WO2021000866A1 - 一种cmos-mems湿度传感器 - Google Patents

一种cmos-mems湿度传感器 Download PDF

Info

Publication number
WO2021000866A1
WO2021000866A1 PCT/CN2020/099378 CN2020099378W WO2021000866A1 WO 2021000866 A1 WO2021000866 A1 WO 2021000866A1 CN 2020099378 W CN2020099378 W CN 2020099378W WO 2021000866 A1 WO2021000866 A1 WO 2021000866A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
mems
humidity sensor
substrate
Prior art date
Application number
PCT/CN2020/099378
Other languages
English (en)
French (fr)
Inventor
肖韩
於广军
叶乐
黄如
Original Assignee
浙江省北大信息技术高等研究院
杭州未名信科科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省北大信息技术高等研究院, 杭州未名信科科技有限公司 filed Critical 浙江省北大信息技术高等研究院
Priority to US17/621,977 priority Critical patent/US20220244207A1/en
Publication of WO2021000866A1 publication Critical patent/WO2021000866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0083Temperature control
    • B81B7/009Maintaining a constant temperature by heating or cooling
    • B81B7/0096Maintaining a constant temperature by heating or cooling by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/015Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0714Forming the micromechanical structure with a CMOS process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0757Topology for facilitating the monolithic integration
    • B81C2203/0771Stacking the electronic processing unit and the micromechanical structure

Definitions

  • This application relates to the field of semiconductor chips, in particular to a CMOS-MEMS humidity sensor.
  • Humidity detection principles are mainly resistive, piezoresistive and capacitive.
  • capacitive sensors are widely used due to their simple structure, wide detection range, high reliability, and easy integration with CMOS technology.
  • the humidity sensitive layer is placed in the sandwich between the first and second electrode plates.
  • the second electrode plate has several holes to allow air to enter the polymer sensitive layer. In, realize humidity perception.
  • This solution is generally only suitable for the production of discrete devices, and needs to be used with ASIC chip system-in-package (SiP) after being sealed, and it is impossible to integrate ASIC and MEMS devices on a single chip.
  • the other is the interdigital capacitive structure design, the first electrode and the second electrode are in the same plane, the polymer layer is placed between the two, and the humidity measurement is realized by way of side capacitance detection.
  • the advantage of this scheme is that ASIC and MEMS devices can be integrated on a single chip, which has a greater cost advantage.
  • CMOS-MEMS humidity sensor that can realize CMOS-MEMS integration and has a heating function.
  • CMOS-MEMS humidity sensor including: a complementary metal oxide semiconductor ASIC readout circuit and a microelectromechanical system MEMS humidity sensor, the MEMS humidity sensor is arranged on the ASIC readout circuit;
  • the ASIC readout circuit includes a substrate, a heating resistance layer, a metal layer, and a dielectric layer.
  • the heating resistance layer is on the substrate, the metal layer is on the heating resistance layer, and the substrate and the heating resistance The layer and the metal layer are separated by a dielectric layer;
  • the MEMS humidity sensor includes an aluminum electrode layer, a passivation layer and a humidity sensitive layer, the passivation layer is on the aluminum electrode layer, and the humidity sensitive layer is on the passivation layer.
  • the heating resistor layer includes a plurality of heating resistors connected in parallel or in series.
  • the heating resistor is doped with polycrystalline or N-well doping or P-well doping.
  • the number of the metal layers is determined according to the ASIC circuit, and each metal layer is separated by a dielectric layer, and among the metal layers, the metal layer closest to the aluminum electrode layer is the sub-top metal.
  • the aluminum electrode layer is distributed in an interdigitated array on the sub-top metal, and the aluminum electrode layer is the top metal.
  • the passivation layer is on the top layer metal and the sub-top layer metal, the passivation layer includes silicon oxide, silicon nitride or a combination thereof, and the thickness of the passivation layer is 80 to 150 nm.
  • the humidity sensitive layer includes: polyimide, aluminum nitride or graphene.
  • the ASIC readout circuit is a standard CMOS process of 1-layer polycrystalline and multilayer metal.
  • the substrate is a silicon substrate.
  • the advantage of the present application is that the heating resistor is arranged in the ASIC circuit to realize the heating function and meet the CMOS standard process, so that the CMOS-MEMS integrated humidity sensor can be used stably under low temperature and high humidity conditions.
  • Fig. 1 is a structural diagram of a CMOS-MEMS humidity sensor provided by the present application.
  • CMOS-MEMS humidity sensor comprising: a complementary metal oxide semiconductor ASIC readout circuit and a microelectromechanical system MEMS humidity sensor, the MEMS humidity sensor is set in the ASIC reading Out of the circuit
  • the ASIC readout circuit includes: a substrate, a heating resistance layer, a metal layer, and a dielectric layer.
  • the heating resistance is on the layer substrate, the metal layer is on the heating resistance layer, the substrate, the heating resistance layer, and the The metal layers are separated by a dielectric layer;
  • the MEMS humidity sensor includes an aluminum electrode layer, a passivation layer and a humidity sensitive layer, the passivation layer is on the aluminum electrode layer, and the humidity sensitive layer is on the passivation layer.
  • the heating resistor layer includes multiple heating resistors connected in parallel or in series.
  • the heating resistor is doped with polycrystalline or N-well doping or P-well doping.
  • the number of metal layers is determined according to the ASIC circuit, and each metal layer is separated by a dielectric layer. Among the metal layers, the metal layer closest to the aluminum electrode layer is the next top layer metal.
  • the metal layer is arranged on the resistance bar (heating resistor).
  • the metal layer may be aluminum.
  • the aluminum electrode layer is arranged in an interdigitated array on the sub-top metal, and the aluminum electrode layer is the top metal.
  • the passivation layer is on the top layer metal and the sub-top layer metal.
  • the passivation layer includes silicon oxide, silicon nitride or a composite thereof, and the thickness of the passivation layer is 80 to 150 nm.
  • the humidity sensitive layer includes: polyimide, aluminum nitride or graphene, etc.
  • the ASIC readout circuit is a standard CMOS process of 1-layer polycrystalline and multilayer metal.
  • the substrate is a silicon substrate.
  • the ASIC readout circuit layer includes a substrate, a heating resistance layer, a dielectric layer, and a metal layer.
  • the MEMS humidity sensor layer includes an aluminum electrode layer (interdigital electrode), a passivation layer and a humidity sensitive layer.
  • a dielectric layer is arranged on the substrate, a heating resistance layer is arranged on the dielectric layer, and the dielectric layer and the metal layer are arranged in sequence until the processing of the CMOS readout circuit is completed.
  • the CMOS readout circuit has a dielectric layer on the surface.
  • the interdigital electrode of the humidity sensor is arranged on the CMOS readout circuit.
  • a passivation layer is provided on the interdigital electrode layer. Before the passivation layer is provided, the dielectric layer between the interdigital electrodes is removed until the sub-layer metal is exposed. Finally, a humidity sensitive layer is set on the passivation layer.
  • the aluminum electrode layer includes a plurality of aluminum electrodes (interdigital electrodes).
  • the metal layer includes a plurality of metals.
  • the heating function is realized by arranging the heating resistor in the ASIC circuit, and the CMOS standard process is satisfied, so that the CMOS-MEMS integrated humidity sensor can be used stably under low temperature and high humidity conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种CMOS-MEMS湿度传感器,包括:互补金属氧化物半导体ASIC读出电路和微机电系统MEMS湿度传感器,MEMS湿度传感器设置于ASIC读出电路上ASIC读出电路包括:衬底、加热电阻层、金属层和介质层,加热电阻层在衬底之上,金属层在加热电阻层之上,衬底、加热电阻层和金属层之间通过介质层隔开;MEMS湿度传感器包括:铝电极层、钝化层和湿度敏感层,钝化层在铝电极层之上,湿度敏感层在钝化层之上。通过将加热电阻设置在ASIC电路中,实现加热功能,满足CMOS标准工艺,使得CMOS-MEMS集成湿度传感器可以在低温高湿的工况下稳定使用。

Description

一种CMOS-MEMS湿度传感器 技术领域
本申请涉及半导体芯片领域,尤其涉及一种CMOS-MEMS湿度传感器。
背景技术
在航空航天,智能家居,冷链物流,洁净车间,农业畜牧业等领域,需要检测或监测环境湿度变化,以维持湿度在合适的状态。湿度的检测原理主要有电阻式,压阻式和电容式,其中电容式传感器由于其结构简单,检测范围宽,可靠性高,易与CMOS技术集成等优点而广泛运用。
目前,电容式传感器主要有两种设计方法,一种是平板结构设计,湿度敏感层置于第一和第二电极板的夹层中,第二电极板开若干孔,使空气进入高分子敏感层中,实现湿度感知。这种方案一般只适用于制作分立器件,需配合ASIC芯片系统级封装(System In a Package,SiP)合封后使用,无法在一颗芯片上实现ASIC和MEMS器件的集成。另一种是叉指电容式结构设计,第一电极和第二电极在同一平面内,高分子层置于两者之间,以侧面电容检测的方式实现湿度测量。这种方案的好处在于可以实现ASIC和MEMS器件集成在一颗芯片上,成本上有较大优势。
另一方面,在低温高湿等恶劣工况下,湿度传感器的敏感层会产生凝结水,从而影响传感器的正常工作;因此现有技术中,有在MEMS湿度器件的叉指层下方设置加热电阻的方案,来解决凝结水的问题,同时进行不同的加热策略,还可以实现提升器件响应性能。但是该方案无法实现CMOS-MEMS的集成,主要因为铝后工艺无法兼容合适的加热电阻制作方案。
综上所述,需要提供一种能够实现CMOS-MEMS集成且有加热功能的CMOS-MEMS湿度传感器。
发明内容
为解决以上问题,本申请提出了一种CMOS-MEMS湿度传感器,包括:互补金属氧化物半导体ASIC读出电路和微机电系统MEMS湿度传感器,所述MEMS湿度传感器设置于ASIC读出电路上;
所述ASIC读出电路包括:衬底、加热电阻层、金属层和介质层,所述加热电阻层在衬底之上,所述金属层在加热电阻层之上,所述衬底、加热电阻层和金属层之间通过介质层隔开;
所述MEMS湿度传感器包括:铝电极层、钝化层和湿度敏感层,所述钝化层在铝电极层之上,所述湿度敏感层在钝化层之上。
优选地,所述加热电阻层包括多根并联或串联的加热电阻。
优选地,所述加热电阻掺杂多晶或N阱掺杂或P阱掺杂。
优选地,所述金属层的数量根据ASIC电路确定,各金属层之间通过介质层隔开,各所述金属层中,距离铝电极层最近的金属层为次顶层金属。
优选地,所述铝电极层在次顶层金属之上,呈叉指状阵列分布,所述铝电极层为顶层金属。
优选地,所述钝化层在顶层金属和次顶层金属之上,所述钝化层包括:氧化硅、氮化硅或其复合物,所述钝化层的厚度为80至150nm。
优选地,所述湿度敏感层包括:聚酰亚胺、氮化铝或石墨烯。
优选地,所述ASIC读出电路为1层多晶,多层金属的标准CMOS工艺。
优选地,所述衬底为硅衬底。
本申请的优点在于:将加热电阻设置在ASIC电路中,实现加热功能,满足CMOS标准工艺,使得CMOS-MEMS集成湿度传感器可以在低温高湿的工况下稳定使用。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选事实方案的目的,而并不认为是对本申请的限制。而且在整个附图中,用同样的参考符号表示相同的部件。在附图中:
图1是本申请提供的一种CMOS-MEMS湿度传感器的结构图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
根据本申请的实施方式,提出一种CMOS-MEMS湿度传感器,如图1所示,包括:互补金属氧化物半导体ASIC读出电路和微机电系统MEMS湿度传感器,所述MEMS湿度传感器设置于ASIC读出电路上;
ASIC读出电路包括:衬底、加热电阻层、金属层和介质层,所述加热电阻在层衬底之上,所述金属层在加热电阻层之上,所述衬底、加热电阻层和金属层之间通过介质层隔开;
MEMS湿度传感器包括:铝电极层、钝化层和湿度敏感层,所述钝化层在铝电极层之上,所述湿度敏感层在钝化层之上。
加热电阻层包括多根并联或串联的加热电阻。
加热电阻掺杂多晶或N阱掺杂或P阱掺杂。
金属层的数量根据ASIC电路确定,各金属层之间通过介质层隔开,各所述金属层中,距离铝电极层最近的金属层为次顶层金属。
金属层设置在电阻条(加热电阻)上。
在一种可能的实施方式中,金属层可以为铝。
铝电极层在次顶层金属之上,呈叉指状阵列分布,所述铝电极层为顶层金属。
钝化层在顶层金属和次顶层金属之上,所述钝化层包括:氧化硅、氮化硅或其复合物等,所述钝化层的厚度为80至150nm。
湿度敏感层包括:聚酰亚胺、氮化铝或石墨烯等。
ASIC读出电路为1层多晶,多层金属的标准CMOS工艺。
衬底为硅衬底。
为了更好的理解本申请的实施方式,以下对其结构进行说明。
如图1所示,包含ASIC读出电路和湿度传感器层。其中ASIC读出电路层中包含衬底、加热电阻层、介质层和金属层。MEMS湿度传感器层中包含铝电极层(叉指电极)、钝化层和湿度敏感层。
在衬底上设置介质层,加热电阻层设置在介质层上,依次设置介质层和金属层,直至完成CMOS读出电路加工。CMOS读出电路表面有介质层。在CMOS读出电路上设置湿度传感器的叉指电极。在叉指电极层上设置钝化层。在设置钝化层之前,去除叉指电极之间的介质层,直至露出次顶层金属。最后在钝化层上设置湿度敏感敏层。
铝电极层包括多个铝电极(叉指电极)。
金属层包括多个金属。
本申请的实施方式中,通过将加热电阻设置在ASIC电路中,实现加热功能,满足CMOS标准工艺,使得CMOS-MEMS集成湿度传感器可以在低温高湿的工况下稳定使用。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种CMOS-MEMS湿度传感器,其特征在于,包括:互补金属氧化物半导体ASIC读出电路和微机电系统MEMS湿度传感器,所述MEMS湿度传感器设置于ASIC读出电路上;
    所述ASIC读出电路包括:衬底、加热电阻层、金属层和介质层,所述加热电阻层在衬底之上,所述金属层在加热电阻层之上,所述衬底、加热电阻层和金属层之间通过介质层隔开;
    所述MEMS湿度传感器包括:铝电极层、钝化层和湿度敏感层,所述钝化层在铝电极层之上,所述湿度敏感层在钝化层之上。
  2. 如权利要求1所述的传感器,其特征在于,所述加热电阻层包括多根并联或串联的加热电阻。
  3. 如权利要求2所述的传感器,其特征在于,所述加热电阻掺杂多晶或N阱掺杂或P阱掺杂。
  4. 如权利要求1所述的传感器,其特征在于,所述金属层的数量根据ASIC电路确定,各金属层之间通过介质层隔开,各所述金属层中,距离铝电极层最近的金属层为次顶层金属。
  5. 如权利要求1所述的传感器,其特征在于,所述铝电极层在次顶层金属之上,呈叉指状阵列分布,所述铝电极层为顶层金属。
  6. 如权利要求1所述的传感器,其特征在于,所述钝化层在顶层金属和次顶层金属之上,所述钝化层包括:氧化硅、氮化硅或其复合物,所述钝化层的厚度为80至150nm。
  7. 如权利要求1所述的传感器,其特征在于,所述湿度敏感层包括:聚酰亚胺、氮化铝或石墨烯。
  8. 如权利要求1所述的传感器,其特征在于,所述ASIC读出电路为1层多晶,多层金属的标准CMOS工艺。
  9. 如权利要求1所述的传感器,其特征在于,所述衬底为硅衬底。
PCT/CN2020/099378 2019-07-02 2020-06-30 一种cmos-mems湿度传感器 WO2021000866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/621,977 US20220244207A1 (en) 2019-07-02 2020-06-30 Cmos-mems humidity sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910591523.0A CN110346423B (zh) 2019-07-02 2019-07-02 一种cmos-mems湿度传感器
CN201910591523.0 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021000866A1 true WO2021000866A1 (zh) 2021-01-07

Family

ID=68177493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099378 WO2021000866A1 (zh) 2019-07-02 2020-06-30 一种cmos-mems湿度传感器

Country Status (3)

Country Link
US (1) US20220244207A1 (zh)
CN (1) CN110346423B (zh)
WO (1) WO2021000866A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346423B (zh) * 2019-07-02 2021-05-04 杭州未名信科科技有限公司 一种cmos-mems湿度传感器
CN111122656A (zh) * 2019-12-04 2020-05-08 浙江省北大信息技术高等研究院 一种湿度传感器及其制备方法
CN111130529B (zh) * 2019-12-17 2023-06-20 杭州未名信科科技有限公司 逻辑电路的设计方法
CN114858874A (zh) * 2022-07-07 2022-08-05 苏州敏芯微电子技术股份有限公司 湿度感测结构、湿度传感器及湿度感测结构的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030002238A1 (en) * 2001-06-15 2003-01-02 Inao Toyoda Capacitive moisture sensor
CN1455251A (zh) * 2003-06-12 2003-11-12 东南大学 微型湿度传感器
CN102253091A (zh) * 2011-04-19 2011-11-23 东南大学 基于氧化石墨烯的电容式相对湿度传感器
CN103236429A (zh) * 2013-05-14 2013-08-07 哈尔滨工业大学 带加热单元的微型碳纳米管湿度传感器芯片
CN104914138A (zh) * 2015-07-03 2015-09-16 深圳市共进电子股份有限公司 湿度传感器、湿度传感器阵列及其制备方法
CN107144609A (zh) * 2017-04-01 2017-09-08 上海申矽凌微电子科技有限公司 湿敏传感器的制造方法以及使用该方法制造的湿敏传感器
CN110346423A (zh) * 2019-07-02 2019-10-18 浙江省北大信息技术高等研究院 一种cmos-mems湿度传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620197B (zh) * 2009-07-23 2012-09-05 东南大学 一种快速响应的cmos相对湿度传感器
US9276080B2 (en) * 2012-03-09 2016-03-01 Mcube, Inc. Methods and structures of integrated MEMS-CMOS devices
CN102243199A (zh) * 2011-04-20 2011-11-16 东南大学 快速响应的微电子机械系统相对湿度传感器
US10107773B2 (en) * 2012-10-29 2018-10-23 MEMS-Vision International Inc. Methods and systems for humidity and pressure sensor overlay integration with electronics
EP2755023B1 (en) * 2013-01-11 2017-06-21 MEAS France Capacitive sensor integrated onto semiconductor circuit
US10175188B2 (en) * 2013-03-15 2019-01-08 Robert Bosch Gmbh Trench based capacitive humidity sensor
CN103698367B (zh) * 2013-11-27 2015-11-25 北京长峰微电科技有限公司 一种加热式湿度传感器及其制作方法
CN103675042B (zh) * 2013-11-30 2016-10-26 江苏物联网研究发展中心 Cmos mems电容式湿度传感器
CN104849325B (zh) * 2014-02-18 2018-02-27 无锡华润上华科技有限公司 与cmos工艺兼容的mems湿度传感器及其制造方法
CN105253851B (zh) * 2015-09-14 2017-03-22 合肥芯福传感器技术有限公司 一种芯片级系统传感器及其制备方法
US10336606B2 (en) * 2016-02-25 2019-07-02 Nxp Usa, Inc. Integrated capacitive humidity sensor
JP7120519B2 (ja) * 2018-07-12 2022-08-17 ミネベアミツミ株式会社 湿度センサ及びその製造方法
CN109444235A (zh) * 2018-10-23 2019-03-08 中国科学院微电子研究所 集成式湿度传感器及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030002238A1 (en) * 2001-06-15 2003-01-02 Inao Toyoda Capacitive moisture sensor
CN1455251A (zh) * 2003-06-12 2003-11-12 东南大学 微型湿度传感器
CN102253091A (zh) * 2011-04-19 2011-11-23 东南大学 基于氧化石墨烯的电容式相对湿度传感器
CN103236429A (zh) * 2013-05-14 2013-08-07 哈尔滨工业大学 带加热单元的微型碳纳米管湿度传感器芯片
CN104914138A (zh) * 2015-07-03 2015-09-16 深圳市共进电子股份有限公司 湿度传感器、湿度传感器阵列及其制备方法
CN107144609A (zh) * 2017-04-01 2017-09-08 上海申矽凌微电子科技有限公司 湿敏传感器的制造方法以及使用该方法制造的湿敏传感器
CN110346423A (zh) * 2019-07-02 2019-10-18 浙江省北大信息技术高等研究院 一种cmos-mems湿度传感器

Also Published As

Publication number Publication date
CN110346423B (zh) 2021-05-04
US20220244207A1 (en) 2022-08-04
CN110346423A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2021000866A1 (zh) 一种cmos-mems湿度传感器
JP5819631B2 (ja) 経時温度変化の変換を行うトランスデューサ、このトランスデューサを組み込んである電子チップ、およびこの電子チップの製造方法
US7471093B2 (en) Capacitive humidity sensor
KR101234990B1 (ko) 온습도 복합센서 및 그 제조방법
US10648999B2 (en) Method for manufacturing an acceleration sensor
KR102187614B1 (ko) 커패시터형 습도센서
CN102288335B (zh) 测量装置
US8550707B2 (en) Device for detecting temperature variations in a chip
CN105466463B (zh) 传感器芯片
US11187666B2 (en) Method for manufacturing a relative humidity sensor and relative humidity sensor
CN102449453B (zh) 具有高信号电压及高信号/噪声比的红外光传感器
US20170190227A1 (en) Piezoelectric sensor and piezoelectric element
WO2014185771A2 (en) A capacitive humidity sensor
CN106768050B (zh) 一种单芯片高精度温湿度传感器
CN110127592B (zh) Mems感知器结构及其制造方法
WO2021109999A1 (zh) 一种湿度传感器及其制备方法
US20160265996A1 (en) Sensor device
JP2014504018A (ja) アクチュエータ及びその製造方法
CN102012437A (zh) 应用无线射频识别标签技术的热气泡式加速仪及制备方法
CN110118807A (zh) 一种mems湿度传感器及其制造方法
TW201809650A (zh) 微機電系統濕度感測器
US11506624B2 (en) Capacitive gas sensors and manufacturing method thereof
JP2012033760A (ja) 半導体装置及び半導体装置の製造方法
US20170315074A1 (en) Micromechanical moisture sensor device and corresponding manufacturing method
KR20160048257A (ko) Cmos 습도 센서 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834718

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20834718

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.06.2022)