WO2021002422A1 - ホットスタンプ成形体 - Google Patents

ホットスタンプ成形体 Download PDF

Info

Publication number
WO2021002422A1
WO2021002422A1 PCT/JP2020/025986 JP2020025986W WO2021002422A1 WO 2021002422 A1 WO2021002422 A1 WO 2021002422A1 JP 2020025986 W JP2020025986 W JP 2020025986W WO 2021002422 A1 WO2021002422 A1 WO 2021002422A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
film
hot
steel sheet
amount
Prior art date
Application number
PCT/JP2020/025986
Other languages
English (en)
French (fr)
Inventor
中川 浩行
宏樹 阿久津
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021529180A priority Critical patent/JP7160204B2/ja
Priority to US17/609,243 priority patent/US20220213572A1/en
Priority to EP20834674.2A priority patent/EP3995595B1/en
Priority to CN202080034807.0A priority patent/CN113811630B/zh
Priority to ES20834674T priority patent/ES2938040T3/es
Publication of WO2021002422A1 publication Critical patent/WO2021002422A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Definitions

  • the present invention relates to a hot stamped article. Specifically, the present invention relates to a hot stamp molded body suitable for manufacturing parts for non-rust prevention such as automobile parts.
  • the present application claims priority based on Japanese Patent Application No. 2019-123334 filed in Japan on July 2, 2019, the contents of which are incorporated herein by reference.
  • Such a molding method is an excellent molding method that can achieve both high strength of a member and moldability because it can be molded at a high temperature with low deformation resistance and quenching can be performed at the same time as molding.
  • this forming method since it is necessary to heat the steel sheet material to a high temperature of 700 ° C. or higher before forming, there arises a problem that the surface of the steel sheet is oxidized during heating before hot stamping. The scale made of iron oxide generated by the oxidation of the surface of the steel sheet falls off during hot stamping and adheres to the mold, which reduces productivity or remains on the surface of the molded product after hot stamping, resulting in poor appearance. There is a problem of causing.
  • a plated steel sheet coated with galvanized or aluminum plated is used for the purpose of suppressing oxidation of the surface of the base steel sheet and / or improving the corrosion resistance of the press-formed product. It is proposed to do.
  • Examples of the use of the galvanized steel sheet for hot forming include the techniques described in Patent Document 1 and Patent Document 2.
  • Patent Document 3 the C concentration, Si concentration, P concentration and / or Ti concentration in the steel are controlled, and the Zn adhesion amount on the steel sheet surface and the Al concentration in the film are controlled to form the steel sheet during hot forming.
  • a galvanized steel sheet for hot forming has been proposed, which improves the adhesion of the oxide film to the steel sheet and simplifies or eliminates the process of peeling the oxide on the surface of the press-formed product.
  • Patent Documents 1 to 3 if the zinc oxide layer formed during hot stamping is excessively formed, welding or sparks may occur when spot welding is performed after hot stamping.
  • Patent Document 4 discloses a technique for suppressing welding and sparks during spot welding after hot forming.
  • Patent Document 4 discloses that in a galvanized steel sheet for hot forming having a plating adhesion amount of 40 to 110 g / m 2 , welding and sparks during spot welding are improved.
  • Steel sheets for hot forming are roughly classified into rust-preventive applications and non-rust-preventive applications in terms of rust-preventive surface as applications after hot-forming.
  • the former requires the same degree of corrosion resistance as a normal galvanized steel sheet, and the larger the amount of Zn in the film that contributes to the corrosion resistance, the better the corrosion resistance.
  • the amount of Zn in the film is not important from the viewpoint of corrosion resistance, and the amount of Zn that can suppress the scale after hot stamping is sufficient. ..
  • Patent Document 4 in order to secure the amount of Zn that can suppress the oxidation of the steel sheet, a plating adhesion amount of 40 g / m 2 or more is required. According to the study by the present inventors, in the technique described in Patent Document 4, if the plating adhesion amount is less than 40 g / m 2 , the Al amount in the film is 150 mg / m 2 or more in ordinary alloyed hot-dip galvanizing. It turned out to be difficult to do, as well as to prevent sparks and welding during spot welding.
  • the plating adhesion amount is less than 40 g / m 2 , if the scale after hot stamping can be suppressed and spark and welding during spot welding can be prevented, the cost can be reduced by reducing the Zn amount. This makes it possible to contribute to the suppression of Zn resource utilization.
  • Automobile body parts are assembled by joining parts hot-stamped in various shapes by resistance welding (especially spot welding). Especially when spot welding is performed, the wider the nugget diameter is 4 ⁇ t or more (t is the plate thickness of the part) and the current range (appropriate welding current range) where dust does not appear, the more robust it is against variations during manufacturing. It is highly productive and can contribute to the improvement of productivity.
  • plated steel sheets have a narrower proper welding current range than cold-rolled steel sheets. This is because the melting point is lowered by plating, so that the critical current at which dust is generated is lowered. If the amount of plating adhesion can be reduced, the appropriate welding current range will be widened, but in the case of general plated steel sheets, the lower limit of the amount of plating adhesion is limited in order to ensure corrosion resistance. In the case of a steel sheet for hot stamping for non-rust prevention, a large amount of Zn is not required from the viewpoint of ensuring corrosion resistance, and if the amount of Zn can be reduced, the appropriate welding current range can be expanded and it is considered that it can contribute to the improvement of productivity.
  • Automobile body parts are required to have good coating film adhesion because they are subjected to a coating process consisting of chemical conversion treatment and electrodeposition after the above spot welding.
  • a coating process consisting of chemical conversion treatment and electrodeposition after the above spot welding.
  • the plating reacts with the base iron to form a new alloy, and the surface is oxidized to form a Zn-based oxide.
  • this Zn-based oxide has good adhesion to the chemical conversion treatment film.
  • the surface oxides are not only Zn-based but also Mn-based, Al-based, Si-based, Cr-based, etc., and when the amount of Zn is small, the coating film may be coated depending on the conditions. It turned out to impair the adhesion. Therefore, in order to apply plating with a low Zn amount to automobile applications, a new technique for controlling various oxides to ensure coating film adhesion is required.
  • the hot stamp molded body applied to the body parts of an automobile is required to have excellent coating film adhesion, and as a more preferable property, it is also required to have excellent bendability.
  • the present invention has been made in view of the above problems, has high strength, suppresses scale generation, can prevent sparks and welding during spot welding, has a wide appropriate welding current range, and is excellent.
  • An object of the present invention is to provide a hot stamped molded product having coating film adhesion and bendability.
  • the present inventors have diligently studied the conditions under which scale formation can be suppressed after hot stamping a galvanized steel sheet for hot stamping.
  • the chemical composition of the steel plate to which the galvanized film is applied the plating adhesion amount of the galvanized film, the Fe concentration, the Al amount, and the Al concentration within an appropriate range, before hot stamping.
  • Al oxide, Si oxide, and Cr oxide are generated on the film surface during heating, and it is possible to prevent the metallic zinc in the film from becoming an excessive oxide and evaporating, which is suitable for the film surface. It was found that an amount of zinc oxide was formed and the formation of scale could be suppressed.
  • the present inventors have found that when the Si content, Cr content and Al content in the galvanized steel sheet for hot stamping and the Al content in the galvanized film become excessive, zinc in the film after hot stamping By reducing the adhesion between the oxide and the Fe-Zn solid solution formed below it, the adhesion of the coating film (adhesion between the film and the coating film arranged on the upper layer) is newly reduced. Found in. Furthermore, the present inventors have newly found that reducing the surface roughness after hot stamping can improve the bendability after hot stamping.
  • the gist of the present invention made based on the above findings is as follows.
  • the hot stamp molded product according to one aspect of the present invention has a steel plate and a film arranged on the steel plate.
  • the steel sheet has a chemical composition of mass%. C: 0.02% or more, 0.58% or less, Mn: 0.10% or more, 3.00% or less, sol.
  • Al 0.001% or more, 1.000% or less, Si: 2.00% or less, P: 0.100% or less, S: 0.005% or less, N: 0.0100% or less, Ti: 0% or more, 0.200% or less, Nb: 0% or more, 0.200% or less, V: 0% or more, 1.00% or less, W: 0% or more, 1.00% or less Cr: 0% or more, 1.00% or less, Mo: 0% or more, 1.00% or less, Cu: 0% or more, 1.00% or less, Ni: 0% or more, 1.00% or less, B: 0% or more, 0.0100% or less, Ca: 0% or more and 0.05% or less, and REM: 0% or more and 0.05% or less, and the balance consists of Fe and impurities.
  • the film is When GDS measured from the surface-the surface to the position of 100 ⁇ m depth of the coating, Zn total is 10.0 g / m 2 or more is a cumulative amount of Zn, less than 40.0 g / m 2, When GDS measurement is performed from the surface to the peak position of Al, the sum of Zna, which is the cumulative amount of Zn, and the cumulative amount of Mn is 20.0 g / m 2 or less, and the cumulative amount of Al and the cumulative amount of Si are 20.0 g / m 2. And the sum of the cumulative amount of Cr is 60 mg / m 2 or more and 240 mg / m 2 or less.
  • the Zn total - the Zna is 3.0 g / m 2 or more and 30.0 g / m 2 or less,
  • the arithmetic mean roughness Ra is less than 1.50 ⁇ m.
  • Ti 0.005% or more, 0.200% or less, Nb: 0.005% or more, 0.200% or less, V: 0.10% or more, 1.00% or less, W: 0.10% or more, 1.00% or less, Cr: 0.05% or more, 1.00% or less, Mo: 0.05% or more, 1.00% or less, Cu: 0.05% or more, 1.00% or less, Ni: 0.05% or more, 1.00% or less, B: 0.0010% or more, 0.0100% or less, It may contain one or two selected from the group consisting of Ca: 0.0005% or more and 0.05% or less, and REM: 0.0005% or more and 0.05% or less.
  • the strength is high, the generation of scale after hot stamping is suppressed, sparks and welding during spot welding can be prevented, a wide appropriate welding current range is provided, and an excellent coating is applied. It is possible to provide a hot stamped molded product having film adhesion and bendability. Since the amount of the galvanized film adhered to the galvanized steel sheet for hot stamping according to the above aspect is suppressed, it is possible to manufacture automobile parts by hot stamping, spot welding, chemical conversion treatment and electrodeposition at low cost. Suitable for use.
  • the galvanized steel sheet for hot stamping applied to the hot stamped molded product according to the present embodiment (hereinafter, may be referred to as a plated steel sheet) has a steel sheet and a galvanized film arranged on the steel sheet.
  • a steel sheet of a galvanized steel sheet for hot stamping applied to the hot stamped body according to the present embodiment will be described. Since the chemical composition of the steel sheet does not change before and after hot stamping, the chemical composition of the steel sheet constituting the galvanized steel sheet for hot stamping and the chemical composition of the steel sheet constituting the hot stamped body are the same.
  • C Chemical composition of steel sheet [C: 0.02% or more, 0.58% or less]
  • C is an important element for enhancing the hardenability of the steel sheet and obtaining the strength of the hot stamped molded product after quenching (after hot stamping). Further, C is an element that lowers the Ac 3 points and lowers the quenching treatment temperature. If the C content is less than 0.02%, the above effect cannot be sufficiently obtained. Therefore, the C content is 0.02% or more. Preferably, it is 0.10% or more or 0.20% or more. On the other hand, if the C content exceeds 0.58%, the toughness of the hot stamped molded product after hot stamping is significantly deteriorated. Therefore, the C content is set to 0.58% or less. It is preferably 0.55% or less or 0.50% or less.
  • Mn is an important element for enhancing the hardenability of the steel sheet and stably obtaining the strength of the hot stamped molded product after quenching. If the Mn content is less than 0.10%, the above effect cannot be sufficiently obtained. Therefore, the Mn content is set to 0.10% or more. It is preferably 0.20% or more, 0.30% or more, or 0.40% or more. On the other hand, if the Mn content is excessive, Mn diffuses into the galvanized film during heating before hot stamping, and a large amount of Mn oxide is generated on the film surface in the hot stamped molded product, resulting in spot welding. The sex deteriorates. Therefore, the Mn content is set to 3.00% or less. It is preferably 2.80% or less, 2.60% or less, or 2.40% or less.
  • Al has an action of deoxidizing the steel to make the steel material sound (suppressing the occurrence of defects such as blow holes in the steel material).
  • sol. If the Al content is less than 0.001%, the effect of the above action cannot be obtained. Therefore, sol.
  • the Al content is 0.001% or more. It is preferably 0.010% or more, 0.020% or more, or 0.030% or more.
  • sol. If the Al content is excessive, sol. In the galvanized film during heating before hot stamping. Al diffuses, and a large amount of Al oxide is generated on the surface of the film in the hot stamp molded product. As a result, the adhesion between the film and the chemical conversion-treated film is reduced.
  • sol. The Al content is 1.000% or less. It is preferably 0.800% or less, 0.100% or less, 0.075% or less, or 0.070% or less.
  • sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • Si 2.00% or less
  • Si content is set to 2.00% or less.
  • the Si content is preferably 1.00% or less, 0.70% or less, or 0.50% or less.
  • the Si content is preferably small, and the lower limit is not particularly limited, but the Si content may be 0.01% or more because excessive reduction of the Si content causes an increase in the refining cost.
  • P 0.100% or less
  • the P content is set to 0.100% or less.
  • it is 0.050% or less, 0.020% or less, or 0.015% or less.
  • the lower limit of the P content is not particularly limited, but the P content may be 0.001% or more because excessive reduction of the P content causes an increase in the refining cost.
  • S is an element contained as an impurity and has an action of forming MnS and embrittlement of steel. Therefore, it is preferable that the S content is small. Therefore, the S content is set to 0.005% or less. Preferably, it is 0.004% or less, or 0.003% or less.
  • the lower limit of the S content is not particularly limited, but the S content may be 0.0003% or more or 0.001% or more because excessive reduction of the S content causes an increase in the refining cost.
  • N 0.0100% or less
  • the N content is set to 0.0100% or less.
  • it is 0.0080% or less, 0.0070% or less, 0.0050% or less, or 0.0045% or less.
  • the lower limit of the N content is not particularly limited, but the N content may be 0.0005% or more because excessive reduction of the N content causes an increase in the refining cost.
  • the rest of the chemical composition of the steel sheet according to this embodiment is Fe and impurities.
  • impurities include those unavoidably mixed from steel raw materials or scrap and / or in the steelmaking process, or elements that are allowed as long as they do not impair the characteristics of the hot stamped article according to the present embodiment.
  • the steel sheet may contain the following optional elements instead of the remaining Fe.
  • the optional element described below may not be contained, and the content when not contained is 0%.
  • Ti, Nb, V and W are elements that promote mutual diffusion of Fe and Zn between the galvanized film and the steel sheet and make it difficult to form a molten Zn alloy layer during hot stamping. If the molten Zn alloy layer is formed, cracks may occur during hot stamping, which is not preferable. Therefore, Ti, Nb, V and W may be contained in the steel sheet.
  • one or more kinds of Ti: 0.005% or more, Nb: 0.005% or more, V: 0.10% or more, W: 0.10% or more are contained. preferable.
  • the Ti content or Nb content exceeds 0.200%, or when the V content or W content exceeds 1.00%, the above effect is saturated and the alloy cost increases. Therefore, the Ti content and the Nb content are set to 0.200% or less, respectively, and the V content and the W content are set to 1.00% or less, respectively.
  • the Ti content and the Nb content are 0.150% or less, respectively, and the V content and the W content are 0.50% or less, respectively.
  • Cr 0% or more, 1.00% or less, Mo: 0% or more, 1.00% or less, Cu: 0% or more, 1.00% or less, Ni: 0% or more, 1.00% or less and B : 0% or more, 0.0100% or less
  • Cr, Mo, Cu, Ni and B are elements that enhance the hardenability of the steel sheet and improve the strength of the hot stamped product. Therefore, one or more of these elements may be contained. In order to surely obtain the above effect, Cr: 0.05% or more, Mo: 0.05% or more, Cu: 0.05% or more, Ni: 0.05% or more and B: 0.0010% or more. It is preferable to contain any one or more of them.
  • the Cr content, Mo content, Cu content or Ni content is more than 1.00%, or if the B content is more than 0.0100%, the above effect is saturated and the alloy cost Will increase. Therefore, the Cr content, the Mo content, the Cu content, and the Ni content are each set to 1.00% or less, and the B content is set to 0.0100% or less.
  • the B content is preferably 0.0080% or less.
  • Ca and REM have the effect of refining inclusions in steel and preventing the occurrence of cracks during hot stamping due to inclusions. Therefore, one or more of these elements may be contained. In order to surely obtain the above effect, it is preferable to contain one or more of Ca: 0.0005% or more and REM: 0.0005% or more. However, when the Ca content or the REM content exceeds 0.05%, the effect of miniaturizing inclusions in the steel is saturated and the alloy cost increases. Therefore, the Ca content and the REM content are set to 0.05% or less, respectively.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoids, and the content of REM refers to the total content of these elements.
  • REM is often contained by mischmetal, but may contain elements of the lanthanoid series in combination with La and Ce. Even when a lanthanoid series element is compoundly contained in addition to La and Ce, the hot stamp molded product according to the present embodiment can exert its effect. Further, even if a metal REM such as metal La or Ce is contained, the hot stamp molded product according to the present embodiment can exert its effect.
  • the chemical composition of the steel sheet described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometery
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • the galvanized film or film may be removed by mechanical grinding, and then the chemical composition may be analyzed.
  • the galvanized steel sheet for hot stamping has a galvanized film on the steel sheet.
  • the galvanized coating, the amount of plating deposition is 15.0 g / m 2 or more and less than 40.0 g / m 2, Fe concentration of 1.5 mass% or more and less 8.0 wt%, Al quantity It is 100 mg / m 2 or more and 400 mg / m 2 or less, the Al concentration is 0.50 mass% or more and 3.00 mass% or less, and the balance is composed of Zn and impurities.
  • the details of the galvanized film will be described below.
  • the galvanized steel sheet for hot stamping has a galvanized film on the steel sheet. Coating weight of the galvanized coating, 15.0 g / m 2 or more and less than 40.0 g / m 2.
  • the plating adhesion amount means the plating adhesion amount per one side of the steel sheet. If the amount of plating adhered is less than 15.0 g / m 2 , scale is generated during heating before hot stamping. Therefore, the amount of plating adhered is set to 15.0 g / m 2 or more. It is preferably 18.0 g / m 2 or more or 20.0 g / m 2 or more.
  • the amount of plating adhered is set to less than 40.0 g / m 2 .
  • it is 35.0 g / m 2 or less or 30.0 g / m 2 or less.
  • the amount of galvanized film adhered to the galvanized film is measured by collecting a test piece from an arbitrary position on the galvanized steel sheet for hot stamping according to the test method described in JIS H 0401: 2013.
  • Fe concentration in galvanized film When the Fe concentration in the galvanized film is 8.0% by mass or less, the heating rate during heating before hot stamping becomes slow, so that the residence time at high temperature when holding in a heating furnace decreases. As a result, the amount of evaporation and the amount of oxidation of Zn can be suppressed, the generation of scale can be suppressed, and the spark during spot welding can be suppressed.
  • the Fe concentration in the zinc plating film is set to 8.0% by mass or less. It is preferably 7.5% by mass or less, 7.0% by mass or less, or 6.0% by mass or less.
  • Al amount and Al concentration in galvanized film The amount of Al in the galvanized film is 100 mg / m 2 or more and 400 mg / m 2 or less, and the Al concentration is 0.50 mass% or more and 3.00 mass% or less.
  • the amount of Al in the galvanized film is less than 100 mg / m 2 or the Al concentration is less than 0.50% by mass, the amount of Al oxide formed on the surface layer of the galvanized film during heating before hot stamping is reduced. As a result, Zn oxidation is not suppressed, Zn-based oxides are excessively generated, and sparks and / or welding occur during spot welding.
  • the amount of Zn evaporated increases, the amount of Zn grain in the zinc plating film decreases, and scale is generated. Therefore, the amount of Al in the zinc plating film is set to 100 mg / m 2 or more, and the Al concentration is set to 0.50 mass% or more. Preferably, the amount of Al is 150 mg / m 2 or more or 170 mg / m 2 or more. Further, the Al concentration is preferably 0.65% by mass or more, 0.70% by mass or more, or 0.75% by mass or more.
  • the amount of Al in the zinc plating film is set to 400 mg / m 2 or less, and the Al concentration is set to 3.0% by mass or less.
  • the amount of Al is 350 mg / m 2 or less, more preferably 300 mg / m 2 or less.
  • the Al concentration is 2.00% by mass or less or 1.70% by mass or less.
  • the amount of Al in the galvanized film of the hot-dip galvanized steel sheet manufactured on the continuous hot-dip galvanized line is the atmosphere during pre-annealing heating, bath temperature, steel sheet temperature when entering the plating bath, immersion time, plating adhesion amount, It is affected by the Al concentration in the bath. Therefore, the Al amount in the zinc plating film can be 100 mg / m 2 or more by empirically determining and controlling the relationship between these production conditions and the Al amount in the zinc plating film.
  • the balance in the zinc plating film is composed of Zn and impurities, and the impurities are preferably 0.1% or less.
  • the Fe concentration, Al concentration and Al amount in the galvanized film are measured by the following methods. Only the galvanized film of the galvanized steel sheet for hot stamping is dissolved and removed using a 5% by volume HCl aqueous solution to which an inhibitor is added. By measuring the Zn concentration, Fe concentration, and Al concentration in the obtained solution using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrum), the Fe concentration, Al concentration, and Al amount in the zinc plating film are measured. To get.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrum
  • the hot stamped molded product according to the present embodiment has a steel plate having the above-mentioned chemical composition and a film arranged on the steel plate.
  • the film of the hot stamp molded product according to the present embodiment will be described in detail.
  • FIG. 1 shows the measurement results of Fe, O, and Zn, which were found in the most detected amounts, among the measurement results obtained by GDS measurement in the depth direction from the film surface of the sample cut out from the hot stamp molded body. Looking at FIG. 1, it can be seen that there is a Fe—Zn solid solution (iron-zinc solid solution) in which the base iron is dissolved in the galvanized film on the base iron, and zinc oxide is present on the Fe—Zn solid solution (iron-zinc solid solution).
  • Fe—Zn solid solution iron-zinc solid solution
  • FIG. 2 shows the measurement results of Fe, Zn, Mn and Al in the same measurement results as in FIG. Looking at FIG. 2, although the amount is much smaller than that of Fe and Zn, Mn is detected at the same position as zinc oxide, and Zn-based oxide (zinc oxide) and Mn-based oxide are formed on the surface layer. You can see that. Further, as shown in the figure, it can be seen that Al is detected in the boundary region between zinc oxide and the Fe—Zn solid solution, although the amount is small.
  • FIG. 3 shows the measurement results of Si, Cr and Al in the same measurement results as in FIGS. 1 and 2.
  • peaks of Cr and Si are detected in the boundary region between zinc oxide and the Fe—Zn solid solution in which Al is detected, although the amount is small. It is probable that the peaks of Cr and Si were detected because the sample contained Cr and Si.
  • the upper layer of the oxide layer of the hot stamped product mainly contains Zn-based oxides and Mn-based oxides
  • the lower layer of the oxide layer mainly contains Al-based oxides. It is considered that a small amount of Cr-based oxide and Si-based oxide are present.
  • the hot stamped compact according to the present embodiment has Zn-based oxides, Mn-based oxides, Al-based oxides, and Cr-based oxides and Si-based oxides when the base metal steel sheet contains Cr and Si on the surface of the film.
  • the balance may include P-based oxides, Ti-based oxides and Nb-based oxides.
  • Al-based oxides are formed on the surface layer at the initial stage of heating before hot stamping, and suppress the oxidation of Zn. By further heating, a Zn-based oxide is formed on the Al-based oxide. Therefore, if the amount of Al in the zinc plating film is large, the amount of Al-based oxide is large, and therefore the amount of Zn-based oxide is small. Further, since these reactions occur in parallel with the integration of the base iron and the zinc plating film, oxides of Mn, Cr, and Si, which are easily oxidizing elements contained in the base iron, are also formed in a small amount. Due to the difference in oxidizability, Cr and Si are formed at the same positions as Al, and Mn is formed at the same positions as Zn.
  • the total amount of Zn amount and Mn amount from the surface to the peak position of Al is the total amount of Zn-based oxides and Mn-based oxides. It can be considered as an amount proportional to the amount, and if this total amount is large, sparks occur during spot welding.
  • the total amount of Al, Si and Cr from the surface of the film to the peak position of Al is proportional to 1/2 of the total amount of Al-based oxide, Si-based oxide and Cr-based oxide, respectively. It can be approximated as a quantity. If this amount is large, the adhesion between zinc oxide and the Fe—Zn solid solution deteriorates, and the adhesion to the coating film deteriorates. Under the above-mentioned oxide, there is a solid solution phase (Fe—Zn solid solution) of Fe and Zn in a metallic state, and if this solid solution phase is partially absent, scale is generated during heating.
  • the above-mentioned film having various oxides has the following film structure.
  • the Zn total which is the cumulative amount of Zn
  • the Zn total is 10.0 g / m 2 or more and 40.0 g / m. It is less than 2
  • the sum of Zna which is the cumulative amount of Zn
  • the cumulative amount of Mn is 20.0 g / m 2 or less, and the cumulative amount of Al.
  • the cumulative amount of Si is 60 mg / m 2 or more and 240 mg / m 2 or less
  • Zn total -Zna is 3.0 g / m 2 or more, 30.0 g / m 2 or less Is.
  • the peak position of Al is the midpoint between the two maximum strengths of Al, which are located before and after the maximum strength of Al when GDS is measured in the depth direction from the surface of the film.
  • the cumulative amount is the total amount of values obtained by measuring the weight per unit area to a predetermined depth every second in the depth direction.
  • Zn total which is the cumulative amount of Zn
  • Zn total is set to 10.0 g / m 2 or more. It is preferably 15.0 g / m 2 or more or 20.0 g / m 2 or more. Further, when the Zn total is 40.0 g / m 2 or more, the amount of plating adhered increases and the appropriate welding current range during spot welding becomes narrow. Therefore, the Zn total is set to less than 40.0 g / m 2 . It is preferably 35.0 g / m 2 or less.
  • the sum of Zna which is the cumulative amount of Zn from the surface of the film to the peak position of Al
  • the cumulative amount of Mn from the surface of the film to the peak position of Al When is more than 20.0 g / m 2 , sparks are generated during spot welding because there are many Zn-based oxides and Mn-based oxides. Therefore, the sum of Zna and the cumulative amount of Mn from the surface to the peak position of Al is 20.0 g / m 2 or less. It is preferably 18.0 g / m 2 or less, 15.0 g / m 2 or less, or 13.0 g / m 2 or less.
  • the lower limit of the sum of Zna and the cumulative amount of Mn from the surface to the peak position of Al is not particularly limited, but is 0.1 g / m 2 or more, 2.0 g / m 2 or more, or 5.0 g / m. It may be 2 or more.
  • the sum of the cumulative amount of Al, the cumulative amount of Si, and the cumulative amount of Cr in the region from the surface of the film to the peak position of Al is 60 mg / m 2 or more. It is preferably 100 mg / m 2 or more or 130 mg / m 2 or more. Further, if the sum of the cumulative amounts of these elements exceeds 240 mg / m 2 , the coating film adhesion deteriorates.
  • the sum of the cumulative amount of Al, the cumulative amount of Si, and the cumulative amount of Cr in the region from the surface of the film to the peak position of Al is 240 mg / m 2 or less. It is preferably 220 mg / m 2 or less or 200 mg / m 2 or less.
  • the steel sheet does not contain Cr or Si, Cr or Si is not detected by GDS measurement of the film, but the sum of the cumulative amount of Al, the cumulative amount of Si, and the cumulative amount of Cr should be controlled. Is important, so it does not matter if Cr or Si is not detected. That is, when the steel sheet does not contain Cr and Si, the cumulative amount of Al may be 60 mg / m 2 or more and 240 mg / m 2 or less in the region from the surface of the film to the peak position of Al.
  • Zn total- Zna The value (Zn total- Zna) obtained by subtracting Zna, which is the cumulative amount of Zn from the surface of the film to the peak position of Al, from Zn total , which is the cumulative amount of Zn from the surface of the film to the position at a depth of 100 ⁇ m, is 3. If it is less than .0 g / m 2 , scale is generated. Therefore, Zn total- Zna is set to 3.0 g / m 2 or more. It is preferably 4.0 g / m 2 or more, 8.0 g / m 2 or more, or 10.0 g / m 2 or more.
  • Zn total ⁇ Zna exceeds 30.0 g / m 2 , the appropriate welding current range becomes narrow. Therefore, Zn total ⁇ Zna is set to 30.0 g / m 2 or less. It is preferably 25.0 g / m 2 or less or 20.0 g / m 2 or less.
  • GDS measurement is performed by the following method.
  • the weights of Fe, Al, Si, Mn, Cr and Zn are measured up to 100 ⁇ m in the depth direction (plate thickness direction) from the film surface at any three locations in the hot stamped molded product.
  • the Zn total which is the cumulative amount of Zn from the surface of the film to the position at a depth of 100 ⁇ m, is obtained.
  • the peak position of Al defined above is obtained, and then the cumulative amount of each element (Zn, Mn, Al, Si and Cr) from the surface to the Al peak position is obtained.
  • the cumulative amount of each element is obtained by obtaining the average value of the cumulative amount of each element obtained by measuring at three places.
  • a Marcus-type high-frequency glow discharge emission surface analyzer (GD-Profiler) manufactured by HORIBA, Ltd. is used for the measurement.
  • the arithmetic mean roughness Ra of the film shall be less than 1.50 ⁇ m.
  • the arithmetic average roughness Ra is set to less than 1.50 ⁇ m. It is preferably 1.30 ⁇ m or less, 1.10 ⁇ m or less, 1.00 ⁇ m or less, or 0.90 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but may be 0.01 ⁇ m or more, 0.10 ⁇ m or more, or 0.50 ⁇ m or more.
  • the arithmetic mean roughness Ra of the film of the hot stamped body is measured by the following method.
  • a 50 mm ⁇ 50 mm test piece is cut out from a position 10 mm or more away from the end face of the hot stamped product, and a three-line analysis is performed in any direction using a confocal microscope (manufactured by Lasertec Co., Ltd.), and the test piece is perpendicular to those directions. Perform 3-line analysis in any direction. From the obtained results, the arithmetic average roughness Ra is calculated in accordance with JIS B 0601: 2001, and the average value of a total of 6 lines is calculated to obtain the arithmetic average roughness Ra of the film.
  • the hot stamp molded product according to this embodiment preferably has a tensile strength of 900 MPa or more.
  • the tensile strength is preferably 1000 MPa or more, 1500 MPa or more, or 1800 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but may be 3000 MPa or less or 2800 MPa or less.
  • the tensile strength of the hot stamped product is obtained by collecting a JIS No. 5 test piece from a position excluding a region within 10 mm from the edge of the hot stamped product and performing a tensile test in accordance with JIS Z 2241: 2011.
  • the galvanized steel sheet for hot stamping is heated to a temperature range of austenite or its vicinity, and hot stamped in that temperature range. Therefore, the mechanical properties of the galvanized steel sheet for hot stamping at room temperature before heating are not important. Therefore, the metal structure of the galvanized steel sheet for hot stamping before heating is not particularly specified. That is, the steel sheet before applying the galvanized film may be either a hot-rolled steel sheet or a cold-rolled steel sheet, and the manufacturing method of the steel sheet is not limited. From the viewpoint of productivity, a suitable manufacturing method for the steel sheet will be described below.
  • a suitable method for producing a zinc-plated steel sheet for hot stamping is a heating step of heating a slab having the above-mentioned chemical composition at 1200 ° C. or higher for 5 minutes or longer, and a finish rolling temperature of 800 ° C. or higher and 980 ° C. or lower with respect to the slab. After hot-rolling to obtain a hot-rolled steel sheet by hot-rolling at a winding temperature of 450 ° C or higher and 800 ° C or lower, and pickling the hot-rolled steel sheet.
  • a cold rolling step of obtaining a cold-rolled steel sheet by cold-rolling so that the cumulative reduction rate is 30% or more and 80% or less, and a temperature of 700 ° C. or higher and 900 ° C.
  • a steel sheet is obtained by annealing in the region, and the steel sheet is placed in a molten zinc bath having an Al concentration of 0.155% by mass or more and 0.175% by mass or less for 1.0 seconds or more and 15.0 seconds or less.
  • the zinc plating step of forming a zinc plating film on the steel sheet by immersion for a while is sequentially performed.
  • the slab having the above-mentioned chemical composition is heated at 1200 ° C. or higher for 5 minutes or longer. If the slab heating temperature is less than 1200 ° C. or the heating time is less than 5 minutes, hot rolling described later cannot be performed.
  • Hot rolling is performed so that the finish rolling temperature is 800 ° C. or higher and 980 ° C. or lower. If the finish rolling temperature is too low, the deformation resistance becomes high and rolling becomes difficult. If the finish rolling temperature is too high, a large amount of scale will be generated and surface defects will increase. After finish rolling, the hot-rolled steel sheet is obtained by winding so that the winding temperature is 450 ° C. or higher and 800 ° C. or lower. If the take-up temperature is too low, water will be generated and the flatness will deteriorate, making it difficult to perform cold rolling. If the winding temperature is too high, the scale thickness becomes thick, pickling takes a long time, and productivity decreases.
  • Cold rolling process The hot-rolled steel sheet is pickled and then cold-rolled to obtain a cold-rolled steel sheet. Cold rolling is carried out so that the cumulative rolling reduction is 30% or more and 80% or less. Since the steel sheet according to the present embodiment has a large amount of carbon, if cold rolling is performed at an excessive cumulative rolling ratio, the load on the mill becomes large. If the cumulative reduction rate is lowered too much, productivity will decrease. Therefore, the cumulative rolling reduction in cold rolling is 30% or more and 80% or less.
  • the cumulative reduction rate is ⁇ (t 0 ⁇ t 1 ) / when the thickness of the hot-rolled steel sheet before cold rolling is t 0 and the thickness of the cold-rolled steel sheet after cold rolling is t 1. It can be expressed as t 0 ⁇ ⁇ 100 (%).
  • the cold-rolled steel sheet is heated in a heating furnace and annealed.
  • the annealing temperature which may be 700 ° C. or higher. If the annealing temperature exceeds 900 ° C, the manufacturing cost increases, so the annealing temperature is set to 900 ° C or less.
  • the annealing time is not particularly limited and may be 1 to 5 minutes from the viewpoint of productivity.
  • the annealing atmosphere of the continuous hot-dip galvanizing line may be a conventional method, and the dew point may be ⁇ 20 ° C. or lower. Preferably, it is ⁇ 35 ° C. or lower.
  • a steel sheet is obtained by the method described above.
  • a zinc-plated steel sheet for hot stamping applied to the hot-stamped molded product according to the present embodiment is obtained. ..
  • the coating weight of the galvanized coating 15.0 g / m 2 or more, and less than 40.0 g / m 2, the amount of Al in the zinc plating film
  • the conditions for applying the galvanized film are strictly controlled so as to be 100 to 400 mg / m 2 .
  • the Al concentration in the hot-dip zinc bath is 0.155% by mass or more and 0.175% by mass or less, and the steel sheet is immersed in the hot-dip zinc bath for 1.0 seconds or more and 15.0 seconds or less.
  • the Al concentration in the hot-dip zinc bath is preferably 0.157% by mass or more or 0.160% by mass or more.
  • the Al concentration in the hot-dip zinc bath is preferably 0.172% by mass or less or 0.170% by mass or less.
  • the amount of galvanized film deposited may be controlled by adjusting the pulling speed or the flow rate of the wiping gas blown out from the nozzle. Further, the Al concentration in the zinc plating film can be adjusted by controlling the plating bath composition, the plating bath temperature and the immersion time in the plating bath. The amount of Al in the zinc plating film can be adjusted by controlling the plating adhesion amount of the zinc plating film.
  • temper rolling is performed after the galvanizing process, it is possible to flatten the surface shape and adjust the surface roughness of the galvanized steel sheet for hot stamping. Therefore, depending on the application, temper rolling may be performed as necessary after the galvanizing step.
  • the hot stamping steel sheet is heated to a temperature range of 600 ° C. or higher and 700 ° C. or lower and held for 30 minutes or more and 2 hours or less. After heating, the product is heated to a temperature range of 700 ° C. or higher and 1000 ° C. or lower, held in the temperature range for 1 minute or longer and 20 minutes or lower, and then hot stamped. Under these heating conditions, the zinc plating film before hot stamping can be a solid solution of iron and zinc (Fe—Zn solid solution phase), so that liquid metal embrittlement (LME: Liquid Metal Embrittlement) does not occur. ..
  • the galvanized film can be made into a solid solution without passing through the solid-liquid coexisting region, so that the surface roughness of the galvanized film can be reduced. As a result, the bendability of the hot stamp molded product can be improved.
  • Examples of the heating method before hot stamping include heating by an electric furnace or a gas furnace, flame heating, energization heating, high frequency heating, induction heating, and the like. If it is desired to achieve quenching of the material by heating before hot stamping, heat the material under the above-mentioned heating conditions and perform hot stamping while keeping the temperature at high temperature, for example, using a mold through a water cooling pipe. Quench by contact with. The mold may be heated and the quenching temperature or cooling rate may be changed to control the product characteristics after hot stamping.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the galvanized steel sheet for hot stamping shown in Table 2B was obtained by subjecting the slab having the chemical composition shown in Table 1 to heating, hot rolling, cold rolling and galvanizing under the conditions shown in Table 2A. After hot rolling, pickling was performed. In addition, the steel plate No. in Table 2B. No. 29 was galvanized and then alloyed by holding it at 520 ° C. for 20 seconds.
  • the hot-rolled steel sheet obtained by hot rolling had a plate thickness of 2.8 mm
  • the cold-rolled steel sheet obtained by cold rolling had a plate thickness of 1.4 mm.
  • Galvanization was carried out on a continuous hot-dip galvanizing line.
  • the annealing conditions were a dew point of ⁇ 40 ° C., and the mixture was held at the temperature shown in Table 2A for 200 seconds, and then cooled to a temperature range of 540 ° C. or lower at an average cooling rate of 6 ° C./sec.
  • the plating bath temperature was 450 to 460 ° C.
  • the amount of zinc-plated film adhered was adjusted by adjusting the pulling speed from the hot-dip zinc bath or the flow rate of the wiping gas blown out from the nozzle.
  • test piece size 250 mm in the plate width direction x 200 mm in the rolling direction
  • the test piece was brought to the temperature shown in Tables 3A and 4A in the heating furnace, held at the temperature for the holding time shown in Tables 3A and 4A, and then taken out from the heating furnace, and immediately after that, the flat plate was taken out.
  • Hot stamping was performed using a steel mold for hot stamping, and the mixture was rapidly cooled to obtain a hot stamped molded product. Some of the hot stamped molded products were manufactured by preheating at 650 ° C. for 1 hour.
  • the film structure and arithmetic mean roughness Ra of the obtained film of the hot stamped molded product were measured by the above method.
  • the obtained measurement results are shown in Tables 3B and 4B.
  • Electrode tip shape DR type, tip ⁇ 6 mm-radius of curvature R40 mm
  • test pieces 70 mm ⁇ 150 mm
  • test pieces 70 mm ⁇ 150 mm
  • Zinc phosphate treatment was performed so that the adhesion amount was 3 g / m 2 .
  • the electrodeposition paint GT-10 manufactured by Kansai Paint Co., Ltd. was electrodeposited by applying a slope of 200 V, and then baked at a baking temperature of 150 ° C. for 20 minutes.
  • the coating film thickness was 20 ⁇ m.
  • test piece was immersed in ion-exchanged water at 50 ° C., taken out after 240 hours, scratched in a grid pattern with a width of 1 mm with a cutter knife, and peeled with a polyester tape manufactured by Nichiban Co., Ltd.
  • the number of remaining cells of the coating film was compared to evaluate the coating film adhesion. The total number of squares was 100. As the evaluation criteria, 90 to 100 remaining cells were good: evaluation OK, and 0 to 89 were bad: evaluation NG.
  • TS ⁇ ⁇ (MPa ⁇ °) was 95,000 MPa ⁇ ° or more was judged to be acceptable as having excellent bendability, and an example having a TS ⁇ ⁇ (MPa ⁇ °) of less than 95,000 was judged to be unacceptable as being inferior in bendability.
  • the strength is high, the generation of scale after hot stamping is suppressed, sparks and welding during spot welding can be prevented, a wide appropriate welding current range is provided, and an excellent coating is applied. It is possible to provide a hot stamp molded product having film adhesion and bendability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

このホットスタンプ成形体は、所定の化学組成を有する鋼板と、前記鋼板上に配された皮膜と、を有する。この皮膜は、100μm深さの位置までGDS測定したとき、Znの累積量であるZntotalが10.0g/m以上、40.0g/m未満であり、Alのピーク位置までGDS測定したとき、Znの累積量であるZnaと、Mnの累積量との和が20.0g/m以下であり、Alの累積量と、Siの累積量と、Crの累積量との和が60mg/m以上、240mg/m以下であり、前記Zntotal-前記Znaが3.0g/m以上、30.0g/m以下であり、算術平均粗さRaが1.50μm未満である。

Description

ホットスタンプ成形体
 本発明は、ホットスタンプ成形体に関する。具体的には、自動車部品等の非防錆用途の部品の製造に好適なホットスタンプ成形体に関する。
 本願は、2019年7月2日に、日本に出願された特願2019-123334号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車の軽量化のため、鋼板の高強度化を図り、鋼板の厚みを減ずるための方法が検討されている。高強度鋼板等の難成形材料をプレス成形する技術として、成形に供される鋼板材料を予め加熱してから成形する、ホットスタンプ等の熱間成形方法が採用されている。
 このような成形方法は、変形抵抗の小さい高温で成形し、成形と同時に焼入れも実施できることから、部材の高強度化と成形性とを両立できる優れた成形方法である。しかし、この成形方法を採用した場合には、成形前に鋼板材料を700℃以上の高温に加熱する必要があるため、ホットスタンプ前の加熱時に鋼板表面が酸化するという問題が生じる。この鋼板表面の酸化によって生じた鉄酸化物からなるスケールが、ホットスタンプ時に脱落して金型に付着することで生産性が低下したり、ホットスタンプ後の成形品の表面に残存して外観不良を引き起こしたりするという問題がある。しかも、このようなスケールが成形品の表面に残存すると、次工程で塗装する場合に、成形品と塗膜との密着性が劣り、耐食性の低下を引き起こす。そのため、ホットスタンプ後は、ショットブラスト等のスケール除去処理が必要となる。
 このような問題を解決するため、熱間成形用の鋼板材料として、母材鋼板表面の酸化抑制および/またはプレス成形品の耐食性向上を目的として、亜鉛めっきまたはアルミニウムめっきで被覆しためっき鋼板を使用することが提案されている。熱間成形に亜鉛めっき鋼板を用いた例としては、例えば、特許文献1および特許文献2等に記載の技術が挙げられる。
 特許文献3には、鋼中のC濃度、Si濃度、P濃度および/またはTi濃度を制御し、鋼板表面のZn付着量および皮膜中のAl濃度を制御することにより、熱間成形時に形成される酸化被膜の鋼板との密着性を向上させ、プレス成形品表面の酸化物の剥離処理工程を簡便化あるいは不要とした熱間成形用亜鉛鋼板が提案されている。
日本国特開2003-73774号公報 日本国特開2001-353548号公報 日本国特開2005-48254号公報 国際公開第2014/024825号
 特許文献1~3では、ホットスタンプ時に形成される亜鉛酸化物層が過度に生成した場合、ホットスタンプ後にスポット溶接を行った際に溶着やスパークが発生する場合がある。これらを改善した技術として、特許文献4には熱間成形後のスポット溶接時の溶着およびスパークを抑制する技術が開示されている。
 特許文献4には、めっき付着量が40~110g/mである熱間成形用亜鉛系めっき鋼板において、スポット溶接時の溶着やスパークが改善したことが開示されている。熱間成形用の鋼板は、熱間成形後の用途として、防錆面から大別すると、防錆用途と非防錆用途とに分けられる。前者は通常の亜鉛めっき鋼板と同程度の耐食性が必要となり、耐食性に寄与する皮膜中のZn量が多いほど耐食性に優れる。しかし、後者は通常の冷延鋼板と同程度の耐食性しか要求されないため、耐食性の観点からは皮膜中のZn量は重要ではなく、ホットスタンプ後のスケールを抑制できるZn量があれば十分である。
 特許文献4では、鋼板の酸化を抑制できるZn量を確保するために、40g/m以上のめっき付着量が必要とされている。本発明者らの検討によると、特許文献4に記載の技術では、めっき付着量を40g/m未満とすると、通常の合金化溶融亜鉛めっきでは皮膜中のAl量を150mg/m以上とするのは困難であること、並びに、スポット溶接時のスパークおよび溶着を防止するのは困難であることが判明した。
 従って、めっき付着量を40g/m未満とした場合であっても、ホットスタンプ後のスケールを抑制し、かつ、スポット溶接時のスパークおよび溶着を防止することができれば、Zn量削減によるコスト低減が可能となり、Zn資源利用の抑制にも寄与できる。
 自動車の車体用部品は、各種形状にホットスタンプされた部品同士を抵抗溶接(特にスポット溶接)で接合することにより、組み立てられる。特にスポット溶接を行う場合には、ナゲット径が4√t以上(tは部品の板厚)で、チリが出ない電流範囲(適正溶接電流範囲)が広ければ広いほど、製造時のばらつきに対するロバスト性が高くなり、生産性の向上に寄与できる。
 一般的に、めっき鋼板は冷延鋼板よりも適正溶接電流範囲が狭い。これは、めっきにより融点が低下するため、チリが発生する限界電流が低下するためである。めっき付着量を低減できれば適正溶接電流範囲は広くなるが、一般的なめっき鋼板の場合、耐食性確保のため、めっき付着量の下限は制限される。非防錆用途のホットスタンプ用鋼板の場合、耐食性確保の観点からは多量のZnは不要であり、Zn量を削減できれば適正溶接電流範囲が拡大し、生産性の向上に寄与できると考えられる。
 自動車の車体用部品は、上記のスポット溶接後、化成処理と電着とからなる塗装処理を行うため、塗膜密着性が求められる。亜鉛系めっき鋼板をホットスタンプした場合、めっきは地鉄と反応して新たな合金を形成するとともに、表面が酸化されてZn系の酸化物が形成される。このZn系の酸化物は化成処理皮膜との密着性が良好であることが知られている。しかしながら、本発明者らの検討によると、表面酸化物はZn系のみではなく、Mn系、Al系、Si系、Cr系等の多岐にわたり、Zn量が少ない場合には、条件によっては塗膜密着性を損なう事が判明した。従って、低Zn量のめっきを自動車用途に適用するには、各種酸化物を制御して塗膜密着性を確保する新たな技術が必要である。
 また、自動車の車体用部品は衝突時にエネルギーを吸収することが求められている一方、燃費を良くするため高強度材による軽量化が求められている。衝突時の変形は複雑であるが、曲げ性が良好であれば早期の分断が抑制できる可能性が高まるため、高強度かつ曲げ性のよい部品が求められている。ホットスタンプ部品の強度は炭素量でほぼ決まるが、同じ強度でも、化学成分や製造方法で曲げ性は異なる。従って、ホットスタンプ後の曲げ性を向上させることができれば、適用できる部品が広がり、産業上の有用性が大いに高まる。
 つまり、自動車の車体用部品に適用されるホットスタンプ成形体は、塗膜密着性に優れることが要求され、より好ましい特性として、曲げ性にも優れることが要求される。
 本発明は、上記課題に鑑みてなされたものであり、高強度であり、スケールの生成が抑制され、スポット溶接時のスパークおよび溶着を防止でき、広い適正溶接電流範囲を有し、且つ優れた塗膜密着性および曲げ性を有するホットスタンプ成形体を提供することを目的とする。
 本発明者らは、ホットスタンプ用亜鉛めっき鋼板にホットスタンプを施した後にスケールの生成を抑制できる条件について鋭意検討した。その結果、亜鉛めっき皮膜を付与する鋼板の化学組成、並びに、亜鉛めっき皮膜のめっき付着量と、Fe濃度と、Al量と、Al濃度とを適正範囲内に制御することで、ホットスタンプ前の加熱時に皮膜表面にAl酸化物、必要に応じてSi酸化物、およびCr酸化物を生成させ、皮膜中の金属亜鉛が過度に酸化物になることおよび蒸発することを抑制でき、皮膜表面に適正量の亜鉛酸化物が形成され、スケールの生成を抑制できることを見出した。
 また、本発明者らは、ホットスタンプ用亜鉛めっき鋼板中のSi含有量、Cr含有量およびAl含有量、並びに、亜鉛めっき皮膜中のAl量が過剰となると、ホットスタンプ後の皮膜中の亜鉛酸化物とその下部に形成されるFe-Zn固溶体との密着性が低下することで、塗膜密着性(皮膜と、その上層に配される塗膜との密着性)が低下することを新たに見出した。更に、本発明者らは、ホットスタンプ後の表面粗さを低下させると、ホットスタンプ後の曲げ性を向上できることを新たに見出した。
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
[1]本発明の一態様に係るホットスタンプ成形体は、鋼板と、前記鋼板上に配された皮膜とを有し、
 前記鋼板は、化学組成が、質量%で、
C:0.02%以上、0.58%以下、
Mn:0.10%以上、3.00%以下、
sol.Al:0.001%以上、1.000%以下、
Si:2.00%以下、
P:0.100%以下、
S:0.005%以下、
N:0.0100%以下、
Ti:0%以上、0.200%以下、
Nb:0%以上、0.200%以下、
V:0%以上、1.00%以下、
W:0%以上、1.00%以下
Cr:0%以上、1.00%以下、
Mo:0%以上、1.00%以下、
Cu:0%以上、1.00%以下、
Ni:0%以上、1.00%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.05%以下、および
REM:0%以上、0.05%以下
を含有し、残部がFeおよび不純物からなり、
 前記皮膜は、
  前記皮膜の表面~前記表面から100μm深さの位置までGDS測定したとき、Znの累積量であるZntotalが10.0g/m以上、40.0g/m未満であり、
  前記表面~Alのピーク位置までGDS測定したとき、Znの累積量であるZnaと、Mnの累積量との和が20.0g/m以下であり、Alの累積量と、Siの累積量と、Crの累積量との和が60mg/m以上、240mg/m以下であり、
  前記Zntotal-前記Znaが3.0g/m以上、30.0g/m以下であり、
  算術平均粗さRaが1.50μm未満である。
[2]上記[1]に記載のホットスタンプ成形体は、前記鋼板の前記化学組成が、質量%で、
Ti:0.005%以上、0.200%以下、
Nb:0.005%以上、0.200%以下、
V:0.10%以上、1.00%以下、
W:0.10%以上、1.00%以下、
Cr:0.05%以上、1.00%以下、
Mo:0.05%以上、1.00%以下、
Cu:0.05%以上、1.00%以下、
Ni:0.05%以上、1.00%以下、
B:0.0010%以上、0.0100%以下、
Ca:0.0005%以上、0.05%以下、および
REM:0.0005%以上、0.05%以下
からなる群から選ばれる1種または2種を含有してもよい。
 本発明に係る上記態様によれば、高強度であり、ホットスタンプ後のスケールの生成が抑制され、スポット溶接時のスパークおよび溶着を防止でき、広い適正溶接電流範囲を有し、且つ優れた塗膜密着性および曲げ性を有するホットスタンプ成形体を提供することができる。
 上記態様に係るホットスタンプ用亜鉛めっき鋼板は亜鉛めっき皮膜の付着量が抑制されているため、低コストでホットスタンプ、スポット溶接、化成処理および電着による自動車部品の製造が可能であり、自動車部品用途として好適である。
ホットスタンプ成形体の皮膜表面から深さ方向にGDS測定して得られた測定結果を示す図である。 ホットスタンプ成形体の皮膜表面から深さ方向にGDS測定して得られた測定結果を示す図である。 ホットスタンプ成形体の皮膜表面から深さ方向にGDS測定して得られた測定結果を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。以下に記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「超」、「未満」と示す数値には、その値が数値範囲に含まれない。なお、化学組成についての「%」は全て「質量%」を示す。
 本実施形態に係るホットスタンプ成形体に適用されるホットスタンプ用亜鉛めっき鋼板(以下、めっき鋼板と記載する場合がある)は、鋼板と、前記鋼板上に配された亜鉛めっき皮膜とを有する。まず、本実施形態に係るホットスタンプ成形体に適用されるホットスタンプ用亜鉛めっき鋼板の鋼板について説明する。なお、鋼板の化学組成はホットスタンプ前後で変化しないため、ホットスタンプ用亜鉛めっき鋼板を構成する鋼板の化学組成と、ホットスタンプ成形体を構成する鋼板の化学組成とは同一である。
 1.鋼板の化学組成
 [C:0.02%以上、0.58%以下]
 Cは、鋼板の焼入れ性を高め、焼入れ後(ホットスタンプ後)のホットスタンプ成形体の強度を得るために重要な元素である。またCは、Ac点を下げ、焼入れ処理温度を低温化させる元素である。C含有量が0.02%未満では、上記効果が十分に得られない。したがって、C含有量は0.02%以上とする。好ましくは、0.10%以上または0.20%以上である。
 一方、C含有量が0.58%を超えると、ホットスタンプ後のホットスタンプ成形体の靭性が著しく劣化する。したがって、C含有量は0.58%以下とする。好ましくは0.55%以下または0.50%以下である。
 [Mn:0.10%以上、3.00%以下]
 Mnは、鋼板の焼入れ性を高め、かつ焼入れ後のホットスタンプ成形体の強度を安定して得るために重要な元素である。Mn含有量が0.10%未満では上記効果が十分に得られない。したがって、Mn含有量は0.10%以上とする。好ましくは0.20%以上、0.30%以上または0.40%以上である。
 一方、Mn含有量が過剰であると、ホットスタンプ前の加熱時、亜鉛めっき皮膜中にMnが拡散し、ホットスタンプ成形体において、皮膜表面にMn酸化物が多く生成されることにより、スポット溶接性が劣化する。したがって、Mn含有量は3.00%以下とする。好ましくは2.80%以下、2.60%以下または2.40%以下である。
 [sol.Al:0.001%以上、1.000%以下]
 Alは、鋼を脱酸して鋼材を健全化する(鋼材にブローホールなどの欠陥が生じることを抑制する)作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は0.001%以上とする。好ましくは0.010%以上、0.020%以上または0.030%以上である。
 一方、sol.Al含有量が過剰であると、ホットスタンプ前の加熱時、亜鉛めっき皮膜中にsol.Alが拡散し、ホットスタンプ成形体において、皮膜表面にAl酸化物が多く生成される。これにより、皮膜と化成処理皮膜との密着性が低下する。したがって。sol.Al含有量は1.000%以下とする。好ましくは0.800%以下、0.100%以下、0.075%以下または0.070%以下である。
 なお、sol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
[Si:2.00%以下]
 Siは、ホットスタンプ前の加熱時に、加熱により形成された亜鉛酸化物層と鋼板との界面に濃化することで、亜鉛酸化物層と鋼板との密着性を低下させる。そのため、Si含有量は2.00%以下とする。Si含有量は1.00%以下、0.70%以下または0.50%以下が好ましい。Si含有量は少ない方が好ましく、下限は特に限定しないが、Si含有量を過度に低減すると精錬コストの上昇を引き起こすため、Si含有量は0.01%以上としてもよい。
 [P:0.100%以下]
 Pは、不純物として鋼中に含有され、鋼を脆化させる作用を有するため、P含有量は低い方が好ましい。そのため、P含有量は0.100%以下とする。好ましくは、0.050%以下、0.020%以下または0.015%以下である。P含有量の下限は特に限定しないが、P含有量を過度に低減すると精錬コストの上昇を引き起こすため、P含有量は0.001%以上としてもよい。
 [S:0.005%以下]
 Sは、不純物として含有される元素であり、MnSを形成し、鋼を脆化させる作用を有するため、S含有量は少ない方が好ましい。そのため、S含有量は0.005%以下とする。好ましくは、0.004%以下、または0.003%以下である。S含有量の下限は特に限定しないが、S含有量を過度に低減すると精錬コストの上昇を引き起こすため、S含有量は0.0003%以上または0.001%以上としてもよい。
 [N:0.0100%以下]
 Nは、不純物として含有され、鋼中にて介在物を形成し、ホットスタンプ成形体の靱性を劣化させる元素であるため、N含有量は低い方が好ましい。そのため、N含有量は0.0100%以下とする。好ましくは、0.0080%以下、0.0070%以下、0.0050%以下または0.0045%以下である。N含有量の下限は特に限定しないが、N含有量を過度に低減すると精錬コストの上昇を引き起こすため、N含有量は0.0005%以上としてもよい。
 本実施形態に係る鋼板の化学組成の残部は、Fe及び不純物である。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程で不可避的に混入したもの、あるいは本実施形態に係るホットスタンプ成形体の特性を阻害しない範囲で許容される元素が例示される。
 鋼板は、残部のFeに代えて、以下の任意元素を含有しても良い。なお、以下に説明する任意元素は含有しなくても良く、含有しない場合の含有量は0%である。
 [Ti:0%以上、0.200%以下、Nb:0%以上、0.200%以下、V:0%以上、1.00%以下およびW:0%以上、1.00%以下]
 Ti、Nb、VおよびWは、亜鉛めっき皮膜と鋼板とにおけるFeおよびZnの相互拡散を促進し、ホットスタンプ時に溶融Zn合金層を生じにくくさせる元素である。溶融Zn合金層が形成されると、ホットスタンプ時に割れが生じる場合があるため、好ましくない。したがって、Ti、Nb、VおよびWを鋼板に含有させてもよい。上記効果を確実に得るためには、Ti:0.005%以上、Nb:0.005%以上、V:0.10%以上、W:0.10%以上の1種以上を含有させることが好ましい。
 しかし、Ti含有量またはNb含有量が0.200%を超えると、あるいは、V含有量またはW含有量が1.00%を超えると、上記効果は飽和し、合金コストが増加する。したがって、Ti含有量およびNb含有量はそれぞれ0.200%以下とし、V含有量およびW含有量はそれぞれ1.00%以下とする。好ましくは、Ti含有量およびNb含有量はそれぞれ0.150%以下であり、V含有量およびW含有量はそれぞれ0.50%以下である。
 [Cr:0%以上、1.00%以下、Mo:0%以上、1.00%以下、Cu:0%以上、1.00%以下、Ni:0%以上、1.00%以下およびB:0%以上、0.0100%以下]
 Cr、Mo、Cu、NiおよびBは、鋼板の焼入れ性を高め、かつホットスタンプ成形体の強度を向上させる元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。上記効果を確実に得るためには、Cr:0.05%以上、Mo:0.05%以上、Cu:0.05%以上、Ni:0.05%以上およびB:0.0010%以上のいずれか1種以上を含有させることが好ましい。しかし、Cr含有量、Mo含有量、Cu含有量またはNi含有量が1.00%超であると、あるいはB含有量が0.0100%超であると、上記効果は飽和して、合金コストが増加する。したがって、Cr含有量、Mo含有量、Cu含有量およびNi含有量はそれぞれ1.00%以下とし、B含有量は0.0100%以下とする。B含有量は0.0080%以下とすることが好ましい。
 [Ca:0%以上、0.05%以下およびREM:0%以上、0.05%以下]
 CaおよびREMは、鋼中の介在物を微細化し、介在物によるホットスタンプ時の割れの発生を防止する効果を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記効果を確実に得るためには、Ca:0.0005%以上、およびREM:0.0005%以上の1種以上を含有させることが好ましい。しかし、Ca含有量、またはREM含有量が0.05%を超えると、鋼中の介在物を微細化する効果は飽和し、合金コストが増加する。したがって、Ca含有量およびREM含有量はそれぞれ0.05%以下とする。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、REMの含有量は、これらの元素の合計の含有量を指す。REMは、ミッシュメタルにより含有させる場合が多いが、LaおよびCeの他にランタノイド系列の元素を複合的に含有させる場合がある。LaおよびCeの他にランタノイド系列の元素を複合的に含有させる場合であっても、本実施形態に係るホットスタンプ成形体は、その効果を発揮することができる。また、金属LaやCeなどの金属REMを含有させても、本実施形態に係るホットスタンプ成形体は、その効果を発揮することができる。
 上述した鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。鋼板が表面に亜鉛めっき皮膜または皮膜を有する場合は、機械研削により亜鉛めっき皮膜または皮膜を除去してから、化学組成の分析を行えばよい。
 2.ホットスタンプ用亜鉛めっき鋼板の亜鉛めっき皮膜
 ホットスタンプ用亜鉛めっき鋼板は、鋼板上に亜鉛めっき皮膜を有する。この亜鉛めっき皮膜は、めっき付着量が15.0g/m以上、40.0g/m未満であり、Fe濃度が1.5質量%以上、8.0質量%以下であり、Al量が100mg/m以上、400mg/m以下であり、Al濃度が0.50質量%以上、3.00質量%以下であり、残部がZnおよび不純物からなる。以下、亜鉛めっき皮膜の詳細について説明する。
 [めっき付着量]
 ホットスタンプ用亜鉛めっき鋼板は、鋼板上に亜鉛めっき皮膜を有する。亜鉛めっき皮膜のめっき付着量は、15.0g/m以上、40.0g/m未満とする。なお、本実施形態においてめっき付着量とは、鋼板片面あたりのめっき付着量のことをいう。めっき付着量が15.0g/m未満であると、ホットスタンプ前の加熱時にスケールが生成してしまう。そのため、めっき付着量は15.0g/m以上とする。好ましくは18.0g/m以上または20.0g/m以上である。
 一方、めっき付着量が40.0g/m以上となると、ホットスタンプ成形体において、スポット溶接時の適正溶接電流範囲が狭くなる。そのため、めっき付着量は40.0g/m未満とする。好ましくは、35.0g/m以下または30.0g/m以下である。
 亜鉛めっき皮膜のめっき付着量は、JIS H 0401:2013に記載の試験方法に従って、ホットスタンプ用亜鉛めっき鋼板の任意の位置から試験片を採取して測定する。
 [亜鉛めっき皮膜中のFe濃度]
 亜鉛めっき皮膜中のFe濃度が8.0質量%以下であると、ホットスタンプ前の加熱時の加熱速度が遅くなるため、加熱炉で保持するときの高温における滞在時間が減少する。その結果、Znの蒸発量および酸化量が抑制され、スケールの発生を抑制することおよびスポット溶接時のスパークを抑制することができる。
 亜鉛めっき皮膜中のFe濃度が高すぎると、ホットスタンプ前の加熱時の加熱速度が速くなり、加熱炉で保持するときの高温での滞在時間が長くなるため、Znの蒸発によるスケールが生成する可能性、およびスポット溶接時にスパークが生成する可能性が高まる。そのため、亜鉛めっき皮膜中のFe濃度は8.0質量%以下とする。好ましくは7.5質量%以下、7.0質量%以下または6.0質量%以下である。
 [亜鉛めっき皮膜中のAl量およびAl濃度]
 亜鉛めっき皮膜中のAl量は100mg/m以上、400mg/m以下とし、Al濃度は0.50質量%以上、3.00質量%以下とする。亜鉛めっき皮膜中のAl量が100mg/m未満もしくはAl濃度が0.50質量%未満であると、ホットスタンプ前の加熱時に亜鉛めっき皮膜の表層に生成するAl酸化物が少なくなる。その結果、Znの酸化が抑制されず、Zn系酸化物が過度に生成して、スポット溶接時にスパークおよび/または溶着が発生してしまう。また、Znの蒸発量も多くなり、亜鉛めっき皮膜中のZnの目付量が少なくなり、スケールが生成してしまう。そのため、亜鉛めっき皮膜中のAl量を100mg/m以上とし、Al濃度を0.50質量%以上とする。好ましくは、Al量は150mg/m以上または170mg/m以上である。また、好ましくは、Al濃度は0.65質量%以上、0.70質量%以上または0.75質量%以上である。
 一方、亜鉛めっき皮膜中のAl量が400mg/mを超えるか、Al濃度が3.00質量%を超えると、ホットスタンプ成形体において塗膜密着性が低下する。そのため、亜鉛めっき皮膜中のAl量を400mg/m以下とし、Al濃度を3.0質量%以下とする。好ましくは、Al量は350mg/m以下、より好ましくは300mg/m以下である。また、好ましくは、Al濃度は2.00質量%以下または1.70質量%以下である。
 連続溶融亜鉛めっきラインで製造される溶融亜鉛めっき鋼板の亜鉛めっき皮膜中のAl量は、焼鈍前加熱時の雰囲気、浴温、めっき浴へ侵入する時の鋼板温度、浸漬時間、めっき付着量、浴中Al濃度等に影響される。そのため、これらの製造条件と亜鉛めっき皮膜中のAl量との関係を経験的に求め、制御することにより、亜鉛めっき皮膜中のAl量を100mg/m以上とすることができる。
 [亜鉛めっき皮膜中の残部]
 亜鉛めっき皮膜中の残部は、Znおよび不純物からなり、不純物は0.1%以下であることが好ましい。
 亜鉛めっき皮膜中のFe濃度、Al濃度およびAl量は以下の方法により測定する。
 インヒビターを添加した5体積%HCl水溶液を用いてホットスタンプ用亜鉛めっき鋼板の亜鉛めっき皮膜のみを溶解除去する。ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて、得られた溶解液中のZn濃度、Fe濃度、Al濃度を測定することで、亜鉛めっき皮膜中のFe濃度、Al濃度およびAl量を得る。
 以上説明したホットスタンプ用亜鉛めっき鋼板を、加熱して、ホットスタンプすることで、塗膜密着性および曲げ性に優れるホットスタンプ成形体が得られる。以下、本実施形態に係るホットスタンプ成形体について説明する。
 本実施形態に係るホットスタンプ成形体は、上述した化学組成を有する鋼板と、前記鋼板上に配された皮膜とを有する。以下、本実施形態に係るホットスタンプ成形体の皮膜について詳細に説明する。
 3.ホットスタンプ成形体の皮膜
 ホットスタンプ前の加熱により、ホットスタンプ用亜鉛めっき鋼板の亜鉛めっき皮膜は地鉄と反応するとともに、表面では各種の酸化反応が起こる。図1に、ホットスタンプ成形体から切り出したサンプルについて、皮膜表面から深さ方向にGDS測定して得られた測定結果のうち、検出量の多かったFe、OおよびZnの測定結果を示す。図1を見ると、地鉄の上に、亜鉛めっき皮膜中に地鉄が溶け込んだFe-Zn固溶体(鉄亜鉛固溶体)があり、その上に、酸化亜鉛が存在することが分かる。
 図2に、図1と同じ測定結果における、Fe、Zn、MnおよびAlの測定結果を示す。図2を見ると、FeおよびZnより格段に量が少ないが、酸化亜鉛と同じ位置にMnが検出され、表層にはZn系酸化物(酸化亜鉛)、およびMn系酸化物が形成されていることがわかる。また、同図に示すように、酸化亜鉛とFe-Zn固溶体との間の境界領域に、少量であるが、Alが検出されていることが分かる。
 図3に、図1および図2と同じ測定結果における、Si、CrおよびAlの測定結果を示す。図3に示すように、少量ではあるが、Alが検出された、酸化亜鉛とFe-Zn固溶体との間の境界領域に、CrおよびSiのピークが検出されている。CrおよびSiのピークが検出されたのは、サンプルにCrおよびSiが含まれていたためと考えられる。
 図1~図3に示される測定結果から、ホットスタンプ成形体の酸化物層の上層は主にZn系酸化物およびMn系酸化物が存在し、酸化物層の下層は主にAl系酸化物と、微量のCr系酸化物およびSi系酸化物が存在すると考えられる。
 本実施形態に係るホットスタンプ成形体は、皮膜の表面にZn系酸化物、Mn系酸化物、Al系酸化物、並びに、地鉄鋼板がCrおよびSiを含む場合はCr系酸化物およびSi系酸化物を有する。残部としては、P系酸化物、Ti系酸化物およびNb系酸化物が含まれてもよい。ホットスタンプ前の加熱によるこれら酸化物相の形成機構は必ずしも明確ではないが、GDSの測定結果から次のように推定される。
 ホットスタンプ前の加熱初期にAl系酸化物が表層に形成され、Znの酸化を抑制する。さらに加熱されることにより、Al系酸化物の上にZn系酸化物が形成される。従って、亜鉛めっき皮膜中のAl量が多いとAl系酸化物が多くなるため、Zn系酸化物は少なくなる。また、これらの反応は、地鉄と亜鉛めっき皮膜との一体化と並行して起こるため、地鉄中に含まれる易酸化元素であるMn、Cr、Siの酸化物も少量ながら形成される。易酸化性の違いから、Cr、SiはAlと同じ位置に形成され、MnはZnと同じ位置に形成される。これらの酸化物を正確に定量するのは困難であるが、上記構造から、表面~Alのピーク位置までのZn量とMn量との合計量は、Zn系酸化物およびMn系酸化物の合計量に比例する量と考えてよく、この合計量が多いとスポット溶接時にスパークが発生する。
 一方、皮膜の表面~Alのピーク位置までのAl量、Si量およびCr量の合計量は、各々Al系酸化物、Si系酸化物、Cr系酸化物の合計量の1/2に比例する量として近似できると考えられる。この量が多いと、酸化亜鉛とFe-Zn固溶体との密着性が悪くなり、塗膜密着性が劣化する。上述した酸化物の下に、金属状態のFeとZnとの固溶相(Fe-Zn固溶体)があり、この固溶相が部分的にでも欠落すると加熱中にスケールが生成する。
 [皮膜構造]
 上述した種々の酸化物を有する皮膜は、以下の皮膜構造を有する。
 本実施形態に係るホットスタンプ成形体では、皮膜の表面~表面から100μm深さの位置までGDS測定したとき、Znの累積量であるZntotalが10.0g/m以上、40.0g/m未満であり、皮膜の表面~Alのピーク位置までGDS測定したとき、Znの累積量であるZnaと、Mnの累積量との和が20.0g/m以下であり、Alの累積量と、Siの累積量と、Crの累積量との和が60mg/m以上、240mg/m以下であり、Zntotal-Znaが3.0g/m以上、30.0g/m以下である。
 なお、Alのピーク位置は、皮膜の表面から深さ方向にGDS測定したとき、Alの最高強度の前後に位置する、2つのAl最高強度の95%位置の中間点とする。また、累積量とは、深さ方向に、単位面積あたりの重量を1秒ごとに所定の深さまでGDS測定して得られる値の合計量である。
 皮膜の表面~100μm深さの位置までGDS測定したとき、Znの累積量であるZntotalが10.0g/m未満であると、ホットスタンプ後のスケール生成を抑制することができない。そのため、Zntotalは10.0g/m以上とする。好ましくは15.0g/m以上または20.0g/m以上である。
 また、Zntotalが40.0g/m以上であると、めっき付着量が多くなり、スポット溶接時の適正溶接電流範囲が狭くなる。そのため、Zntotalは40.0g/m未満とする。好ましくは35.0g/m以下である。
 皮膜の表面~Alのピーク位置までGDS測定したとき、皮膜の表面~Alのピーク位置までのZnの累積量であるZnaと、皮膜の表面~Alのピーク位置までのMnの累積量との和が20.0g/m超である場合、Zn系酸化物およびMn系酸化物が多いため、スポット溶接時にスパークが発生する。そのため、Znaと、表面~Alのピーク位置までのMnの累積量との和は20.0g/m以下とする。好ましくは18.0g/m以下、15.0g/m以下または13.0g/m以下である。
 Znaと、表面~Alのピーク位置までのMnの累積量との和の下限は特に限定する必要は無いが、0.1g/m以上、2.0g/m以上または5.0g/m以上としてもよい。
 皮膜の表面~Alのピーク位置までGDS測定したとき、Alの累積量と、Siの累積量と、Crの累積量との和が60mg/m未満であると、Zn系酸化物、Mn系酸化物の量が多くなり、スポット溶接時にスパークが発生する。そのため、皮膜の表面~Alのピーク位置の領域において、Alの累積量と、Siの累積量と、Crの累積量との和は60mg/m以上とする。好ましくは100mg/m以上または130mg/m以上である。
 また、これらの元素の累積量の和が240mg/m超であると、塗膜密着性が劣化する。そのため、皮膜の表面~Alのピーク位置までの領域において、Alの累積量と、Siの累積量と、Crの累積量との和は240mg/m以下とする。好ましくは220mg/m以下または200mg/m以下である。
 鋼板にCrまたはSiが含まれない場合は、皮膜についてGDS測定してもCrまたはSiが検出されないが、Alの累積量と、Siの累積量と、Crの累積量との和を制御することが重要であるため、CrまたはSiは検出されなくても問題ない。つまり、鋼板にCrおよびSiが含まれない場合には、皮膜の表面~Alのピーク位置の領域において、Alの累積量が60mg/m以上、240mg/m以下であればよい。
 皮膜の表面~100μm深さの位置までのZnの累積量であるZntotalから、皮膜の表面~Alのピーク位置までのZnの累積量であるZnaを引いた値(Zntotal-Zna)が3.0g/m未満であると、スケールが生成する。そのため、Zntotal-Znaは3.0g/m以上とする。好ましくは4.0g/m以上、8.0g/m以上または10.0g/m以上である。
 また、Zntotal-Znaが30.0g/m超であると、適正溶接電流範囲が狭くなる。そのため、Zntotal-Znaは30.0g/m以下とする。好ましくは25.0g/m以下または20.0g/m以下である。
 GDS測定は、以下の方法により行う。
 ホットスタンプ成形体における任意の3か所について、皮膜表面から深さ方向(板厚方向)に100μmまでFe、Al、Si、Mn、CrおよびZnの重量を測定する。3か所について得られた測定結果からZnの累積量を算出し、平均値を求めることで、皮膜の表面~100μm深さの位置までのZnの累積量であるZntotalを得る。また、得られた測定結果から、前述で定義したAlのピーク位置を求めた後、各元素(Zn、Mn、Al、SiおよびCr)の表面~Alピーク位置までの累積量を求める。3か所について測定して得られた各元素の累積量の平均値を求めることで、各元素の累積量を得る。測定には(株)堀場製作所製のマーカス型高周波グロー放電発光表面分析装置(GD-Profiler)を用いる。
 [算術平均粗さRa]
 皮膜の算術平均粗さRaは1.50μm未満とする。算術平均粗さRaが1.50μm未満であると、曲げの起点となる凹凸が少ないため、塗膜密着性を確保した上で、ホットスタンプ成形体の曲げ性を向上することができる。そのため、算術平均粗さRaは1.50μm未満とする。好ましくは1.30μm以下、1.10μm以下、1.00μm以下または0.90μm以下である。
 算術平均粗さRaの下限は特に限定しないが、0.01μm以上、0.10μm以上または0.50μm以上としてもよい。
 ホットスタンプ成形体の皮膜の算術平均粗さRaは次の方法で測定する。ホットスタンプ成形体の端面から10mm以上離れた位置から50mm×50mmの試験片を切り出し、コンフォーカル顕微鏡(レーザーテック株式会社製)を用いて、任意の方向に3ライン線分析し、それらの方向と垂直な方向に3ライン線分析する。得られた結果から、JIS B 0601:2001に準拠して算術平均粗さRaを算出し、合計6ラインの平均値を算出することで、皮膜の算術平均粗さRaを得る。
 本実施形態に係るホットスタンプ成形体は、引張強さが900MPa以上であることが好ましい。引張強さを900MPa以上とすることで、自動車部品に好適に適用することができる。引張強さは、好ましくは1000MPa以上、1500MPa以上または1800MPa以上である。引張強さの上限は特に限定しないが、3000MPa以下または2800MPa以下としてもよい。
 ホットスタンプ成形体の引張強さは、ホットスタンプ成形体のエッジから10mm以内の領域を除く位置からJIS5号試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことで得る。
 4.ホットスタンプ用亜鉛めっき鋼板の製造方法 ホットスタンプ用亜鉛めっき鋼板は、オーステナイト域またはその近傍の温度域まで加熱され、その温度域でホットスタンプされる。したがって、加熱前の室温でのホットスタンプ用亜鉛めっき鋼板の機械特性は重要ではない。そのため、加熱前のホットスタンプ用亜鉛めっき鋼板の金属組織については特に規定しない。つまり、亜鉛めっき皮膜を付与する前の鋼板は熱延鋼板と冷延鋼板のいずれであってもよく、その鋼板の製造方法については限定しない。生産性の観点から、鋼板の好適な製造方法を以下に述べる。
 ホットスタンプ用亜鉛めっき鋼板の好適な製造方法は、上述の化学組成を有するスラブを1200℃以上で5分以上加熱する加熱工程と、前記スラブに対し、仕上げ圧延温度が800℃以上、980℃以下となるように熱間圧延を施し、450℃以上、800℃以下の巻取り温度で巻取って熱延鋼板を得る熱間圧延工程と、前記熱延鋼板に対して、酸洗を行った後、累積圧下率が30%以上、80%以下となるように冷間圧延を施すことで冷延鋼板を得る冷間圧延工程と、前記冷延鋼板に対し、700℃以上、900℃以下の温度域で焼鈍を施すことで鋼板を得て、Al濃度が0.155質量%以上、0.175質量%以下である溶融亜鉛浴に、前記鋼板を1.0秒以上、15.0秒以下の間浸漬することで亜鉛めっき皮膜を前記鋼板上に形成する亜鉛めっき工程と、を順次行うものである。
 [加熱工程]
 上述した化学組成を有するスラブを1200℃以上で5分以上加熱する。スラブ加熱温度が1200℃未満または加熱時間が5分未満であると、後述する熱間圧延を行うことができない。
 [熱間圧延工程]
 熱間圧延は、仕上げ圧延温度が800℃以上、980℃以下となるように行う。仕上げ圧延温度が低すぎると変形抵抗が高くなり圧延が困難となる。仕上げ圧延温度が高すぎるとスケールが多量に生成し、表面疵が増加する。仕上げ圧延後は、巻き取り温度が450℃以上、800℃以下となるように巻き取って、熱延鋼板を得る。巻取り温度が低すぎると、水のりが発生して平坦性が悪化し、冷間圧延を行うことが困難になる。巻取温度が高すぎるとスケール厚が厚くなり、酸洗に長時間要し、生産性が低下する。
 [冷間圧延工程]
 上記熱延鋼板に酸洗を行った後、冷間圧延を施すことで、冷延鋼板を得る。冷間圧延は、累積圧下率が30%以上、80%以下となるように行う。本実施形態に係る鋼板は炭素量が多いため、過度の累積圧下率で冷間圧延を行うとミルの負担が大きくなる。累積圧下率を下げ過ぎると生産性が低下する。そのため、冷間圧延における累積圧下率は30%以上、80%以下とする。
 なお、累積圧下率は、冷間圧延前の熱延鋼板の板厚をtとし、冷間圧延後の冷延鋼板の板厚をtとしたとき、{(t-t)/t}×100(%)で表すことができる。
 [亜鉛めっき工程]
 亜鉛めっき皮膜の形成は、生産効率に優れた連続溶融亜鉛めっきラインを用いることが好ましい。以下では、連続溶融亜鉛めっきラインで亜鉛めっき皮膜を形成する方法について説明する。
 連続溶融亜鉛めっきでは、先ず、加熱炉で冷延鋼板が加熱され、焼鈍が行われる。ホットスタンプ用途の場合、ホットスタンプ前の機械特性に特段の制限はないため、焼鈍温度に制限は無く、700℃以上としてもよい。焼鈍温度を900℃超とすると製造コストが増加するため、焼鈍温度は900℃以下とする。焼鈍時間は、特に制限はなく生産性の観点から1~5分としてもよい。連続溶融亜鉛めっきラインの焼鈍雰囲気は常法でよく、露点は-20℃以下であればよい。好ましくは、-35℃以下である。
 上述の方法により、鋼板を得る。
 溶融亜鉛浴に上述の方法により得た鋼板を浸漬して引き上げ、亜鉛めっき皮膜を鋼板上に形成することで、本実施形態に係るホットスタンプ成形体に適用されるホットスタンプ用亜鉛めっき鋼板を得る。ホットスタンプ用亜鉛めっき鋼板の製造方法では、従来技術とは異なり、亜鉛めっき皮膜のめっき付着量を15.0g/m以上、40.0g/m未満とし、亜鉛めっき皮膜中のAl量を100~400mg/mとするために、亜鉛めっき皮膜付与の条件を厳格に制御する。具体的には、溶融亜鉛浴中のAl濃度を0.155質量%以上、0.175質量%以下とし、溶融亜鉛浴に鋼板を1.0秒以上、15.0秒以下の間浸漬させる。溶融亜鉛浴中のAl濃度は、好ましくは0.157質量%以上または0.160質量%以上である。また、溶融亜鉛浴中のAl濃度は、好ましくは0.172質量%以下または0.170質量%以下である。
 亜鉛めっき皮膜のめっき付着量は、引き上げ速度、またはノズルから吹き出すワイピングガスの流量調整により制御すればよい。また、亜鉛めっき皮膜中のAl濃度の調整は、めっき浴組成、めっき浴温度およびめっき浴への浸漬時間を制御することにより行うことができる。亜鉛めっき皮膜中のAl量は、亜鉛めっき皮膜のめっき付着量を制御することによって調整することができる。
 亜鉛めっき工程後に、調質圧延を行うと、ホットスタンプ用亜鉛めっき鋼板の表面形状の平坦化および表面粗さの調整が可能となる。そのため、用途によっては、亜鉛めっき工程後に必要に応じて調質圧延を行ってもよい。
 5.ホットスタンプ成形体の製造方法
 本実施形態に係るホットスタンプ成形体の製造方法では、ホットスタンプ用鋼板を600℃以上、700℃以下の温度域に加熱して30分以上、2時間以下保持する予備加熱を行った後、700℃以上、1000℃以下の温度域に加熱し、該温度域で1分以上、20分以下保持した後、ホットスタンプする。この加熱条件であれば、ホットスタンプ前の亜鉛めっき皮膜を鉄と亜鉛との固溶体(Fe-Zn固溶相)とすることができるため、液体金属脆化(LME:Liquid Metal Embrittlement)が発生しない。また、上記の予備加熱を行うことにより、固液共存領域を通過せずに亜鉛めっき皮膜を固溶体とすることができるため、亜鉛めっき皮膜の表面粗さを小さくすることができる。その結果、ホットスタンプ成形体の曲げ性を向上することができる。
 ホットスタンプ前の加熱方法としては、電気炉やガス炉等による加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱等が挙げられる。ホットスタンプ前の加熱により材料の焼入れも達成したい場合には、上述の加熱条件で加熱し、高温のまま、例えば水冷管を通した金型を用いてホットスタンプを行い、その際に金型との接触により急冷する。金型を加熱しておいて、焼入れ温度あるいは冷却速度を変化させ、ホットスタンプ後の製品特性を制御してもよい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す化学組成を有するスラブに対し、表2Aに示す条件で加熱、熱間圧延、冷間圧延および亜鉛めっきを施すことで、表2Bに示すホットスタンプ用亜鉛めっき鋼板を得た。なお、熱間圧延後に酸洗を行った。
 また、表2Bの鋼板No.29は、亜鉛めっきを施した後、520℃で20秒保持する合金化処理を行った。
 熱間圧延により得られた熱延鋼板は板厚2.8mmであり、冷間圧延により得られた冷延鋼板の板厚は1.4mmであった。
 亜鉛めっきは、連続溶融亜鉛めっきラインで実施した。焼鈍条件は露点-40℃とし、表2Aに示す温度で200秒間保持した後、平均冷却速度6℃/秒で540℃以下の温度域まで冷却した。めっき浴温は、450~460℃とした。溶融亜鉛浴からの引き上げ速度、またはノズルから吹き出すワイピングガスの流量を調整することで、亜鉛めっき皮膜の付着量を調整した。
 得られたホットスタンプ用亜鉛めっき鋼板について、めっき付着量、Fe濃度、Al量およびAl濃度を上述の方法により測定した。得られた測定結果を表2Bに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られたホットスタンプ用亜鉛めっき鋼板から、ホットスタンプ用の試験片(試験片サイズ:板幅方向に250mm×圧延方向に200mm)を採取した。該試験片を加熱炉内で鋼板温度を表3Aおよび表4Aに示す温度に到達させ、該温度にて表3Aおよび表4Aに示す保持時間で保持した後、加熱炉から取りだし、その直後に平板用の鋼製金型を用いてホットスタンプを行い、急冷することでホットスタンプ成形体を得た。なお、一部のホットスタンプ成形体は、650℃で1時間保持する予備加熱を行って製造した。
 得られたホットスタンプ成形体の皮膜について、皮膜構造および算術平均粗さRaを上述の方法により測定した。得られた測定結果を表3Bおよび表4Bに示す。
(スポット溶接性評価)
 表3Bおよび表4Bのホットスタンプ成形体について、エッジから10mm以内の領域を除く位置から、板幅方向230mm×圧延方向180mmの試験片を2枚採取し、これらの試験片を重ね合わせ、下記の条件で電流を変化させてスポット溶接を実施した。ナゲット径が4√t(tは試験片の板厚)となる電流を下限値、チリが出る条件を上限値とし、上限値と下限値との間を適正溶接電流範囲とした。また、チリが出る上限値より0.5kA低い電流値で溶接を行い、1000点の連続打点試験を行って、溶着の発生の有無を評価した。
 表3Bおよび表4Bにおいて、適正溶接電流範囲が1.2kA以上であった例は合格と判定し、表中に適正溶接電流範囲「OK」と記載し、適正溶接電流範囲が1.2kA未満であった例またはナゲット径が4√tとなる電流でチリが発生した例は不合格と判定し、表中に適正溶接電流範囲「NG」と記載した。また、溶着が発生しなかった例は合格と判定し、表中に溶着「無」と記載し、溶着が発生した例は不合格と判定し、表中に溶着「有り」と記載した。また、1000点中、スパークが発生した回数をカウントした。50点以上でスパークが発生した例を不合格と判定し、表中にスパーク「NG」と記載し、50点以上でスパークが発生しなかった例を合格と判定し、表中にスパーク「OK」と記載した。
 加圧力:400kgf
 通電時間:15サイクル
 保持時間:9サイクル
 電極チップ形状:DR型、先端φ6mm-曲率半径R40mm
(塗膜密着性評価)
 表3Bおよび表4Bのホットスタンプ成形体について、エッジから10mm以内の領域を除く位置から切り出した試験片(70mm×150mm)に、日本パーカライジング(株)製のPBL-3080で通常の化成処理条件により付着量が3g/mとなるように燐酸亜鉛処理を施した。その後、関西ペイント(株)製の電着塗料GT-10を電圧200Vのスロープ通電で電着塗装し、焼き付け温度150℃で20分焼き付け塗装した。塗膜厚みは20μmとした。試験片を50℃のイオン交換水に浸漬し、240時間後に取り出して、カッターナイフで1mm幅の碁盤目状に傷を入れ、ニチバン(株)製のポリエステルテープで剥離テストを行った。塗膜の残存マス数を比較し、塗膜密着性を評価した。なお、全マス数は100個とした。評価基準は、残存マス数90~100個を良好:評価OK、0~89個を不良:評価NGとした。
(引張強さ評価)
 表3Bおよび表4Bのホットスタンプ成形体について、エッジから10mm以内の領域を除く位置からJIS5号試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行って、引張強さTSを得た。引張強さTSが900MPa以上の場合、高強度であるとして合格と判定し、引張強さTSが900MPa未満の場合、ホットスタンプ成形体として所望される強度を有しないとして不合格と判定した。
(曲げ性評価)
 表3Bおよび表4Bのホットスタンプ成形体について、エッジから10mm以内の領域を除く位置から、60mm×60mmの試験片を採取し、VDA238-100に準拠して曲げ試験を行うことで、曲げ角度α(°)を得た。装置はツヴィック社製の20KNロードセルセットを用いた。
 上述の方法により得られた引張強度TSと、曲げ角度αとの積(TS×α(MPa・°))を曲げ性の指標とした。TS×α(MPa・°)が95000MPa・°以上の例を曲げ性に優れるとして合格と判定し、95000未満の例を曲げ性に劣るとして不合格と判定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3Bおよび表4Bを見ると、本発明例では、高強度であり、スポット溶接時のスパークおよび溶着が防止され、広い適正溶接電流範囲を有し、且つ塗膜密着性および曲げ性が良好であることが分かる。なお、表3Bおよび表4Bの発明例では、ホットスタンプ後においてスケールの生成が見られなかった。
 本発明に係る上記態様によれば、高強度であり、ホットスタンプ後のスケールの生成が抑制され、スポット溶接時のスパークおよび溶着を防止でき、広い適正溶接電流範囲を有し、且つ優れた塗膜密着性および曲げ性を有するホットスタンプ成形体を提供することができる

Claims (2)

  1.  鋼板と、前記鋼板上に配された皮膜とを有するホットスタンプ成形体であって、
     前記鋼板は、化学組成が、質量%で、
    C:0.02%以上、0.58%以下、
    Mn:0.10%以上、3.00%以下、
    sol.Al:0.001%以上、1.000%以下、
    Si:2.00%以下、
    P:0.100%以下、
    S:0.005%以下、
    N:0.0100%以下、
    Ti:0%以上、0.200%以下、
    Nb:0%以上、0.200%以下、
    V:0%以上、1.00%以下、
    W:0%以上、1.00%以下
    Cr:0%以上、1.00%以下、
    Mo:0%以上、1.00%以下、
    Cu:0%以上、1.00%以下、
    Ni:0%以上、1.00%以下、
    B:0%以上、0.0100%以下、
    Ca:0%以上、0.05%以下、および
    REM:0%以上、0.05%以下
    を含有し、残部がFeおよび不純物からなり、
     前記皮膜は、
      前記皮膜の表面~前記表面から100μm深さの位置までGDS測定したとき、Znの累積量であるZntotalが10.0g/m以上、40.0g/m未満であり、
      前記表面~Alのピーク位置までGDS測定したとき、Znの累積量であるZnaと、Mnの累積量との和が20.0g/m以下であり、Alの累積量と、Siの累積量と、Crの累積量との和が60mg/m以上、240mg/m以下であり、
      前記Zntotal-前記Znaが3.0g/m以上、30.0g/m以下であり、
      算術平均粗さRaが1.50μm未満である
    ことを特徴とするホットスタンプ成形体。
  2.  前記鋼板の前記化学組成が、質量%で、
    Ti:0.005%以上、0.200%以下、
    Nb:0.005%以上、0.200%以下、
    V:0.10%以上、1.00%以下、
    W:0.10%以上、1.00%以下、
    Cr:0.05%以上、1.00%以下、
    Mo:0.05%以上、1.00%以下、
    Cu:0.05%以上、1.00%以下、
    Ni:0.05%以上、1.00%以下、
    B:0.0010%以上、0.0100%以下、
    Ca:0.0005%以上、0.05%以下、および
    REM:0.0005%以上、0.05%以下
    からなる群から選ばれる1種または2種を含有する
    ことを特徴とする請求項1に記載のホットスタンプ成形体。
PCT/JP2020/025986 2019-07-02 2020-07-02 ホットスタンプ成形体 WO2021002422A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021529180A JP7160204B2 (ja) 2019-07-02 2020-07-02 ホットスタンプ成形体
US17/609,243 US20220213572A1 (en) 2019-07-02 2020-07-02 Hot-stamping formed body
EP20834674.2A EP3995595B1 (en) 2019-07-02 2020-07-02 Hot-stamping formed body
CN202080034807.0A CN113811630B (zh) 2019-07-02 2020-07-02 热压成形体
ES20834674T ES2938040T3 (es) 2019-07-02 2020-07-02 Cuerpo conformado por estampación en caliente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019123334 2019-07-02
JP2019-123334 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021002422A1 true WO2021002422A1 (ja) 2021-01-07

Family

ID=74100371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025986 WO2021002422A1 (ja) 2019-07-02 2020-07-02 ホットスタンプ成形体

Country Status (6)

Country Link
US (1) US20220213572A1 (ja)
EP (1) EP3995595B1 (ja)
JP (1) JP7160204B2 (ja)
CN (1) CN113811630B (ja)
ES (1) ES2938040T3 (ja)
WO (1) WO2021002422A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353548A (ja) 2000-04-07 2001-12-25 Usinor 極めて高い機械的特性値をもつ成形部品を被覆圧延鋼板、特に被覆熱間圧延鋼板の帯材から型打ちによって製造する方法
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
JP2003147499A (ja) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法
JP2005048254A (ja) 2003-07-30 2005-02-24 Sumitomo Metal Ind Ltd 熱間成形時の耐皮膜剥離性に優れた亜鉛系めっき鋼材
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
WO2013047836A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 亜鉛めっき鋼板及びその製造方法
WO2014024825A1 (ja) 2012-08-07 2014-02-13 新日鐵住金株式会社 熱間成形用亜鉛系めっき鋼板
JP2014125672A (ja) * 2012-12-27 2014-07-07 Jfe Steel Corp 溶融亜鉛めっき鋼板
JP2017031452A (ja) * 2015-07-30 2017-02-09 新日鐵住金株式会社 自動車の外板パネル用合金化溶融亜鉛めっき鋼板およびその製造方法
JP2017186663A (ja) * 2016-03-30 2017-10-12 株式会社神戸製鋼所 ホットスタンプ用合金化溶融亜鉛めっき鋼板
JP2019123334A (ja) 2018-01-15 2019-07-25 日本発條株式会社 リクライニング装置及び車両用シート

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506128B2 (ja) * 2003-08-29 2010-07-21 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP2004360004A (ja) * 2003-06-04 2004-12-24 Jfe Steel Kk 半田付け性に優れる錫めっき鋼板
MX2010008551A (es) * 2008-02-15 2010-10-25 Nippon Steel Corp Lamina de acero galvanizado con capa de revestimiento a prueba de corrosion primaria delgada, que supera en conductividad superficial, y proceso para producir la misma.
JP5532088B2 (ja) * 2011-08-26 2014-06-25 Jfeスチール株式会社 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6001883B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
CA2914464C (en) * 2013-06-11 2017-07-18 Nippon Steel & Sumitomo Metal Corporation Hot stamp molded body, and method for producing hot stamp molded body
JP6326761B2 (ja) * 2013-10-23 2018-05-23 新日鐵住金株式会社 ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
RU2659526C2 (ru) * 2014-03-31 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячештампованная сталь
EP3178960B1 (en) * 2014-10-17 2019-05-22 JFE Steel Corporation High-strength hot-dip-galvanized steel sheet
JP2017066508A (ja) * 2015-10-02 2017-04-06 株式会社神戸製鋼所 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353548A (ja) 2000-04-07 2001-12-25 Usinor 極めて高い機械的特性値をもつ成形部品を被覆圧延鋼板、特に被覆熱間圧延鋼板の帯材から型打ちによって製造する方法
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
JP2003147499A (ja) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法
JP2005048254A (ja) 2003-07-30 2005-02-24 Sumitomo Metal Ind Ltd 熱間成形時の耐皮膜剥離性に優れた亜鉛系めっき鋼材
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
WO2013047836A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 亜鉛めっき鋼板及びその製造方法
WO2014024825A1 (ja) 2012-08-07 2014-02-13 新日鐵住金株式会社 熱間成形用亜鉛系めっき鋼板
JP2014125672A (ja) * 2012-12-27 2014-07-07 Jfe Steel Corp 溶融亜鉛めっき鋼板
JP2017031452A (ja) * 2015-07-30 2017-02-09 新日鐵住金株式会社 自動車の外板パネル用合金化溶融亜鉛めっき鋼板およびその製造方法
JP2017186663A (ja) * 2016-03-30 2017-10-12 株式会社神戸製鋼所 ホットスタンプ用合金化溶融亜鉛めっき鋼板
JP2019123334A (ja) 2018-01-15 2019-07-25 日本発條株式会社 リクライニング装置及び車両用シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995595A4

Also Published As

Publication number Publication date
EP3995595A4 (en) 2022-07-06
CN113811630B (zh) 2022-07-12
US20220213572A1 (en) 2022-07-07
EP3995595A1 (en) 2022-05-11
JPWO2021002422A1 (ja) 2021-01-07
ES2938040T3 (es) 2023-04-04
JP7160204B2 (ja) 2022-10-25
EP3995595B1 (en) 2023-01-18
CN113811630A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
JP7253837B2 (ja) ホットスタンプ加工済コンポーネントを製造する方法、及びホットスタンプ加工済コンポーネント
US9902135B2 (en) Galvanized steel sheet for hot forming
JP3582512B2 (ja) 熱間プレス用鋼板およびその製造方法
JP2014221943A (ja) 表面特性に優れた熱間プレス用亜鉛めっき鋼板並びにこれを利用した熱間プレス成形部品及びその製造方法
KR20200076741A (ko) 알루미늄계 도금 강판, 알루미늄계 도금 강판의 제조 방법 및 자동차용 부품의 제조 방법
JP4329639B2 (ja) 耐液体金属脆性に優れた熱処理用鋼板
KR20170066552A (ko) 용융 아연 도금 강판
CN111511942B (zh) 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法
CN116368252A (zh) Fe系电镀钢板和合金化热浸镀锌钢板以及它们的制造方法
WO2021002415A1 (ja) ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体
WO2013154184A1 (ja) 電気めっき用鋼板および電気めっき鋼板ならびにそれらの製造方法
JP6575724B1 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
WO2022091351A1 (ja) Zn系めっきホットスタンプ成形品
WO2021002422A1 (ja) ホットスタンプ成形体
CN115667571A (zh) 热压部件
WO2024053663A1 (ja) めっき鋼板
KR20230126728A (ko) 박강판
WO2024122121A1 (ja) めっき鋼板
WO2024089931A1 (ja) 熱間プレス部材および熱間プレス用鋼板
US20230407449A1 (en) Hot-pressed member, steel sheet for hot pressing, and method for manufacturing hot-pressed member
CN114746571A (zh) 电阻点焊部的疲劳强度优异的镀锌钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834674

Country of ref document: EP

Effective date: 20220202