KR20160048257A - Cmos 습도 센서 및 그 제조 방법 - Google Patents

Cmos 습도 센서 및 그 제조 방법 Download PDF

Info

Publication number
KR20160048257A
KR20160048257A KR1020140144086A KR20140144086A KR20160048257A KR 20160048257 A KR20160048257 A KR 20160048257A KR 1020140144086 A KR1020140144086 A KR 1020140144086A KR 20140144086 A KR20140144086 A KR 20140144086A KR 20160048257 A KR20160048257 A KR 20160048257A
Authority
KR
South Korea
Prior art keywords
humidity sensor
layer
humidity
cmos
moisture
Prior art date
Application number
KR1020140144086A
Other languages
English (en)
Other versions
KR101649605B1 (ko
Inventor
김관수
홍주현
조승모
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020140144086A priority Critical patent/KR101649605B1/ko
Publication of KR20160048257A publication Critical patent/KR20160048257A/ko
Application granted granted Critical
Publication of KR101649605B1 publication Critical patent/KR101649605B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 CMOS 습도 센서 및 그 제조 방법에 관한 것으로, CMOS 습도 센서는 반도체 기판 상에 습도 센서 영역과 주변 회로 영역 및 상기 습도 센서 영역에 형성되는 습도 센서를 포함하고, 상기 습도 센서는 하부 전극, 상기 하부 전극 상에 절연막 및 연결 비아, 상기 하부 전극과 상기 연결 비아를 통해 전기적으로 연결되는 제2 전극, 상기 제2 전극 측면에 나란하게 배치된 제1 전극, 상기 제1 및 제2 전극 사이에 형성된 감습층 및 상기 감습층 상에 형성된 보호막을 포함한다. 따라서, CMOS 습도 센서 및 그 제조 방법은 반도체 패키지 또는 반도체 웨이퍼 상에 습도 센서가 원칩으로 제조될 수 있고, 습도센서의 감습층 상에 보호막을 형성하여 습도센서의 신뢰성을 확보할 수 있다.

Description

CMOS 습도 센서 및 그 제조 방법 {CMOS humidity sensor and method for manufacturing the same}
본 발명은 CMOS 습도 센서 기술에 관한 것으로, 보다 상세하게는, 단순화된 공정에 의한 반도체 기반의 정전 용량형 CMOS 습도 센서 및 그 제조방법에 관한 것이다.
일반적으로 습도센서는 단순 상대습도 측정 또는 에너지 절약 목적으로 가전 제품, 선박 및 의료기기 등에 광범위하게 사용된다. 이러한 습도센서는 동작 원리에 따라 저항형 습도센서와 용량형 습도센서로 구분된다.
저항형 습도센서는 습도에 의해 변화되는 저항의 변화를 이용하여 습도를 측정하고, 용량형 습도센서는 감습물질에 의해 흡수되는 수분의 변화에 의해 정전용량이 변하는 것을 감지하여 습도를 측정한다. 기존에는 가격 경쟁력으로 인해 저항형 습도센서를 많이 제작하였으나, 최근에는 정전 용량형 습도센서도의 IC화로 인해 가격경쟁력이 증가하여 용량형 습도센서가 많이 개발 되고 있다.
한국등록특허 제10-0455452호는 정전 용량형 습도센서에 관한 것으로, 2개의 전극이 동일 평면 상에 배치되고 전극 사이의 간격에 따라 습도 센서의 히스테리시스를 조절할 수 있는 정전 용량형 습도 센서에 관한 것이다.
그러나, 이러한 종래기술들은 감습층이 공기 중에 노출되어 외부의 강한 자극 (고온/고습 환경)에 의해 센서의 신뢰성을 확보할 수 없는 한계가 있다.
종래의 정전용량형 습도센서는 단일층의 감습 물질을 사용하여 제작되었으며, 감습 물질로는 반도체 공정에 용이한 단일 층의 폴리이미드(polyimide)가 사용되었으며, 폴리이미드를 이용한 감습 물질은 내수성 및 내화학성을 가지고 있다. 그러나, 폴리이미드를 이용한 감습 물질은 고온/고습 (85°C/85%, 1008h)의 가혹한 외부 환경에서는 변형 및 열화가 발생하여 초기 유전율 대비 증가하거나 감소하여 습도센서의 정확성 (accuracy)을 저하 시키는 요인으로 작용한다.
한국등록특허 제10-0455452호
본 발명의 일 실시예는 반도체 패키지 또는 반도체 웨이퍼 상에 습도 센서가 원칩으로 제조될 수 있는 CMOS 습도 센서 및 그 제조 방법을 제공하고자 한다.
본 발명의 일 실시예는 습도센서의 감습층 상에 보호막을 형성하여 습도센서의 신뢰성을 확보할 수 있는 CMOS 습도 센서 및 그 제조 방법을 제공하고자 한다.
본 발명의 일 실시예는 하부 전극과 제2 전극 비아를 통해 연결하여 습도센서의 정확도를 향상시킬 수 있는 CMOS 습도 센서 및 그 제조 방법을 제공하고자 한다.
실시예들 중에서, CMOS 습도 센서는 반도체 기판 상에 습도 센서 영역과 주변 회로 영역 및 상기 습도 센서 영역에 형성되는 습도 센서를 포함하고, 상기 습도 센서는 하부 전극, 상기 하부 전극 상에 절연막 및 연결 비아, 상기 하부 전극과 상기 연결 비아를 통해 전기적으로 연결되는 제2 전극, 상기 제2 전극 측면에 나란하게 배치된 제1 전극, 상기 제1 및 제2 전극 사이에 형성된 감습층 및 상기 감습층 상에 형성된 보호막을 포함한다.
일 실시예에서, 상기 CMOS 습도 센서는 상기 감습층과 상기 보호막 사이에 형성되는 버퍼층을 더 포함할 수 있다.
일 실시예에서, 상기 감습층은 상기 절연막까지 연장되어 형성되는 것을 포함할 수 있다.
일 실시예에서, 상기 보호막의 유전율은 2 - 3.5 값의 범위에 해당하고, 상기 감습층의 유전율은 3 - 4 값의 범위에 해당할 수 있다. 상기 보호막의 두께는 상기 감습층의 두께보다 작게 형성될 수 있다.
일 실시예에서, 상기 보호막은 폴리머(polymer)로 형성될 수 있다.
일 실시예에서, 상기 감습층 및 보호막은 상기 주변 회로 영역까지 확장되어 형성될 수 있다.
일 실시예에서, CMOS 습도 센서는 상기 습도 센서의 하부 영역 또는 상기 주변 영역에 형성되는 기준 커패시터를 더 포함할 수 있고, 상기 기준 커패시터는 상기 습도 센서 영역에 기준 커패시턴스 값을 제공할 수 있다.
실시예들 중에서, CMOS 습도 센서는 반도체 기판 상에 형성되는 제1 및 제2 전극 및 상기 제1 및 제2 전극 사이에 형성된 복수의 감습층들을 포함하고, 상기 복수의 감습층들은 제1 감습층과 제2 감습층이 교번하여 형성된다.
일 실시예에서, 상기 제1 감습층의 감습률은 상기 제2 감습층의 감습률보다 작을 수 있다. 상기 제1 감습층의 두께가 상기 제2 감습층보다 얇게 형성될 수 있다.
실시예들 중에서, CMOS 습도 센서 제조 방법은 반도체 웨이퍼 상에 습도 센서 영역과 주변 회로 영역을 형성하는 단계, 상기 습도 센서 영역 상에 습도 센서를 형성하는 단계, 상기 습도 센서 상에 보호막을 증착하는 단계, 상기 보호막을 패터닝 하는 단계 및 상기 반도체 상에 형성된 습도 센서 칩을 패키징하는 단계를 포함한다.
일 실시예에서, 상기 습도 센서 영역 상에 습도 센서를 형성하는 단계는 상기 습도 센서 영역에 하부 전극을 형성하는 단계, 상기 하부 전극 상에 절연막 및 연결 비아를 형성하는 단계 및 상기 하부 전극 상에 제1 및 제2 전극을 형성하는 단계를 포함할 수 있다.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 일 실시예에 따른 CMOS 습도 센서 및 그 제조 방법은 반도체 패키지 또는 반도체 웨이퍼 상에 습도 센서가 원칩으로 제조될 수 있다.
본 발명의 일 실시예에 따른 CMOS 습도 센서 및 그 제조 방법은 습도센서의 감습층 상에 보호막을 형성하여 습도센서의 신뢰성을 확보할 수 있다.
본 발명의 일 실시예에 따른 CMOS 습도 센서 및 그 제조 방법은 하부 전극과 제2 전극 비아를 통해 연결하여 습도센서의 정확도를 향상시킬 수 있다.
도 1는 본 발명의 제1 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 2는 본 발명의 제2 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 3은 본 발명의 제3 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 4는 본 발명의 제4 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 5는 본 발명의 일 실시예에 따른 CMOS 습도 센서를 실리콘 기판 상에 집적한 CMOS 센서 소자를 설명하는 도면이다.
도 6은 도 1에 있는 CMOS 습도 센서의 제조 과정을 설명하는 순서도이다.
도 7은 도 1에 있는 CMOS 습도 센서에 배치된 보호막에 의한 효과를 설명하는 C-H 그래프이다.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
“및/또는”의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, “제1 항목, 제2 항목 및/또는 제3 항목”의 의미는 제1, 제2 또는 제3 항목뿐만 아니라 제1, 제2 또는 제3 항목들 중 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미한다.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
도 1는 본 발명의 제1 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 1을 참조하면, 습도 센서(100)는 반도체 기판(110), 절연막(120), 하부 전극(130), 연결 비아(connecting via, 140), 제1 및 제2 전극들(150, 160), 차단막(170), 감습층(180) 및 보호막(190)을 포함한다. 여기서, 절연막(120)은 제1 절연막(121) 및 제2 절연막(122)로 분리될 수 있다. 본 발명에서는 제1 및 제2 전극들(150, 160)의 상부와 접촉하는 감습층(180)을 기재하고 있으나, 이에 한정하지 않고, 수분 센싱 능력을 높이기 위해 제2 절연막(122)까지 연장되어 제1 및 제2 전극들(150, 160)을 포함하도록 형성되는 감습층(180)으로 구현될 수 있다.
반도체 기판(110)은 습도 센서(100)를 집적시키기 위한 베이스로서 도전형의 기판(예를 들어, 실리콘 기판)으로 형성될 수 있다. 반도체 기판(110) 상에는 제1 절연막(121) 및 하부 전극(130)이 형성될 수 있다.
절연막(120)은 제1 절연막(121)과 제2 절연막(122)로 구분될 수 있으며, 제1 절연막(121)은 반도체 기판(110)상에 배치되고, 제2 절연막(122)의 상부에는 제1 및 제2 전극들(150, 160)이 배치된다. 일 실시예에서, 연결 비아(140)는 하부 전극(130)과 제2 전극(160) 사이에 연결되어 하부 전극이 제2 전극의 역할을 수행하도록 지원할 수 있다.
예를 들어, 연결 비아(140)가 하부 전극(130)과 제2 전극(160)을 연결시킬 경우, 제2 전극(160)의 면적이 넓어지는 효과를 발생시키고, 이에 따라 동일한 습도 변화에서도 더 큰 정전용량을 발생시킬 수 있다. 이로써, CMOS 습도 센서(100)는 정확성을 확보할 수 있다.
제1 및 제2 전극들(150, 160) 서로 이격되어 배치되고 감습층(180)에 흡수된 수분에 따른 정전용량을 제공한다. 보다 구체적으로, 제1 및 제2 전극들(150, 160)은 감습층(180)에 의해 흡수되는 수분 함량에 따라 정전 용량이 변하게 되고 변화되는 정전 용량을 각각 감지하여 그 차이를 이용하여 상대습도를 제공할 수 있다.
또한, 제2 전극(160)은 연결 비아(140)를 통해 하부 전극(130)과 전기적으로 연결될 수 있다. 제2 전극(160)과 연결 비아(140)와 하부 전극(130)은 전기적으로 서로 연결되어 있으므로 하나의 큰 제3 전극(130,140,160)을 형성할 수 있다. 따라서, 본 발명의 습도센서(100)는 제1 전극(150)과 하나의 큰 제3 전극(130,140,160) 사이의 정전용량 변화를 감지하는 센서로 구현될 수 있다. 이로써, 정전 용량의 면적이 커져서 종래의 하나의 평면 상에 두 개의 comb-type 의 전극 배치보다 센싱 능력이 증가될 수 있다.
차단막(170)은 제1 및 제2 전극들(150, 160) 상부에 제1 및 제2 전극들(150, 160)의 패턴을 따라 형성된다. 차단막(170)은 제1 및 제2 전극들(150, 160)이 수분이나 감습 물질에 의해 부식이나 산화되는 것을 방지할 수 있다. 차단막(170)이 제1 및 제2 전극들(150, 160)에 코팅되지 않은 경우, 제1 및 제2 전극들(150, 160)에 부식 또는 산화에 의해 변성이 유발될 수 있고, 제1 및 제2 전극들(150, 160)은 그 유발된 변성에 의해 습도를 정상적으로 감지할 수 없게 된다. 여기서, 차단막(170)은 산화물(oxide), 질화물(nitride) 또는 질산화물(oxynitride) 계열로 형성될 수 있다.
감습층(180)은 차단막(170)의 상부에 배치되어 외부의 공기로부터 수분을 흡수할 수 있는 감습 물질로 구성된다. 습기가 변화되는 경우, 흡수된 습기에 의해 감습 물질의 유전율이 변화되고 이에 따라, 제1 및 제2 전극들(150, 160)의 정전용량이 변화될 수 있다. 또한, 감습층(180)의 민감도는 정전용량에 영향을 줄 수 있고 이는 습도 센서(100)에 의해 측정되는 상대 습도에 영향을 줄 수 있다.
예를 들어, 감습층(180)을 구성하는 감습물질은 폴리머(polymer), 폴리이미드(polymide) 또는 다공성 세라믹으로 형성될 수 있다. 이러한 감습 물질은 공기에 노출될 경우 상대 습도에 따라 수분을 흡수하거나 방출할 수 있고, 습도 센서(100)에서 감지되는 습도 변화는 감습 물질 내의 수분 ?유량에 따라 변화하는 유전율을 측정함으로써 구현될 수 있다.
보호막(190)은 감습층(180) 상에 증착되어 감습층(180)을 외부 환경으로부터 보호한다. 즉, 보호막(190)은 감습층(180)이 고온 또는 고습과 같은 가혹한 환경에 노출되는 경우 발생될 수 있는 감습층(180)의 변성을 지연 또는 방지시킬 수 있다. 보호막(190)은 감습층(180) 상에 증착됨으로써 감습층(180)이 외부 공기(외기)에 직접적으로 노출되는 것을 방지할 수 있다. 보호막(190)은 수분이 통과할 수 있는 물질이어야 하므로, 기공(pore)이 존재하는 다공성 물질을 주로 이용한다. 다공성 물질로 구성된 보호막(190)을 통해 외부 공기에 포함된 수분이 기공을 통해 감습층(180)으로 도달될 수 있다. 여기서, 다공성 물질은 고분자 (폴리머) 재료, 무기산화막, 에어로젤 산화막을 사용할 수 있다. 이들 물질은 감습층에 코팅이 잘 될 수 있는 물질이어야 한다. 그래서 들? 현상 없이 잘 부착될 수 있는 물질이 적합하다.
여기서, 감습층(180)에서 외부 공기의 수분을 더 많이 감지할 수 있어야 하므로, 보호막(190)의 감습률은 감습층(180)의 감습률보다 낮게 형성될 수 있다. 왜냐하면 보호막(폴리머 재료)에서 너무 많은 수분이 흡착되면 감습층의 역할이 줄어들기 때문이다.
도 1에서, 보호막(190)은 제1 및 제2 전극들(150, 160)의 상부에 배치된다. 이는 보호막(190)이 제1 및 제2 전극들(150, 160) 하부까지 내려갈 경우, 보호막(190)의 감도를 일정하게 유지할 수 없다. 또한, 보호막(190)을 구성하는 폴리머 재료는 기상 증착 또는 스핀 코팅이 가능한 물질로 구현될 수 있다. 따라서, 보호막(190)의 적절한 유전율은 2 - 3.5의 범위에 해당하고, 감습층(180)의 적절한 유전율은 3-4 값의 범위에 해당할 수 있다.
일 실시예에서, 보호막(190)의 두께는 감습층(180)의 두께보다 작게 형성될 수 있다. 보호막(190)의 두께가 감습층(180)의 두께보다 크게 형성될 경우, 보호막(190)이 감습층(180)보다 더 많은 수분을 흡수하게 될 수 있으므로, 보호막(190)의 두께는 감습층(180)의 두께보다 작게 형성되는 것이 바람직하다.
도 2는 본 발명의 제2 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 2에서, CMOS 습도 센서(200)는 감습층(180)과 보호막(190) 사이에 형성되는 버퍼층(buffer layer, 210)을 더 포함한다. 버퍼층(210)은 감습층(180)과 보호막(190) 사이에 계면 특성을 향상 시킬 수 있고, 감습층(180)과 보호막(190)의 사이의 부착력(adhesion force)을 향상 시킬 수 있다. 여기서 버퍼층(210)은 폴리머 재료의 일종인 오버 코팅 층(Over Coating Layer)층이 사용될 수 있다. 오보 코팅 층은 수분이 잘 통과할 뿐만 아니라, 빛 투과율도 높은 물질에 속한다.
일 실시예에서, 버퍼층(210) 상에 보호막(190)을 형성하지 않고, 버퍼층(210)만 단독으로 형성될 수 있다. 이 경우, 버퍼층(210)은 보호막(190)의 역할을 수행하여 감습층(180)의 변성을 방지할 수 있다.
도 3은 본 발명의 제3 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 3를 참조하면, 습도 센서(300)는 복수의 감습층들(311, 312, 313, 314, 315)을 교대(또는 교변)로 배치하여 형성된 감습층(310)을 포함한다. 여기서 복수의 감습층들(311, 312, 313, 314, 315) 각각은 서로 다른 감습 특성을 가질 수 있다. 일 실시예에서, 복수의 감습층들(310)이 교대로 배치될 경우, 수분에 대한 민감도가 낮은 제1 감습층(311, 313, 315) 그룹과 민감도가 높은 제2 감습층(312, 314) 그룹이 교대로 배치할 수 있다. 민감도가 낮은 제1 감습층(311, 313, 315) 그룹은 민감도 높은 제2 감습층(312, 314) 그룹을 보호함으로써 제2 감습층(312, 314) 그룹의 변성을 방지할 수 있다. 즉, 민감도가 떨어지는 제1 감습층(311, 313, 315) 그룹이 도 1에 도시된 보호막(190)과 같은 역할을 할 수 있다.
여기서 제1 감습층(311, 313, 315) 그룹의 두께는 제2 감습층(312, 314) 그룹의 두께보다 낮게 형성될 수 있다. 따라서, 복수의 감습층들(310)은 수분의 흡수/탈착을 용이하게 수행할 수 있고 복수의 감습층들(310)의 센싱능력을 유지할 수 있다. 복수의 감습층들(310)을 상기와 같이 배치할 경우, 복수의 감습층들(310)의 구조는 외부의 극한 환경에 노출되더라도 감습 물질의 변성을 방지할 수 있고, 이에 따라 복수의 감습층들(310)은 감습층(180)과 보호막(190)을 대체할 수 있다.
또한, 단일의 감습층으로 구성되지 않고, 복수의 감습층들(310)로 형성된 습도 센서(300)는 고온/고습 (85°C/85%, 1008h)의 가혹한 외부 환경에서 강한 물질을 감습 물질 상에 코팅하여 고온/고습의 수분이 감습물질에 침투하여 폴리이미드의 결합을 끊거나 다른 물질과 반응하여 변성을 일으키는 것을 최소화할 수 있다.
도 4는 본 발명의 제4 실시예에 따른 CMOS 습도 센서를 설명하는 측면도이다.
도 4을 참조하면, CMOS 습도 센서(400)는 무기질(inorganic material)의 감습층(180)과 보호막(190)으로 형성될 수 있다. 여기서, 감습층(180)과 보호막(190)은 CVD 또는 스퍼터링 방법으로 증착되는 무기질 절연 물질을 이용하여 형성할 수 있다. 이 경우, 감습층(180) 및 보호막(190)은 제1 및 제2 전극 표면(150, 160)을 따라 컨포멀(conformal)한 증착을 통해 형성되어 외부 환경과 접촉되는 CMOS 습도 센서(400)의 표면에 굴곡이 형성될 수 있다. 따라서, 감습층(180)과 보호막(190)은 외부 환경에 노출되는 표면적이 넓어지게 되고, 감습층(180)과 보호막(190)은 외부 환경으로부터 더 많은 습기를 흡수하여 CMOS 습도 센서(400)의 정확성을 향상 시킬 수 있다. 감습층(180)과 보호막(190)이 폴리머 계열의 감습 물질로 구성될 경우, 이러한 굴곡 효과가 구현될 수 없으므로, 감습층(180)과 보호막(190)의 굴곡 효과를 발생 시키기 위해서 무기질 절연 물질로 형성될 수 있다.
도 5는 본 발명의 일 실시예에 따른 CMOS 습도 센서를 실리콘 기판 상에 집적한 CMOS 센서 소자를 설명하는 도면이다.
도 5는 앞서 설명한 CMOS 습도 센서뿐만 아니라 주변회로영역을 하나의 반도체 기판에 집적한 CMOS 습도 센서 소자(CMOS sensor IC, 500)에 대한 도면이다. 즉, 습도 센서가 포함된 CMOS 습도 센서 칩(500)에 대한 것이다. CMOS 습도 센서 칩(500)은 습도 센서 영역(10)과 주변 회로 영역(20)으로 구분될 수 있다. 습도 센서 영역(10)은 CMOS 습도 센서(100)를 포함하고 대기 습도에 따라 커패시턴스(capacitance) 값이 변화되는 영역이다. 습도 센서 영역(10)에 형성된 감습층(180)은 제1 및 제2 전극(150, 160) 사이 및 그 주변을 커버하도록 형성될 수 있다.
여기서 감습층(180,530b) 및 보호막(190,530c)은 주변 회로 영역(20)의 패시베이션 막 (passivation layer, 530a)의 상부까지 확장하여 형성될 수 있다. 이는 외부 환경에 있는 수분에 대한 감습량이 증가시키고, 이에 따라 CMOS 습도 센서(100)의 정확도를 향상시킬 수 있다. 여기서 패시베이션 막(530a)은 최종 상부 금속 배선층(520c) 위에 형성되는 막으로서, 금속 배선(520c, 520b, 520a)를 보호하는 역할을 하며, 실리콘 산화막 또는 실리콘 질화막 또는 산화막/질화막으로 구성될 수 있다. 그리고 상부 금속 배선층(520c)는 제1 전극(150) 및 제2 전극(160) 형성시 동일한 스텝에서 형성된다. 상부 금속 배선층(520c)는 외부 단자와 연결을 위해 필요하다.
습도 센서 영역(10)에 CMOS 습도 센서(100)뿐만 아니라 기준 커패시터 (510)와 피드백 커패시터(미도시)가 형성된다. 여기서 CMOS 습도 센서(100)는 센싱 커패시턴스 값(Cs)을 CMOS 습도 센서 칩(500)에 제공하고 기준 커패시터(510)는 기준 커패시턴스 값(Cr)을 CMOS 습도 센서 칩(500)에 제공한다. 기준 커패시터(510)는 CMOS 습도 센서(100)에 사용되는 감습층(180)과 다른 물질로 형성된 유전막을 사용한다. 기준 커패시터(150) 및 피드백 커패시터는 MIM 형태의 커패시터 타입을 사용한다. 센싱 커패시턴스 값(Cs)은 감습층(180)에 의해 센싱되는 습도 변화에 따라 값이 달라지지만, 기준 커패시턴스 값(Cr)은 외부의 습도 변화에 관계없이 일정한 값을 유지함으로써 기준이 되는 정전 용량을 CMOS 습도 센서 칩(500)에 제공할 수 있다.
여기서, 기준 커패시턴스 값(Cr)이 외부의 습도변화와 관계없이 일정한 값을 유지하기 위해서는 외부 공기에 포함된 수분 및 감습층(180)에 흡수된 수분이 기준 커패시터(510)에 흡수되지 않도록 구성되어야 하므로, 기준 커패시터(510)는 CMOS 습도 센서(100)와 다른 절연층에 형성되는 것이 바람직하다. CMOS 습도 센서(100)와 기준 커패시터(510)가 같은 층에 배치될 경우, 공기 중의 수분이 기준 커패시터(510)에 흡수되어 기준 정전 용량에 변화를 줄 수 있기 때문이다. 일 실시예에서, 기준 커패시터(510)는 CMOS 습도 센서(100)가 형성되어 있는 기준면의 하부에 배치될 수 있다.
일 실시예에서, 피드백 커패시터(미도시)는 기준 커패시터(510)와 같이 CMOS 습도 센서(100)와 서로 다른 층에 형성되며, 상기 CMOS 습도 센서(100)가 형성되어 있는 기준면의 하부에 형성될 수 있다. 본 발명에서는 칩의 크기를 효율적으로 줄이기 위해서 CMOS 습도 센서(100) 영역 바로 아래에 기준 커패시터(510)을 배치하였으며, 이로써 CMOS 습도 센서 칩(500)의 크기가 컴팩트하게 구현될 수 있다. 또는 다른 일시예로, 기준 커패시터 (510)와 피드백 커패시터(미도시)는 습도 센서 영역(10)이 아닌, 주변 회로 영역(20)에 배치할 수도 있다. 이는 수분 흡수 영역과 멀리 떨어 뜨려 배치하기 위함으로, 기준 커패시터의 습도 변화에 전혀 반응하지 않기 위함이다.
주변회로 영역(20)은 습도 센서 영역(10)의 검출 신호를 처리하고 습도에 대응하는 신호를 출력하기 위한 신호 처리부의 역할을 한다. 주변회로 영역(20)은 CMOS 습도 센서(100)로부터 수신되는 습도 신호를 분석하는 컨트롤 유닛(control unit, 미도시)이 포함될 수 있고 컨트롤 유닛에 의해 분석된 결과를 보여 주는 출력 유닛(미도시)을 포함할 수 있다. 주변 회로 영역(20)은 CMOS 회로의 (Read-Out Integrated Circuit) 부분에 해당한다. 금속 배선(520a, 520b, 520c)은 상기 컨트롤 유닛 또는 출력 유닛과 연결된 금속배선이다. 상기 금속 배선은 외부 단자와 연결하여 출력 신호를 보내게 된다. 또한 금속 배선(520a, 520b, 520c)은 주변 회로 영역(20)의 컨트롤 유닛은 외부와 입력 출력 신호를 송수신 할 수 있도록 와이어와 연결하여 외부 기기(미도시)와 연결될 수 있다.
도 6은 도 5에 있는 CMOS 습도 센서의 제조 과정을 설명하는 순서도이다.
CMOS 습도 센서 칩(500)를 제조하는 방법은 CMOS 회로 (Read-Out Integrated Circuit) 부분과 습도 센서 부분을 각각 제조 후 패키징 공정 (package process)에서 와이어 연결을 통하여 하나의 칩을 제조하는 방법이 있다. 또는 CMOS 회로와 습도 센서를 실리콘 기판 (Si substrate)에 한번에 구현하여 바로 패키징 공정을 하는 방법이 있다. 도 5에서 설명한 CMOS 습도 센서 칩(500)은 CMOS 센서 회로와 습도 센서를 하나의 실리콘 기판에 구현된 형태이다.
도 6a를 참고하면, CMOS 습도 센서 칩(500)은 반도체 기판에 CMOS 센서용 소자 및 회로가 형성되고 (CMOS process) 습도 센서가 동일한 실리콘 웨이퍼 상에 형성 된다 (Humidity sensor process). 또한, 습도 센서가 형성된 동일한 실리콘 웨이퍼 상에 감습층을 증착하고 감습층을 보호하기 위한 보호막을 코팅한다(Robust protective layer coating). 보호막을 패터닝하여(Protective layer patterning) 패터닝된 보호막 상에 외부 회로와 연결될 수 있도록 범프를 형성한다(Bump process). 이후 웨이퍼 백그라인딩(Wafer back-grinding) 및 웨이퍼 소잉(Wafer sawing) 공정을 수행하여 소잉된 각각의 칩을 패키징한다(Packaging process).
도 6b를 참고하면, CMOS process, Humidity sensor process, Bump process, Wafer back-grinding, Wafer sawing 및 Packaging process 공정을 수행하고 마지막 공정으로 보호막을 증착한다. 이 때, 패키지된 연결 단자에는 보호막이 증착되지 않도록 패터닝되어야 한다.
여기서, CMOS 습도 센서 칩은 대기 중 또는 공기로부터 물분자 또는 수분을 받아들일 수 있는 물질로 형성되는 습도 센서, 습도 센서로부터 공급된 습도 신호를 분석하는 컨트롤 유닛(control unit) 및 컨트롤 유닛에 의한 습도 신호의 분석 결과를 출력하는 출력 유닛을 포함할 수 있다.
도 7은 도 1 내지 5에 있는 습도 센서에 배치된 보호막에 의한 효과를 설명하는 C-H curve 이다.
CMOS 습도센서(100)는 C-H curve (정전용량 vs 상대 습도)의 특성이 가장 중요하며, 이러한 특성은 초기에 출시된 이후에 정전용량형 습도센서(100)가 어떤 가혹한 환경에 노출되더라도 유지 되어야 한다. 그러나, 도 7에 도시된 바와 같이 고온/고습 환경 (85C/85%, 1008h)에 노출 되면 습도 센서를 형성하는 감습 물질이 변형 및 열화 되어 습도 센서에 수분이 다량 흡수되어 정전용량을 크게 증가 (평행 시프트 혹은 고습에서 증가분이 더 큼) 된다. 또한, 습도센서에 보호층이 적용되면 습도센서의 초기 특성이 거의 비슷하거나 약간의 증가하는 정도로 특성이 개선됨을 알 수 있다. 이는 보호층이 감습물질을 외부 환경으로부터 보호함으로써 외부 환경에 관계없이 감습물질의 초기 특성이 유지되는 것을 의미하며, CMOS 습도센서(100)의 신뢰성 확보를 위해 꼭 필요한 요소기술로 판단된다.
CMOS 습도 센서(100)는 고온, 고습 또는 고압과 같은 가혹한 외부 환경에 노출되더라도 정전 용량과 상대 습도 사이의 상관 관계가 일정하게 유지되어야 신뢰성을 유지할 수 있다.
보호막(190)이 포함되지 않은 습도 센서(100)의 경우, 고온/고습 환경에 자주 노출되면 감습 물질이 변형 및 열화 된다. 이에 따라 수분이 흡착되었다가 탈착 과정이 용이하게 일어나지 않아, 대기 조건보다 더 많은 수분이 흡수된다. 그래서 정전 용량이 크게 증가될 수 있다. 따라서, 보호막(190)을 포함하지 않은 습도 센서(100)는 가혹한 외부 환경에 노출되면 초기의 감습 특성과 차이를 발생시키고 이에 따라 신뢰성을 확보할 수 없다.
도 1 및 도 2에 도시된 보호막(190)이 증착된 습도 센서(100) 및 도 3에 도시된 바와 같이, 민감도 높은 감습층(312, 314) 그룹과 민감도가 낮은 감습층(311, 313, 315) 그룹을 교번하여 형성되는 습도 센서의 경우, 고온/고습 환경에 노출되더라도 보호막(190) 또는 민감도가 낮은 감습층(311, 313, 315) 그룹에 의해 감습층(180, 310)이 보호되어 감습 물질의 변형을 발생시키지 않게 된다. 따라서, 보호막(190)을 포함한 습도 센서(100)는 가혹한 외부 환경에 노출되더라도 초기의 감습 특성을 유지함으로써, 신뢰성을 확보할 수 있다.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 고안의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100, 200, 300, 400: CMOS 습도 센서
110 : 반도체 기판
120 : 절연막
130 : 하부 전극 140 : 연결 비아
150 : 제1 전극 160 : 제2 전극
170 : 차단막 180, 310 : 감습층
190 : 보호막
210 : 버퍼층
311 ~ 315 : 복수의 감습층들
500 : CMOS 습도 센서 칩

Claims (13)

  1. 반도체 기판 상에 습도 센서 영역과 주변 회로 영역; 및
    상기 습도 센서 영역에 형성되는 습도 센서;를 포함하고,
    상기 습도 센서는
    하부 전극;
    상기 하부 전극 상에 절연막 및 연결 비아;
    상기 하부 전극과 상기 연결 비아를 통해 전기적으로 연결되는 제2 전극;
    상기 제2 전극 측면에 나란하게 배치된 제1 전극;
    상기 제1 및 제2 전극 사이에 형성된 감습층; 및
    상기 감습층 상에 형성된 보호막을 포함하는 것을 특징으로 하는 CMOS 습도 센서.
  2. 제1항에 있어서,
    상기 감습층과 상기 보호막 사이에 형성되는 버퍼층을 더 포함하는 것을 특징으로 하는 CMOS 습도 센서.
  3. 제1항에 있어서, 상기 감습층은
    상기 절연막까지 연장되어 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  4. 제1항에 있어서, 상기 보호막의 유전율은 2 - 3.5 값의 범위에 해당하고,
    상기 감습층의 유전율은 3 - 4 값의 범위에 해당하는 것을 특징으로 하는 CMOS 습도 센서.
  5. 제1항에 있어서, 상기 보호막의 두께는
    상기 감습층의 두께보다 작게 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  6. 제1항에 있어서, 상기 보호막은
    폴리머(polymer)로 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  7. 제1항에 있어서, 상기 감습층 및 보호막은
    상기 주변 회로 영역까지 확장되어 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  8. 제1항에 있어서,
    상기 습도 센서의 하부 영역 또는 상기 주변 영역에 형성되는 기준 커패시터를 더 포함하고,
    상기 기준 커패시터는 상기 습도 센서 영역에 기준 커패시턴스 값을 제공하는 것을 특징으로 하는 CMOS 습도 센서.
  9. 반도체 기판 상에 형성되는 제1 및 제2 전극; 및
    상기 제1 및 제2 전극 사이에 형성된 복수의 감습층들;을 포함하고,
    상기 복수의 감습층들은 제1 감습층과 제2 감습층이 교번하여 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  10. 제9항에 있어서, 상기 제1 감습층의 감습률은 상기 제2 감습층의 감습률보다 작은 것을 특징으로 하는 CMOS 습도 센서.
  11. 제9항에 있어서, 상기 제1 감습층의 두께가 상기 제2 감습층보다 얇게 형성되는 것을 특징으로 하는 CMOS 습도 센서.
  12. 반도체 웨이퍼 상에 습도 센서 영역과 주변 회로 영역을 형성하는 단계;
    상기 습도 센서 영역 상에 습도 센서를 형성하는 단계;
    상기 습도 센서 상에 보호막을 증착하는 단계;
    상기 보호막을 패터닝 하는 단계; 및
    상기 반도체 상에 형성된 습도 센서 칩을 패키징하는 단계를 포함하는 CMOS 습도 센서 제조 방법.
  13. 제12항에 있어서, 상기 습도 센서 영역 상에 습도 센서를 형성하는 단계는
    상기 습도 센서 영역에 하부 전극을 형성하는 단계;
    상기 하부 전극 상에 절연막 및 연결 비아를 형성하는 단계; 및
    상기 하부 전극 상에 제1 및 제2 전극을 형성하는 단계;를 포함하는 것을 특징으로 하는 CMOS 습도 센서 제조 방법.
KR1020140144086A 2014-10-23 2014-10-23 Cmos 습도 센서 및 그 제조 방법 KR101649605B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140144086A KR101649605B1 (ko) 2014-10-23 2014-10-23 Cmos 습도 센서 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140144086A KR101649605B1 (ko) 2014-10-23 2014-10-23 Cmos 습도 센서 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20160048257A true KR20160048257A (ko) 2016-05-04
KR101649605B1 KR101649605B1 (ko) 2016-08-22

Family

ID=56021821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140144086A KR101649605B1 (ko) 2014-10-23 2014-10-23 Cmos 습도 센서 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR101649605B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151556A1 (ko) * 2017-02-17 2018-08-23 (주)바이오니아 Maldi 질량분석용 시료 플레이트 및 이의 제조 방법
KR20180095461A (ko) * 2017-02-17 2018-08-27 (주)바이오니아 Maldi 질량분석용 시료 플레이트 및 이의 제조 방법
CN111198215A (zh) * 2018-11-16 2020-05-26 美蓓亚三美株式会社 检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024134A (ko) * 2002-09-13 2004-03-20 학교법인 한양학원 고정밀 정전용량형 습도센서 및 제조방법
JP2004271461A (ja) * 2003-03-11 2004-09-30 Denso Corp 容量式湿度センサ
KR100455452B1 (ko) 2001-07-04 2004-11-09 소이젠주식회사 생대두를 원적외선 전자파 건조방법을 이용한 고순도의기능성 전지활성 생대두 미세분말의 제조방법
KR20100053082A (ko) * 2008-11-12 2010-05-20 전자부품연구원 정전용량형 습도센서 및 그 제조방법
WO2012046501A1 (ja) * 2010-10-04 2012-04-12 アルプス電気株式会社 湿度検出センサ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455452B1 (ko) 2001-07-04 2004-11-09 소이젠주식회사 생대두를 원적외선 전자파 건조방법을 이용한 고순도의기능성 전지활성 생대두 미세분말의 제조방법
KR20040024134A (ko) * 2002-09-13 2004-03-20 학교법인 한양학원 고정밀 정전용량형 습도센서 및 제조방법
JP2004271461A (ja) * 2003-03-11 2004-09-30 Denso Corp 容量式湿度センサ
KR20100053082A (ko) * 2008-11-12 2010-05-20 전자부품연구원 정전용량형 습도센서 및 그 제조방법
WO2012046501A1 (ja) * 2010-10-04 2012-04-12 アルプス電気株式会社 湿度検出センサ及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151556A1 (ko) * 2017-02-17 2018-08-23 (주)바이오니아 Maldi 질량분석용 시료 플레이트 및 이의 제조 방법
KR20180095461A (ko) * 2017-02-17 2018-08-27 (주)바이오니아 Maldi 질량분석용 시료 플레이트 및 이의 제조 방법
CN110313050A (zh) * 2017-02-17 2019-10-08 株式会社百奥尼 Maldi质谱用样品板及其制造方法
US11087965B2 (en) 2017-02-17 2021-08-10 Bioneer Corporation Sample plate for MALDI mass spectrometry and manufacturing method therefor
CN110313050B (zh) * 2017-02-17 2022-03-11 株式会社百奥尼 Maldi质谱用样品板及其制造方法
CN111198215A (zh) * 2018-11-16 2020-05-26 美蓓亚三美株式会社 检测装置

Also Published As

Publication number Publication date
KR101649605B1 (ko) 2016-08-22

Similar Documents

Publication Publication Date Title
CN106841331B (zh) 一种柔性电容式湿度传感器及其制备方法
EP2720034B1 (en) Integrated Circuit comprising a relative humidity sensor and a thermal conductivity based gas sensor
US8707781B2 (en) Sensor has combined in-plane and parallel-plane configuration
US9818905B2 (en) Integrated circuit and manufacturing method
EP2203738B1 (en) Improved structure for capacitive balancing of integrated relative humidity sensor and manufacturing method
JP2007248065A (ja) 容量式湿度センサ
KR102187614B1 (ko) 커패시터형 습도센서
CN105466463B (zh) 传感器芯片
CN105264365A (zh) 集成到半导体电路上的电容性传感器
US9588073B2 (en) Resistive MEMS humidity sensor
US20130193417A1 (en) Integrated Circuit and Manufacturing Method
KR101649605B1 (ko) Cmos 습도 센서 및 그 제조 방법
US9234859B2 (en) Integrated device of a capacitive type for detecting humidity, in particular manufactured using a CMOS technology
CN206601357U (zh) 一种柔性电容式湿度传感器
WO2012017424A8 (en) Chemical sensor
JP2008039508A (ja) 湿度センサ
US20060055502A1 (en) Humidity sensor
US10942070B2 (en) Sensor unit, temperature sensor including the same, method of manufacturing the sensor unit, and method of manufacturing the temperature sensor
NL2011845C2 (en) A capacitive sensor for humidity and/or ammonia sensing.
WO2011149331A1 (en) Capacitive humidity sensor and method of fabricating thereof
US7295126B2 (en) Perforated plane moisture sensor
US11506624B2 (en) Capacitive gas sensors and manufacturing method thereof
JP2008107166A (ja) 湿度センサ及びその製造方法
CN109690301B (zh) 容量型气体传感器
JP2012145384A (ja) 容量式湿度センサ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190716

Year of fee payment: 4