WO2020262854A1 - 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법 - Google Patents

원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법 Download PDF

Info

Publication number
WO2020262854A1
WO2020262854A1 PCT/KR2020/007553 KR2020007553W WO2020262854A1 WO 2020262854 A1 WO2020262854 A1 WO 2020262854A1 KR 2020007553 W KR2020007553 W KR 2020007553W WO 2020262854 A1 WO2020262854 A1 WO 2020262854A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
friction
brake
brakes
protrusion
Prior art date
Application number
PCT/KR2020/007553
Other languages
English (en)
French (fr)
Inventor
장호
신상희
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190171335A external-priority patent/KR20210000646A/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2020262854A1 publication Critical patent/WO2020262854A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/04Attachment of linings

Definitions

  • the present invention relates to a friction material for a brake that reduces noise and vibration through raw material arrangement control.
  • the brake system refers to a device that decelerates or stops the speed of a moving machine, such as a car, an electric vehicle, and an elevator.
  • Automobile brake refers to a device that functions to reduce or stop the speed of a running vehicle.
  • Automobile brake is a method that generates a braking action by converting the kinetic energy of the vehicle into thermal energy using frictional force generated by the driver's operating force or auxiliary power Works.
  • the automobile brake system is an important device used to maintain a parking state while decelerating or stopping a driving vehicle. In general, it converts the kinetic energy of the vehicle into heat energy by using frictional force, It uses a friction type brake that releases it and acts as a braking action.
  • These brake devices reduce the speed of the vehicle or stop the vehicle through the frictional force between the brake friction material and the brake disk.
  • An embodiment of the present invention aims to reduce friction noise and vibration by controlling the arrangement of raw materials for a brake friction material.
  • a friction material for a brake according to an embodiment of the present invention includes a body portion; And a plurality of protrusions protruding from a contact surface of the body portion in contact with the brake disk, wherein the protrusion portion has a length in a direction of friction, which is a direction of a friction force generated between the brake disk, longer than a length in other directions.
  • the protrusion may have a greater hardness than the body part.
  • the protrusion includes: a first raw material, wherein the body portion: the first raw material; And a second raw material having a lower hardness than the first raw material.
  • the first raw material may be shaken in a predetermined direction so that the longitudinal direction of the first raw material may be arranged in parallel with the friction direction.
  • the first raw material is: magnetic, and may be arranged such that a longitudinal direction of the first raw material is parallel to the frictional direction by magnetic force.
  • Each of the protrusions may be formed by each of the first raw materials, or may be formed by a set of the first raw materials.
  • the protrusion may be formed by exposing the first raw material to the outside from the contact surface by removing the second raw material included in the body portion before the first raw material by friction with the brake disk.
  • a dust compression portion generated by pressing wear dust generated by friction into a region adjacent to the protrusion further includes, and the size of the dust compression portion may be adjusted by the size of the first raw material.
  • a method for manufacturing a friction material for brakes includes a raw material mixing step of mixing raw materials for the friction material for brakes; A raw material arrangement control step of arranging a length direction of a preset raw material among the mixed raw materials to be parallel to a friction direction that is a direction in which the friction material for brakes receives a friction force; A temporary molding step of making the arranged raw materials into the same shape as the shape of the original product; A thermoforming step of applying a preset pressure, temperature and time to the preformed product; A heat treatment step of curing the thermoformed product; And a finishing step of completing the product.
  • the raw material arrangement control step is a step of shaking a preset raw material in a preset direction so that the length direction of the preset raw material is parallel to the friction direction, and the preset raw material is another raw material among the raw materials of the brake friction material. It may be a raw material having a higher hardness than that.
  • the raw material arrangement control step is a step such that the length direction of the preset raw material is arranged parallel to the friction direction using magnetic force, and the preset raw material has a higher hardness than other raw materials among the raw materials of the brake friction material and is magnetic. It may be a raw material that stands out.
  • FIG. 1 is a plan view showing a state before a friction material for a brake and a brake disk contact each other according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a contact between a brake friction material and a brake disk according to an exemplary embodiment of the present invention.
  • FIG 3 is a perspective view of a brake friction material, a back plate, and a piston according to an embodiment of the present invention.
  • FIG. 4 is an enlarged view showing a state before a protrusion is formed in an area A, which is a partial area of the brake friction material shown in FIG. 3.
  • FIG. 5 is a cross-sectional view showing a cross-section of the brake friction material of FIG. 4 viewed from the direction A-A'.
  • FIG. 6 is a view showing a state in which the arrangement direction of the first raw material is adjusted by arranging magnets in a direction perpendicular to the friction direction and in a direction parallel to the friction direction when a first raw material according to an embodiment of the present invention is magnetic to be.
  • FIG. 7 is a diagram illustrating an arrangement of first raw materials when the magnet is disposed in a direction perpendicular to the friction direction in FIG. 6.
  • FIG. 8 is a view showing an arrangement of first raw materials when the magnet is disposed in a direction parallel to the friction direction in FIG. 6.
  • FIG. 9 illustrates a process of manufacturing a friction material for brakes arranged so that the longitudinal direction and the friction direction of the first material are parallel by forming valleys on a second raw material in a direction parallel to the friction direction according to an embodiment of the present invention. It is a drawing.
  • FIG. 10 is a view showing a state in which a plurality of parallel films are provided inside a raw material transport pipe provided between a raw material metering and mixing process and a temporary molding process.
  • FIG. 11 is a photograph showing a friction material for a brake manufactured through FIG. 9.
  • FIG. 12 is a perspective view showing a state in which a protrusion is formed on a contact surface of a brake friction material in contact with a brake disk according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a cross-section of the brake friction material of FIG. 11 viewed from A-A' direction.
  • 14A is a view showing the amplitude of stick slip when the area occupied by the protrusion among the surface area of the brake friction material is 17.11 [%].
  • 14B is a view showing the amplitude of stick slip when the area occupied by the protrusion among the surface area of the brake friction material is 28.65 [%].
  • Fig. 15A is a view showing the shape of ten protrusions having the same area and the amplitude of the stick slip at that time.
  • Fig. 15B is a view showing the appearance of three protrusions having the same total area as that of Fig. 15A and the amplitude of the stick slip at that time.
  • Fig. 15C is a view showing a state of one protrusion having the same total area as that of Fig. 15A and the amplitude of the stick slip at that time.
  • 16 is a diagram showing the relationship between the length direction of the protrusion and the amplitude of stick slip.
  • 17 is a perspective view showing a state in which a dust pressing portion is formed in a region around the protrusion.
  • FIG. 18 is a cross-sectional view showing a cross-section of the brake friction material of FIG. 16 viewed from A-A' direction.
  • FIG. 19 is a cross-sectional view showing a state in which the friction material for brake having a height of H2 of FIG. 17 is further worn by friction to have a height of H3.
  • 20 is a schematic diagram of a method of manufacturing a friction material for a brake according to an embodiment of the present invention.
  • 21 is a schematic diagram showing a state of controlling the arrangement of a first raw material using a magnet in a temporary molding step in a method of manufacturing a friction material for a brake according to an embodiment of the present invention.
  • the kinetic energy of the vehicle is reduced by the friction between the brake friction material 100 and the brake disk 400, through which the vehicle is braked and decelerated.
  • Stick slip refers to self-excited vibration (vibration that occurs inside the machine and causes some stimulation) caused by microscopic adhesions between friction surfaces. Stick slip is caused by the difference between the static friction coefficient and the dynamic friction coefficient. Among the friction characteristics, the most representative frictional vibration is caused by this stick slip.
  • the amplitude of the stick slip is known as an excitation source of noise and vibration, it is desirable to reduce the amplitude of the stick slip to reduce the noise and vibration generated during braking.
  • Vibration and noise during braking can be reduced by reducing the amplitude of the stick slip through the embodiment of the present invention disclosed below.
  • 1 is a plan view showing a state before the brake friction material 100 and the brake disk 400 contact each other according to an embodiment of the present invention.
  • FIG 2 is a plan view showing a state in which the friction material 100 for a brake and the brake disk 400 contact each other according to an embodiment of the present invention.
  • a friction material 100 for a brake is connected to a piston 300.
  • each piston 300 moves in the direction of the brake disk 400.
  • the brake friction material 100 and the brake disk 400 come into contact.
  • a contact surface is formed on a surface of the brake friction material 100 in contact with the brake disk 400.
  • the X-axis direction shown in each of the drawings of the present invention including FIGS. 1 and 2 refers to a direction parallel to the frictional direction, which is the direction of frictional force generated between the brake friction material 100 and the brake disk 400.
  • the Z-axis direction refers to a direction perpendicular to a contact surface, which is a surface in which the brake friction material 100 contacts the brake disk 400.
  • FIG. 3 is a perspective view of a brake friction material 100 and a piston 300 according to an embodiment of the present invention.
  • the area A shown in FIG. 3 refers to a partial area of the brake friction material 100.
  • the brake friction material 100 in order to efficiently transmit the friction force to the circular brake disk 400, also has an arcuate curved shape corresponding to the shape of the brake disk 400.
  • the brake friction material 100 includes a body portion 110 and a protrusion portion 120.
  • the body portion 110 forms a body of the brake friction material 100.
  • the protrusion 120 protrudes in the Y-axis direction from a contact surface, which is a surface in which the body part 110 contacts the brake disk 400.
  • the Z-axis direction shown in each of the drawings of the present invention including FIG. 3 refers to a direction perpendicular to the X and Y axes and parallel to the contact surface.
  • the body portion 110 includes a first raw material 10 and a second raw material 20 that are raw materials for the brake friction material 100.
  • the first raw material 10 includes a raw material having a high hardness among the raw materials of the brake friction material 100.
  • the second raw material 20 includes a raw material having a relatively small hardness compared to the first raw material 10 among raw materials for the brake friction material 100.
  • the first raw material 10 forms a protrusion 120.
  • each of the plurality of first raw materials 10 may form a respective protrusion 120, or a set of a plurality of first raw materials 10 may form each protrusion 120.
  • FIG. 4 is an enlarged view showing a state before a protrusion is formed in an area A, which is a partial area of the brake friction material 100 shown in FIG. 3.
  • the contact surface of the brake friction material 100 before the brake friction material 100 is rubbed against the brake disk 400 has a flat surface where the protrusion 120 does not exist.
  • FIG. 5 is a cross-sectional view showing a cross-section of the brake friction material 100 of FIG. 4 viewed from the direction A-A'.
  • the initial brake friction material 100 has a height of H1.
  • the first raw material 10 and the second raw material 20 are mixed and present therein.
  • the friction material for brake 100 is formed by mixing the first raw material 10 and the second raw material 20.
  • the second raw material 20 which has a relatively low hardness compared to the first raw material 10
  • the first raw material 10 having relatively high hardness remains on the friction surface of the brake friction material 100 to form the protrusion 120.
  • the first raw material may be at least one of steel fiber, bronze fiber, copper fiber, brass fiber, and stainless fiber.
  • the second raw material is phenolic resin, polyimide, resol, COPNA resin, Aralkyl modified, boron-modified, cashew modified, silicon-modified, phosphor-modified, acryl-modified, epoxy-modified, rubber modified phenolic resin, Aramid pulp, rock wool, glass fiber, potassium titanate (whisker), sepiolite, basalt fiber, cellulose fiber, carbon fiber, acrylic fiber, Mica, vermiculite, potassium titanate (plate), copper powder, iron powder, woolastonite, Graphite, MoS2, CaF2, ZnS, Sb2S3, Sb2O5, WS2, CuS, NA3AlF6, cokes, ZrSiO4, quartz, Al2O3, MgO, ZrO2, zeolite, Fe3O4, SiC, ZnO, chromite, Ca(OH)2, cash
  • a length of the first raw material 10 in the friction direction is provided longer than that in other directions.
  • the longitudinal direction of the first raw material 10 refers to a direction having the longest length among the lengths of each direction of the first raw material 10. Therefore, the longitudinal direction of the first raw material 10 refers to a direction parallel to the friction direction.
  • the first raw material 10 may be provided in the shape of an elliptical column having an oval top and a bottom surface.
  • the long axis direction of the ellipse corresponds to the length direction of the first raw material 10. Therefore, the first raw material 10 at this time is arranged so that the long axis direction of the ellipse which is the length direction and the friction direction are parallel.
  • the first raw material 10 may be provided in a rectangular parallelepiped shape in which the length of the long side of the upper surface is parallel to the X-axis direction.
  • the direction of the long side of the rectangular parallelepiped corresponds to the longitudinal direction of the rectangular parallelepiped. Accordingly, the first raw material 10 at this time is arranged so that the direction of the long side which is the length direction and the friction direction are parallel.
  • the first raw material 10 may be provided in various shapes having a length with respect to the friction direction longer than that in other directions.
  • the first raw material 10 is shaken in a predetermined direction for a predetermined time during the process of measuring and mixing raw materials, so that the length direction and the friction direction of the first raw material 10 are parallel to each other.
  • the raw material 10 can be arranged.
  • the preset direction refers to a direction in which the longitudinal direction and the friction direction of the first raw material 10 are parallel to each other, and the direction may be changed according to the shape of the first raw material 10.
  • the preset time refers to a time taken to make the longitudinal direction and the friction direction of the first raw material 10 parallel, and the time may be changed according to the shape of the first raw material 10.
  • a magnetic force is applied to the first raw material 10 so that the longitudinal direction and the frictional direction of the first raw material 10 are parallel.
  • FIG. 6 is a diagram illustrating an arrangement direction of the first raw material 10 by arranging magnets in a direction perpendicular to the friction direction and in a direction parallel to the friction direction when the first raw material 10 according to an embodiment of the present invention is magnetic. It is a diagram showing the state of adjustment.
  • a direction perpendicular to the friction direction corresponds to the A direction
  • a direction parallel to the friction direction corresponds to the B direction.
  • FIG. 7 is a view showing the arrangement of the first raw material 10 when the magnet is disposed in a direction perpendicular to the friction direction in FIG. 6.
  • FIG. 8 is a view showing the arrangement of the first raw material 10 when the magnet is disposed in a direction parallel to the friction direction in FIG. 6.
  • the magnets are arranged in a direction parallel to the friction direction, so that the longitudinal direction and the friction direction of the first raw material 10 are parallel.
  • the first raw material 10 by forming a valley having a width smaller than the length of the length direction of the first raw material 10 in a direction parallel to the friction direction on the second raw material 20, the first raw material 10 may be arranged so that the longitudinal direction and the friction direction of) are parallel.
  • FIG. 9 is a friction material for brakes arranged so that the longitudinal direction and the friction direction of the first raw material 10 are parallel to each other by forming valleys in a direction parallel to the friction direction on the second raw material 20 according to an embodiment of the present invention. It is a diagram schematically showing the process of manufacturing (10).
  • a valley is formed on the second raw material 20 in a direction parallel to the friction direction.
  • the width of the valley is provided smaller than the length of the first raw material 10 in the longitudinal direction.
  • the first raw material 10 When the first raw material 10 is sprinkled on the second raw material 20 where bone is formed and shaken, the first raw material 10 is inserted into the bone.
  • the first raw material 10 is arranged so that the longitudinal direction and the friction direction of the first raw material 10 are parallel.
  • a plurality of parallel films may be arranged inside the raw material transport pipe before entering the temporary molding step after the raw material metering and mixing process is finished, and the arrangement direction of the raw material may be adjusted.
  • FIG. 10 is a view showing a state in which a plurality of parallel films are provided inside a raw material transport pipe provided between a raw material metering and mixing process and a temporary molding process.
  • a plurality of parallel films provided inside the raw material transport pipe allows raw materials to be injected into a temporary molding frame while having a certain orientation.
  • FIG. 11 is a photograph showing the brake friction material 10 manufactured through FIG. 9.
  • the length direction and the friction direction of the first raw material 10 can be arranged in parallel.
  • FIG. 12 is a perspective view showing a state in which a protrusion 120 is formed on a contact surface of the brake friction material 100 in contact with the brake disk 400 according to an embodiment of the present invention.
  • the second raw material 20 which has relatively low hardness compared to the first raw material 10, is earlier than the first raw material 10 due to friction between the brake friction material 100 and the brake disk 400. Is removed.
  • the first raw material 10 exposed to the outside from the body 100 protrudes from the contact surface to form the protrusion 120.
  • the protrusion 120 is provided in a length direction parallel to the friction direction as shown in FIGS. 9 and 11.
  • FIG. 13 is a cross-sectional view showing a cross-section of the brake friction material 100 of FIG. 12 as viewed from the direction A-A'.
  • the brake friction material 100 which initially had a height of H1, is worn by friction, and the height is lowered to H2.
  • the second raw material 20 having a relatively low hardness compared to the first raw material 10 is removed first compared to the first raw material 10.
  • the first raw material 10 which has a relatively high hardness compared to the second raw material 20
  • the protrusion 120 is a surface in direct contact with the brake disk 400.
  • the shape of the protrusion 120 is directly related to the stick slip.
  • the amplitude of the stick slip decreases, thereby reducing vibration and noise generated during braking.
  • the amplitude of the stick slip decreases, thereby reducing vibration and noise generated during braking.
  • FIG. 14A is a view showing the amplitude of the stick slip when the protrusion occupies 17.11 [%] of the area of the brake friction material surface
  • FIG. 14B shows the area occupied by the protrusion among the surface area of the brake friction material 28.65 [%]. It is a diagram showing the amplitude of the stick slip.
  • a 1/5 scale dynamometer was used in the experiment, and a gray cast iron disk was used as a mating material.
  • Fig. 14A burns at 1000 [mm/s] and then performs a stick-slip experiment at 0.1 [mm/s]
  • Fig. 14B shows burns at 50 [mm/s].
  • a stick-slip experiment was performed at 0.1 [mm/s].
  • the process of taming the surface of the brake friction material before proceeding with the stick-slip experiment is called burnish.
  • the area of the protrusion 120 changes according to the burnish speed, and it can be confirmed through this experiment that the amplitude of the stick slip varies according to the difference in the area of the protrusion 120.
  • the area of the protrusion 120 and the amplitude of the stick slip are proportional to each other.
  • Fig. 15A is a view showing the appearance of ten protrusions having the same area and the amplitude of stick slip at that time
  • Fig. 15B is a view of three protrusions having the same total area as that of Fig. 15A and the amplitude of the stick slip at that time
  • Fig. 15C is a view showing the state of one protrusion having the same total area as that of Fig. 15A and the amplitude of the stick slip at that time.
  • the total area of the protrusion 120 in each drawing was provided equally, and an experiment was conducted to confirm the amplitude of the stick slip under the condition of 0.3 [mm/s]. Assuming that the area of one of the protrusions 120 of FIG. 15A is a, the area of each of the protrusions 120 of FIG. 15B is provided at 5 times, 3 times, and 2 times of a, and that of the protrusion 120 of FIG. 15C The area was given 10 times a.
  • each of the protrusions 120 the smaller the area of each of the protrusions 120 is, the more the amplitude of the stick slip can be reduced, which is preferable. Since each of the first raw materials 10 forms respective protrusions 120, the smaller the size of the first raw material 10 among the raw materials for the brake friction material 100, the smaller the amplitude of the stick slip, so that it is preferable.
  • 16 is a diagram showing a relationship between the length direction of the protrusion 120 and the amplitude of stick slip.
  • L denotes when the longitudinal direction of the protrusion 120 and the friction direction are parallel
  • R denotes when the longitudinal direction of the protrusion 120 is between the friction direction and a direction perpendicular to the friction direction
  • T denotes It was set as the case where the longitudinal direction of the protrusion 120 and the direction perpendicular to the frictional direction were parallel.
  • a 1/5 scale dynamometer was used, and a gray cast iron disk was used as a mating material.
  • sandpaper was used to make the longitudinal direction of the protrusion 120 to have L, R and T directions. Then, after burning at 20 [mm/s] under the condition of 20 [bar], a stick slip experiment was performed at 0.1 [mm/s].
  • the amplitude of the stick slip in the R case is smaller than in the T case.
  • the amplitude of the stick slip in the L case is smaller than in the R case. That is, it can be seen that it is preferable that the amplitude of the stick slip can be reduced as the longitudinal direction and the first direction of the protrusion 120 are parallel.
  • 17 is a perspective view showing a state in which the dust pressing portion 130 is formed in a region around the protrusion 120.
  • FIG. 18 is a cross-sectional view showing a cross-section of the brake friction material 100 of FIG. 17 as viewed from the direction A-A'.
  • the dust pressing portion 130 is formed adjacent to the surrounding area of the protruding portion 120. Wear dust is generated by friction between the brake friction material 100 and the brake disk 400. The abrasion dust generated at this time mainly accumulates in the area adjacent to the protrusion 120 and is firmly compressed by pressure from the brake disk 400 to thereby increase the area of the protrusion 120.
  • the area of the dust pressing part 130 is related to the size of the first raw material 10 forming the protruding part 120.
  • the larger the size of the first raw material 10 is provided so that the larger the area of the protrusion 120 is, the more dust is likely to accumulate in the area adjacent thereto, and the area of the dust compression unit 130 also increases.
  • reducing the size of the first raw material 10 is preferable because not only the area of the protrusion 120 formed by the first raw material 10 can be reduced, but also the area of the dust pressing portion 130 can be reduced.
  • FIG. 19 is a cross-sectional view showing a state in which the brake friction material 100 having a height of H2 of FIG. 18 is further worn by friction to have a height of H3.
  • the brake friction material 100 having a height of H2 is lowered to H3 due to continuous friction. While the height of the brake friction material 100 is lowered to H3, the first raw material 10, which was previously exposed to the outside to form the protrusion 120, is also removed by friction.
  • the protrusion 120 may be manufactured by attaching the first raw material 10 to the contact surface. At this time, by attaching the first raw material 10 so that the longitudinal direction and the friction direction are parallel, the effect of reducing the amplitude of the stick slip can be obtained.
  • the protrusion 120 may be manufactured by inserting a part of the first raw material 10 into the interior of the brake friction material 100 through a contact surface. In this case, by inserting the first raw material 10 so that the longitudinal direction and the friction direction are parallel, the effect of reducing the amplitude of the stick slip can be obtained.
  • 20 is a schematic diagram of a method of manufacturing a friction material 100 for a brake according to an embodiment of the present invention.
  • the friction material for brake 100 includes a raw material mixing step (S1), a raw material arrangement control step (S2), a temporary molding step (S3), a thermoforming step (S4), It may be manufactured through a manufacturing method including a heat treatment step (S5) and a finishing step (S6).
  • the raw material mixing step (S1) is a step of mixing the raw materials of the brake friction material 100.
  • the first raw material 10 and the second raw material 20 are mixed.
  • the raw material mixing may proceed until the first raw material 10 and the second raw material 20 are sufficiently mixed, and may proceed within 1 minute to 2 minutes.
  • a waiting time may be provided.For example, after mixing for 20 seconds, a waiting time is given to lower the temperature of the raw material below the reference value. Can proceed.
  • a waiting time is given to lower the temperature of the raw material below the reference value. Can proceed.
  • the raw material arrangement control step (S2) is a step of arranging such that a length direction of a preset raw material among the mixed raw materials is parallel to a friction direction, which is a direction in which the friction material for brake 100 receives a friction force.
  • the preset raw material may be the first raw material 10.
  • the first raw material 10 is shaken in a preset direction for a preset time, so that the longitudinal direction and the friction direction of the first raw material 10 are parallel. 1
  • the raw material 10 can be arranged.
  • the preset direction refers to a direction in which the longitudinal direction and the friction direction of the first raw material 10 are parallel to each other, and the direction may be changed according to the shape of the first raw material 10.
  • the preset time refers to a time taken to make the longitudinal direction and the friction direction of the first raw material 10 parallel, and the time may be changed according to the shape of the first raw material 10.
  • 21 is a schematic diagram showing a state of controlling the arrangement of a first raw material by using a magnet in a temporary molding step in a method of manufacturing a friction material for brakes of the present invention.
  • the first raw material 10 when the first raw material 10 is magnetic, the first raw material 10 is arranged so that the longitudinal direction and the friction direction of the first raw material 10 are parallel by applying a magnetic force to the first raw material 10. can do.
  • the magnet to apply magnetic force. Any magnet capable of providing a magnetic force having a size capable of controlling the arrangement of the first raw material 10 including a neodymium magnet may be applied without limitation.
  • the longitudinal direction and the sliding direction of the first raw material 10 may be arranged in parallel.
  • the temporary molding step (S3) is a step of making the arranged raw materials into the same shape as the shape of the original product.
  • the thermoforming step (S4) is a step of applying a preset pressure, temperature and time to the temporary molded product.
  • about 7 to 8 steps of thermoforming can be performed under the conditions of 170[°C] and 10[bar], for example, 20 seconds, 10 seconds, 20 seconds, 10 seconds, 10 seconds, 25 seconds, It can go through 8 stages of thermoforming of 45 seconds and 1 minute 30 seconds.
  • the heat treatment step (S5) is a step of curing the thermoformed product. For example, it is possible to cure the friction material 100 for a brake according to an embodiment of the present invention for 8 hours at 225 [°C].
  • the finishing step (S6) is a step of completing the product.
  • Brake friction material 100 is provided with a length of the protrusion 120 in the friction direction longer than the length in a direction perpendicular to the friction direction, thereby reducing frictional vibration and noise generated during braking. I can.
  • the area of the protrusion 120 and the dust compression unit 130 can be reduced, thereby reducing frictional vibration and noise generated during braking. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

본 발명의 실시예에 따른 브레이크용 마찰재는 몸체부; 및 상기 몸체부의 브레이크 디스크에 접촉되는 접촉면으로부터 돌출된 복수의 돌출부를 포함하되, 상기 돌출부는 상기 브레이크 디스크와의 사이에서 발생되는 마찰력의 방향인 마찰 방향에 대한 길이가 그 외의 방향에 대한 길이보다 길게 제공된다.

Description

원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법
본 발명은 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재에 관한 것이다.
일반적으로 브레이크 장치(Brake System)는 자동차, 전동차, 엘리베이터 등과 같이 운동하고 있는 기계의 속도를 감속하거나 정지시키는 장치를 통틀어 일컫는다.
자동차 브레이크도 달리고 있는 차량의 속도를 줄이거나 정지시키는 기능을 하는 장치를 말하며, 자동차 브레이크는 보통 운전자의 조작력 또는 보조동력으로 발생한 마찰력을 이용해 자동차의 운동에너지를 열에너지 등으로 바꾸어 제동작용을 일으키는 방식으로 작동한다.
즉, 자동차 브레이크장치(Brake System)는 주행하는 자동차를 감속 또는 정지시킴과 동시에 주차상태를 유지하기 위해 사용하는 중요한 장치이며, 일반적으로 마찰력을 이용하여 자동차의 운동에너지를 열에너지로 바꾸어, 그것을 대기 속으로 방출시켜 제동작용을 하는 마찰식 브레이크를 사용하고 있다.
이러한 브레이크 장치들은 브레이크용 마찰재와 브레이크 디스크 사이의 마찰력을 통해 자동차의 속도를 줄이거나 자동차를 정지시킨다.
하지만, 이 과정에서 발생하는 제동 소음 및 진동은 승차감에 큰 영향을 주기에 이러한 제동 소음 및 진동을 줄이기 위한 연구가 이루어지고 있다.
본 발명의 일 실시예는 브레이크용 마찰재의 원료 배열 제어를 통해 마찰 소음 및 진동을 저감시키는 것을 목적으로 한다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예에 따른 브레이크용 마찰재는 몸체부; 및 상기 몸체부의 브레이크 디스크에 접촉되는 접촉면으로부터 돌출된 복수의 돌출부를 포함하되, 상기 돌출부는 상기 브레이크 디스크와의 사이에서 발생되는 마찰력의 방향인 마찰 방향에 대한 길이가 그 외의 방향에 대한 길이보다 길게 제공된다.
상기 돌출부는 상기 몸체부에 비해 경도가 크게 제공될 수 있다.
상기 돌출부는: 제 1 원료;를 포함하고, 상기 몸체부는: 상기 제 1 원료; 및 상기 제 1 원료에 비해 경도가 작은 제 2 원료;를 포함할 수 있다.
상기 제 1 원료를 기 설정된 방향으로 흔들어서 상기 제 1 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열될 수 있다.
상기 제 1 원료는: 자성을 띄고, 자력에 의해 상기 제 1 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열될 수 있다.
상기 돌출부 각각은: 상기 제 1 원료 각각에 의해 형성되거나, 상기 제 1 원료의 집합에 의해 형성될 수 있다.
상기 돌출부는: 상기 몸체부에 포함된 상기 제 2 원료가 상기 브레이크 디스크와의 마찰에 의해 상기 제 1 원료보다 먼저 제거됨으로써 상기 제 1 원료가 상기 접촉면으로부터 외부로 노출되어 형성될 수 있다.
마찰에 의해 발생한 마모 분진이 상기 돌출부와 인접한 영역에 압착되어 생성되는 분진압착부;를 더 포함하고, 상기 분진압착부의 크기는 상기 제 1 원료의 크기에 의해 조절될 수 있다.
본 발명의 실시예에 따른 브레이크용 마찰재 제조 방법은 브레이크용 마찰재의 원료를 혼합하는 원료 혼합 단계; 혼합된 원료들 중 기 설정된 원료의 길이 방향이 상기 브레이크용 마찰재가 마찰력을 받는 방향인 마찰 방향과 평행하도록 배열하는 원료 배열 제어 단계; 배열된 원료를 본성형 된 제품의 형상과 동일한 형상으로 만드는 가성형 단계; 가성형 된 제품에 기 설정된 압력, 온도 및 시간을 적용하는 열성형 단계; 열성형 된 제품을 경화시키는 열처리 단계; 및 제품을 완성시키는 마무리 단계;를 포함한다.
상기 원료 배열 제어 단계는, 기 설정된 원료를 기 설정된 방향으로 흔들어서 상기 기 설정된 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열하는 단계이고, 상기 기 설정된 원료는, 상기 브레이크용 마찰재의 원료 중 다른 원료에 비해 경도가 큰 원료일 수 있다.
상기 원료 배열 제어 단계는, 자력을 이용해 상기 기 설정된 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열하도록 단계이고, 상기 기 설정된 원료는, 상기 브레이크용 마찰재의 원료 중 다른 원료에 비해 경도가 크고 자성을 띄는 원료일 수 있다.
본 발명의 실시예에 따르면, 브레이크용 마찰재의 원료 배열을 통해 브레이크 작동 시 발생하는 마찰 소음 및 진동을 저감시킬 수 있다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 브레이크용 마찰재와 브레이크 디스크가 접촉하기 전의 모습을 나타낸 평면도이다.
도 2는 본 발명의 일 실시예에 따른 브레이크용 마찰재와 브레이크 디스크가 접촉한 모습을 나타낸 평면도이다.
도 3은 본 발명의 일 실시예에 따른 브레이크용 마찰재, 백플레이트 및 피스톤의 사시도이다.
도 4는 도 3에 도시된 브레이크용 마찰재의 일부 영역인 영역 A에 돌출부가 형성되기 전의 모습을 나타낸 확대도이다.
도 5는 도 4의 브레이크용 마찰재의 단면을 A-A'방향에서 바라본 모습을 나타낸 단면도이다.
도 6은 본 발명의 일 실시예에 따른 제1 원료가 자성을 띄는 경우 마찰 방향과 수직인 방향 및 마찰 방향에 평행한 방향에 자석을 배치하여 제1 원료의 배열 방향을 조절하는 모습을 나타낸 도면이다.
도 7은 도 6에서 자석을 마찰 방향에 수직인 방향에 배치하는 경우 제1 원료의 배열 모습을 나타낸 도면이다.
도 8은 도 6에서 자석을 마찰 방향과 평행한 방향에 배치하는 경우 제1 원료의 배열 모습을 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 제2 원료 상에 마찰 방향과 평행한 방향으로 골을 형성하여 제1 원료의 길이 방향과 마찰 방향이 평행하도록 배열된 브레이크용 마찰재를 제작하는 과정을 나타낸 도면이다.
도 10은 원료의 계량 및 혼합 공정과 가성형 공정 사이에 제공되는 원료 운송 관 내부에 평행한 복수개의 막이 제공된 모습을 나타낸 도면이다.
도 11은 도 9를 통해 제작된 브레이크용 마찰재를 나타낸 사진이다.
도 12는 본 발명의 일 실시예에 따른 브레이크용 마찰재가 브레이크 디스크에 접촉되는 접촉면에 돌출부가 형성된 모습을 나타낸 사시도이다.
도 13은 도 11의 브레이크용 마찰재의 단면을 A-A' 방향에서 바라본 모습을 나타낸 단면도이다.
도 14a는 브레이크용 마찰재 표면의 면적 중 돌출부가 차지하는 면적이 17.11[%]인 경우 스틱 슬립의 진폭을 나타낸 도면이다.
도 14b는 브레이크용 마찰재 표면의 면적 중 돌출부가 차지하는 면적이 28.65[%]인 경우 스틱 슬립의 진폭을 나타낸 도면이다.
도 15a는 면적이 동일한 10개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이다.
도 15b는 도 15a와 돌출부 면적의 총합이 동일한 3개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이다.
도 15c는 도 15a와 돌출부 면적의 총합이 동일한 1개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이다.
도 16은 돌출부의 길이 방향과 스틱 슬립(stick slip)의 진폭 간의 관계를 나타낸 도면이다.
도 17은 돌출부의 주위 영역에 분진압착부가 형성된 모습을 나타낸 사시도이다.
도 18은 도 16의 브레이크용 마찰재의 단면을 A-A' 방향에서 바라본 모습을 나타낸 단면도이다.
도 19는 도 17의 H2의 높이를 갖던 브레이크용 마찰재가 마찰에 의해 더욱 마모되어 H3의 높이를 갖게 된 모습을 나타낸 단면도이다.
도 20은 본 발명의 일 실시예에 따른 브레이크용 마찰재 제조 방법의 개략도이다.
도 21은 본 발명의 일 실시예에 따른 브레이크용 마찰재 제조 방법 중 가성형 단계에서 자석을 이용하여 제1 원료의 배열을 제어하는 모습을 나타낸 개략도이다.
본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술 되는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 가진다. 일반적인 사전들에 의해 정의된 용어들은 관련된 기술 그리고/혹은 본 출원의 본문에 의미하는 것과 동일한 의미를 갖는 것으로 해석될 수 있고, 그리고 여기서 명확하게 정의된 표현이 아니더라도 개념화되거나 혹은 과도하게 형식적으로 해석되지 않을 것이다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다' 및/또는 이 동사의 다양한 활용형들 예를 들어, '포함', '포함하는', '포함하고', '포함하며' 등은 언급된 조성, 성분, 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 조성, 성분, 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 본 명세서에서 '및/또는' 이라는 용어는 나열된 구성들 각각 또는 이들의 다양한 조합을 가리킨다.
이하, 본 명세서의 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
자동차의 운동에너지는 브레이크용 마찰재(100)와 브레이크 디스크(400) 사이의 마찰에 의해 감소되고 이를 통해 자동차의 제동 및 감속이 이루어진다.
이때 발생하는 것이 스틱 슬립(stick slip)이다. 스틱 슬립은 마찰면 간의 미시적인 부착물이 미끄러져 일어나는 자려 진동(기계 내부에 발생하는 진동을 말하며, 어떤 자극의 원인이 됨)을 말한다. 스틱 슬립은 정마찰계수와 동마찰계수의 차이에 의해 나타나는데, 마찰 특성 중 가장 대표적인 마찰 떨림은 이 스틱 슬립에 의해 발생한다.
스틱 슬립의 진폭은 소음 및 진동의 가진원으로 알려져 있기에 제동 시 발생하는 소음 및 진동을 줄이기 위해 이 스틱 슬립의 진폭을 줄이는 것이 바람직하다.
이하 개시된 본 발명의 실시예를 통해 스틱 슬립의 진폭을 줄임으로써 제동 시 진동 및 소음을 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)와 브레이크 디스크(400)가 접촉하기 전의 모습을 나타낸 평면도이다.
도 2는 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)와 브레이크 디스크(400)가 접촉한 모습을 나타낸 평면도이다.
도 1 및 도 2를 참조하면, 브레이크용 마찰재(100)는 피스톤(300)에 연결되어 있다. 자동차의 제동 및 감속을 위해 브레이크가 작동하면 각 피스톤(300)은 브레이크 디스크(400) 방향으로 이동한다. 그 결과 브레이크용 마찰재(100)와 브레이크 디스크(400)가 접촉한다. 브레이크용 마찰재(100)가 브레이크 디스크(400)와 접촉하는 면에는 접촉면이 형성된다.
도 1 및 도 2를 포함하여 본 발명의 각 도면에 도시된 X축 방향은 브레이크용 마찰재(100)와 브레이크 디스크(400) 사이에서 발생되는 마찰력의 방향인 마찰 방향과 평행한 방향을 말한다.
또한, Z축 방향은 브레이크용 마찰재(100)가 브레이크 디스크(400)와 접촉하는 면인 접촉면에 수직인 방향을 말한다.
브레이크용 마찰재(100)와 브레이크 디스크(400)가 접촉하면 브레이크용 마찰재(100)와 브레이크 디스크(400) 사이에는 마찰력이 발생한다. 이때 발생한 마찰력은 브레이크 디스크(400)의 회전을 막는다. 이를 통해 자동차 바퀴의 구동축이 갖는 운동 에너지가 열 에너지로 변환되어 자동차는 감속 또는 정지하게 된다.
도 3은 본 발명의 일 실시예에 따른 브레이크용 마찰재(100) 및 피스톤(300)의 사시도이다. 도 3에 도시된 영역 A는 브레이크용 마찰재(100)의 일부 영역을 말한다.
도 3을 참조하면, 원형의 브레이크 디스크(400)에 마찰력을 효율적으로 전달하기 위해 브레이크 디스크(400)의 형상에 대응하여 브레이크용 마찰재(100) 역시 아치형의 굽은 형상을 갖는다.
브레이크용 마찰재(100)는 몸체부(110) 및 돌출부(120)를 포함한다. 몸체부(110)는 브레이크용 마찰재(100)의 몸체를 이룬다.
돌출부(120)는 몸체부(110)가 브레이크 디스크(400)에 접촉되는 면인 접촉면으로부터 Y축 방향을 향해 돌출된다.
도 3를 포함하여 본 발명의 각 도면에 도시된 Z축 방향은 X축 및 Y축에 수직이고 접촉면과 평행한 방향을 말한다.
몸체부(110)는 브레이크용 마찰재(100)의 원료인 제1 원료(10) 및 제2 원료(20)를 포함한다. 제1 원료(10)는 브레이크용 마찰재(100)의 원료 중 경도가 큰 원료를 포함한다. 제2 원료(20)는 브레이크용 마찰재(100)의 원료 중 제1 원료(10)에 비해 상대적으로 경도가 작은 원료를 포함한다.
제1 원료(10)는 돌출부(120)를 형성한다.
예를 들면, 복수의 제1 원료(10) 각각이 각각의 돌출부(120)를 형성할 수도 있고, 복수의 제1 원료(10)의 집합이 각각의 돌출부(120)를 형성할 수도 있다.
도 4는 도 3에 도시된 브레이크용 마찰재(100)의 일부 영역인 영역 A에 돌출부가 형성되기 전의 모습을 나타낸 확대도이다.
도 4를 참조하면, 브레이크용 마찰재(100)가 브레이크 디스크(400)와 마찰되기 전의 브레이크용 마찰재(100)의 접촉면은 돌출부(120)가 존재하지 않는 평탄한 면을 갖는다.
도 5는 도 4의 브레이크용 마찰재(100)의 단면을 A-A'방향에서 바라본 모습을 나타낸 단면도이다.
도 5를 참조하면, 초기의 브레이크용 마찰재(100)는 H1의 높이를 갖는다. 또한, 내부에는 제1 원료(10) 및 제2 원료(20)가 혼합되어 존재한다.
도 4 및 도 5를 참조하면, 브레이크용 마찰재(100)는 제1 원료(10) 및 제2 원료(20)가 혼합되어 형성된다. 브레이크용 마찰재(100)와 브레이크 디스크(400) 사이에 마찰이 발생하면 제1 원료(10)에 비해 상대적으로 경도가 낮은 제2 원료(20)가 제1 원료(10)보다 먼저 마모되어 제거된다. 그 결과 상대적으로 경도가 높은 제1 원료(10)만이 브레이크용 마찰재(100)의 마찰면에 남아 돌출부(120)를 형성한다.
예를 들어, 제1 원료는 steel fiber, bronze fiber, copper fiber, brass fiber 및 stainless fiber 중 적어도 어느 하나가 적용될 수 있다. 또한, 제2 원료는 phenolic resin, polyimide, resol, COPNA resin, Aralkyl modified, boron-modified, cashew modified, silicon-modified, phosphor-modified, acryl-modified, epoxy-modified, rubber modified phenolic resin, Aramid pulp, rock wool, glass fiber, potassium titanate (whisker), sepiolite, basalt fiber, cellulose fiber, carbon fiber, acrylic fiber, Mica, vermiculite, potassium titanate (plate), copper powder, iron powder, woolastonite, Graphite, MoS2, CaF2, ZnS, Sb2S3, Sb2O5, WS2, CuS, NA3AlF6, cokes, ZrSiO4, quartz, Al2O3, MgO, ZrO2, zeolite, Fe3O4, SiC, ZnO, chromite, Ca(OH)2, cashew, rubber power, cork, Al, Cu power, bronze powder, cut copper, Zn powder, Sn powder, BaSO4, CaCO3 중 적어도 어느 하나가 적용될 수 있다.
본 발명의 일 실시예에 따르면, 제1 원료(10)의 마찰 방향에 대한 길이는 그 외의 방향에 대한 길이보다 길게 제공된다.
제1 원료(10)의 길이 방향은 제1 원료(10)의 각 방향의 길이 중 가장 길이가 긴 방향을 말한다. 따라서, 제1 원료(10)의 길이 방향은 마찰 방향과 평행한 방향을 말한다.
예컨데, 제1 원료(10)는 윗면 및 아랫면이 타원인 타원기둥 형상으로 제공될 수 있다. 이 경우 타원의 장축 방향이 제1 원료(10)의 길이 방향에 해당한다. 따라서 이 때의 제1 원료(10)는 길이 방향인 타원의 장축 방향과 마찰 방향이 평행하도록 배열된다.
또한, 제1 원료(10)는 윗면의 장변의 길이가 X축 방향과 평행한 직육면체 형상으로 제공될 수도 있다. 이 경우 직육면체의 장변의 방향이 직육면체의 길이 방향에 해당한다. 따라서, 이 때의 제1 원료(10)는 길이 방향인 장변의 방향과 마찰 방향이 평행하도록 배열된다.
그 외에도 제1 원료(10)는 마찰 방향에 대한 길이가 그 외 방향의 길이보다 긴 다양한 형상으로 제공될 수 있다.
본 발명의 일 실시예에 따르면, 원료의 계량 및 혼합 공정 중 제1 원료(10)를 기 설정된 방향으로 기 설정된 시간 동안 흔듦으로써 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)를 배열할 수 있다.
기 설정된 방향은 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 하기 위한 방향을 말하며, 제1 원료(10)의 형상에 따라 그 방향은 변경될 수 있다.
기 설정된 시간은 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 만드는데 걸리는 시간을 말하며, 제1 원료(10)의 형상에 따라 그 시간은 변경될 수 있다.
본 발명의 다른 실시예에 따르면, 제1 원료(10)가 자성을 띄는 경우 제1 원료(10)에 자력을 가하여 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)를 배열할 수 있다
도 6은 본 발명의 일 실시예에 따른 제1 원료(10)가 자성을 띄는 경우 마찰 방향과 수직인 방향 및 마찰 방향에 평행한 방향에 자석을 배치하여 제1 원료(10)의 배열 방향을 조절하는 모습을 나타낸 도면이다.
도 6을 참조하면, 마찰 방향에 수직인 방향은 A 방향에 해당하며, 마찰 방향에 평행한 방향은 B 방향에 해당한다.
도 7은 도 6에서 자석을 마찰 방향에 수직인 방향에 배치하는 경우 제1 원료(10)의 배열 모습을 나타낸 도면이다.
도 8은 도 6에서 자석을 마찰 방향과 평행한 방향에 배치하는 경우 제1 원료(10)의 배열 모습을 나타낸 도면이다.
도 6 및 도 7을 참조하면, 자석을 마찰 방향에 수직인 방향인 A 방향에 배치하는 경우, 제1 원료(10)의 길이 방향 역시 마찰 방향에 수직인 방향을 향해 배열되는 것을 확인할 수 있다.
도 6 및 도 8을 참조하면, 자석을 마찰 방향에 평행한 방향인 B 방향에 배치하는 경우, 제1 원료(10)의 길이 방향 역시 마찰 방향에 평행한 방향을 향해 배열되는 것을 확인할 수 있다.
즉, 브레이크용 마찰재(100)의 제조 과정 중 자석을 마찰 방향에 평행한 방향에 배치시킴으로써 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 배열할 수 있다.
본 발명의 또 다른 실시예에 따르면, 제2 원료(20) 상에 마찰 방향과 평행한 방향으로 제1 원료(10)의 길이 방향의 길이보다 작은 폭을 갖는 골을 형성함으로써 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)를 배열할 수 있다.
도 9는 본 발명의 일 실시예에 따른 제2 원료(20) 상에 마찰 방향과 평행한 방향으로 골을 형성하여 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 배열된 브레이크용 마찰재(10)를 제작하는 과정을 개략적으로 나타낸 도면이다.
도 9를 참조하면 먼저 제2 원료(20) 상에 마찰 방향과 평행한 방향으로 골을 형성한다. 이 때, 골의 폭은 제1 원료(10)의 길이 방향의 길이보다 작게 제공된다.
골이 형성된 제2 원료(20) 상에 제1 원료(10)를 뿌린 후 흔들어 주면 제1 원료(10)가 골에 삽입된다.
이 과정에서 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)가 배열된다.
이후, 제1 원료(10)가 골을 따라 배열된 제2 원료(20)상에 제2 원료(20)를 다시 도포하고 골을 형성한 후 제1 원료(10)를 골에 삽입하는 과정을 반복한다.
이를 통해 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 배열된 브레이크용 마찰재(10)를 제작할 수 있다.
본 발명의 또 다른 실시예에 따르면, 원료의 계량 및 혼합 공정이 끝난 후 가성형 단계로 진입하기 전 원료 운송 관 내부에 평행한 복수의 막을 배치하여 원료의 배열 방향을 조절할 수 있다.
도 10은 원료의 계량 및 혼합 공정과 가성형 공정 사이에 제공되는 원료 운송 관 내부에 평행한 복수개의 막이 제공된 모습을 나타낸 도면이다.
도 10을 참조하면, 원료 운송 관 내부에 제공된 복수의 평행 막은 원료가 일정 방향성을 갖은 채로 가성형 틀에 주입될 수 있도록 한다.
도 11은 도 9를 통해 제작된 브레이크용 마찰재(10)를 나타낸 사진이다.
도 11을 참조하면 도 9의 과정을 통해 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 배열할 수 있음을 확인할 수 있다.
도 12는 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)가 브레이크 디스크(400)에 접촉되는 접촉면에 돌출부(120)가 형성된 모습을 나타낸 사시도이다.
도 12를 참조하면, 제1 원료(10)에 비해 상대적으로 경도가 낮은 제2 원료(20)는 브레이크용 마찰재(100)와 브레이크 디스크(400) 간의 마찰에 의해 제1 원료(10)보다 먼저 제거된다.
이러한 과정을 거친 후, 몸체부(100)에서 외부로 노출되는 제1 원료(10)가 접촉면으로부터 돌출되어 돌출부(120)를 형성한다. 이때, 돌출부(120)는 도 9 및 도 11에 도시된 바와 같이 길이 방향이 마찰 방향과 평행하게 제공된다.
도 13은 도 12의 브레이크용 마찰재(100)의 단면을 A-A' 방향에서 바라본 모습을 나타낸 단면도이다.
도 13 참조하면, 초기에 H1의 높이를 갖던 브레이크용 마찰재(100)는 마찰에 의해 마모되어 높이가 H2로 낮아진다. 이 과정에서 제1 원료(10)에 비해 상대적으로 경도가 낮은 제2 원료(20)가 제1 원료(10)에 비해 먼저 제거된다. 그 결과 접촉면에는 제2 원료(20)에 비해 상대적으로 경도가 높은 제1 원료(10)만이 남아 외부로 노출되어 돌출부(120)를 형성한다.
돌출부(120)는 브레이크 디스크(400)와 직접 맞닿는 면이다. 돌출부(120)의 형상은 스틱 슬립과 직접적인 관련이 있다.
특히, 돌출부(120)의 크기가 작을수록 스틱 슬립의 진폭이 감소하여 제동 시 발생하는 진동 및 소음이 저감된다.
또한, 돌출부(120)의 마찰 방향에 대한 길이가 그 외의 방향에 대한 길이보다 길게 제공되는 경우 스틱 슬립의 진폭이 감소하여 제동 시 발생하는 진동 및 소음이 저감된다.
이하에서는 도 14 내지 16을 참조하여, 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)의 형상과 그에 따른 스틱 슬립의 진폭 간의 관계를 설명한다.
도 14a는 브레이크용 마찰재 표면의 면적 중 돌출부가 차지하는 면적이 17.11[%]인 경우 스틱 슬립의 진폭을 나타낸 도면이고, 도 14b는 브레이크용 마찰재 표면의 면적 중 돌출부가 차지하는 면적이 28.65[%]인 경우 스틱 슬립의 진폭을 나타낸 도면이다.
도 14a 및 도 14b를 참조하면, 해당 실험에서는 1/5 scale dynamometer 장비가 사용되었으며 상대재로는 회주철 디스크가 사용되었다. 50[bar]의 조건 하에서 도 14a는 1000[mm/s]으로 버니시 한 후 0.1[mm/s]로 stick-slip 실험을 진행하였으며, 도 14bs는 50[mm/s]로 버니시 한 후 0.1[mm/s]로 stick-slip 실험을 진행하였다.
보다 상세히 말하면, 스틱 슬립(stick-slip) 실험을 진행하기 전에 브레이크용 마찰재의 표면을 길들이는 과정을 버니시라고 한다. 버니시 속도에 따라 돌출부(120)의 면적이 달라지게 되는데, 돌출부(120)의 면적 차이에 따른 스틱 슬립의 진폭이 달라짐을 본 실험을 통해 확인할 수 있다. 실험 결과를 살펴보면, 0.1[mm/s] 및 50[bar]의 조건 하에서 브레이크용 마찰재(100) 표면의 면적 중 돌출부(120)가 차지하는 면적이 17.11[%]인 경우 스틱 슬립의 진폭은 29.51 ± 4.37[N]이고, 돌출부(120)가 차지하는 면적이 28.65[%]인 경우 스틱 슬립의 진폭은 57.64 ± 2.16[N]인 것을 알 수 있다.
즉, 돌출부(120)의 면적과 스틱 슬립의 진폭은 서로 비례 관계인 것을 확인할 수 있다.
도 15a는 면적이 동일한 10개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이고, 도 15b는 도 15a와 돌출부 면적의 총합이 동일한 3개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이고, 도 15c는 도 15a와 돌출부 면적의 총합이 동일한 1개의 돌출부의 모습과 그 때의 스틱 슬립의 진폭을 나타낸 도면이다.
도 15a 내지 도 15c를 참조하면, 각 도면에서의 돌출부(120) 면적의 총합은 동일하게 제공되었으며, 0.3[mm/s]의 조건 하에서 스틱 슬립의 진폭을 확인하기 위한 실험을 진행하였다. 도 15a의 돌출부(120) 하나의 면적을 a라고 가정했을 때, 도 15b의 각각의 돌출부(120)의 면적은 a의 5배, 3배, 2배로 제공되고, 도 15c의 돌출부(120)의 면적은 a의 10배로 제공되었다.
이때 스틸 슬립의 진폭 측정 결과를 살펴보면, 도 15a에서 도 15c로 갈수록 돌출부(120) 각각의 면적은 점차 크게 제공되며 이때 스틱 슬립의 진폭 역시 점차 증가하는 것을 확인할 수 있다.
즉, 돌출부(120) 각각의 면적을 작게 할 수록 스틱 슬립의 진폭을 줄일 수 있어 바람직하다는 것을 확인할 수 있다. 제1 원료(10) 각각은 각각의 돌출부(120)를 형성하므로, 브레이크용 마찰재(100)의 원료 중 제1 원료(10)의 크기를 작게 할 수록 스틱 슬립의 진폭을 줄일 수 있어 바람직하다.
도 16은 돌출부(120)의 길이 방향과 스틱 슬립(stick slip)의 진폭 간의 관계를 나타낸 도면이다.
도 16을 참조하면, L은 돌출부(120)의 길이 방향과 마찰 방향이 평행한 경우, R은 돌출부(120)의 길이 방향이 마찰 방향과 마찰 방향에 수직인 방향의 사이 방향인 경우, T는 돌출부(120)의 길이 방향과 마찰 방향에 수직인 방향이 평행한 경우로 설정하였다.
도 16의 실험은 1/5 scale dynamometer 장비가 사용되었으며, 상대재로는 회주철 디스크가 사용되었다. 실험을 위해 먼저 사포를 이용하여 돌출부(120)의 길이 방향이 L, R 및 T의 방향성을 갖도록 제작하였다. 이후 20[bar]의 조건 하에서 20[mm/s]로 버니시 한 후 0.1[mm/s]로 스틱 슬립 실험을 진행하였다.
보다 상세히 말하면, 버니시 단계에서는 20[mm/s] 로 20[bar]의 조건 하에서 300[sec] 동안 진행하였으며, 스틱 슬립 실험 단계에서는 0.1[mm/s] 로 20[bar]의 조건 하에서 20[sec] 동안 실험을 진행하였다.
측정 결과 그래프를 보면, T 경우보다 R 경우의 스틱 슬립의 진폭이 더 작다. 또한, R 경우보다 L 경우의 스틱 슬립의 진폭이 더 작다. 즉, 돌출부(120)의 길이 방향과 제1 방향이 평행할수록 스틱 슬립의 진폭을 줄일 수 있어 바람직하다는 것을 확인할 수 있다.
도 17은 돌출부(120)의 주위 영역에 분진압착부(130)가 형성된 모습을 나타낸 사시도이다.
도 18은 도 17의 브레이크용 마찰재(100)의 단면을 A-A' 방향에서 바라본 모습을 나타낸 단면도이다.
도 17 및 18을 참조하면, 분진압착부(130)는 돌출부(120)의 주위 영역에 인접하여 형성된다. 브레이크용 마찰재(100)와 브레이크 디스크(400) 사이의 마찰에 의해 마모 분진이 발생한다. 이때 발생한 마모 분진은 주로 돌출부(120)와 인접한 영역에 쌓이게 되고 브레이크 디스크(400)로부터 압력에 의해 단단하게 압착되어 결과적으로 돌출부(120)의 면적을 넓힌다.
하지만, 도 14 및 도 15의 측정 결과에서 알 수 있듯이 돌출부(120) 각각의 면적은 작을 수록 바람직하다. 따라서 분진압착부(130)의 면적 역시 작을 수록 바람직하다.
분진압착부(130)의 면적은 돌출부(120)를 형성하는 제1 원료(10)의 크기와 관련이 있다. 제1 원료(10)의 크기가 크게 제공되어 돌출부(120)의 면적이 넓을수록 그와 인접한 영역에 분진이 쌓이기 쉬워 분진압착부(130)의 면적 역시 증가한다.
따라서, 제1 원료(10)의 크기를 줄이는 것이 제1 원료(10)가 형성하는 돌출부(120)의 면적을 줄일 수 있을 뿐만 아니라 분진압착부(130)의 면적 역시 함께 줄일 수 있어 바람직하다.
도 19는 도 18의 H2의 높이를 갖던 브레이크용 마찰재(100)가 마찰에 의해 더욱 마모되어 H3의 높이를 갖게 된 모습을 나타낸 단면도이다.
도 19를 참조하면 H2의 높이를 갖던 브레이크용 마찰재(100)는 계속적인 마찰에 의해 높이가 H3까지 낮아지게 된다. 브레이크용 마찰재(100)의 높이가 H3까지 낮아지는 동안 기존에 외부로 노출되어 되어 돌출부(120)를 형성하던 제1 원료(10) 역시 마찰에 의해 제거된다.
비록 기존의 돌출부(120)가 제거되더라도, 브레이크용 마찰재(100)의 내부에는 여전히 다량의 제1 원료(10)가 마찰 방향을 길이 방향으로 하여 섞여 있으므로 새로운 제1 원료(10)가 외부로 노출되어 돌출부(120)를 형성하게 된다.
따라서, 브레이크용 마찰재(100)가 마모되어 계속해서 그 높이가 낮아지더라도 새로운 돌출부(120)가 형성됨으로써 제동 시 발생하는 스틸 슬립의 진폭을 지속적으로 저감시킬 수 있다.
돌출부(120)는 위의 방법 이외에도, 제1 원료(10)를 접촉면에 부착하는 방식으로도 제작될 수 있다. 이때, 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 부착함으로써 상기 스틱 슬립의 진폭 감소 효과를 얻을 수 있다.
또한, 돌출부(120)는 제1 원료(10)의 일부를 접촉면을 통하여 브레이크용 마찰재(100)의 내부로 삽입하는 방식으로 제작될 수도 있다. 이때, 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 삽입함으로써 상기 스틱 슬립의 진폭 감소 효과를 얻을 수 있다.
도 20은 본 발명의 일 실시예에 따른 브레이크용 마찰재(100) 제조 방법의 개략도이다.
도 20을 참조하면, 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)는 원료 혼합 단계(S1), 원료 배열 제어 단계(S2), 가성형 단계(S3), 열성형 단계(S4), 열처리 단계(S5) 및 마무리 단계(S6)를 포함하는 제조 방법을 통해 제조될 수 있다.
원료 혼합 단계(S1)는 브레이크용 마찰재(100)의 원료를 혼합하는 단계이다. 원료 혼합 단계(S1)에서 제1 원료(10) 및 제2 원료(20)가 혼합된다. 원료 혼합은 제1 원료(10) 및 제2 원료(20)가 충분히 섞일 때까지 진행될 수 있으며 1분 내지 2분 내외로 진행될 수 있다. 이때, 혼합 도중 발생한 열이 기준치 이상으로 발생하는 것을 방지하기 위해 혼합 중 대기 시간을 갖을 수 있는데, 예를 들어 20초 동안 혼합을 진행한 후 대기 시간을 주어 기준치 이하로 원료의 온도를 낮추는 방식으로 진행될 수 있다. 또한, 레진을 포함한 열에 민감한 재료의 경우 가장 마지막에 추가하는 방식으로도 진행할 수 있다.
원료 배열 제어 단계(S2)는 혼합된 원료들 중 기 설정된 원료의 길이 방향이 브레이크용 마찰재(100)가 마찰력을 받는 방향인 마찰 방향과 평행하도록 배열하는 단계이다. 예를 들어, 기 설정된 원료는 제1 원료(10)일 수 있다. 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 하기 위해 제1 원료(10)를 기 설정된 방향으로 기 설정된 시간 동안 흔듦으로써 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)를 배열할 수 있다.
기 설정된 방향은 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 하기 위한 방향을 말하며, 제1 원료(10)의 형상에 따라 그 방향은 변경될 수 있다. 기 설정된 시간은 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 만드는데 걸리는 시간을 말하며, 제1 원료(10)의 형상에 따라 그 시간은 변경될 수 있다.
도 21은 본 발명의 브레이크용 마찰재의 제조 방법 중 가성형 단계에서 자석을 이용하여 제1 원료의 배열을 제어하는 모습을 나타낸 개략도이다.
도 21을 참조하면, 제1 원료(10)가 자성을 띄는 경우 제1 원료(10)에 자력을 가하여 제1 원료(10)의 길이 방향과 마찰 방향이 평행하도록 제1 원료(10)를 배열할 수 있다. 이때 자력을 가해주기 위한 자석은. 네오디움 자석을 포함한 제1 원료(10)의 배열을 제어할 수 있는 크기의 자력을 제공할 수 있는 자석이라면 제한 없이 적용될 수 있다.
예컨데, 브레이크용 마찰재(100)의 제조 과정 중 자석을 미끄럼 방향에 평행한 방향에 배치시킴으로써 제1 원료(10)의 길이 방향과 미끄럼 방향이 평행하도록 배열할 수 있다.
가성형 단계(S3)는 배열된 원료를 본성형 된 제품의 형상과 동일한 형상으로 만드는 단계이다.
열성형 단계(S4)는 가성형 된 제품에 기 설정된 압력, 온도 및 시간을 적용하는 단계이다. 열성형 단계에서는 170[℃], 10[bar]의 조건 하에서 대략 7 내지 8단계의 열성형을 거칠 수 있는데, 예를 들어 20초, 10초, 20초, 10초, 10초, 25초, 45초 및 1분30초의 8단계의 열성형 단계를 거칠 수 있다.
열처리 단계(S5)는 열성형 된 제품을 경화시키는 단계이다. 예를 들어, 225[℃]에서 8시간 동안 본 발명의 일 실시예에 따른 브레이크용 마찰재(100)를 경화시킬 수 있다.
마무리 단계(S6)는 제품을 완성시키는 단계이다.
본 발명의 일 실시예에 따른 브레이크용 마찰재(100)는 돌출부(120)의 마찰 방향에 대한 길이가 마찰 방향에 수직인 방향에 대한 길이보다 길게 제공됨으로써 제동 시 발생하는 마찰 진동 및 소음을 저감시킬 수 있다. 또한, 브레이크용 마찰재(100)의 원료인 제1 원료(10)의 크기를 작게 함으로써 돌출부(120) 및 분진압착부(130)의 면적을 감소시켜 제동 시 발생하는 마찰 진동 및 소음을 저감시킬 수 있다.
이상에서 실시예를 통해 본 발명을 설명하였으나, 위 실시예는 단지 본 발명의 사상을 설명하기 위한 것으로 이에 한정되지 않는다. 통상의 기술자는 전술한 실시예에 다양한 변형이 가해질 수 있음을 이해할 것이다. 본 발명의 범위는 첨부된 특허청구범위의 해석을 통해서만 정해진다.
[부호의 설명]
10: 제1 원료
20: 제2 원료
100: 브레이크용 마찰재
110: 몸체부
120: 돌출부
130: 분진압착부
200: 백플레이트
300: 피스톤
400: 브레이크 디스크

Claims (11)

  1. 몸체부; 및
    상기 몸체부의 브레이크 디스크에 접촉되는 접촉면으로부터 돌출된 복수의 돌출부를 포함하되,
    상기 돌출부는 상기 브레이크 디스크와의 사이에서 발생되는 마찰력의 방향인 마찰 방향에 대한 길이가 그 외의 방향에 대한 길이보다 길게 제공되는 브레이크용 마찰재.
  2. 제 1 항에 있어서,
    상기 돌출부는 상기 몸체부에 비해 경도가 큰 브레이크용 마찰재.
  3. 제 2 항에 있어서,
    상기 돌출부는:
    제 1 원료를 포함하고,
    상기 몸체부는:
    상기 제 1 원료; 및
    상기 제 1 원료에 비해 경도가 작은 제 2 원료를 포함하는 브레이크용 마찰재.
  4. 제 3 항에 있어서,
    상기 제 1 원료를 기 설정된 방향으로 흔들어서 상기 제 1 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열된 브레이크용 마찰재.
  5. 제 3 항에 있어서,
    상기 제 1 원료는:
    자성을 띄고,
    자력에 의해 상기 제 1 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열된 브레이크용 마찰재.
  6. 제 4 항 또는 제 5항에 있어서,
    상기 돌출부 각각은:
    상기 제 1 원료 각각에 의해 형성되거나,
    상기 제 1 원료의 집합에 의해 형성되는 브레이크용 마찰재.
  7. 제 6 항에 있어서,
    상기 돌출부는:
    상기 몸체부에 포함된 상기 제 2 원료가 상기 브레이크 디스크와의 마찰에 의해 상기 제 1 원료보다 먼저 제거됨으로써 상기 제 1 원료가 상기 접촉면으로부터 외부로 노출되어 형성된 브레이크용 마찰재.
  8. 제 7 항에 있어서,
    마찰에 의해 발생한 마모 분진이 상기 돌출부와 인접한 영역에 압착되어 생성되는 분진압착부를 더 포함하고,
    상기 분진압착부의 크기는 상기 제 1 원료의 크기에 의해 조절되는 브레이크용 마찰재.
  9. 브레이크용 마찰재의 원료를 혼합하는 원료 혼합 단계;
    혼합된 원료들 중 기 설정된 원료의 길이 방향이 상기 브레이크용 마찰재가 마찰력을 받는 방향인 마찰 방향과 평행하도록 배열하는 원료 배열 제어 단계;
    배열된 원료를 본성형 된 제품의 형상과 동일한 형상으로 만드는 가성형 단계;
    가성형 된 제품에 기 설정된 압력, 온도 및 시간을 적용하는 열성형 단계;
    열성형 된 제품을 경화시키는 열처리 단계; 및
    제품을 완성시키는 마무리 단계를 포함하는 브레이크용 마찰재 제조 방법.
  10. 제 9항에 있어서,
    상기 원료 배열 제어 단계는, 기 설정된 원료를 기 설정된 방향으로 흔들어서 상기 기 설정된 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열하는 단계이고,
    상기 기 설정된 원료는, 상기 브레이크용 마찰재의 원료 중 다른 원료에 비해 경도가 큰 원료인 브레이크용 마찰재 제조 방법.
  11. 제 9 항에 있어서,
    상기 원료 배열 제어 단계는, 자력을 이용해 상기 기 설정된 원료의 길이 방향이 상기 마찰 방향과 평행하도록 배열하도록 단계이고,
    상기 기 설정된 원료는, 상기 브레이크용 마찰재의 원료 중 다른 원료에 비해 경도가 크고 자성을 띄는 원료인 브레이크용 마찰재 제조 방법.
PCT/KR2020/007553 2019-06-25 2020-06-11 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법 WO2020262854A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190075895 2019-06-25
KR10-2019-0075895 2019-06-25
KR10-2019-0171335 2019-12-20
KR1020190171335A KR20210000646A (ko) 2019-06-25 2019-12-20 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2020262854A1 true WO2020262854A1 (ko) 2020-12-30

Family

ID=74061781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007553 WO2020262854A1 (ko) 2019-06-25 2020-06-11 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2020262854A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990007601U (ko) * 1997-07-31 1999-02-25 양재신 브레이크디스크와 브레이크패드의 제동구조.
JP2004316854A (ja) * 2003-04-18 2004-11-11 Dainatsukusu:Kk 硬質皮膜をコーティングした摩擦相手材
WO2010146646A1 (ja) * 2009-06-15 2010-12-23 トヨタ自動車株式会社 摩擦材の製造方法、摩擦材及び制動装置
WO2010146647A1 (ja) * 2009-06-15 2010-12-23 トヨタ自動車株式会社 制動装置及び摩擦材の製造方法
US20150369311A1 (en) * 2013-02-01 2015-12-24 Sumitomo Bakelite Company Limited Brake pad and caliper device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990007601U (ko) * 1997-07-31 1999-02-25 양재신 브레이크디스크와 브레이크패드의 제동구조.
JP2004316854A (ja) * 2003-04-18 2004-11-11 Dainatsukusu:Kk 硬質皮膜をコーティングした摩擦相手材
WO2010146646A1 (ja) * 2009-06-15 2010-12-23 トヨタ自動車株式会社 摩擦材の製造方法、摩擦材及び制動装置
WO2010146647A1 (ja) * 2009-06-15 2010-12-23 トヨタ自動車株式会社 制動装置及び摩擦材の製造方法
US20150369311A1 (en) * 2013-02-01 2015-12-24 Sumitomo Bakelite Company Limited Brake pad and caliper device

Similar Documents

Publication Publication Date Title
WO2020262854A1 (ko) 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법
KR20140071267A (ko) 브레이크 라이닝 및 그 제조방법
WO2012141545A2 (ko) 용적형 제동장치
WO2023003182A1 (ko) 적층코어의 제조방법
WO2014168419A1 (ko) 브레이크 액추에이터
WO2021162188A1 (ko) 업힐과 다운힐 모드 기능을 갖는 실내 운동 자전거
ATE324530T1 (de) Verfahren zur herstellung einer bremsscheibe, insbesondere als wellen- oder radbremsscheibe für schienenfahrzeuge
JPH09507286A (ja) 後退を改良したディスクブレーキ
WO2012074263A1 (ko) 탄소-세라믹 브레이크 디스크 및 이를 만드는 방법
WO2019035508A1 (ko) 리니어 모듈
KR20130088291A (ko) 엘리베이터의 비상정지장치
DE59303156D1 (de) Verfahren zum herstellen von schleifkörpern fur elektrische kollektoren od.dgl.
WO2017099451A1 (ko) 고망간강 브레이크 디스크
HUP9901128A2 (hu) Egypedálos rendszer gépjárművek motorfordulatának és fékezési hatásának szabályozására, valamint eljárás ilyen egypedálos rendszer kialakítására
GB1249922A (en) Railway brake blocks
WO2022173077A1 (ko) 자전거용 무전원 안티록 브레이크용 브레이크 디스크 및 이를 이용한 자전거용 무전원 안티록 브레이크 시스템
JP2904244B2 (ja) ディスクブレーキ用摩擦パッドの製造方法
WO2023075322A1 (ko) 차량용 플로팅 디스크 어셈블리
WO2022014930A1 (ko) 차량용 플로팅 디스크 허브 조립체
WO2022139144A1 (ko) 디스크 결합 유닛
WO2015133802A1 (ko) 용적형 클러치, 용적형 클러치와 용적형 제동장치를 포함하는 동력전달 시스템 및 용적형 클러치를 이용한 변속장치
DE59406754D1 (de) Rollschalung
SE8903428A (ko)
KR20210000646A (ko) 원료 배열 제어를 통해 소음 및 진동을 저감시킨 브레이크용 마찰재 및 그 제조 방법
JPH1122767A (ja) ブレーキパッドおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831380

Country of ref document: EP

Kind code of ref document: A1