, and nz in Equations 3 to 7 are as defined in Equations 1 and 2.
  • the thickness of the retardation film there is no particular limitation on the thickness of the retardation film, and in consideration of the refractive index anisotropy of the retardation film, an appropriate thickness may be selected so that the in-plane retardation within the above-mentioned range can be secured.
  • the slow axis of the retardation film needs to be controlled in relation to the injection molded body.
  • the injection molded body has a randomly formed slow axis, the compensation method in consideration of the slow axis of the injection molded body cannot be applied.
  • the purpose can be achieved by controlling the slow axis of the retardation film in relation to the injection direction of the injection molded body.
  • the injection direction means a direction in which the molten plastic material is injected into the mold during the injection molding process.
  • an angle formed between the slow axis of the retardation film and the injection direction of the injection molded article may be in a range of 0° to 80°. By adjusting the angle in this range, it is possible to provide an injection molded article that is suitably optically compensated.
  • the angle may be an angle measured in a clockwise or counterclockwise direction with respect to the injection direction when the injection molded body is under the phase difference film.
  • the angle in another example, is 5 degrees or more, 10 degrees or more, 15 degrees or more, 20 degrees or more, 25 degrees or more, 30 degrees or more, 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or more, 55 degrees or more, 60 degrees or more, 65 degrees or more, or 70 degrees or more, 75 degrees or less, 70 degrees or less, 65 degrees or less, 60 degrees or less, 55 degrees or less, 50 degrees or less, 45 degrees or less, 40 degrees or less, 35 It may be less than or equal to 30 degrees, or less than or equal to 25 degrees.
  • the method of including the retardation film in the injection molded article so as to have the injection direction and the above arrangement is not particular limitation.
  • a retardation film may be attached to the plane in consideration of the slow axis and the injection direction of the retardation film, or a retardation layer such as a liquid crystal composition may be formed.
  • a retardation film may be formed by coating a material on the surface.
  • the retardation film may be bent to follow the plane and adhered to the plane in consideration of the slow axis and the injection direction, or a retardation layer such as a liquid crystal composition may be formed.
  • a retardation film may be formed by coating a material on the surface.
  • the injection molded article may include a known configuration additionally required for the injection molded article and the retardation film.
  • a pressure-sensitive adhesive or an adhesive layer for attaching the retardation film to the injection molded body may be exemplified, but is not limited thereto, and other components may be included as necessary.
  • the injection-molded product is eyewear used for AR (Augmented Reality) or VR (Virtual Reality) technology
  • the injection-molded product is a component for implementing the AR or VR (for example, a transmittance variable device, etc. ) May be additionally included.
  • the present application also relates to the injection molded article as eyewear.
  • the injection-molded product is an injection-molded eyewear body; And a retardation film disposed on at least one surface of the eyewear body and having an in-plane retardation of 1,000 nm or more for light having a wavelength of 550 nm.
  • the category of the eyewear may include eyewear that is applied to various uses, for example, sports goggles, eyewear for implementing VR or AR, and various eyewear including general glasses or sunglasses.
  • eyewear There is no particular limitation on the form of the eyewear, and various forms including the form shown in FIG. 2 or 3 may be applied, for example, a known form.
  • the eyewear main body usually includes a left eye area and a right eye area.
  • the left eye area is the area where the left eye is located when the wearer wears the eyewear (for example, the lens area for the left eye)
  • the right eye area is the area where the left eye is located when the wearer wears the eyewear (the lens area for the right eye )to be.
  • the eyewear body may have a retardation of a wavelength of 550 nm in a range of 800 nm to 3,000 nm.
  • the phase difference may be about 850 nm or more, 900 nm or more, 950 nm or more, 1000 nm or more, 1100 nm or more, 1200 nm or more, 1300 nm or more, 1400 nm or more, 1500 nm or more, 1600 nm or more, 1700 nm in other examples.
  • 1800 nm or more 1900 nm or more, 2900 nm or less, 2800 nm or less, 2700 nm or less, 2600 nm or less, 2500 nm or less, 2400 nm or less, 2300 nm or less, 2200 nm or less, 2100 nm or less or 2000 nm or less It can be about.
  • the phase difference is a result measured by the method described in the examples of this specification. Since the injection molded body is subjected to random stress during the formation process, the slow axis of the new eyewear may also be formed randomly.
  • the type of material forming the eyewear body is not particularly limited, and all plastic materials that are generally applied to the manufacture of eyewear may be applied. Usually, in the case of the eyewear body, it is manufactured by applying nylon or polycarbonate.
  • the above-described contents may be equally applied to the characteristics and types of the retardation film applied to at least one surface of the eyewear body, for example, the retardation or material.
  • the in-plane retardation with respect to the 550 nm wavelength of the retardation film may be about 1,000 nm or more, and in other examples, 1500 nm or more, 2000 nm or more, 2500 nm or more, 3000 nm or more, 3500 nm or more, 4000 nm Or more, 4500 nm or more, 5000 nm or more, 5500 nm or more, 6000 nm or more, 6500 nm or more, 7000 nm or more, 7500 nm or more, 8000 nm or more, 8500 nm or more, 9000 nm or more, 9500 nm or more, or 100000 nm or less , 90000 nm or less, 80000 nm or less, 70000 nm or less, 60000 nm or less, 50000 nm or less, 40000 nm or less, 30000 nm or less, 20000 nm or less, 15000 nm or less
  • the retardation film may also be the aforementioned polymer film, a liquid crystal film or a liquid crystal coating layer.
  • an angle formed between the injection direction of the eyewear body and the slow axis of the retardation film may be in a range of 0 degrees to 80 degrees.
  • the angle may be an angle measured in a clockwise or counterclockwise direction with respect to the injection direction when the eyewear body is under the retardation film.
  • the angle is 5 degrees or more, 10 degrees or more, 15 degrees or more, 20 degrees or more, 25 degrees or more, 30 degrees or more, 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or more, 55 degrees or more.
  • an angle formed by the slow axis of the retardation film and the virtual line may be within a range of 10 degrees to 170 degrees.
  • the angle may be an angle obtained by measuring an angle to the slow axis based on the virtual line in a clockwise or counterclockwise direction.
  • the center of the left eye area or the right eye area may be a center of gravity of the left eye area or the right eye area, respectively, or areas corresponding to the left and right eyes of the wearer wearing eyewear.
  • the angle is 15 degrees or more, 20 degrees or more, 25 degrees or more, 30 degrees or more, 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or more, 55 degrees or more, 60 degrees or more, 65 degrees or more, 70 degrees or more, 75 degrees or more, 80 degrees or more, 85 degrees or more, 90 degrees or more, 95 degrees or more, 100 degrees or more, 105 degrees or more, 110 degrees or more, 115 degrees or more, 120 degrees or more, 125 degrees or more, 130 degrees Above, 135 degrees or more, 140 degrees or more, 145 degrees or more, 150 degrees or more, 155 degrees or more, or 160 degrees or more, or 165 degrees or less, 160 degrees or less, 155 degrees or less, 150 degrees or less, 145 degrees or less, 140 degrees or less , 135 degrees or less, 130 degrees or less, 125 degrees or less, 120 degrees or less, 115 degrees or less, 110 degrees or less, 105 degrees or less, 100 degrees or less, 95 degrees or less, 90 degrees or less, 85 degrees or more, 50
  • Other components may be included in the eyewear in addition to the eyewear body and the retardation film.
  • the present application relates to an optically compensated injection molded article, and an injection molded article that eliminates optical defects such as a rainbow phenomenon occurring in the injection molded article may be provided.
  • 1 is a diagram showing the structure of an exemplary injection molding machine.
  • FIG. 2 is a photograph showing a rainbow phenomenon of an injection-molded product that is not optically compensated.
  • In-plane retardation (Rin) between the retardation film and the injection molded body was measured for light having a wavelength of 550 nm using Agilent's UV/VIS spectroscope 8453 equipment according to the following method. After installing two polarizers on a UV/VIS spectroscope so that their transmission axes are orthogonal to each other, and installing the slow axis of the retardation film between the two polarizers to form 45 degrees with the transmission axes of the two polarizers, transmittance according to wavelength Was measured. In the case of the injection molded article, since the direction of the slow axis is not constant, it was installed so that the injection direction was 45 degrees with the transmission axis of the two polarizers.
  • the phase retardation order of each peak is obtained from the transmittance graph according to the wavelength. Specifically, in the transmittance graph according to wavelength, the waveform satisfies Equation A below, and the maximum peak Tmax condition in the Sine waveform satisfies Equation B below. In the case of ⁇ max in Equation A, since T in Equation A and T in Equation B are the same, the equation is developed. Equations are also developed for n+1, n+2, and n+3, and the following equations C are derived by arranging n and n+1 equations to eliminate R and arranging n into ⁇ n and ⁇ n+1 equations.
  • R is obtained for each of ⁇ n, ⁇ n+1, ⁇ n+2, and ⁇ n+3.
  • R is obtained for each of ⁇ n, ⁇ n+1, ⁇ n+2, and ⁇ n+3.
  • the Y value is the Rin value for light having a wavelength of 550 nm.
  • n ( ⁇ n -3 ⁇ n+1)/(2 ⁇ n+1 +1-2 ⁇ n)
  • R means the in-plane retardation (Rin)
  • means the wavelength
  • n means the peak order of a sine wave.
  • a PC plate injection molded body having a rectangular shape as shown in FIG. 12 was applied, manufactured by injection molding polycarbonate (PC).
  • PC injection molding polycarbonate
  • the injection molded article exhibits a severe rainbow phenomenon under a polarization circle.
  • the injection direction of the injection molded article is substantially perpendicular to the horizontal direction (arrow direction) described in the drawing.
  • optical compensation of the injection molded body was performed using a PET (ethylene terephthalate) (PET) film (a 125 ⁇ m PET product manufactured by SKC) having an in-plane retardation of about 4400 nm with respect to a wavelength of 550 nm.
  • PET ethylene terephthalate
  • the slow axis angle was in the range of approximately 23 degrees to 28 degrees when measured in a counterclockwise direction based on the injection direction of the injection molded body (a direction perpendicular to the arrow direction in FIG. 12).
  • 4 is a photograph showing the result, and optical defects such as a rainbow phenomenon were not observed in the region where the retardation film is present as shown in the photograph.
  • Example 2 The same as in Example 1, except that the slow axis angle of the retardation film is in the range of about 67 degrees to 74 degrees when measured in a clockwise direction based on the injection direction of the injection molded body (the direction perpendicular to the arrow direction in FIG. 12). Optical compensation was performed. 5 is a photograph showing the result, and optical defects such as a rainbow phenomenon were not observed in the region where the retardation film was present as shown in the photograph.
  • a retardation film As a retardation film, the same injection as in Example 1 using a PET (poly(ethylene terephthalate)) film (a film of the grade showing the in-plane retardation among Toyobo's SRF products) having an in-plane retardation of about 9800 nm with respect to a wavelength of 550 nm.
  • Optical compensation of the molded body was performed.
  • the slow axis angle was approximately in the range of 38 degrees to 48 degrees when measured clockwise based on the injection direction of the injection molded body (a direction perpendicular to the direction of the arrow in FIG. 12).
  • 6 is a photograph showing the result, and optical defects such as a rainbow phenomenon were not observed in a region where a retardation film exists as shown in the photograph.
  • Example 3 except that the slow axis angle of the retardation film is in the range of approximately 45 degrees to 52 degrees when measured in a counterclockwise direction based on the injection direction of the injection molded body (direction perpendicular to the arrow direction in FIG. 12). Optical compensation was performed in the same manner. 7 is a photograph showing the result, and optical defects such as a rainbow phenomenon were not observed in the region where the retardation film was present as shown in the photograph.
  • FIG. 8 is a photograph showing the result, and as shown in the photograph, a rainbow phenomenon was observed even in the region where the retardation film was present, thereby confirming optical defects.
  • Example 9 Optical as in Example 1, except that the slow axis angle of the retardation film is within the range of approximately 85 degrees when measured in a counterclockwise direction based on the injection direction of the injection molded body (direction perpendicular to the arrow direction in FIG. 12). Compensation was performed. 9 is a photograph showing the result, and as shown in the photograph, a rainbow phenomenon was observed even in the region where the retardation film was present, thereby confirming optical defects.
  • Optical compensation was performed in the same manner as in Example 3, except that the slow axis angle of the retardation film was approximately 90 degrees based on the injection direction of the injection molded body (direction perpendicular to the arrow direction in FIG. 12). 10 is a photograph showing the result, and as shown in the photograph, a rainbow phenomenon was observed even in the region where the retardation film was present, thereby confirming optical defects.
  • Example 3 Optical as in Example 3, except that the slow axis angle of the retardation film is in the range of approximately 85 degrees when measured in a counterclockwise direction based on the injection direction of the injection molded body (direction perpendicular to the arrow direction in FIG. 12). Compensation was performed. 11 is a photograph showing the result, and as shown in the photograph, a rainbow phenomenon was observed even in the region where the retardation film was present, thereby confirming optical defects.

Landscapes

  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 출원은 사출 성형품 또는 아이웨어에 대한 것이다. 본 출원에서는 광학 보상된 사출 성형품 또는 아이웨어에 대한 것으로서, 사출 성형품 또는 아이웨어에서 발생하는 레인보우 현상 등의 광학적 결함을 해소한 사출 성형품을 제공할 수 있다.

Description

사출 성형품
본 출원은 2019년 7월 2일자로 제출된 대한민국 특허출원 제10-2019-0079570호에 기초하여 우선권을 주장하며, 해당 대한민국 특허출원 문헌에 개시된 내용은 본 명세서의 일부로서 포함된다.
본 출원은 사출 성형품에 관한 것이다.
사출 성형 방식은 대표적인 플라스틱의 성형 방식이다. 사출 성형은, 금형을 이용한 플라스틱의 성형법 중 하나로서, 플라스틱 등의 재료를 가열하여 녹인 후에 금형에 주입하고, 냉각시켜 원하는 형태의 제품을 얻는다. 도 1은 사출 성형기의 하나의 예시이다. 도 1과 같이 사출 성형기는, 재료를 도입하는 호퍼(C), 도입된 재료가 가열에 의해 용융되는 실린더(A), 용융된 재료를 금형(D)에 주입하는 노즐(B) 등으로 구성될 수 있다. 도 1과 같은 사출 성형기를 사용하여 호퍼(C)에 재료를 투입하고, 실린더(A)에서 용융시킨 후에 노즐(B)을 사용하여 금형(D)에 투입한다. 도 1에서는 금형(D)이 열린 형태이지만, 재료가 투입되는 시점에서 금형(D)은 닫혀 있을 수 있으며, 재료의 냉각 후에 금형(D)이 열리면서 제품을 얻을 수 있다. 도 1에 예시된 사출 성형기와 상기 사출 성형 방식은 일 예시이며, 상기 외에도 다양한 성형기를 사용한 다양한 방식으로 사출 성형 제품이 얻어질 수 있다.
이러한 사출 성형 방식은, 같은 플라스틱 가공 방식인 압출 방식 등 다른 방식에 비하여, 원하는 제품을 저가로 얻을 수 있다는 장점이 있다. 그렇지만, 사출 성형 방식은 재료에 응력이 많이 가해지고, 그 응력이 가해지는 방향도 무작위적이기 때문에, 제품에 많은 위상차가 발생하며, 광축 방향도 무작위적이다. 따라서, 상기 사출 성형 제품이 안경이나 고글과 같이 야외에서 착용되거나, 사용되는 제품인 경우에 야외에서 소위 레인보우(rainbow) 현상으로 불리우는 결함을 유발한다.
도 2 및 3은 고글 형태로 제조된 제품의 사진이고, 도 2는, 사출 성형 방식으로 제조된 제품의 사진이며, 도 3은, 압출 방식으로 제조된 제품의 사진이다. 도 2 및 3은 모두 상기 고글들을 각각 편광원 하에서 관찰한 경우인데, 도면과 같이 사출 성형 방식으로 제조된 제품(도 2)은, 레인보우 현상이 심하게 일어난다.
본 출원은 사출 성형품에 대한 것이다. 구체적으로 본 출원은 광학 보상된 사출 성형품에 대한 것으로서, 사출 성형품에서 발생하는 레인보우 현상 등의 광학적 결함을 해소한 사출 성형품에 대한 것이다.
본 명세서에서 각도를 정의하는 수직, 평행, 직교 또는 수평의 용어와 각도의 수치는, 목적 효과를 손상시키지 않는 범위에서의 실질적인 수직, 평행, 직교 또는 수평과 실질적인 상기 각도의 수치를 의미한다. 따라서, 상기 수직, 평행, 직교 또는 수평과 각도의 수치의 범위는 제조 오차(error) 또는 편차(variation) 등의 오차가 포함될 수 있다. 예를 들면, 상기 각각의 경우는, 예를 들면, 약 ±5도 이내의 오차, ±4.5도 이내의 오차, ±4도 이내의 오차, ±3.5도 이내의 오차, ±3도 이내의 오차, ±2.5도 이내의 오차, ±2도 이내의 오차, ±1.5도 이내의 오차, ±1도 이내의 오차, ±0.9도 이내의 오차, ±0.8도 이내의 오차, ±0.7도 이내의 오차, ±0.6도 이내의 오차, ±0.5도 이내의 오차, ±0.4도 이내의 오차, ±0.3도 이내의 오차, ±0.2도 이내의 오차 또는 ±0.1도 이내의 오차를 포함할 수 있다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 해당 물성에 영향을 미치는 경우에 특별히 달리 규정하지 않는 한, 상기 물성은 상온에서 측정한 물성이다. 용어 상온은 특별히 가온되거나 감온되지 않은 상태에서의 온도로서, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 예를 들면, 약 15℃ 이상, 18℃ 이상, 20℃ 이상 또는 약 23℃ 이상이면서, 약 27℃ 이하의 온도를 의미할 수 있다. 또한, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 온도의 단위는 ℃이다.
본 명세서에서 언급하는 위상차 및 굴절률은, 특별히 달리 규정하지 않는 한, 각각 약 550 nm 파장의 광에 대한 위상차 및 굴절률을 의미한다.
특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 어느 2개의 방향이 이루는 각도는 상기 두 개의 방향이 이루는 예각 내지 둔각 중 예각이거나, 또는 시계 방향 및 반시계 방향으로 측정된 각도 중에서 작은 각도일 수 있다. 따라서, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 각도는 양수이다. 다만, 경우에 따라서 시계 방향 또는 반시계 방향으로 측정된 각도간의 측정 방향을 표시하기 위해서 상기 시계 방향으로 측정된 각도 및 반시계 방향으로 측정된 각도 중에서 어느 하나의 각도를 양수로 표기하고, 다른 하나의 각도를 음수로 표기할 수도 있다.
본 명세서에서 용어 사출 성형품(Injection-molded product)와 사출 성형체(Injection-molded body)는 다른 대상을 지칭한다. 사출 성형체는, 플라스틱 재료를 사출 성형에 적용하여 얻은 물체이고, 사출 성형품은 상기 물체와 다른 구성 요소(예를 들면, 위상차 필름 등)를 함께 포함하는 제품을 의미한다.
본 명세서에서 위상차 필름의 면내 위상차는 하기 수식 1에 의해 도출되는 물리량이고, 두께 방향 위상차는 하기 수식 2에 의해 도출되는 물리량이다.
[수식 1]
Rin = d×(nx - ny)
[수식 2]
Rth = d×(nz - ny)
수식 1 및 2에서 d는 위상차 필름의 두께이고, nx, ny 및 nz는 각각 위상차 필름의 지상축 방향의 굴절률, 진상축 방향의 굴절률 및 두께 방향의 굴절률이다. 상기 지상축과 진상축의 의미는 업계에서 공지된 바와 같다.
본 출원에서는, 소정의 위상차 필름을 소정의 배치로 사출 성형체와 함께 적용함으로써, 사출 성형체에서 발생하는 광학적 결함을 해소할 수 있다.
일 예시에서 본 출원의 광학 보상 사출 성형체는, 사출 성형체와 상기 사출 성형체의 적어도 일면에 형성 또는 배치된 위상차 필름을 포함할 수 있다.
상기 사출 성형체의 구체적인 종류는 특별히 제한되지 않으며, 공지의 다양한 형태의 사출 성형체로서, 레인보우 현상 등의 광학적 결함이 확인되는 모든 종류의 사출 성형체가 본 출원에서 적용될 수 있다. 특히 아이웨어 등과 같이 야외에서 착용 내지 사용되어서 광학적 결함이 더욱 문제가 되는 사출 성형체는 본 출원의 적용되는 대표적인 사출 성형체의 예시이다. 이러한 경우에 아이웨어의 구체적인 형태는 특별히 제한되지 않으며, 예를 들면, 도 2나 3에서 나타난 형태 등을 가질 수 있다.
상기 사출 성형체의 형태도 특별한 제한은 없으며, 예를 들면, 필름 또는 시트 등과 같은 2차원적 형태이거나, 혹은 3차원적 형태 또는 기타 복잡한 형태를 가질 수도 있다.
본 출원에서 적용되는 사출 성형체는, 예를 들면, 550 nm 파장에 대한 위상차가 800 nm 내지 3,000 nm의 범위 내일 수 있다. 이러한 위상차는 통상 사출 성형체의 형성 과정에서 가해지는 응력 등에 의해 재료인 플라스틱이 배향되어 발현될 수 있다. 상기 위상차는, 다른 예시에서 약 850 nm 이상, 900 nm 이상, 950 nm 이상, 1000 nm 이상, 1100 nm 이상, 1200 nm 이상, 1300 nm 이상, 1400 nm 이상, 1500 nm 이상, 1600 nm 이상, 1700 nm 이상, 1800 nm 이상 또는 1900 nm 이상이거나, 2900 nm 이하, 2800 nm 이하, 2700 nm 이하, 2600 nm 이하, 2500 nm 이하, 2400 nm 이하, 2300 nm 이하, 2200 nm 이하, 2100 nm 이하 또는 2000 nm 이하 정도일 수 있다. 상기 사출 성형체의 위상차는 본 명세서의 실시예에서 기재된 방식으로 측정한 결과이다. 일 예시에서 상기 위상차는 사출 성형체의 면내 위상차일 수 있다. 상기에서 사출 성형체의 면내 방향은 사출 성형체에 적용된 위상차 필름의 면내 방향과 대략 평행한 방향이다. 사출 성형체는 형성 과정에서 응력이 무작위적으로 가해지기 때문에, 지상축도 무작위적으로 형성되며, 따라서 일정한 지상축을 정의할 수 없다.
상기 사출 성형체를 형성하는 재료의 종류는 특별히 제한되지 않고, 통상 사출 성형체의 제조에 적용되는 모든 플라스틱 재료가 본 출원에서 적용될 수 있다. 이러한 재료로는, 폴리비닐클로라이드, 폴리올레핀, 폴리에스테르, 나일론, 폴리아미드, 폴리설폰, 폴리에테르이미드, 폴리에테르설폰, 폴리페닐렌설파이드, 폴리에테르케톤, 폴리에테르에테르케톤, ABS 수지(acrylonitrile butadiene styrene copolymer), 폴리스티렌, 폴리부타디엔, 폴리아크릴레이트, 폴리아크릴니트릴, 폴리아세탈, 폴리카보네이트, 폴리페닐렌에테르, EVA 수지(Ethylene vinyl acetate copolymer), 폴리비닐아세테이트, 액정 중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리비닐플루오라이드, 폴리비닐리덴플루오라이드, 폴리비닐리덴 클로라이드 및 테플론 으로 이루어진 군에서 선택된 하나 이상의 플라스틱이 예시될 수 있다. 따라서, 상기 사출 성형체는 상기 플라스틱을 포함할 수 있다. 또한, 상기에서 상기 예시된 플라스틱 중 2 이상의 혼합에는, 상기 고분자가 단순히 2종 이상 혼합된 경우와 상기 각 고분자를 구성하는 단량체를 서로 중합시켜서 제조한 변성 수지 내지는 공중합체도 포함된다.
본 출원에서는 상기 사출 성형체의 적어도 일면에 위상차 필름으로서, 광학적 비등방성이 큰 위상차 필름을 소정 위치에 배치시켜서 상기 사출 성형체 단독에서 발생하는 상기 레인보우 현상과 같은 광학적 결함을 해소할 수 있다.
본 명세서에서 상기 광학적 비등방성이 큰 위상차 필름은 비대칭 위상차 필름으로 호칭될 수 있다. 또한, 이렇게 광학적으로 비등방성이 큰 위상차 필름은, 통상 기계적 물성도 비등방성일 수 있다. 상기에서 위상차 필름이 광학적으로 큰 비등방성이라는 것은, 위상차 필름이 후술하는 면내 위상차를 가지는 경우를 의미한다.
일 예시에서 상기 위상차 필름의 면내 위상차는, 약 1,000 nm 이상일 수 있다. 상기 면내 위상차는, 550 nm 파장의 광에 대한 값이고, 상기 수식 1로 규정되는 물리량이다. 상기 위상차 필름의 면내 위상차는 다른 예시에서, 1500 nm 이상, 2000 nm 이상, 2500 nm 이상, 3000 nm 이상, 3500 nm 이상, 4000 nm 이상, 4500 nm 이상, 5000 nm 이상, 5500 nm 이상, 6000 nm 이상, 6500 nm 이상, 7000 nm 이상, 7500 nm 이상, 8000 nm 이상, 8500 nm 이상, 9000 nm 이상 또는 9500 nm 이상이거나, 100000 nm 이하, 90000 nm 이하, 80000 nm 이하, 70000 nm 이하, 60000 nm 이하, 50000 nm 이하, 40000 nm 이하, 30000 nm 이하, 20000 nm 이하, 15000 nm 이하, 14000 nm 이하, 13000 nm 이하, 12000 nm 이하, 10000 nm 이하, 9500 nm 이하, 9000 nm 이하, 8500 nm 이하, 8000 nm 이하,7500 nm 이하, 7000 nm 이하, 6500 nm 이하, 6000 nm 이하, 5500 nm 이하, 5000 nm 이하 또는 4500 nm 이하 정도일 수도 있다.
본 출원에서 적용할 수 있는 상기 위상차 필름의 구체적이 종류는, 상기 언급한 범위의 면내 위상차를 나타내는 한 특별한 제한은 없다. 예를 들면, 연신에 의해서 광학적 이방성을 부여한 이방성 고분자 필름 또는 시트나 액정 필름 또는 액정 코팅층이 상기 위상차 필름으로 사용될 수 있다. 고분자 필름으로는, 예를 들면, 폴리에틸렌 필름 또는 폴리프로필렌 필름 등의 폴리올레핀 필름, 폴리노르보넨 필름 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer) 필름, 폴리염화비닐 필름, 폴리아크릴로니트릴 필름, 폴리설폰 필름, 폴리아크릴레이트 필름, PVA(poly(vinyl alcohol)) 필름 또는 TAC(Triacetyl cellulose) 필름 등의 셀룰로오스 에스테르계 폴리머 필름, 폴리에스테르 필름 또는 폴리카보네이트 필름이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 필름 등이 예시될 수 있다. 또한, 액정 필름이나 액정 코팅층은, 액정 폴리머를 사용하여 형성하거나, 중합성 액정 화합물(소위 RM(Reactive MEsogen))을 사용하여 형성한 위상차 필름이다.
하나의 예시에서 상기 위상차 필름으로는, PET(poly(ethylene terephthalate)) 필름 등과 같은 폴리에스테르 필름이 적용될 수 있다. 즉, 전술한 범위의 면내 위상차를 나타내는 필름은 업계에서 공지되어 있고, 고분자 필름의 경우, 상기와 같은 필름은 광학적으로 큰 비등방성은 물론 제조 과정에서의 고연신 등에 의해 기계적 물성도 큰 비대칭성을 나타낸다. 업계에 공지된 이러한 위상차 필름의 대표적인 예로는, 연신 PET(poly(ethylene terephthalate)) 필름 등과 같은 연신 폴리에스테르 필름이다.
따라서, 하나의 예시에서 상기 위상차 필름으로는 PET 필름과 같은 폴리에스테르 필름을 적용할 수 있지만, 본 출원에서 적용 가능한 위상차 필름의 종류에 이에 제한되는 것은 아니다.
위상차 필름의 두께 방향 위상차에도 특별한 제한은 없다. 즉, 사출 성형체의 광학 보상을 위해서는 위상차 필름의 면내 위상차와 지상축 배치가 제어되어야 하고, 두께 방향 위상차는 목적하는 효과를 저해하지 않는 범위에서 적절하게 선택될 수 있다. 위상차 필름의 두께 방향 위상차는 통상 -10000 nm 내지 10000 nm의 범위 내(550 nm 파장 기준)이다. 상기 두께 방향 위상차는 다른 예시에서 -9000nm 이상, -8000nm 이상, -7000nm 이상, -6000nm 이상, -5000nm 이상, -4000nm 이상, -3000nm 이상, -2000nm 이상, -1000nm 이상, -900nm 이상, -800nm 이상, -700nm 이상, -600nm 이상, -500nm 이상, -400nm 이상, -300nm 이상, -200nm 이상, -100nm 이상 또는 -50nm 이상이거나, 9000nm 이하, 8000nm 이하, 7000nm 이하, 6000nm 이하, 5000nm 이하, 4000nm 이하, 3000nm 이하, 2000nm 이하, 1000nm 이하, 900nm 이하, 800nm 이하, 700nm 이하, 600nm 이하, 500nm 이하, 400nm 이하, 300nm 이하, 200nm 이하, 100nm 이하 또는 50 nm 이하 정도일 수도 있다.
이러한 위상차 필름은, 소위 +A 필름(하기 수식 3을 만족하는 필름), -A 필름(하기 수식 4를 만족하는 필름), +B 필름(하기 수식 5를 만족하는 필름), Z 필름(하기 수식 6을 만족하는 필름) 또는 -B 필름(하기 수식 7을 만족하는 필름)의 특성을 가질 수 있다.
[수식 3]
nx > ny = nz
[수식 4]
nx=nz>ny
[수식 5]
nz>nx>ny
[수식 6]
nx>nz>ny
[수식 7]
nx>ny>nz
수식 3 내지 7에서 nx, ny 및 nz의 정의는 수식 1 및 2에서 규정한 것과 같다.
상기 위상차 필름의 두께에도 특별한 제한이 없으며, 위상차 필름이 가지는 굴절률 이방성을 고려하여, 상기 언급한 범위의 면내 위상차가 확보될 수 있도록 적정한 두께가 선택될 수 있다.
적절한 광학 보상을 위해서, 상기 위상차 필름의 지상축이 상기 사출 성형체와의 관계에서 제어될 필요가 있다. 전술한 바와 같이 사출 성형체는 지상축이 무작위적으로 형성되기 때문에, 사출 성형체의 지상축을 고려한 보상 방식은 적용될 수 없다. 그렇지만, 상기 사출 성형체의 사출 방향과의 관계에서 상기 위상차 필름의 지상축을 제어함으로써 목적을 이룰 수 있다. 상기에서 사출 방향은, 사출 성형 과정에서 용융된 플라스틱 재료가 금형 내로 주입되는 방향을 의미한다.
본 출원의 사출 성형품에서 상기 위상차 필름의 지상축과 상기 사출 성형체의 사출 방향이 이루는 각도는 0도 내지 80도의 범위 내일 수 있다. 이러한 범위로 각도가 조절되는 것에 의해서 적절하게 광학 보상된 사출 성형품을 제공할 수 있다. 상기 각도는, 상기 위상차 필름의 하부에 상기 사출 성형체가 있는 상태에서 상기 사출 방향을 기준으로 시계 방향 또는 반시계 방향으로 측정한 각도일 수 있다.
상기 각도는, 다른 예시에서 상기 각도는 5도 이상, 10도 이상, 15도 이상, 20도 이상, 25도 이상, 30도 이상, 35도 이상, 40도 이상, 45도 이상, 50도 이상, 55도 이상, 60도 이상, 65도 이상 또는 70도 이상이거나, 75도 이하, 70도 이하, 65도 이하, 60도 이하, 55도 이하, 50도 이하, 45도 이하, 40도 이하, 35도 이하, 30도 이하 또는 25도 이하 정도일 수도 있다.
위상차 필름을 사출 방향과 상기와 같은 배치를 가지도록 사출 성형품에 포함시키는 방식에는 특별한 제한은 없다. 예를 들어, 위상차 필름이 배치될 사출 성형체의 면이 대략 평편한 면이라면, 위상차 필름의 지상축과 사출 방향을 고려하여 위상차 필름을 상기 면에 부착하거나, 액정 조성물 등과 같은 위상차층을 형성할 수 있는 재료를 상기 면에 코팅하는 방식으로 위상차 필름을 형성할 수 있다. 또한, 위상차 필름이 배치될 사출 성형체의 면이 평편하지 않다면, 위상차 필름을 상기 면에 추종하도록 굴곡시켜서 지상축과 사출 방향을 고려하여 상기 면에 부착하거나, 액정 조성물 등과 같은 위상차층을 형성할 수 있는 재료를 상기 면에 코팅하는 방식으로 위상차 필름을 형성할 수 있다.
상기 사출 성형품은 상기 사출 성형체 및 위상차 필름에 추가로 필요한 공지의 구성을 포함할 수 있다. 이러한 구성의 예로는, 상기 사출 성형체에 상기 위상차 필름을 부착하기 위한 점착제나 접착제층 등이 예시될 수 있으나, 이에 제한되지 않고, 기타 다른 구성 요소도 필요에 따라 포함될 수 있다. 예를 들어, 상기 사출 성형품이 AR(Augmented reality)이나 VR(Virtual Reality) 기술에 사용되는 아이웨어라면, 상기 사출 성형품은 상기 AR 또는 VR을 구현하기 위한 구성 요소(예를 들면, 투과율 가변 장치 등)를 추가로 포함할 수 있다.
본 출원은 또한 아이웨어로서의 상기 사출 성형품에 대한 것이다.
이러한 경우, 상기 사출 성형품(아이웨어)은, 사출 성형체인 아이웨어 본체; 및 상기 아이웨어 본체의 적어도 일면에 배치되어 있고, 550 nm 파장의 광에 대한 면내 위상차가 1,000 nm 이상인 위상차 필름을 포함할 수 있다.
상기 아이웨어의 범주에는, 다양한 용도에 적용되는 아이웨어, 예를 들면, 스포츠용 고글, VR이나 AR을 구현하기 위한 아이웨어 및 기타 일반적인 안경이나 썬글라스를 포함한 다양한 아이웨어 등이 포함될 수 있다. 아이웨어의 형태에도 특별한 제한이 없고, 공지의 형태, 예를 들면, 도 2나 3에 나타난 형태를 포함한 다양한 형태가 적용될 수 있다.
아이웨어 본체는, 통상 좌안 영역과 우안 영역이 포함된다. 좌안 영역은, 착용자가 아이웨어를 착용한 때에 좌안이 위치하는 영역(예를 들면, 좌안용 렌즈 영역)이고, 우안 영역은 착용자가 아이웨어를 착용한 때에 좌안이 위치하는 영역(우안용 렌즈 영역)이다.
위와 같은 아이웨어의 경우에도 전술한 사출 성형품에서 기술한 내용이 동일하게 적용될 수 있다.
예를 들면, 상기 아이웨어 본체는, 550 nm 파장에 대한 위상차가 800 nm 내지 3,000 nm의 범위 내일 수 있다. 상기 위상차는, 다른 예시에서 약 850 nm 이상, 900 nm 이상, 950 nm 이상, 1000 nm 이상, 1100 nm 이상, 1200 nm 이상, 1300 nm 이상, 1400 nm 이상, 1500 nm 이상, 1600 nm 이상, 1700 nm 이상, 1800 nm 이상 또는 1900 nm 이상이거나, 2900 nm 이하, 2800 nm 이하, 2700 nm 이하, 2600 nm 이하, 2500 nm 이하, 2400 nm 이하, 2300 nm 이하, 2200 nm 이하, 2100 nm 이하 또는 2000 nm 이하 정도일 수 있다. 상기 위상차는 본 명세서의 실시예에서 기재된 방식으로 측정한 결과이다. 사출 성형체는 형성 과정에서 응력이 무작위적으로 가해지기 때문에, 싱기 아이웨어의 지상축도 무작위적으로 형성되어 있을 수 있다.
상기 아이웨어 본체를 형성하는 재료의 종류는 특별히 제한되지 않고, 통상 아이웨어의 제조에 적용되는 모든 플라스틱 재료가 적용될 수 있다. 통상 아이웨어 본체의 경우, 나일론이나 폴리카보네이트 등을 적용하여 제조한다.
상기 아이웨어 본체의 적어도 일면에 적용되는 위상차 필름의 특성 및 종류, 예를 들면, 그 위상차나 재료 등과 관련해서도 상기 기술한 내용이 동일하게 적용될 수 있다.
예를 들어, 상기 위상차 필름의 550 nm 파장에 대한 면내 위상차는, 약 1,000 nm 이상일 수 있고, 다른 예시에서, 1500 nm 이상, 2000 nm 이상, 2500 nm 이상, 3000 nm 이상, 3500 nm 이상, 4000 nm 이상, 4500 nm 이상, 5000 nm 이상, 5500 nm 이상, 6000 nm 이상, 6500 nm 이상, 7000 nm 이상, 7500 nm 이상, 8000 nm 이상, 8500 nm 이상, 9000 nm 이상 또는 9500 nm 이상이거나, 100000 nm 이하, 90000 nm 이하, 80000 nm 이하, 70000 nm 이하, 60000 nm 이하, 50000 nm 이하, 40000 nm 이하, 30000 nm 이하, 20000 nm 이하, 15000 nm 이하, 14000 nm 이하, 13000 nm 이하, 12000 nm 이하, 10000 nm 이하, 9500 nm 이하, 9000 nm 이하, 8500 nm 이하, 8000 nm 이하,7500 nm 이하, 7000 nm 이하, 6500 nm 이하, 6000 nm 이하, 5500 nm 이하, 5000 nm 이하 또는 4500 nm 이하 정도일 수도 있다.
또한, 상기 위상차 필름도 전술한 고분자 필름이거나, 액정 필름 또는 액정 코팅층일 수 있다.
아이웨어인 경우에도 적절한 광학 보상을 위해서, 상기 위상차 필름의 지상축이 상기 아이웨어 본체와의 관계에서 제어될 필요가 있다. 즉, 상기 아이웨어 본체의 사출 방향과 상기 위상차 필름의 지상축이 이루는 각도는 0도 내지 80도의 범위 내일 수 있다. 상기 각도는, 상기 위상차 필름의 하부에 상기 아이웨어 본체가 있는 상태에서 상기 사출 방향을 기준으로 시계 방향 또는 반시계 방향으로 측정한 각도일 수 있다. 상기 각도는, 다른 예시에서 5도 이상, 10도 이상, 15도 이상, 20도 이상, 25도 이상, 30도 이상, 35도 이상, 40도 이상, 45도 이상, 50도 이상, 55도 이상, 60도 이상, 65도 이상 또는 70도 이상이거나, 75도 이하, 70도 이하, 65도 이하, 60도 이하, 55도 이하, 50도 이하, 45도 이하, 40도 이하, 35도 이하, 30도 이하 또는 25도 이하 정도일 수도 있다.
통상적으로 아이웨어 본체의 경우, 상기 좌안 영역과 우안 영역의 각각의 중심을 연결하는 가상의 선과 상기 사출 방향은 서로 수직한 경우가 많다. 따라서, 이러한 경우에는 상기 위상차 필름의 지상축과 상기 가상의 선이 이루는 각도가 10도 내지 170도의 범위 내일 수 있다. 상기 각도는 상기 가상의 선을 기준으로 상기 지상축까지의 각도를 시계 방향 또는 반시계 방향으로 측정한 각도일 수 있다.
상기에서 좌안 영역 또는 우안 영역의 중심은, 각각 상기 좌안 영역 또는 우안 영역의 무게 중심이거나, 혹은 아이웨어를 착용한 착용자의 좌안 및 우안에 대응되는 영역일 수 있다.
상기 각도는 다른 예시에서 15도 이상, 20도 이상, 25도 이상, 30도 이상, 35도 이상, 40도 이상, 45도 이상, 50도 이상, 55도 이상, 60도 이상, 65도 이상, 70도 이상, 75도 이상, 80도 이상, 85도 이상, 90도 이상, 95도 이상, 100도 이상, 105도 이상, 110도 이상, 115도 이상, 120도 이상, 125도 이상, 130도 이상, 135도 이상, 140도 이상, 145도 이상, 150도 이상, 155도 이상 또는 160도 이상이거나, 165도 이하, 160도 이하, 155도 이하, 150도 이하, 145도 이하, 140도 이하, 135도 이하, 130도 이하, 125도 이하, 120도 이하, 115도 이하, 110도 이하, 105도 이하, 100도 이하, 95도 이하, 90도 이하, 85도 이하, 80도 이하, 75도 이하, 70도 이하, 65도 이하, 60도 이하, 55도 이하, 50도 이하, 45도 이하 또는 40도 이하 정도일 수도 있다.
상기 아이웨어에도 상기 아이웨어 본체 및 위상차 필름 외에 다른 구성 요소가 포함될 수 있다.
위와 같은 방식으로 레인보우 현상과 같은 광학적 결함이 관찰되지 않는 아이웨어를 제공할 수 있다.
본 출원에서는 광학 보상된 사출 성형품에 대한 것으로서, 사출 성형품에서 발생하는 레인보우 현상 등의 광학적 결함을 해소한 사출 성형품을 제공할 수 있다.
도 1은 예시적인 사출 성형기의 구조를 나타내는 도면이다.
도 2는 광학 보상되지 않은 사출 성형품의 레인보우 현상을 보여주는 사진이다.
도 3은 압출 성형품의 사진이다.
도 4 내지 7은, 실시예의 사출 성형품의 광학 특성을 확인한 사진이다.
도 8 내지 12는 비교예의 사출 성형품의 광학 특성을 확인한 사진이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
1. 위상차 평가
위상차 필름과 사출 성형체의 면내 위상차(Rin)는 Agilent사의 UV/VIS spectroscope 8453 장비를 이용하여 하기 방법에 따라 550nm 파장의 광에 대하여 측정하였다. UV/VIS spectroscope에 2장의 편광자를 투과축이 서로 직교하도록 설치하고, 상기 2장의 편광자 사이에 위상차 필름의 지상축이 2장의 편광자의 투과축과 각각 45도를 이루도록 설치한 후, 파장에 따른 투과도를 측정하였다. 사출 성형체의 경우, 지상축이 방향이 일정하지 않기 때문에, 사출 방향이 상기 2장의 편광자의 투과축과 각각 45도를 이루도록 설치하였다. 파장에 따른 투과도 그래프에서 각 피크(peak)들의 위상 지연 차수(Phase retardation order)를 구한다. 구체적으로, 파장에 따른 투과도 그래프에서 파형은 하기 수식 A를 만족하고, 사인(Sine) 파형에서 최대 피크(Tmax) 조건은 하기 수식 B을 만족한다. 수식 A에서 λmax인 경우, 수식 A의 T와 수식 B의 T는 동일하기 때문에 수식을 전개한다. n+1, n+2 및 n+3에 대해서도 수식을 전개하고, n과 n+1 수식을 정리해서 R을 소거하여 n을 λn 및 λn+1 수식으로 정리하면, 하기 수식 C가 도출된다. 수식 A의 T와 수식 B의 T가 동일함에 근거하여 n과 λ를 알 수 있으므로 각 λn, λn+1, λn+2 및 λn+3 대해 R을 구한다. 4 포인트에 대해 파장에 따른 R값의 직선 추세선을 구하고 수식 550 nm에 대한 R 값을 산정한다. 직선 추세선의 함수는 Y=ax+b이고, a 및 b는 상수이다. 상기 함수의 x에 550nm를 대입했을 때의 Y 값이 550nm파장의 광에 대한 Rin 값이다.
[수식 A]
T = sin 2[(2πR/λ)]
[수식 B]
T = sin 2[((2n+1)π/2)]
[수식 C]
n = (λn -3λn+1)/(2λn+1 +1-2λn)
상기에서 R은 면내 위상차(Rin)를 의미하고, λ는 파장을 의미하고, n은 사인파형의 꼭지 차수를 의미한다.
실시예 1.
아이웨어 본체의 형성에 적용되는 것으로서, 폴리카보네이트(PC)를 사출 성형하여 제조되고, 도 12에 나타난 바와 같은 직사각형 형태를 가지는 PC 플레이트(사출 성형체)를 적용하였다. 도 12에 나타난 바와 같이 상기 사출 성형체는, 편광원하에서 심한 레인보우 현상을 나타낸다. 한편, 상기 사출 성형체의 사출 방향은 도면상으로 기재된 수평 방향(화살표 방향)과 대략 수직한다. 위상차 필름으로서, 550 nm 파장에 대한 면내 위상차가 대략 4400 nm 정도인 PET(poly(ethylene terephthalate)) 필름(SKC사의 125μm PET 제품)을 사용하여 상기 사출 성형체의 광학 보상을 수행하였다. 이 때 지상축 각도는 상기 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 반시계 방향으로 측정하였을 때에 대략 23도 내지 28도의 범위 내가 되도록 하였다. 도 4는 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에는 레인보우 현상과 같은 광학적 결함이 관찰되지 않았다.
실시예 2.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 시계 방향으로 측정하였을 때에 대략 67도 내지 74도의 범위 내가 되도록 한 것을 제외하면 실시예 1과 동일하게 광학 보상을 수행하였다. 도 5는 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에는 레인보우 현상과 같은 광학적 결함이 관찰되지 않았다.
실시예 3.
위상차 필름으로서, 550 nm 파장에 대한 면내 위상차가 대략 9800 nm 정도인 PET(poly(ethylene terephthalate)) 필름(Toyobo사의 SRF 제품 중 상기 면내 위상차를 나타내는 그레이드의 필름)을 사용하여 실시예 1과 동일한 사출 성형체의 광학 보상을 수행하였다. 이 때 지상축 각도는 상기 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 시계 방향으로 측정하였을 때에 대략 38도 내지 48도의 범위 내가 되도록 하였다. 도 6은 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에는 레인보우 현상과 같은 광학적 결함이 관찰되지 않았다.
실시예 4.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 반시계 방향으로 측정하였을 때에 대략 45도 내지 52도의 범위 내가 되도록 한 것을 제외하면 실시예 3과 동일하게 광학 보상을 수행하였다. 도 7은 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에는 레인보우 현상과 같은 광학적 결함이 관찰되지 않았다.
비교예 1.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 대략 90도가 되도록 한 것을 제외하면 실시예 1과 동일하게 광학 보상을 수행하였다. 도 8은 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에서도 레인보우 현상이 관찰되어 광학적 결함이 확인되었다.
비교예 2.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 반시계 방향으로 측정하였을 때에 대략 85도의 범위 내가 되도록 한 것을 제외하면 실시예 1과 동일하게 광학 보상을 수행하였다. 도 9는 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에서도 레인보우 현상이 관찰되어 광학적 결함이 확인되었다.
비교예 3.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 대략 90도가 되도록 한 것을 제외하면 실시예 3과 동일하게 광학 보상을 수행하였다. 도 10은 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에서도 레인보우 현상이 관찰되어 광학적 결함이 확인되었다.
비교예 4.
위상차 필름의 지상축 각도가 사출 성형체의 사출 방향(도 12에서 화살표 방향과 수직한 방향)을 기준으로 반시계 방향으로 측정하였을 때에 대략 85도의 범위 내가 되도록 한 것을 제외하면 실시예 3과 동일하게 광학 보상을 수행하였다. 도 11은 그 결과를 나타낸 사진이고, 사진과 같이 위상차 필름이 존재하는 영역에서도 레인보우 현상이 관찰되어 광학적 결함이 확인되었다.

Claims (13)

  1. 사출 성형체; 및
    상기 사출 성형체의 적어도 일면에 배치되어 있고, 550 nm 파장의 광에 대한 면내 위상차가 1,000 nm 이상인 위상차 필름
    을 포함하고,
    상기 위상차 필름의 지상축과 상기 사출 성형체의 사출 방향이 이루는 각도가 0도 내지 80도의 범위 내에 있는 사출 성형품.
  2. 제 1 항에 있어서, 사출 성형체는, 550 nm 파장에 대한 위상차가 800 nm 내지 3,000 nm의 범위 내인 사출 성형품.
  3. 제 1 항에 있어서, 사출 성형체는, 폴리비닐클로라이드, 폴리올레핀, 폴리에스테르, 나일론, 폴리아미드, 폴리설폰, 폴리에테르이미드, 폴리에테르설폰, 폴리페닐렌설파이드, 폴리에테르케톤, 폴리에테르에테르케톤, ABS 수지, 폴리스티렌, 폴리부타디엔, 폴리아크릴레이트, 폴리아크릴니트릴, 폴리아세탈, 폴리카보네이트, 폴리페닐렌에테르, EVA 수지, 폴리비닐아세테이트, 액정 중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리비닐플루오라이드, 폴리비닐리덴플루오라이드, 폴리비닐리덴 클로라이드 및 테플론으로 이루어진 군에서 선택된 하나 이상의 플라스틱을 포함하는 성형체인 사출 성형품.
  4. 제 1 항에 있어서, 위상차 필름의 550 nm 파장에 대한 면내 위상차가 2,000 nm 이상인 사출 성형품.
  5. 제 1 항에 있어서, 위상차 필름의 550 nm 파장에 대한 면내 위상차가 3,000 nm 이상인 사출 성형품.
  6. 제 1 항에 있어서, 위상차 필름은, 고분자 필름 또는 액정 필름인 사출 성형품.
  7. 제 1 항에 있어서, 사출 성형체가 아이웨어인 사출 성형품.
  8. 사출 성형체인 아이웨어 본체로서, 좌안 영역과 우안 영역을 가지는 아이웨어 본체; 및
    상기 아이웨어 본체의 적어도 일면에 배치되어 있고, 550 nm 파장의 광에 대한 면내 위상차가 1,000 nm 이상인 위상차 필름
    을 포함하고,
    상기 아이웨어 본체의 좌안 영역과 우안 영역의 각각의 무게 중심을 연결하는 가상의 선과 상기 위상차 필름의 지상축이 이루는 각도가 10도 내지 170도의 범위 내에 있는 아이웨어.
  9. 제 8 항에 있어서, 아이웨어 본체는, 550 nm 파장에 대한 위상차가 800 nm 내지 3,000 nm의 범위 내인 아이웨어.
  10. 제 8 항에 있어서, 아이웨어 본체는, 폴리카보네이트 또는 나일론으로 이루어진 군에서 선택된 하나 이상의 플라스틱을 포함하는 성형체인 아이웨어.
  11. 제 8 항에 있어서, 위상차 필름의 550 nm 파장에 대한 면내 위상차가 2,000 nm 이상인 아이웨어.
  12. 제 8 항에 있어서, 위상차 필름의 550 nm 파장에 대한 면내 위상차가 3,000 nm 이상인 아이웨어.
  13. 제 8 항에 있어서, 위상차 필름은, 고분자 필름 또는 액정 필름인 아이웨어.
PCT/KR2020/008592 2019-07-02 2020-07-01 사출 성형품 WO2021002672A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021574911A JP2022539680A (ja) 2019-07-02 2020-07-01 射出成形品
US17/623,421 US20220350172A1 (en) 2019-07-02 2020-07-01 Injection-Molded Product
CN202080047660.9A CN114072265B (zh) 2019-07-02 2020-07-01 注射成型产品
EP20834491.1A EP3995302A4 (en) 2019-07-02 2020-07-01 INJECTION MOLDED PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0079570 2019-07-02
KR20190079570 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021002672A1 true WO2021002672A1 (ko) 2021-01-07

Family

ID=74100893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008592 WO2021002672A1 (ko) 2019-07-02 2020-07-01 사출 성형품

Country Status (7)

Country Link
US (1) US20220350172A1 (ko)
EP (1) EP3995302A4 (ko)
JP (1) JP2022539680A (ko)
KR (1) KR102399189B1 (ko)
CN (1) CN114072265B (ko)
TW (1) TWI737381B (ko)
WO (1) WO2021002672A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098515A (ja) * 2010-11-02 2012-05-24 Eishin:Kk 立体画像鑑賞用眼鏡およびその製造方法
JP2012215725A (ja) * 2011-04-01 2012-11-08 Yamamoto Kogaku Co Ltd レンズおよび眼鏡
KR20130029746A (ko) * 2011-09-15 2013-03-25 케이와 인코포레이티드 3d 안경용 광학 시트 및 3d 안경
KR20180121028A (ko) * 2017-04-28 2018-11-07 주식회사 엘지화학 투과율 가변 장치
US20190079304A1 (en) * 2016-06-21 2019-03-14 Fujifilm Corporation Half mirror and mirror with image display function
KR20190079570A (ko) 2017-12-27 2019-07-05 에프이아이 컴파니 Sem-cl 및 fib-ioe가 결합된 현미경 작업

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543357A1 (de) * 1985-12-07 1987-06-11 Bayer Ag Verfahren und vorrichtung zur herstellung von kontaktlinsen-rohlingen mit fertig ausgebildeten rueckflaechen-geometrien
JP2005157082A (ja) * 2003-11-27 2005-06-16 Stanley Electric Co Ltd 表示装置
WO2012055046A1 (en) * 2010-10-27 2012-05-03 Dbm Reflex Enterprises Inc. Lens array assembly for solid state light sources and method
JP2012198326A (ja) * 2011-03-18 2012-10-18 Dainippon Printing Co Ltd 配向膜の製造方法および位相差フィルムの製造方法
JP2012220853A (ja) * 2011-04-12 2012-11-12 Keiwa Inc メガネ用位相差フィルム、3dメガネ用光学シート及び3dメガネ
JP6204030B2 (ja) * 2013-03-07 2017-09-27 帝人株式会社 成形品
JP2017097087A (ja) * 2015-11-20 2017-06-01 住友化学株式会社 偏光板及び画像表示装置
JP6669542B2 (ja) * 2016-03-15 2020-03-18 三菱ケミカル株式会社 積層フロントパネル及びその製造方法
KR20200072490A (ko) * 2017-10-20 2020-06-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 조립체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098515A (ja) * 2010-11-02 2012-05-24 Eishin:Kk 立体画像鑑賞用眼鏡およびその製造方法
JP2012215725A (ja) * 2011-04-01 2012-11-08 Yamamoto Kogaku Co Ltd レンズおよび眼鏡
KR20130029746A (ko) * 2011-09-15 2013-03-25 케이와 인코포레이티드 3d 안경용 광학 시트 및 3d 안경
US20190079304A1 (en) * 2016-06-21 2019-03-14 Fujifilm Corporation Half mirror and mirror with image display function
KR20180121028A (ko) * 2017-04-28 2018-11-07 주식회사 엘지화학 투과율 가변 장치
KR20190079570A (ko) 2017-12-27 2019-07-05 에프이아이 컴파니 Sem-cl 및 fib-ioe가 결합된 현미경 작업

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995302A4

Also Published As

Publication number Publication date
US20220350172A1 (en) 2022-11-03
CN114072265A (zh) 2022-02-18
TW202109088A (zh) 2021-03-01
EP3995302A1 (en) 2022-05-11
KR102399189B1 (ko) 2022-05-19
JP2022539680A (ja) 2022-09-13
TWI737381B (zh) 2021-08-21
KR20210003689A (ko) 2021-01-12
CN114072265B (zh) 2024-04-26
EP3995302A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
TWI603124B (zh) 偏光板、其製造方法以及包含上述的液晶顯示裝置
JP4938632B2 (ja) 液晶パネル及び液晶表示装置
TWI590942B (zh) 偏光板和包含其的液晶顯示器
WO2017091031A1 (ko) 편광자 보호필름, 편광판 및 이를 포함하는 표시장치
US20070196592A1 (en) Stretched Film, Process For The Production Thereof And Laminated Material
WO2018080017A1 (ko) 액정표시장치용 시인측 편광판 및 이를 포함하는 액정표시장치
WO2009088240A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
KR20140140770A (ko) 편광판, 이의 제조방법 및 이를 포함하는 액정표시장치
KR20210004985A (ko) 광대역 파장 필름 및 그 제조 방법, 그리고 원 편광 필름의 제조 방법
WO2018043891A1 (ko) 액정표시장치
WO2019209029A1 (ko) 광학 디바이스 및 이의 용도
TWI407197B (zh) 光學膜以及彼之製法
WO2021002672A1 (ko) 사출 성형품
KR20140064886A (ko) 위상차 필름 및 이를 구비한 액정 표시 장치
WO2019190190A1 (ko) 편광판 및 디스플레이 장치
WO2012005455A2 (ko) 편광안경
KR101188751B1 (ko) 파지티브 복굴절을 갖는 아크릴계 위상차 필름 및 이를포함하는 액정 표시 장치
KR20080045407A (ko) 위상차 필름, 이의 제조방법 및 이를 포함하는액정표시장치
WO2012011676A2 (ko) 입체화상시스템
WO2015046936A1 (ko) 광학 필름 및 그 제조방법
WO2016167405A1 (ko) 광학 필름, 이를 포함하는 표시 장치 및 광학 필름의 제조방법
CN113474722A (zh) 液晶显示装置
WO2018124446A1 (ko) 편광판용 폴리에스테르 보호필름, 이를 포함하는 편광판, 및 이를 포함하는 액정표시장치
KR101922290B1 (ko) 위상차 필름, 이의 제조방법, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치
WO2014017725A1 (ko) 필름 형성롤 및 이를 이용한 광학필름 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834491

Country of ref document: EP

Effective date: 20220202