WO2020262751A1 - 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 - Google Patents
디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 Download PDFInfo
- Publication number
- WO2020262751A1 WO2020262751A1 PCT/KR2019/008443 KR2019008443W WO2020262751A1 WO 2020262751 A1 WO2020262751 A1 WO 2020262751A1 KR 2019008443 W KR2019008443 W KR 2019008443W WO 2020262751 A1 WO2020262751 A1 WO 2020262751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- assembly
- light emitting
- substrate
- semiconductor light
- electrodes
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 279
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims description 63
- 239000004065 semiconductor Substances 0.000 claims abstract description 278
- 230000005684 electric field Effects 0.000 claims abstract description 51
- 238000005192 partition Methods 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 42
- 239000000696 magnetic material Substances 0.000 claims description 18
- 230000001939 inductive effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 93
- 238000001338 self-assembly Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 17
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 10
- 229910002601 GaN Inorganic materials 0.000 description 8
- 230000005484 gravity Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 Al2O3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68368—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Definitions
- the present invention relates to a method of manufacturing a display device using an assembly substrate used in a method of manufacturing a display device and a semiconductor light emitting device having a size of several to tens of ⁇ m.
- LCDs liquid crystal displays
- OLED organic light-emitting device
- micro LED displays are competing in the field of display technology to implement large-area displays.
- micro LED semiconductor light emitting device having a diameter or cross-sectional area of 100 ⁇ m or less
- the display does not absorb light using a polarizing plate or the like, very high efficiency can be provided.
- a large display requires millions of semiconductor light emitting devices, it is difficult to transfer devices compared to other technologies.
- the self-assembly method is a method in which the semiconductor light emitting device locates itself in a fluid, and is the most advantageous method for realizing a large-screen display device.
- the self-assembly method there are a method of assembling a semiconductor light emitting device directly to a final substrate (or a wiring board) on which wiring is formed, and a method of assembling the semiconductor light emitting device to an assembly substrate and then transferring it to the final substrate through an additional transfer process.
- the method of assembling directly to the final substrate is efficient in terms of the process, and in the case of using the assembling substrate, there is an advantage in that a structure for self-assembly can be added without limitation, so that two methods are selectively used.
- the present invention provides a method of manufacturing an assembly substrate and a display device in which a structure capable of improving the assembly rate of a semiconductor light emitting element is implemented in a self-assembly method in which a semiconductor light emitting device is mounted on an assembly substrate using an electric field and a magnetic field. The purpose.
- the assembly substrate in an assembly substrate used in a display manufacturing method for mounting semiconductor light emitting devices to a predetermined position of an assembly substrate using an electric field and a magnetic field, includes: a base portion; A plurality of assembly electrodes extending in one direction and disposed on the base at predetermined intervals; A dielectric layer laminated on the base to cover the assembled electrodes; A partition wall stacked on the dielectric layer while forming cells in which semiconductor light emitting devices are mounted at predetermined intervals along the extending direction of the assembly electrode so as to overlap a part of the assembly electrode; And a voltage applying unit connected to at least both ends of the assembly electrodes to apply a voltage signal to the assembly electrodes, wherein voltage signals of the same polarity are applied from the voltage applying units connected to both ends of the assembly electrodes. do.
- the voltage applying unit includes: an electrode pad to which power is applied from an external device; And a bus line connected to the electrode pad and the assembly electrodes, and supplying a voltage signal to the connected assembly electrodes when power is applied to the electrode pad.
- the voltage application unit includes a first voltage application unit including an anode electrode pad and a second voltage application unit including a cathode electrode pad, and the assembly substrate includes the same number of first voltage application units and It characterized in that it comprises a second voltage applying unit.
- one of the adjacent assembly electrodes is connected to the first voltage applying unit, and the other is connected to the first voltage applying unit so that voltage signals of different polarities are supplied to adjacent assembly electrodes among the plurality of assembly electrodes. 2 It characterized in that it is connected to the voltage applying unit.
- the voltage applying unit is characterized in that it is connected to the plurality of assembly electrodes receiving voltage signals of the same polarity.
- the plurality of assembly electrodes are further connected to a voltage application unit for applying a voltage signal having the same polarity as a voltage application unit connected to both ends at an arbitrary position in the extension direction of the assembly electrode. do.
- the plurality of assembly electrodes are divided into a plurality of regions having the same length based on the arbitrary position.
- a method of manufacturing a display device includes the steps of transferring an assembly substrate to an assembly position and introducing a plurality of semiconductor light emitting devices including a magnetic material into a fluid chamber; Applying a magnetic force to the semiconductor light emitting devices so that the semiconductor light emitting devices introduced into the fluid chamber move along one direction; Inducing the semiconductor light emitting devices to the preset positions by applying an electric field so as to be seated at a preset position on the assembly substrate while the semiconductor light emitting devices are moving; And transferring the semiconductor light emitting devices mounted on the assembly substrate to a final substrate on which wiring is formed, wherein a plurality of assembly electrodes for forming an electric field are disposed on the assembly substrate at predetermined intervals, and the plurality of assembly electrodes Each of them is characterized in that a voltage signal having the same polarity is applied at least at both ends.
- voltage signals having different polarities are supplied to adjacent assembly electrodes among the plurality of assembly electrodes, so that the electric field is formed in a region between the adjacent assembly electrodes.
- a predetermined position in which the semiconductor light emitting devices are seated is characterized in that it overlaps a region between the adjacent assembly electrodes where an electric field is formed.
- the electric field may be formed by the voltage supplied from the other direction even if the voltage is not supplied in a specific direction due to a failure of the assembly electrode. , It is possible to improve the assembly rate of the semiconductor light emitting device, accordingly there is an effect of shortening the repair process time that proceeds after self-assembly.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
- FIG. 2 is a partially enlarged view of portion A of the display device of FIG. 1.
- FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG. 2.
- FIG. 4 is an enlarged view illustrating another embodiment of the semiconductor light emitting device of FIG. 2.
- 5A to 5E are conceptual diagrams for explaining a new process of manufacturing the above-described semiconductor light emitting device.
- FIG. 6 is a conceptual diagram showing an example of a self-assembly device of a semiconductor light emitting device according to the present invention.
- FIG. 7 is a block diagram of the self-assembly device of FIG. 6.
- 8A to 8E are conceptual diagrams illustrating a process of self-assembling a semiconductor light emitting device using the self-assembly device of FIG. 6.
- FIGS. 8A to 8D are conceptual diagram illustrating the semiconductor light emitting device of FIGS. 8A to 8D.
- 10A to 10C are conceptual diagrams showing a state in which a semiconductor light emitting device is transferred after a self-assembly process according to the present invention.
- 11 to 13 are flowcharts illustrating a method of manufacturing a display device including a semiconductor light emitting device emitting red (R), green (G), and blue (B) light.
- FIG. 14 is a view showing the structure of a conventional assembly substrate.
- 15 is a conceptual diagram illustrating a shape of an electric field formed between assembled electrodes.
- 16 is a view showing an assembly state when an electrode failure occurs in a conventional assembly substrate.
- 17 is a view showing the structure of an assembly substrate according to an embodiment of the present invention.
- FIG. 18 is a view showing the structure of an assembly substrate according to another embodiment of the present invention.
- 19 is a view showing an assembly state when an electrode failure occurs in an assembly substrate according to an embodiment of the present invention.
- 20 is a graph showing a simulation analysis result of a voltage applied to a cell formed on an assembly substrate according to the prior art and according to an embodiment of the present invention.
- Display devices described herein include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC.
- PDA personal digital assistant
- PMP portable multimedia player
- slate PC slate PC
- slate PC tablet PC
- ultra book ultra book
- digital TV digital TV
- desktop computer desktop computer
- the configuration according to the embodiment described in the present specification can be applied even if a new product type to be developed later can include a display.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention
- FIG. 2 is a partial enlarged view of part A of the display device of FIG. 1
- FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG.
- FIG. 4 is an enlarged view showing another embodiment of the semiconductor light emitting device of FIG. 2.
- information processed by the controller of the display apparatus 100 may be output from the display module 140.
- a case 101 in the form of a closed loop surrounding an edge of the display module may form a bezel of the display device.
- the display module 140 includes a panel 141 displaying an image, and the panel 141 includes a micro-sized semiconductor light emitting device 150 and a wiring board 110 on which the semiconductor light emitting device 150 is mounted. It can be provided.
- a wire is formed on the wiring board 110 to be connected to the n-type electrode 152 and the p-type electrode 156 of the semiconductor light emitting device 150.
- the semiconductor light emitting device 150 may be provided on the wiring board 110 as an individual pixel that emits light.
- the image displayed on the panel 141 is visual information, and is implemented by independently controlling light emission of sub-pixels arranged in a matrix form through the wiring.
- a micro LED Light Emitting Diode
- the micro LED may be a light emitting diode formed in a small size of 100 microns or less.
- blue, red, and green are respectively provided in the emission region, and a unit pixel may be implemented by a combination thereof. That is, the unit pixel means a minimum unit for implementing one color, and at least three micro LEDs may be provided in the unit pixel.
- the semiconductor light emitting device 150 may have a vertical structure.
- the semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and/or aluminum (Al) are added together to be implemented as a high-power light emitting device emitting various light including blue. Can be.
- GaN gallium nitride
- Al aluminum
- the vertical semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 formed on the p-type electrode 156, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer 154. And an n-type semiconductor layer 153 formed thereon, and an n-type electrode 152 formed on the n-type semiconductor layer 153.
- the p-type electrode 156 located at the bottom may be electrically connected to the p electrode of the wiring board
- the n-type electrode 152 located at the top may be electrically connected to the n electrode at the top of the semiconductor light emitting device.
- the vertical semiconductor light emitting device 150 has a great advantage of reducing a chip size since electrodes can be arranged up and down.
- the semiconductor light emitting device may be a flip chip type light emitting device.
- the semiconductor light emitting device 250 includes a p-type electrode 256, a p-type semiconductor layer 255 on which the p-type electrode 256 is formed, and an active layer 254 formed on the p-type semiconductor layer 255 , An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 disposed horizontally spaced apart from the p-type electrode 256 on the n-type semiconductor layer 253.
- both the p-type electrode 256 and the n-type electrode 152 may be electrically connected to the p-electrode and the n-electrode of the wiring board under the semiconductor light emitting device.
- Each of the vertical semiconductor light emitting device and the horizontal semiconductor light emitting device may be a green semiconductor light emitting device, a blue semiconductor light emitting device, or a red semiconductor light emitting device.
- a green semiconductor light emitting device and a blue semiconductor light emitting device gallium nitride (GaN) is mainly used, and indium (In) and/or aluminum (Al) are added together to embody green or blue light. Can be.
- the semiconductor light emitting device may be a gallium nitride thin film formed in various layers such as n-Gan, p-Gan, AlGaN, InGan, and specifically, the p-type semiconductor layer is P-type GaN, and the n The type semiconductor layer may be N-type GaN.
- the p-type semiconductor layer may be P-type GaAs
- the n-type semiconductor layer may be N-type GaAs.
- the p-type semiconductor layer may be P-type GaN doped with Mg at the p-electrode side
- the n-type semiconductor layer may be N-type GaN doped with Si at the n-electrode side.
- the above-described semiconductor light emitting devices may be semiconductor light emitting devices without an active layer.
- unit pixels that emit light may be arranged in a high definition in the display panel, thereby implementing a high-definition display device.
- a semiconductor light emitting device grown on a wafer and formed through mesa and isolation is used as individual pixels.
- the micro-sized semiconductor light emitting device 150 must be transferred to a wafer to a predetermined position on the substrate of the display panel. There is pick and place as such transfer technology, but the success rate is low and very long time is required.
- there is a technique of transferring several elements at once using a stamp or a roll but there is a limit to the yield, so it is not suitable for a large screen display.
- a new manufacturing method and manufacturing apparatus for a display device capable of solving this problem are proposed.
- 5A to 5E are conceptual diagrams for explaining a new process of manufacturing the above-described semiconductor light emitting device.
- a display device using a passive matrix (PM) type semiconductor light emitting device is exemplified.
- PM passive matrix
- AM active matrix
- a method of self-assembling a horizontal type semiconductor light emitting device is illustrated, but this is applicable to a method of self-assembling a vertical type semiconductor light emitting device.
- a first conductive type semiconductor layer 153, an active layer 154, and a second conductive type semiconductor layer 155 are respectively grown on the growth substrate 159 (FIG. 5A).
- the first conductive type semiconductor layer 153 When the first conductive type semiconductor layer 153 is grown, next, an active layer 154 is grown on the first conductive type semiconductor layer 153, and then a second conductive type semiconductor is formed on the active layer 154.
- the layer 155 is grown. In this way, when the first conductive type semiconductor layer 153, the active layer 154, and the second conductive type semiconductor layer 155 are sequentially grown, as shown in FIG. 5A, the first conductive type semiconductor layer 153 , The active layer 154 and the second conductive semiconductor layer 155 form a stacked structure.
- the first conductive type semiconductor layer 153 may be a p-type semiconductor layer
- the second conductive type semiconductor layer 155 may be an n-type semiconductor layer.
- the present invention is not necessarily limited thereto, and an example in which the first conductivity type is n-type and the second conductivity type is p-type is also possible.
- the present embodiment illustrates the case where the active layer is present, as described above, a structure without the active layer may be possible depending on the case.
- the p-type semiconductor layer may be P-type GaN doped with Mg
- the n-type semiconductor layer may be N-type GaN doped with Si on the n-electrode side.
- the growth substrate 159 may be formed of a material having a light-transmitting property, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO, but is not limited thereto.
- the growth substrate 1059 may be formed of a material suitable for growth of semiconductor materials or a carrier wafer. It can be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate having a higher thermal conductivity than a sapphire (Al2O3) substrate, or at least one of Si, GaAs, GaP, InP, and Ga2O3. Can be used.
- isolation is performed so that a plurality of light emitting devices form a light emitting device array. That is, the first conductive type semiconductor layer 153, the active layer 154, and the second conductive type semiconductor layer 155 are etched in a vertical direction to form a plurality of semiconductor light emitting devices.
- the active layer 154 and the second conductive type semiconductor layer 155 are partially removed in the vertical direction, so that the first conductive type semiconductor layer 153 is removed to the outside.
- the exposed mesa process and the isolation of forming a plurality of semiconductor light emitting device arrays by etching the first conductive type semiconductor layer thereafter may be performed.
- a second conductive type electrode 156 (or a p type electrode) is formed on one surface of the second conductive type semiconductor layer 155 (FIG. 5C).
- the second conductive electrode 156 may be formed by a deposition method such as sputtering, but the present invention is not limited thereto.
- the first conductive semiconductor layer and the second conductive semiconductor layer are an n-type semiconductor layer and a p-type semiconductor layer, respectively, the second conductive type electrode 156 may be an n-type electrode.
- the growth substrate 159 is removed to provide a plurality of semiconductor light emitting devices.
- the growth substrate 1059 may be removed using a laser lift-off method (LLO) or a chemical lift-off method (CLO) (FIG. 5D).
- LLO laser lift-off method
- CLO chemical lift-off method
- the semiconductor light emitting devices 150 and a substrate are placed in a chamber filled with a fluid, and the semiconductor light emitting devices are self-assembled to the substrate 1061 using flow, gravity, and surface tension.
- the substrate may be an assembled substrate 161.
- the substrate may be a wiring substrate.
- the present invention illustrates that the substrate is provided as the assembly substrate 161 and the semiconductor light emitting devices 1050 are mounted.
- Cells (not shown) to which the semiconductor light emitting devices 150 are inserted may be provided on the assembly substrate 161 to facilitate mounting of the semiconductor light emitting devices 150 on the assembly substrate 161. Specifically, cells in which the semiconductor light emitting devices 150 are mounted are formed on the assembly substrate 161 at a position where the semiconductor light emitting devices 150 are aligned with a wiring electrode. The semiconductor light emitting devices 150 move in the fluid and then are assembled to the cells.
- the assembled substrate 161 After a plurality of semiconductor light emitting elements are arrayed on the assembled substrate 161, when the semiconductor light emitting elements of the assembled substrate 161 are transferred to a wiring board, a large area can be transferred. Accordingly, the assembled substrate 161 may be referred to as a temporary substrate.
- the transfer yield in order to apply the self-assembly method described above to manufacturing a large screen display, the transfer yield must be increased.
- a method and apparatus for minimizing the effect of gravity or friction and preventing non-specific binding are proposed.
- a magnetic material is disposed on the semiconductor light emitting device to move the semiconductor light emitting device using magnetic force, and the semiconductor light emitting device is seated at a predetermined position using an electric field during the moving process.
- FIGS. 8A to 8D are conceptual diagrams illustrating a process of self-assembling a semiconductor light emitting device using the self-assembling device of FIG. 6, and FIG. 9 is a conceptual diagram illustrating the semiconductor light emitting device of FIGS. 8A to 8D.
- the self-assembly apparatus 160 of the present invention may include a fluid chamber 162, a magnet 163, and a position control unit 164.
- the fluid chamber 162 has a space accommodating a plurality of semiconductor light emitting devices.
- the space may be filled with a fluid, and the fluid may include water or the like as an assembly solution.
- the fluid chamber 162 may be a water tank, and may be configured in an open type.
- the present invention is not limited thereto, and the fluid chamber 162 may be a closed type in which the space is a closed space.
- a substrate 161 may be disposed such that an assembly surface on which the semiconductor light emitting devices 150 are assembled faces downward.
- the substrate 161 is transferred to an assembly position by a transfer unit, and the transfer unit may include a stage 165 on which the substrate is mounted.
- the stage 165 is positioned by a control unit, through which the substrate 161 can be transferred to the assembly position.
- the assembly surface of the substrate 161 at the assembly position faces the bottom of the fluid chamber 150.
- the assembly surface of the substrate 161 is disposed to be immersed in the fluid in the fluid chamber 162. Accordingly, the semiconductor light emitting device 150 moves to the assembly surface in the fluid.
- the substrate 161 is an assembled substrate capable of forming an electric field, and may include a base portion 161a, a dielectric layer 161b, and a plurality of electrodes 161c.
- the base portion 161a is made of an insulating material, and the plurality of electrodes 161c may be a thin film or thick bi-planar electrode patterned on one surface of the base portion 161a.
- the electrode 161c may be formed of, for example, a stack of Ti/Cu/Ti, Ag paste, and ITO.
- the dielectric layer 161b may be made of an inorganic material such as SiO2, SiNx, SiON, Al2O3, TiO2, and HfO2. Alternatively, the dielectric layer 161b may be formed of a single layer or a multilayer as an organic insulator. The dielectric layer 161b may have a thickness of several tens of nm to several ⁇ m.
- the substrate 161 according to the present invention includes a plurality of cells 161d partitioned by a partition wall.
- the cells 161d are sequentially disposed in one direction, and may be made of a polymer material.
- the partition wall 161e constituting the cells 161d is made to be shared with the neighboring cells 161d.
- the partition wall 161e protrudes from the base portion 161a, and the cells 161d may be sequentially disposed in one direction by the partition wall 161e. More specifically, the cells 161d are sequentially disposed in column and row directions, respectively, and may have a matrix structure.
- a groove for accommodating the semiconductor light emitting device 150 may be provided, and the groove may be a space defined by the partition wall 161e.
- the shape of the groove may be the same or similar to the shape of the semiconductor light emitting device. For example, when the semiconductor light emitting device has a rectangular shape, the groove may have a rectangular shape. Further, although not shown, when the semiconductor light emitting device is circular, grooves formed inside the cells may be circular. Furthermore, each of the cells is made to accommodate a single semiconductor light emitting device. That is, one semiconductor light emitting device is accommodated in one cell.
- the plurality of electrodes 161c may include a plurality of electrode lines disposed on the bottom of each of the cells 161d, and the plurality of electrode lines may extend to neighboring cells.
- the plurality of electrodes 161c are disposed under the cells 161d, and different polarities are applied respectively to generate an electric field in the cells 161d.
- the dielectric layer may form the bottom of the cells 161d while the dielectric layer covers the plurality of electrodes 161c.
- the electrodes of the substrate 161 are electrically connected to the power supply unit 171.
- the power supply unit 171 performs a function of generating the electric field by applying power to the plurality of electrodes.
- the self-assembly device may include a magnet 163 for applying magnetic force to the semiconductor light emitting devices.
- the magnet 163 is disposed to be spaced apart from the fluid chamber 162 to apply a magnetic force to the semiconductor light emitting devices 150.
- the magnet 163 may be disposed to face the opposite surface of the assembly surface of the substrate 161, and the position of the magnet is controlled by a position control unit 164 connected to the magnet 163.
- the semiconductor light emitting device 1050 may include a magnetic material so as to move in the fluid by the magnetic field of the magnet 163.
- a semiconductor light emitting device including a magnetic material includes a first conductive type electrode 1052 and a second conductive type electrode 1056, and a first conductive type semiconductor layer on which the first conductive type electrode 1052 is disposed. (1053), a second conductive type semiconductor layer 1055 overlapping with the first conductive type semiconductor layer 1052 and on which the second conductive type electrode 1056 is disposed, and the first and second conductive type semiconductors An active layer 1054 disposed between the layers 1053 and 1055 may be included.
- the first conductivity type is p-type
- the second conductivity type may be n-type, and vice versa.
- it may be a semiconductor light emitting device without the active layer.
- the first conductive type electrode 1052 may be generated after the semiconductor light emitting device is assembled to the wiring board by self-assembly of the semiconductor light emitting device.
- the second conductive type electrode 1056 may include the magnetic material.
- the magnetic material may mean a metal exhibiting magnetism.
- the magnetic material may be Ni, SmCo, or the like, and as another example, may include a material corresponding to at least one of Gd-based, La-based, and Mn-based.
- the magnetic material may be provided on the second conductive electrode 1056 in the form of particles.
- a conductive electrode including a magnetic material one layer of the conductive electrode may be formed of a magnetic material.
- the second conductive type electrode 1056 of the semiconductor light emitting device 1050 may include a first layer 1056a and a second layer 1056b.
- the first layer 1056a may be formed to include a magnetic material
- the second layer 1056b may include a metal material other than a magnetic material.
- a first layer 1056a including a magnetic material may be disposed to come into contact with the second conductivity-type semiconductor layer 1055.
- the first layer 1056a is disposed between the second layer 1056b and the second conductive semiconductor layer 1055.
- the second layer 1056b may be a contact metal connected to the second electrode of the wiring board.
- the present invention is not necessarily limited thereto, and the magnetic material may be disposed on one surface of the first conductive semiconductor layer.
- the self-assembly device includes a magnetic handler that can be automatically or manually moved in the x, y, z axis on the upper portion of the fluid chamber, or the magnet 163 It may be provided with a motor capable of rotating.
- the magnet handler and the motor may constitute the position control unit 164. Through this, the magnet 163 rotates in a horizontal direction, a clockwise direction, or a counterclockwise direction with the substrate 161.
- a light-transmitting bottom plate 166 is formed in the fluid chamber 162, and the semiconductor light emitting devices may be disposed between the bottom plate 166 and the substrate 161.
- the image sensor 167 may be disposed to face the bottom plate 166 so as to monitor the inside of the fluid chamber 162 through the bottom plate 166.
- the image sensor 167 is controlled by the controller 172 and may include an inverted type lens and a CCD so that the assembly surface of the substrate 161 can be observed.
- the self-assembly device described above is made to use a combination of a magnetic field and an electric field, and if this is used, the semiconductor light emitting devices are mounted at a predetermined position on the substrate by the electric field in the process of moving by the change in the position of the magnet I can.
- the assembly process using the self-assembly device described above will be described in more detail.
- a plurality of semiconductor light emitting devices 1050 including magnetic materials are formed through the process described in FIGS. 5A to 5C.
- a magnetic material may be deposited on the semiconductor light emitting device.
- the substrate 161 is transferred to the assembly position, and the semiconductor light emitting devices 1050 are put into the fluid chamber 162 (FIG. 8A).
- the assembly position of the substrate 161 may be a position disposed in the fluid chamber 162 such that the assembly surface on which the semiconductor light emitting elements 1050 of the substrate 161 are assembled faces downward. I can.
- some of the semiconductor light emitting devices 1050 may sink to the bottom of the fluid chamber 162 and some may float in the fluid.
- some of the semiconductor light emitting devices 1050 may sink to the bottom plate 166.
- a magnetic force is applied to the semiconductor light emitting devices 1050 so that the semiconductor light emitting devices 1050 rise in a vertical direction within the fluid chamber 162 (FIG. 8B).
- the semiconductor light emitting devices 1050 rise toward the substrate 161 in the fluid.
- the original position may be a position away from the fluid chamber 162.
- the magnet 163 may be composed of an electromagnet. In this case, electricity is supplied to the electromagnet to generate an initial magnetic force.
- a separation distance between the assembly surface of the substrate 161 and the semiconductor light emitting devices 1050 may be controlled.
- the separation distance is controlled by using the weight, buoyancy and magnetic force of the semiconductor light emitting devices 1050.
- the separation distance may be several millimeters to tens of micrometers from the outermost surface of the substrate.
- a magnetic force is applied to the semiconductor light emitting devices 1050 so that the semiconductor light emitting devices 1050 move in one direction within the fluid chamber 162.
- the magnet 163 is moved in a horizontal direction with the substrate, in a clockwise direction, or in a counterclockwise direction (FIG. 8C).
- the semiconductor light emitting devices 1050 move in a horizontal direction with the substrate 161 at a position spaced apart from the substrate 161 by the magnetic force.
- the step of inducing the semiconductor light emitting devices 1050 to the preset positions by applying an electric field so that the semiconductor light emitting devices 1050 are settled at a preset position of the substrate 161 while moving It proceeds (Fig. 8C).
- the semiconductor light emitting devices 1050 are moving in a direction horizontal to the substrate 161, they move in a direction perpendicular to the substrate 161 by the electric field. It is settled in the set position.
- the semiconductor light emitting devices 1050 are self-assembled to the assembly position of the substrate 161.
- cells to which the semiconductor light emitting devices 1050 are inserted may be provided on the substrate 161.
- a post-process for implementing a display device may be performed by transferring the arranged semiconductor light emitting elements to a wiring substrate as described above.
- the magnet after inducing the semiconductor light emitting devices 1050 to the preset position, the magnet so that the semiconductor light emitting devices 1050 remaining in the fluid chamber 162 fall to the bottom of the fluid chamber 162
- the 163 may be moved in a direction away from the substrate 161 (FIG. 8D).
- the semiconductor light emitting devices 1050 remaining in the fluid chamber 162 fall to the bottom of the fluid chamber 162.
- the recovered semiconductor light emitting devices 1050 can be reused.
- the self-assembly device and method described above focuses distant parts near a predetermined assembly site using a magnetic field to increase assembly yield in a fluidic assembly, and applies a separate electric field to the assembly site to selectively select parts only at the assembly site. Let it be assembled. At this time, the assembly board is placed on the top of the water tank and the assembly surface faces down, minimizing the effect of gravity caused by the weight of the parts and preventing non-specific binding to eliminate defects. That is, in order to increase the transfer yield, the assembly substrate is placed on the top to minimize the influence of gravity or friction, and prevent non-specific binding.
- the present invention it is possible to pixelate a semiconductor light emitting device in a large amount on a small-sized wafer and then transfer it to a large-area substrate. Through this, it is possible to manufacture a large-area display device at low cost.
- the present invention provides a structure and method of an assembled substrate for increasing the yield of the above-described self-assembly process and the process yield after self-assembly.
- the present invention is limited to when the substrate 161 is used as an assembly substrate. That is, an assembly board to be described later is not used as a wiring board of a display device. Thus, hereinafter, the substrate 161 is referred to as an assembly substrate 161.
- the present invention improves the process yield from two perspectives. First, the present invention prevents the semiconductor light emitting device from being seated at an undesired position by forming a strong electric field at an undesired position. Second, the present invention prevents the semiconductor light emitting elements from remaining on the assembly substrate when transferring the semiconductor light emitting elements mounted on the assembly substrate to another substrate.
- the above-described challenges are not individually achieved by different components.
- the above-described two solutions can be achieved by organically combining components to be described later with the assembly substrate 161 described above.
- 10A to 10C are conceptual diagrams showing a state in which a semiconductor light emitting device is transferred after a self-assembly process according to the present invention.
- the semiconductor light emitting devices are seated at a predetermined position of the assembly substrate 161.
- the semiconductor light emitting devices mounted on the assembly substrate 161 are transferred to another substrate at least once.
- the assembly surface of the assembly substrate 161 is in a state in which it faces downward (or the direction of gravity).
- the assembly substrate 161 may be turned over 180 degrees in a state in which the semiconductor light emitting device is seated.
- a voltage must be applied to the plurality of electrodes 161c (hereinafter, assembly electrodes) while the assembly substrate 161 is turned over. The electric field formed between the assembly electrodes prevents the semiconductor light emitting device from being separated from the assembly substrate 161 while the assembly substrate 161 is turned over.
- the assembly substrate 161 After the self-assembly process, when the assembly substrate 161 is turned over 180 degrees, it has a shape as shown in FIG. Specifically, as shown in FIG. 10A, the assembly surface of the assembly substrate 161 is in a state that faces upward (or in the opposite direction of gravity). In this state, the transfer substrate 400 is aligned above the assembly substrate 161.
- the transfer substrate 400 is a substrate for transferring the semiconductor light emitting devices mounted on the assembly substrate 161 to a wiring board by separating them.
- the transfer substrate 400 may be formed of a PDMS (polydimethylsiloxane) material. Accordingly, the transfer substrate 400 may be referred to as a PDMS substrate.
- the transfer substrate 400 is aligned with the assembly substrate 161 and then pressed onto the assembly substrate 161. Thereafter, when the transfer substrate 400 is transferred to the upper side of the assembly substrate 161, the semiconductor light emitting devices 350 disposed on the assembly substrate 161 are transferred to the transfer substrate due to the adhesion of the transfer substrate 400. Go to (400).
- the surface energy between the semiconductor light emitting device 350 and the transfer substrate 400 must be higher than the surface energy between the semiconductor light emitting device 350 and the dielectric layer 161b.
- the semiconductor light emitting device 350 is transferred from the assembly substrate 161 Since the probability of separation increases, the greater the difference between the two surface energies, the more preferable.
- the transfer substrate 400 when the transfer substrate 400 is pressed onto the assembly substrate 161, the transfer substrate 400 may be configured such that the pressure applied by the transfer substrate 400 is concentrated on the semiconductor light emitting device 350. It may include a protrusion 410. The protrusions 410 may be formed at the same distance as the semiconductor light emitting devices mounted on the assembly substrate 161. After aligning the protrusions 410 to overlap the semiconductor light emitting devices 350, when the transfer substrate 400 is pressed against the assembly substrate 161, the pressure caused by the transfer substrate 400 causes semiconductor light emission. It may be concentrated only on the elements 350. Through this, the present invention increases the probability that the semiconductor light emitting device is separated from the assembly substrate 161.
- the semiconductor light emitting devices are mounted on the assembly substrate 161
- the pressure due to the transfer substrate 400 is not concentrated on the semiconductor light emitting devices 350, so that the semiconductor light emitting devices 350 are separated from the assembly substrate 161 You may be less likely to do it.
- a protrusion 510 may be formed on the wiring board 500.
- the transfer substrate 400 and the wiring substrate 500 are aligned so that the semiconductor light emitting devices 350 disposed on the transfer substrate 400 and the protrusions 510 overlap. Thereafter, when the transfer substrate 400 and the wiring board 500 are pressed together, the probability of the semiconductor light emitting devices 350 being separated from the transfer substrate 400 due to the protrusion 510 may increase. have.
- the surface energy between the semiconductor light emitting device 350 and the wiring board 500 is the semiconductor light emitting device. It should be higher than the surface energy between 350 and the transfer substrate 400. As the difference between the surface energy between the semiconductor light emitting device 350 and the wiring board 500 and the surface energy between the semiconductor light emitting device 350 and the transfer substrate 400 increases, the semiconductor light emitting device 350 becomes the transfer substrate 400 Since the probability of deviating from) increases, the greater the difference between the two surface energies, the more preferable.
- the structure of the wiring electrode and a method of forming the electrical connection may vary depending on the type of the semiconductor light emitting device 350.
- an anisotropic conductive film may be disposed on the wiring board 500.
- an electrical connection may be formed between the semiconductor light emitting devices 350 and the wiring electrodes formed on the wiring substrate 500 by simply pressing the transfer substrate 400 and the wiring substrate 500.
- FIGS. 10A to 10C when manufacturing a display device including semiconductor light emitting devices emitting different colors, the methods described with reference to FIGS. 10A to 10C may be implemented in various ways. Hereinafter, a method of manufacturing a display device including a semiconductor light emitting device emitting red (R), green (G), and blue (B) light will be described.
- R red
- G green
- B blue
- 11 to 13 are flowcharts illustrating a method of manufacturing a display device including semiconductor light emitting devices emitting red (R), green (G), and blue (B) light.
- the assembly substrate 161 includes a first assembly substrate on which semiconductor light emitting devices emitting a first color are mounted, a second assembly substrate on which semiconductor light emitting devices emitting a second color different from the first color are mounted, It may include a third assembly substrate on which semiconductor light emitting devices emitting light of a third color different from the first color and the second color are mounted.
- Different types of semiconductor light emitting devices are assembled on each assembly substrate according to the method described in FIGS. 8A to 8E. For example, each of the semiconductor light emitting devices emitting red (R), green (G), and blue (B) light may be assembled on each of the first to third assembly substrates.
- each of a RED chip, a GREEN chip, and a BLUE chip may be assembled on each of the first to third assembly substrates (RED TEMPLATE, GREEN TEMPLATE, and BLUE TEMPLATE).
- each of the RED chip, the GREEN chip, and the BLUE chip may be transferred to the wiring board by different transfer boards.
- the first transfer substrate (stamp (R)) is pressed onto the first assembly substrate (RED TEMPLATE) to emit the first color.
- the second transfer substrate to the second assembly substrate (GREEN TEMPLATE) (Stamp (G)) is pressed to transfer the semiconductor light emitting devices (GREEN chips) emitting the second color from the second assembly substrate (GREEN TEMPLATE) to the second transfer substrate (stamp (G))
- To the third transfer substrate (stamp (B) the third transfer substrate (stamp (B)).
- a display device including a RED chip, a GREEN chip, and a BLUE chip
- three types of assembly substrates and three types of transfer substrates are required.
- each of a RED chip, a GREEN chip, and a BLUE chip may be assembled on each of the first to third assembly substrates (RED TEMPLATE, GREEN TEMPLATE, and BLUE TEMPLATE).
- each of the RED chip, the GREEN chip, and the BLUE chip may be transferred to the wiring board by the same transfer board.
- the step of transferring the semiconductor light emitting devices seated on the assembly substrate to the wiring substrate includes pressing a transfer substrate (RGB integrated stamp) to the first assembly substrate (RED TEMPLATE) to emit the first color.
- alignment positions between each of the first to third assembly substrates and the transfer substrate may be different from each other.
- a relative position of the transfer substrate with respect to the first assembly substrate and a relative position of the transfer substrate with respect to the second assembly substrate may be different from each other.
- the transfer substrate may shift the alignment position by the PITCH of the SUB PIXEL whenever the type of the assembly substrate is changed.
- a step of transferring the semiconductor light emitting devices emitting the first to third colors from the transfer substrate to the wiring substrate by pressing the transfer substrate to the wiring substrate is performed.
- three types of assembly substrates and one type of transfer substrate are required to manufacture a display device including a RED chip, a GREEN chip, and a BLUE chip.
- each of a RED chip, a GREEN chip, and a BLUE chip may be assembled on one assembly substrate (RGB integrated TEMPLATE).
- each of the RED chip, the GREEN chip, and the BLUE chip may be transferred to the wiring board by the same transfer board (RGB integrated stamp).
- a display device including a RED chip, a GREEN chip, and a BLUE chip
- one type of assembly substrate and one type of transfer substrate are required.
- the manufacturing method may be implemented in various ways.
- the voltage signal of a specific polarity (+ or -) is supplied to each of the assembled electrodes in two or more directions, thereby reducing the assembly rate of the semiconductor light emitting device due to electrode failure. It relates to an assembly substrate having a structure that can be described, hereinafter with reference to the accompanying drawings to describe various embodiments of the present invention.
- FIG. 14 is a view showing the structure of a conventional assembly substrate
- FIG. 15 is a conceptual diagram illustrating a shape of an electric field formed between assembly electrodes
- FIG. 16 is a view showing an assembly state when an electrode failure occurs in a conventional assembly substrate.
- the assembly substrate 161 is a substrate used in a method of manufacturing a display device, and specifically, may be a substrate used in a method of manufacturing a display device through self-assembly.
- the self-assembly may be a display manufacturing method in which the semiconductor light emitting devices 150 are mounted to a predetermined position on the assembly substrate 161 using an electric field and a magnetic field.
- the conventional assembly substrate 161 may be made of a base portion 161a, a dielectric layer 161b, a plurality of assembly electrodes 161c, a cell 161d on which the semiconductor light emitting device 150 is mounted, and a partition wall 161e. have.
- the assembly electrodes 161c are formed extending in one direction and may be disposed in parallel on the base portion 161a, and the dielectric layer 161b is formed on the base portion 161a to cover the plurality of assembly electrodes 161c. Can be stacked.
- a partition wall 161e may be stacked on the dielectric layer 161b. Specifically, the partition wall 161e may overlap with a part of the assembly electrode 161c at predetermined intervals along the extending direction of the assembly electrode 161c. It may be stacked while forming the cell 161d on which the 150 is seated.
- an electric field E1 may be formed inside the cell 161d as shown in FIG. 15, and the semiconductor light emitting device 150 is formed by the electric field E1. 161d). Voltage signals of different polarities may be applied to the adjacent assembly electrodes 161c to form the electric field E1, whereby the electric field E1 may be formed in the region between the adjacent assembly electrodes 161c.
- the electric field E1 is formed stronger as it gets closer to the assembly electrodes 161c, and becomes weaker as it moves away from the assembly electrodes 161c.
- the assembly substrate 161 may include a voltage application unit 170 that supplies voltage to the assembly electrodes 161c when power is applied from the outside to the assembly surface on which the assembly electrodes 161c are formed.
- the voltage applying unit 170 is connected to the power supply unit (not shown) to apply power to the electrode pad 171, and the electrode pad 171 and the assembled electrodes 161c are connected to the voltage to the assembled electrodes 161c. It may include a bus line 172 supplying.
- the voltage applying unit 170 may be provided on both sides based on the direction in which the assembly electrodes 161c extend. At this time, the voltage application unit 170a provided on one side applies a voltage of the (+) signal to the assembly electrodes 161c, and the voltage application unit 170b provided on the other side is applied to the assembly electrodes 161c ( -) The voltage of the signal can be applied.
- the electrode pad 171a and the bus line 172a connected to the left side are configured to supply a voltage of a (+) signal to the assembled electrodes 161c
- the bus line 172b may be configured to supply a voltage of a negative signal to the assembly electrodes 161c. That is, according to the structure of the conventional assembly substrate 161, a voltage can be applied to each of the assembly electrodes 161c only in one direction.
- FIG. 17 is a view showing the structure of an assembly substrate according to an embodiment of the present invention
- Figure 18 is a view showing the structure of an assembly substrate according to another embodiment of the present invention
- Figure 19 is a view showing the structure of an assembly substrate according to another embodiment of the present invention.
- FIG. 20 is a graph showing a simulation analysis result of a voltage applied to a cell formed on an assembly substrate according to a conventional and an exemplary embodiment of the present invention.
- the assembly substrate 200 includes a base portion 210, a dielectric layer 220, a plurality of assembly electrodes 230, and a semiconductor light emitting device 150 in the same manner as the conventional assembly substrate 161.
- the cell 240 and the partition wall 250 to be seated may include a voltage application unit 260 that applies voltage to the assembled electrodes 230.
- the plurality of assembly electrodes 230 extend in one direction and may be disposed in parallel at predetermined intervals on the base portion 210, and the assembly electrodes 230 are one surface facing the adjacent assembly electrode 230 It may include a protrusion protruding from.
- the protrusion may overlap the cell 240 and may form a stronger electric field E1 inside the cell 240.
- the dielectric layer 220 may be stacked on the base portion 210 to cover the plurality of assembly electrodes 230.
- a partition wall 250 may be stacked on the dielectric layer 220, and the semiconductor light emitting device 150 is provided at predetermined intervals along the extending direction of the assembly electrode 230 so that the partition wall 250 overlaps a part of the assembly electrode 230. It may be stacked on the dielectric layer 220 while forming the seated cell 240.
- an electric field E1 may be formed in the cell 240 formed to overlap a part of the assembly electrode 230, and the semiconductor light emitting device 150 may be formed by the electric field E1.
- the voltage application unit 260 may be provided on both sides of the assembly electrodes 230, and may be connected to both ends of the assembly electrodes 230, respectively. have. That is, the assembled electrodes 230 may receive a voltage signal from the voltage applying units 260 connected to both ends, and each assembled electrode 230 has a voltage of the same polarity from the voltage applying units 260 connected to both ends. Can be authorized.
- the voltage applying unit 260 is connected to an external power supply unit (not shown) to apply power from an external electrode pad 261, and a bus line 262 connected to the electrode pad 261 and the assembled electrodes 230 ) Can be included.
- One side of the bus line 262 is connected to the electrode pad 261, the other side may be connected to a plurality of assembled electrodes 230, and the bus line 262 is powered on the electrode pad 261 connected to one side. Accordingly, a voltage signal may be supplied to the assembly electrodes 230 connected to the other side.
- the voltage application unit 260 includes a first voltage application unit 260a for applying a voltage of a (+) signal to the assembly electrodes 230 and a second voltage application unit for applying a voltage of a (-) signal ( 260b).
- the first voltage application unit 260a may include an anode electrode pad 261a
- the second voltage application unit 260b may include a cathode electrode pad.
- the assembly substrate 200 may be provided with the same number of the first voltage application unit 260a and the second voltage application unit 260b, and the first voltage application unit 260a on one assembly substrate 200 And at least two second voltage applying units 260b may be provided.
- the first voltage application unit 260a and the second voltage application unit 260b are connected to both ends of different assembly electrodes 230, respectively, as shown in FIG. 17 and provided on both sides of the assembly substrate 200, respectively. Can be.
- voltage signals having different polarities may be supplied to adjacent assembly electrodes 230 among the plurality of assembly electrodes 230.
- one of the adjacent assembly electrodes 230 is connected to the first voltage applying unit 260a supplying a (+) voltage signal, and the other is a second voltage applying unit supplying a (-) voltage signal ( 260b).
- an electric field E1 may be formed between the adjacent assembly electrodes 230, and an electric field E1 is formed in the cell 240 formed to overlap with a part of the assembly electrode 230 so that the semiconductor light emitting device 150 Can be settled.
- one voltage applying unit 260 may be simultaneously connected to a plurality of assembly electrodes 230 receiving voltage signals of the same polarity. That is, the bus lines 262a and 262b are connected at one side to one electrode pad 261a and 261b that applies a voltage signal of a specific polarity, and a plurality of assembly electrodes 230 that receive a voltage signal of the same polarity are It may be connected in parallel to one bus line 262a, 262b supplying the voltage signal of the specific polarity. Referring to FIG. 17, assembly electrodes 230 to which a (+) voltage signal is supplied may be connected in parallel with a bus line 262a connected to the positive electrode pad 261a at one side, and a (-) voltage signal is supplied. One side of the assembled electrodes 230 may be connected in parallel with a bus line 262b connected to the negative electrode pad 261b.
- the assembly electrode 230 is shortened in a signal transmission path compared to the conventional assembly substrate 161 where voltage is supplied in a single direction.
- the resistance by the length of can be reduced in half.
- A is a waveform of voltage applied to the assembly boards 161 and 200
- B and C are the voltages applied to the cells 240 and 161d formed on the present invention and the conventional assembly boards 200 and 161, respectively. Show the waveform.
- the assembly substrate 200 according to the present invention as voltage is supplied from both directions of the assembly electrode 230, the resistance by the length of the assembly electrode 230 is reduced by half, and is applied to the assembly substrate 200
- a voltage signal that is close to the waveform of the resulting voltage may be supplied to the cell 240 formed on the assembly substrate 200.
- an electric field E1 for assembling the semiconductor light emitting device 150 may be formed more strongly inside the cell 240.
- the assembly substrate 200 may further include a voltage applying unit 260 connected to a region other than both ends of the assembly electrodes 230 as shown in FIG. 18.
- the plurality of assembly electrodes 230 are provided with a voltage application unit 260 for applying a voltage of the same polarity as the voltage application unit 260 connected to both ends at an arbitrary position in the extending direction of the assembly electrode 230. Can be connected.
- the assembly electrodes 230 connected to the first voltage application unit 260a and the assembly electrodes 230 connected to the second voltage application unit 260b are each of the first voltage application units ( 260a) and the second voltage applying unit 260b may be additionally connected, and a voltage signal having a specific polarity may be additionally supplied in a direction crossing the extension direction of the assembly electrodes 230.
- the assembly electrodes 230 may be divided into a plurality of regions having the same length based on the arbitrary position to which the voltage applying unit 260 is additionally connected. That is, the assembly electrodes 230 may be additionally connected to the voltage applying unit 260 at an intermediate point in the extending direction, and a voltage signal supplied from the additionally connected voltage applying unit 260 may be transmitted in both directions.
- assembly electrodes 230 may be additionally connected to the voltage applying unit 260 at two or more arbitrary positions in the extending direction.
- the assembly electrodes 230 may be further connected to the voltage applying unit 260 at an arbitrary position in the extending direction in addition to the voltage applying unit 260 coupled to both ends to receive an additional voltage signal. In this case, Resistance due to the length of the assembled electrode 230 may be further reduced.
- a voltage signal close to a waveform of a voltage signal applied to the assembly substrate 200 may be supplied inside the cell 240 in which the semiconductor light emitting device 150 is mounted.
- the voltage signal of the same polarity can be supplied from the opposite side.
- the electric field E1 may be formed inside the cell 240 and may not affect the assembly of the semiconductor light emitting device 150.
- the display device can be manufactured in the same manner as the conventional self-assembly method of manufacturing a display device using the assembly substrate 200 having the above-described structure.
- the method of manufacturing a display device includes the steps of transferring the assembly substrate 200 having the above-described structure to an assembly position, and introducing a plurality of semiconductor light emitting devices 150 having a magnetic material into a fluid chamber, Applying a magnetic force to the semiconductor light emitting devices 150 so that the semiconductor light emitting devices 150 injected into the fluid chamber move along one direction, a preset on the assembly substrate 200 during the moving of the semiconductor light emitting devices 150
- a plurality of assembly electrodes 230 for forming an electric field E1 on the assembly surface are disposed at predetermined intervals, and the plurality of assembly electrodes 230 are at least Since both ends are respectively connected to the voltage applying unit 260, a voltage signal for forming an electric field E1 may be supplied from both ends of the assembly electrode 230.
- a voltage signal having a specific polarity (+ or -) may be applied to each of the assembled electrodes 230.
- voltage signals having different polarities are supplied to adjacent assembly electrodes among the plurality of assembly electrodes 230, so that an electric field E1 may be formed in a region between adjacent assembly electrodes.
- a predetermined position in which the semiconductor light emitting device 150 is mounted may overlap a region between adjacent assembly electrodes in which the electric field E1 is formed.
- the voltage applying unit 260 is connected to the electrode pad 261 to which external power is applied, the electrode pad 261 and the plurality of assembly electrodes 230 to supply a voltage signal to the assembly electrodes 230 It may be composed of a bus line (262).
- the voltage applying unit 260 may be formed on the same assembly surface as the assembly electrodes 230, and when the electrode pad 261 is formed is held when transferred to the assembly position, the electrode pad 261 and the fluid Contact may be blocked.
- the step of transferring the semiconductor light emitting devices 150 mounted on the assembly substrate 200 to the final substrate on which the wiring is formed may include two or more transfer processes.
- the semiconductor light emitting devices 150 seated on the assembly substrate 200 may be transferred to a transfer substrate (or transfer stamp) before being transferred to the final substrate and then transferred to the final substrate, and the process may be repeated a plurality of times. I can.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
본 발명의 실시예에 따르면, 전기장 및 자기장을 이용하여 반도체 발광소자들을 조립 기판의 기 설정된 위치로 안착시키는 디스플레이 제조방법에 사용되는 조립 기판에 있어서, 상기 조립 기판은, 베이스부; 일 방향으로 연장 형성되고, 상기 베이스부 상에 소정 간격으로 배치되는 복수의 조립 전극들; 상기 조립 전극들을 덮도록 상기 베이스부에 적층되는 유전체층; 상기 조립 전극의 일부와 오버랩 되도록 상기 조립 전극의 연장 방향을 따라 소정 간격으로 반도체 발광소자가 안착되는 셀을 형성하면서 상기 유전체층에 적층되는 격벽; 및 적어도 상기 조립 전극들의 양단에 각각 연결되어 상기 조립 전극들에 전압을 인가하는 전압 인가부를 포함하고, 상기 조립 전극들은 양단에 연결된 상기 전압 인가부로부터 동일한 극성의 전압이 인가되는 것을 특징으로 한다.
Description
본 발명은 디스플레이 장치 제조방법에 사용되는 조립 기판 및 수 내지 수십 ㎛ 크기를 갖는 반도체 발광소자를 이용한 디스플레이 장치의 제조방법에 관한 것이다.
최근에는 디스플레이 기술분야에서 대면적 디스플레이를 구현하기 위하여, 액정 디스플레이(LCD), 유기 발광소자(OLED) 디스플레이, 그리고 마이크로 LED 디스플레이 등이 경쟁하고 있다.
그러나, LCD의 경우 빠르지 않은 반응 시간과, 백라이트에 의해 생성된 광의 낮은 효율 등의 문제점이 존재하고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 효율이 낮은 취약점이 존재한다.
이에 반해, 디스플레이에 100 ㎛ 이하의 직경 또는 단면적을 가지는 반도체 발광소자(마이크로 LED)를 사용하면 디스플레이가 편광판 등을 사용하여 빛을 흡수하지 않기 때문에 매우 높은 효율을 제공할 수 있다. 그러나 대형 디스플레이에는 수백만 개의 반도체 발광소자들을 필요로 하기 때문에 다른 기술에 비해 소자들을 전사하는 것이 어려운 단점이 있다.
전사공정으로 현재 개발되고 있는 기술은 픽앤플레이스(pick & place), 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 자가조립 등이 있다. 이 중에서, 자가조립 방식은 유체 내에서 반도체 발광소자가 스스로 위치를 찾아가는 방식으로서, 대화면의 디스플레이 장치의 구현에 가장 유리한 방식이다.
한편, 자가조립 방식에는 반도체 발광소자를 배선이 형성된 최종 기판 (또는 배선 기판)에 직접 조립하는 방식 및 반도체 발광소자를 조립 기판에 조립한 후 추가 전사 공정을 통해 최종 기판으로 전사하는 방식이 있다. 최종 기판에 직접 조립하는 방식은 공정 측면에서 효율적이며, 조립 기판을 이용하는 경우에는 자가조립을 위한 구조를 제한없이 추가할 수 있는 점에서 장점이 있어 두 방식이 선택적으로 사용되고 있다.
본 발명은 전기장 및 자기장을 이용하여 반도체 발광소자를 조립 기판에 안착시키는 자가조립 방식에 있어서, 반도체 발광소자의 조립율을 향상시킬 수 있는 구조가 구현된 조립 기판 및 디스플레이 장치의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 실시예에 따르면, 전기장 및 자기장을 이용하여 반도체 발광소자들을 조립 기판의 기 설정된 위치로 안착시키는 디스플레이 제조방법에 사용되는 조립 기판에 있어서, 상기 조립 기판은, 베이스부; 일 방향으로 연장 형성되고, 상기 베이스부 상에 소정 간격으로 배치되는 복수의 조립 전극들; 상기 조립 전극들을 덮도록 상기 베이스부에 적층되는 유전체층; 상기 조립 전극의 일부와 오버랩 되도록 상기 조립 전극의 연장 방향을 따라 소정 간격으로 반도체 발광소자가 안착되는 셀을 형성하면서 상기 유전체층에 적층되는 격벽; 및 적어도 상기 조립 전극들의 양단에 각각 연결되어 상기 조립 전극들에 전압 신호를 인가하는 전압 인가부를 포함하고, 상기 조립 전극들은 양단에 연결된 상기 전압 인가부로부터 동일한 극성의 전압 신호가 인가되는 것을 특징으로 한다.
본 실시예 있어서, 상기 전압 인가부는, 외부로부터 전원이 인가되는 전극 패드; 및 상기 전극 패드 및 상기 조립 전극들과 연결되어, 상기 전극 패드에 전원이 인가된 경우 상기 연결된 조립 전극들에 전압 신호를 공급하는 버스 라인을 포함하는 것을 특징으로 한다.
본 실시예에 있어서, 상기 전압 인가부는, 양극 전극 패드를 포함하는 제1 전압 인가부 및 음극 전극 패드를 포함하는 제2 전압 인가부를 포함하며, 상기 조립 기판은 동일한 수의 제1 전압 인가부 및 제2 전압 인가부를 포함하는 것을 특징으로 한다.
본 실시예에 있어서, 상기 복수의 조립 전극들 중 인접한 조립 전극에는 서로 다른 극성의 전압 신호가 공급되도록, 상기 인접한 조립 전극 중 어느 하나는 상기 제1 전압 인가부와 연결되고, 다른 하나는 상기 제2 전압 인가부와 연결되는 것을 특징으로 한다.
본 실시예에 있어서, 상기 전압 인가부는, 동일한 극성의 전압 신호를 공급받는 상기 복수의 조립 전극들과 연결되는 것을 특징으로 한다.
본 실시예에 있어서, 상기 복수의 조립 전극들은, 상기 조립 전극의 연장 방향 상의 임의의 위치에서 상기 양단에 연결된 전압 인가부와 동일한 극성의 전압 신호를 인가하는 전압 인가부와 더 연결되는 것을 특징으로 한다.
본 실시예에 있어서, 상기 복수의 조립 전극들은, 상기 임의의 위치를 기준으로 동일한 길이를 갖는 복수의 영역으로 구분되는 것을 특징으로 한다.
본 발명의 실시예에 따른 디스플레이 장치의 제조방법은 조립 기판을 조립위치로 이송하고, 자성체를 구비하는 복수의 반도체 발광소자들을 유체 챔버 내 투입하는 단계; 상기 유체 챔버 내 투입된 상기 반도체 발광소자들이 일방향을 따라 이동하도록 상기 반도체 발광소자들에 자기력을 가하는 단계; 상기 반도체 발광소자들이 이동하는 과정에서 상기 조립 기판 상의 기 설정된 위치에 안착되도록 전기장을 가하여 상기 반도체 발광소자들을 상기 기 설정된 위치로 유도하는 단계; 및 상기 조립 기판에 안착된 상기 반도체 발광소자들을 배선이 형성된 최종 기판으로 전사시키는 단계를 포함하고, 상기 조립 기판에는 전기장을 형성하기 위한 복수의 조립 전극들이 소정 간격으로 배치되며, 상기 복수의 조립 전극들 각각은 적어도 양단에서 동일한 극성의 전압 신호가 인가되는 것을 특징으로 한다.
본 실시예에 있어서, 상기 복수의 조립 전극들 중 인접한 조립 전극에는 서로 다른 극성의 전압 신호가 공급되어 상기 인접한 조립 전극 사이의 영역에 상기 전기장이 형성되는 것을 특징으로 한다.
본 실시예에 있어서, 상기 반도체 발광소자들이 안착되는 기 설정된 위치는 전기장이 형성되는 상기 인접한 조립 전극 사이의 영역과 오버랩 되는 것을 특징으로 한다.
본 발명의 실시예에 따르면, 조립 기판에 배치된 조립 전극들의 양단에서 전압이 공급됨으로써 조립 전극의 불량에 의해 특정 방향에서 전압이 공급되지 않더라도 타 방향에서 공급된 전압에 의해 전기장이 형성될 수 있으므로, 반도체 발광소자의 조립률을 향상시킬 수 있으며, 이에 따라 자가조립 이후 진행되는 리페어 공정 시간을 단축시킬 수 있는 효과가 있다.
또한, 하나의 조립 전극에 대하여 다방향에서 전압 신호가 공급되어 신호의 전달 경로가 단축되는 바, 조립 전극의 길이에 의한 저항을 줄일 수 있는 효과가 있다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 디스플레이 장치의 A부분의 부분 확대도이다.
도 3은 도 2의 반도체 발광소자의 확대도이다.
도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도 5a 내지 도 5e는 전술한 반도체 발광소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이다.
도 7은 도 6의 자가조립 장치의 블록 다이어그램이다.
도 8a 내지 도 8e는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립 하는 공정을 나타내는 개념도이다.
도 9는 도 8a 내지 도 8d의 반도체 발광소자를 설명하기 위한 개념도이다.
도 10a 내지 도 10c는 본 발명에 따른 자가조립 공정 후 반도체 발광소자가 전사되는 모습을 나타내는 개념도들이다.
도 11 내지 도 13은 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광소자를 포함하는 디스플레이 장치의 제조방법을 나타내는 순서도이다.
도 14는 종래 조립 기판의 구조를 나타낸 도면이다.
도 15는 조립 전극 사이에 형성되는 전기장의 형태를 설명하는 개념도이다.
도 16는 종래 조립 기판에 전극 불량이 발생한 경우 조립 상태를 나타낸 도면이다.
도 17은 본 발명의 일 실시예에 따른 조립 기판의 구조를 나타낸 도면이다.
도 18은 본 발명의 다른 실시예에 따른 조립 기판의 구조를 나타낸 도면이다.
도 19는 본 발명의 일 실시예에 따른 조립 기판에 전극 불량이 발생한 경우 조립 상태를 나타낸 도면이다.
도 20은 종래 및 본 발명의 실시예에 따른 조립 기판에 형성된 셀에 인가되는 전압에 대한 시뮬레이션 해석 결과를 나타내는 그래프이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 “모듈” 및 “부”는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니된다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 “상(on)”에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있는 것으로 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistant), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 테블릿 PC(tablet PC), 울트라북(ultra book), 디지털 TV(digital TV), 데스크톱 컴퓨터(desktop computer) 등이 포함될 수 있다. 그러나 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태라도 디스플레이를 포함할 수 있다면 적용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이고, 도 2는 도 1의 디스플레이 장치의 A 부분의 부분 확대도이고, 도 3은 도 2의 반도체 발광소자의 확대도이며, 도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 디스플레이 모듈(140)에서 출력될 수 있다. 상기 디스플레이 모듈의 테두리를 감싸는 폐루프 형태의 케이스(101)가 상기 디스플레이 장치의 베젤을 형성할 수 있다.
상기 디스플레이 모듈(140)은 영상이 표시되는 패널(141)을 구비하고, 상기 패널(141)은 마이크로 크기의 반도체 발광소자(150)와 상기 반도체 발광소자(150)가 장착되는 배선기판(110)을 구비할 수 있다.
상기 배선기판(110)에는 배선이 형성되어, 상기 반도체 발광소자(150)의 n형 전극(152) 및 p형 전극(156)과 연결될 수 있다. 이를 통하여, 상기 반도체 발광소자(150)는 자발광하는 개별화소로서 상기 배선기판(110) 상에 구비될 수 있다.
상기 패널(141)에 표시되는 영상은 시각 정보로서, 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 상기 배선을 통하여 독자적으로 제어됨에 의하여 구현된다.
본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자(150)의 일 종류로서 마이크로 LED(Light Emitting Diode)를 예시한다. 상기 마이크로 LED는 100마이크로 이하의 작은 크기로 형성되는 발광 다이오드가 될 수 있다. 상기 반도체 발광소자(150)는 청색, 적색 및 녹색이 발광영역에 각각 구비되어 이들의 조합에 의하여 단위 화소가 구현될 수 있다. 즉, 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미하며, 상기 단위 화소 내에 적어도 3개의 마이크로 LED가 구비될 수 있다.
보다 구체적으로, 도 3을 참조하면, 상기 반도체 발광 소자(150)는 수직형 구조가 될 수 있다.
예를 들어, 상기 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이러한 수직형 반도체 발광 소자는 p형 전극(156), p형 전극(156) 상에 형성된 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154)상에 형성된 n형 반도체층(153), 및 n형 반도체층(153) 상에 형성된 n형 전극(152)을 포함한다. 이 경우, 하부에 위치한 p형 전극(156)은 배선기판의 p전극과 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(152)은 반도체 발광소자의 상측에서 n전극과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(150)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다른 예로서 도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입 (flip chip type)의 발광 소자가 될 수 있다.
이러한 예로서, 상기 반도체 발광 소자(250)는 p형 전극(256), p형 전극 (256)이 형성되는 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층 (254), 활성층(254) 상에 형성된 n형 반도체층(253), 및 n형 반도체층(253) 상에서 p형 전극(256)과 수평방향으로 이격 배치되는 n형 전극(252)을 포함한다. 이 경우, p형 전극(256)과 n형 전극(152)은 모두 반도체 발광소자의 하부에서 배선기판의 p전극 및 n전극과 전기적으로 연결될 수 있다.
상기 수직형 반도체 발광소자와 수평형 반도체 발광소자는 각각 녹색 반도체 발광소자, 청색 반도체 발광소자 또는 적색 반도체 발광소자가 될 수 있다. 녹색 반도체 발광소자와 청색 반도체 발광소자의 경우에 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 녹색이나 청색의 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다. 이러한 예로서, 상기 반도체 발광소자는 n-Gan, p-Gan, AlGaN, InGan 등 다양한 계층으로 형성되는 질화갈륨 박막이 될 수 있으며, 구체적으로 상기 p형 반도체층은 P-type GaN이고, 상기 n형 반도체층은 N-type GaN 이 될 수 있다. 다만, 적색 반도체 발광소자의 경우에는, 상기 p형 반도체층은 P-type GaAs이고, 상기 n형 반도체층은 N-type GaAs 가 될 수 있다.
또한, 상기 p형 반도체층은 p 전극 쪽은 Mg가 도핑된 P-type GaN이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다. 이 경우에, 전술한 반도체 발광소자들은 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 도 1 내지 도 4를 참조하면, 상기 발광 다이오드가 매우 작기 때문에 상기 디스플레이 패널은 자발광하는 단위화소가 고정세로 배열될 수 있으며, 이를 통하여 고화질의 디스플레이 장치가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에서는 웨이퍼 상에서 성장되어, 메사 및 아이솔레이션을 통하여 형성된 반도체 발광소자가 개별 화소로 이용된다. 이 경우에, 마이크로 크기의 반도체 발광소자(150)는 웨이퍼에 상기 디스플레이 패널의 기판 상의 기설정된 위치로 전사되어야 한다. 이러한 전사기술로 픽앤플레이스(pick and place)가 있으나, 성공률이 낮고 매우 많은 시간이 요구된다. 다른 예로서, 스탬프나 롤을 이용하여 한 번에 여러개의 소자를 전사하는 기술이 있으나, 수율에 한계가 있어 대화면의 디스플레이에는 적합하지 않다. 본 발명에서는 이러한 문제를 해결할 수 있는 디스플레이 장치의 새로운 제조방법 및 제조장치를 제시한다.
이를 위하여, 이하, 먼저 디스플레이 장치의 새로운 제조방법에 대하여 살펴본다. 도 5a 내지 도 5e는 전술한 반도체 발광 소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
본 명세서에서는, 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다. 또한, 수평형 반도체 발광소자를 자가조립 하는 방식에 대하여 예시하나, 이는 수직형 반도체 발광소자를 자가조립 하는 방식에도 적용가능하다.
먼저, 제조방법에 의하면, 성장기판(159)에 제1도전형 반도체층(153), 활성층(154), 제2 도전형 반도체층(155)을 각각 성장시킨다(도 5a).
제1도전형 반도체층(153)이 성장하면, 다음은, 상기 제1도전형 반도체층 (153) 상에 활성층(154)을 성장시키고, 다음으로 상기 활성층(154) 상에 제2 도전형 반도체층(155)을 성장시킨다. 이와 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)을 순차적으로 성장시키면, 도 5a에 도시된 것과 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)이 적층 구조를 형성한다.
이 경우에, 상기 제1도전형 반도체층(153)은 p형 반도체층이 될 수 있으며, 상기 제2도전형 반도체층(155)은 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
또한, 본 실시예에서는 상기 활성층이 존재하는 경우를 예시하나, 전술한 바와 같이 경우에 따라 상기 활성층이 없는 구조도 가능하다. 이러한 예로서, 상기 p형 반도체층은 Mg가 도핑된 P-type GaN 이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다.
성장기판(159)(웨이퍼)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있으나, 이에 한정하지는 않는다. 또한, 성장기판(1059)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
다음으로, 제1도전형 반도체층(153), 활성층(154) 및 제2 도전형 반도체층 (155)의 적어도 일부를 제거하여 복수의 반도체 발광소자를 형성한다(도 5b).
보다 구체적으로, 복수의 발광소자들이 발광 소자 어레이를 형성하도록, 아이솔레이션(isolation)을 수행한다. 즉, 제1도전형 반도체층(153), 활성층 (154) 및 제2 도전형 반도체층(155)을 수직방향으로 식각하여 복수의 반도체 발광소자를 형성한다.
만약, 수평형 반도체 발광소자를 형성하는 경우라면, 상기 활성층(154) 및 제2 도전형 반도체층(155)은 수직방향으로 일부가 제거되어, 상기 제1도전형 반도체층(153)이 외부로 노출되는 메사 공정과, 이후에 제1도전형 반도체층을 식각하여 복수의 반도체 발광소자 어레이를 형성하는 아이솔레이션(isolation)이 수행될 수 있다.
다음으로, 상기 제2도전형 반도체층(155)의 일면 상에 제2도전형 전극(156, 또는 p형 전극)를 각각 형성한다(도 5c). 상기 제2도전형 전극(156)은 스퍼터링 등의 증착 방법으로 형성될 수 있으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 다만, 상기 제1도전형 반도체층과 제2도전형 반도체층이 각각 n형 반도체층과 p형 반도체층인 경우에는, 상기 제2도전형 전극(156)은 n형 전극이 되는 것도 가능하다.
그 다음에, 상기 성장기판(159)을 제거하여 복수의 반도체 발광소자를 구비한다. 예를 들어, 성장기판(1059)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다(도 5d).
이후에, 유체가 채워진 챔버에서 반도체 발광소자들(150)이 기판에 안착되는 단계가 진행된다(도 5e).
예를 들어, 유체가 채워진 챔버 속에 상기 반도체 발광소자들(150) 및 기판을 넣고 유동, 중력, 표면 장력 등을 이용하여 상기 반도체 발광소자들이 상기 기판(1061)에 스스로 조립되도록 한다. 이 경우에, 상기 기판은 조립기판(161)이 될 수 있다.
다른 예로서, 상기 조립기판(161) 대신에 배선기판을 유체 챔버 내에 넣어, 상기 반도체 발광소자들(150)이 배선기판에 바로 안착되는 것도 가능하다. 이 경우에, 상기 기판은 배선기판이 될 수 있다. 다만, 설명의 편의상, 본 발명에서는 기판이 조립기판(161)으로서 구비되어 반도체 발광소자들(1050)이 안착되는 것을 예시한다.
반도체 발광소자들(150)이 조립 기판(161)에 안착하는 것이 용이하도록, 상기 조립 기판(161)에는 상기 반도체 발광소자들(150)이 끼워지는 셀들 (미도시)이 구비될 수 있다. 구체적으로, 상기 조립기판(161)에는 상기 반도체 발광소자들(150)이 배선전극에 얼라인되는 위치에 상기 반도체 발광소자들 (150)이 안착되는 셀들이 형성된다. 상기 반도체 발광소자들(150)은 상기 유체 내에서 이동하다가, 상기 셀들에 조립된다.
상기 조립기판(161)에 복수의 반도체 발광소자들이 어레이된 후에, 상기 조립기판(161)의 반도체 발광소자들을 배선기판으로 전사하면, 대면적의 전사가 가능하게 된다. 따라서, 상기 조립기판(161)은 임시기판으로 지칭될 수 있다.
한편, 상기에서 설명된 자가조립 방법은 대화면 디스플레이의 제조에 적용하려면, 전사수율을 높여야만 한다. 본 발명에서는 전사수율을 높이기 위하여, 중력이나 마찰력의 영향을 최소화하고, 비특이적 결합을 막는 방법과 장치를 제안한다.
이 경우, 본 발명에 따른 디스플레이 장치는, 반도체 발광소자에 자성체를 배치시켜 자기력을 이용하여 반도체 발광소자를 이동시키고, 이동과정에서 전기장을 이용하여 상기 반도체 발광소자를 기 설정된 위치에 안착시킨다. 이하에서는, 이러한 전사 방법과 장치에 대하여 첨부된 도면과 함께 보다 구체적으로 살펴본다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이고, 도 7은 도 6의 자가조립 장치의 블록 다이어그램이다. 또한, 도 8a 내지 도 8d는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립 하는 공정을 나타내는 개념도이며, 도 9는 도 8a 내지 도 8d의 반도체 발광소자를 설명하기 위한 개념도이다.
도 6 및 도 7의 도시에 의하면, 본 발명의 자가조립 장치(160)는 유체 챔버(162), 자석(163) 및 위치 제어부(164)를 포함할 수 있다.
상기 유체 챔버(162)는 복수의 반도체 발광소자들을 수용하는 공간을 구비한다. 상기 공간에는 유체가 채워질 수 있으며, 상기 유체는 조립용액으로서 물 등을 포함할 수 있다. 따라서, 상기 유체 챔버(162)는 수조가 될 수 있으며, 오픈형으로 구성될 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니며, 상기 유체 챔버(162)는 상기 공간이 닫힌 공간으로 이루어지는 클로즈형이 될 수 있다.
상기 유체 챔버(162)에는 기판(161)이 상기 반도체 발광소자들(150)이 조립되는 조립면이 아래를 향하도록 배치될 수 있다. 예를 들어, 상기 기판(161)은 이송부에 의하여 조립위치로 이송되며, 상기 이송부는 기판이 장착되는 스테이지(165)를 구비할 수 있다. 상기 스테이지(165)가 제어부에 의하여 위치조절되며, 이를 통하여 상기 기판(161)은 상기 조립위치로 이송될 수 있다.
이 때에, 상기 조립위치에서 상기 기판(161)의 조립면이 상기 유체 챔버(150)의 바닥을 향하게 된다. 도시에 의하면, 상기 기판(161)의 조립면은 상기 유체 챔버(162)내의 유체에 잠기도록 배치된다. 따라서, 상기 반도체 발광소자(150)는 상기 유체내에서 상기 조립면으로 이동하게 된다.
상기 기판(161)은 전기장 형성이 가능한 조립기판으로서, 베이스부(161a), 유전체층(161b) 및 복수의 전극들(161c)을 포함할 수 있다.
상기 베이스부(161a)는 절연성 있는 재질로 이루어지며, 상기 복수의 전극들(161c)은 상기 베이스부(161a)의 일면에 패턴된 박막 또는 후막 bi-planar 전극이 될 수 있다. 상기 전극(161c)은 예를 들어, Ti/Cu/Ti의 적층, Ag 페이스트 및 ITO 등으로 형성될 수 있다.
상기 유전체층(161b)은, SiO2, SiNx, SiON, Al2O3, TiO2, HfO2 등의 무기 물질로 이루어질 있다. 이와 다르게, 유전체층(161b)은, 유기 절연체로서 단일층이거나 멀티층으로 구성될 수 있다. 유전체층(161b)의 두께는, 수십 nm~수μ¥μm의 두께로 이루어질 수 있다.
나아가, 본 발명에 따른 기판(161)은 격벽에 의하여 구획되는 복수의 셀들(161d)을 포함한다. 셀들(161d)은, 일방향을 따라 순차적으로 배치되며, 폴리머(polymer) 재질로 이루어질 수 있다. 또한, 셀들(161d)을 이루는 격벽(161e)은, 이웃하는 셀들(161d)과 공유되도록 이루어진다. 상기 격벽 (161e)은 상기 베이스부(161a)에서 돌출되며, 상기 격벽(161e)에 의하여 상기 셀들(161d)이 일방향을 따라 순차적으로 배치될 수 있다. 보다 구체적으로, 상기 셀들(161d)은 열과 행 방향으로 각각 순차적으로 배치되며, 매트릭스 구조를 가질 수 있다.
셀들(161d)의 내부는, 도시와 같이, 반도체 발광소자(150)를 수용하는 홈을 구비하며, 상기 홈은 상기 격벽(161e)에 의하여 한정되는 공간이 될 수 있다. 상기 홈의 형상은 반도체 발광소자의 형상과 동일 또는 유사할 수 있다. 예를 들어, 반도체 발광소자가 사각형상인 경우, 홈은 사각형상일 수 있다. 또한, 비록 도시되지는 않았지만, 반도체 발광소자가 원형인 경우, 셀들 내부에 형성된 홈은, 원형으로 이루어질 수 있다. 나아가, 셀들 각각은, 단일의 반도체 발광소자를 수용하도록 이루어진다. 즉, 하나의 셀에는, 하나의 반도체 발광소자가 수용된다.
한편, 복수의 전극들(161c)은 각각의 셀들(161d)의 바닥에 배치되는 복수의 전극라인을 구비하며, 상기 복수의 전극라인은 이웃한 셀로 연장되도록 이루어질 수 있다.
상기 복수의 전극들(161c)은 상기 셀들(161d)의 하측에 배치되며, 서로 다른 극성이 각각 인가되어 상기 셀들(161d) 내에 전기장을 생성한다. 상기 전기장 형성을 위하여, 상기 복수의 전극들(161c)을 상기 유전체층이 덮으면서, 상기 유전체층이 상기 셀들(161d)의 바닥을 형성할 수 있다. 이런 구조에서, 각 셀들(161d)의 하측에서 한 쌍의 전극(161c)에 서로 다른 극성이 인가되면 전기장이 형성되고, 상기 전기장에 의하여 상기 셀들(161d) 내부로 상기 반도체 발광소자가 삽입될 수 있다.
상기 조립위치에서 상기 기판(161)의 전극들은 전원공급부(171)와 전기적으로 연결된다. 상기 전원공급부(171)는 상기 복수의 전극에 전원을 인가하여 상기 전기장을 생성하는 기능을 수행한다.
도시에 의하면, 상기 자가조립 장치는 상기 반도체 발광소자들에 자기력을 가하기 위한 자석(163)을 구비할 수 있다. 상기 자석(163)은 상기 유체 챔버(162)와 이격 배치되어 상기 반도체 발광소자들(150)에 자기력을 가하도록 이루어진다. 상기 자석(163)은 상기 기판(161)의 조립면의 반대면을 마주보도록 배치될 수 있으며, 상기 자석(163)과 연결되는 위치 제어부(164)에 의하여 상기 자석의 위치가 제어된다.
상기 자석(163)의 자기장에 의하여 상기 유체내에서 이동하도록, 상기 반도체 발광소자(1050)는 자성체를 구비할 수 있다.
도 9를 참조하면, 자성체를 구비하는 반도체 발광 소자는 제1도전형 전극(1052) 및 제2도전형 전극(1056), 상기 제1도전형 전극(1052)이 배치되는 제1도전형 반도체층(1053), 상기 제1도전형 반도체층(1052)과 오버랩되며, 상기 제2도전형 전극(1056)이 배치되는 제2도전형 반도체층(1055), 그리고 상기 제1 및 제2도전형 반도체층(1053, 1055) 사이에 배치되는 활성층(1054)을 포함할 수 있다.
여기에서, 제1도전형은 p형이고, 제2도전형은 n형으로 구성될 수 있으며, 그 반대로도 구성될 수 있다. 또한, 전술한 바와 같이 상기 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 본 발명에서, 상기 제1도전형 전극(1052)는 반도체 발광소자의 자가조립 등에 의하여, 반도체 발광소자가 배선기판에 조립된 이후에 생성될 수 있다. 또한, 본 발명에서, 상기 제2도전형 전극(1056)은 상기 자성체를 포함할 수 있다. 자성체는 자성을 띄는 금속을 의미할 수 있다. 상기 자성체는 Ni, SmCo 등이 될 수 있으며, 다른 예로서 Gd 계, La계 및 Mn계 중 적어도 하나에 대응되는 물질을 포함할 수 있다.
자성체는 입자 형태로 상기 제2도전형 전극(1056)에 구비될 수 있다. 또한, 이와 다르게, 자성체를 포함한 도전형 전극은, 도전형 전극의 일 레이어가 자성체로 이루어질 수 있다. 이러한 예로서, 도 9에 도시된 것과 같이, 반도체 발광소자(1050)의 제2도전형 전극(1056)은, 제1층(1056a) 및 제2층(1056b)을 포함할 수 있다. 여기에서, 제1층(1056a)은 자성체를 포함하도록 이루어질 수 있고, 제2층(1056b)는 자성체가 아닌 금속소재를 포함할 수 있다.
도시와 같이, 본 예시에서는 자성체를 포함하는 제1층(1056a)이, 제2 도전형 반도체층(1055)과 맞닿도록 배치될 수 있다. 이 경우, 제1층(1056a)은, 제2층(1056b)과 제2도전형 반도체층(1055) 사이에 배치된다. 상기 제2층 (1056b)은 배선기판의 제2전극과 연결되는 컨택 메탈이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 자성체는 상기 제1도전형 반도체층의 일면에 배치될 수 있다.
다시 도 6 및 도 7을 참조하면, 보다 구체적으로, 상기 자가조립 장치는 상기 유체 챔버의 상부에 x,y,z 축으로 자동 또는 수동으로 움직일 수 있는 자석 핸들러를 구비하거나, 상기 자석(163)을 회전시킬 수 있는 모터를 구비할 수 있다. 상기 자석 핸들러 및 모터는 상기 위치 제어부(164)를 구성할 수 있다. 이를 통하여, 상기 자석(163)은 상기 기판(161)과 수평한 방향, 시계방향 또는 반시계방향으로 회전하게 된다.
한편, 상기 유체 챔버(162)에는 광투과성의 바닥판(166)이 형성되고, 상기 반도체 발광소자들은 상기 바닥판(166)과 상기 기판(161)의 사이에 배치될 수 있다. 상기 바닥판(166)을 통하여 상기 유체 챔버(162)의 내부를 모니터링하도록, 이미지 센서(167)가 상기 바닥판(166)을 바라보도록 배치될 수 있다. 상기 이미지 센서(167)는 제어부(172)에 의하여 제어되며, 기판(161)의 조립면을 관찰할 수 있도록 inverted type 렌즈 및 CCD 등을 구비할 수 있다.
상기에서 설명한 자가조립 장치는 자기장과 전기장을 조합하여 이용하도록 이루어지며, 이를 이용하면, 상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 전기장에 의하여 상기 기판의 기설정된 위치에 안착될 수 있다. 이하, 상기에서 설명한 자기조립 장치를 이용한 조립과정에 대하여 보다 상세히 설명한다.
먼저, 도 5a 내지 도 5c에서 설명한 과정을 통하여 자성체를 구비하는 복수의 반도체 발광소자들(1050)을 형성한다. 이 경우에, 도 5c의 제2도전형 전극을 형성하는 과정에서, 자성체를 상기 반도체 발광소자에 증착할 수 있다.
다음으로, 기판(161)을 조립위치로 이송하고, 상기 반도체 발광소자들 (1050)을 유체 챔버(162)에 투입한다(도 8a).
전술한 바와 같이, 상기 기판(161)의 조립위치는 상기 기판(161)의 상기 반도체 발광소자들(1050)이 조립되는 조립면이 아래를 향하도록 상기 유체 챔버(162)에 배치되는 위치가 될 수 있다.
이 경우에, 상기 반도체 발광소자들(1050) 중 일부는 유체 챔버(162)의 바닥에 가라앉고 일부는 유체 내에 부유할 수 있다. 상기 유체 챔버(162)에 광투과성의 바닥판(166)이 구비되는 경우에, 상기 반도체 발광소자들(1050) 중 일부는 바닥판(166)에 가라앉을 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 수직방향으로 떠오르도록 상기 반도체 발광소자들(1050)에 자기력을 가한다(도 8b).
상기 자가조립 장치의 자석(163)이 원위치에서 상기 기판(161)의 조립면의 반대면으로 이동하면, 상기 반도체 발광소자들(1050)은 상기 기판(161)을 향하여 상기 유체 내에서 떠오르게 된다. 상기 원위치는 상기 유체 챔버(162)로부터 벗어난 위치가 될 수 있다. 다른 예로서, 상기 자석(163)이 전자석으로 구성될 수 있다. 이 경우에는 전자석에 전기를 공급하여 초기 자기력을 생성하게 된다.
한편, 본 예시에서, 상기 자기력의 크기를 조절하면 상기 기판(161)의 조립면과 상기 반도체 발광소자들(1050)의 이격거리가 제어될 수 있다. 예를 들어, 상기 반도체 발광소자들(1050)의 무게, 부력 및 자기력을 이용하여 상기 이격거리를 제어한다. 상기 이격거리는 상기 기판의 최외각으로부터 수 밀리미터 내지 수십 마이크로미터가 될 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 일방향을 따라 이동하도록, 상기 반도체 발광소자들(1050)에 자기력을 가한다. 예를 들어, 상기 자석(163)을 상기 기판과 수평한 방향, 시계방향 또는 반시계방향으로 이동한다(도 8c). 이 경우에, 상기 반도체 발광소자들(1050)은 상기 자기력에 의하여 상기 기판(161)과 이격된 위치에서 상기 기판(161)과 수평한 방향으로 따라 이동하게 된다.
다음으로, 상기 반도체 발광소자들(1050)이 이동하는 과정에서 상기 기판(161)의 기설정된 위치에 안착되도록, 전기장을 가하여 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도하는 단계가 진행된다(도 8c). 예를 들어, 상기 반도체 발광소자들(1050)이 상기 기판(161)과 수평한 방향으로 따라 이동하는 도중에 상기 전기장에 의하여 상기 기판(161)과 수직한 방향으로 이동하여 상기 기판(161)의 기설정된 위치에 안착된다.
보다 구체적으로, 기판(161)의 bi-planar 전극에 전원을 공급하여 전기장을 생성하고, 이를 이용하여 기설정된 위치에서만 조립이 되도록 유도한게 된다. 즉 선택적으로 생성한 전기장을 이용하여, 반도체 발광소자들(1050)이 상기 기판(161)의 조립위치에 스스로 조립되도록 한다. 이를 위하여, 상기 기판(161)에는 상기 반도체 발광소자들(1050)이 끼워지는 셀들이 구비될 수 있다.
이후에, 상기 기판(161)의 언로딩 과정이 진행되며, 조립 공정이 완료된다. 상기 기판(161)이 조립 기판인 경우에, 전술한 바와 같이 어레인된 반도체 발광소자들을 배선기판으로 전사하여 디스플레이 장치를 구현하기 위한 후공정이 진행될 수 있다.
한편, 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도한 후에, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지도록 상기 자석(163)을 상기 기판(161)과 멀어지는 방향으로 이동시킬 수 있다(도 8d). 다른 예로서, 상기 자석(163)이 전자석인 경우에 전원공급을 중단하면, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지게 된다.
이후에, 상기 유체 챔버(162)의 바닥에 있는 반도체 발광소자들(1050)을 회수하면, 상기 회수된 반도체 발광소자들(1050)의 재사용이 가능하게 된다.
상기에서 설명된 자가조립 장치 및 방법은 fluidic assembly에서 조립 수율을 높이기 위해 자기장을 이용하여 먼거리의 부품들을 미리 정해진 조립 사이트 근처에 집중시키고, 조립 사이트에 별도 전기장을 인가하여 조립 사이트에만 선택적으로 부품이 조립되도록 한다. 이때 조립기판을 수조 상부에 위치시키고 조립면이 아래로 향하도록 하여 부품의 무게에 의한 중력 영향을 최소화하면서 비특이적 결합을 막아 불량을 제거한다. 즉, 전사수율을 높이기 위해 조립 기판을 상부에 위치시켜 중력이나 마찰력 영향을 최소화하며, 비특이적 결합을 막는다.
이상에서 살펴본 것과 같이, 상기와 같은 구성의 본 발명에 의하면, 개별화소를 반도체 발광소자로 형성하는 디스플레이 장치에서, 다량의 반도체 발광소자를 한번에 조립할 수 있다.
이와 같이, 본 발명에 따르면 작은 크기의 웨이퍼 상에서 반도체 발광소자를 다량으로 화소화시킨 후 대면적 기판으로 전사시키는 것이 가능하게 된다. 이를 통하여, 저렴한 비용으로 대면적의 디스플레이 장치를 제작하는 것이 가능하게 된다.
한편, 본 발명은 상술한 자가 조립 공정의 수율 및 자가 조립 이후 공정 수율을 높이기 위한 조립 기판의 구조 및 방법을 제공한다. 본 발명은 상기 기판(161)이 조립 기판으로 사용될 때로 한정된다. 즉, 후술할 조립 기판은 디스플레이 장치의 배선 기판으로 사용되는 것이 아니다. 이에, 이하에서는 상기 기판(161)을 조립 기판(161)이라 칭한다.
본 발명은 두 가지 관점에서 공정 수율을 향상시킨다. 첫 번째, 본 발명은 원하지 않는 위치에 전기장이 강하게 형성되어, 반도체 발광소자가 원하지 않는 위치에 안착되는 것을 방지한다. 두 번째, 본 발명은 조립 기판에 안착된 반도체 발광소자들을 다른 기판으로 전사할 때, 반도체 발광소자가 조립 기판 상에 잔류하는 것을 방지한다.
상술한 해결과제는 서로 다른 구성 요소에 의해 개별적으로 달성되는 것이 아니다. 상술한 두 가지 해결과제는 후술할 구성요소와 기 설명한 조립 기판 (161)의 유기적인 결합에 의해 달성될 수 있다.
본 발명에 대하여 구체적으로 설명하기에 앞서, 자가 조립 후 디스플레이 장치를 제조하기 위한 후공정에 대하여 설명한다.
도 10a 내지 10c는 본 발명에 따른 자가 조립 공정 후 반도체 발광소자가 전사되는 모습을 나타내는 개념도들이다.
도 8a 내지 8e에서 설명한 자가 조립 공정이 종료되면, 조립 기판(161)의 기설정된 위치에는 반도체 발광소자들이 안착된 상태가 된다. 상기 조립 기판(161)에 안착된 반도체 발광소자들은 적어도 한 번 다른 기판으로 전사된다. 본 명세서에서는 상기 조립 기판(161)에 안착된 반도체 발광소자들이 2회 전사되는 일 실시 예에 대하여 설명하지만 이에 한정되지 않고, 상기 조립 기판(161)에 안착된 반도체 발광소자들은 1회 또는 3회 이상 다른 기판으로 전사될 수 있다.
한편, 자가 조립 공정이 종료된 직후에는 조립 기판(161)의 조립면이 하측 방향(또는 중력 방향)을 향하고 있는 상태이다. 자가 조립 후 공정을 위해 상기 조립 기판(161)은 반도체 발광소자가 안착된 상태로 180도 뒤집어질 수 있다. 이 과정에서 반도체 발광소자가 조립 기판(161)으로부터 이탈할 위험이 있기 때문에, 상기 조립 기판(161)을 뒤집는 동안 상기 복수의 전극들(161c, 이하 조립 전극들)에는 전압이 인가되어야 한다. 상기 조립 전극들간에 형성되는 전기장은 상기 조립 기판(161)이 뒤집어지는 동안 반도체 발광소자가 조립 기판(161)으로부터 이탈하는 것을 방지한다.
자가 조립 공정 후 조립 기판(161)을 180도로 뒤집으면 도 10a와 같은 형상이 된다. 구체적으로, 도 10a와 같이, 조립 기판(161)의 조립면은 상측(또는 중력의 반대 방향)을 향하는 상태가 된다. 이 상태에서, 전사 기판(400)이 상기 조립 기판(161) 상측에 얼라인 된다.
상기 전사 기판(400)은 상기 조립 기판(161)에 안착된 반도체 발광소자들을 이탈시켜 배선 기판으로 전사하기 위한 기판이다. 상기 전사 기판 (400)은 PDMS(polydimethylsiloxane) 재질로 형성될 수 있다. 따라서, 상기 전사 기판(400)은 PDMS 기판으로 지칭될 수 있다.
상기 전사 기판(400)은 상기 조립 기판(161)에 얼라인된 후 상기 조립 기판(161)에 압착된다. 이후, 상기 전사 기판(400)을 상기 조립 기판(161)의 상측으로 이송하면, 전사 기판(400)의 부착력에 의하여, 조립 기판(161)에 배치된 반도체 발광소자들(350)은 상기 전사 기판(400)으로 이동하게 된다.
이를 위해, 상기 반도체 발광소자(350)와 전사 기판(400)간의 표면 에너지는 상기 반도체 발광소자(350)와 유전체층(161b) 간의 표면 에너지보다 높아야 한다. 상기 반도체 발광소자(350)와 전사 기판(400)간의 표면 에너지와 상기 반도체 발광소자(350)와 유전체층(161b) 간의 표면 에너지의 차이가 클수록, 반도체 발광소자(350)가 조립 기판(161)으로부터 이탈될 확률이 높아지므로, 상기 두 표면 에너지의 차이는 클수록 바람직하다.
한편, 상기 전사 기판(400)을 상기 조립 기판(161)에 압착시킬 때, 전사 기판(400)에 의해 가해지는 압력이 반도체 발광소자(350)에 집중되도록, 상기 전사 기판(400)은 복수의 돌기부(410)를 포함할 수 있다. 상기 돌기부(410)는 상기 조립 기판(161)에 안착된 반도체 발광소자들과 동일한 간격으로 형성될 수 있다. 상기 돌기부(410)가 상기 반도체 발광소자들(350)과 오버랩되도록 얼라인 한 후, 상기 전사 기판(400)을 조립 기판(161)에 압착시킬 경우, 전사 기판 (400)에 의한 압력이 반도체 발광소자들(350)에만 집중될 수 있다. 이를 통해, 본 발명은 반도체 발광소자가 조립 기판(161)으로부터 이탈될 확률을 증가시킨다.
한편, 상기 반도체 발광소자들이 상기 조립 기판(161)에 안착된 상태에서 반도체 발광소자의 일부는 홈 외부로 노출되는 것이 바람직하다. 반도체 발광소자들(350)이 홈 외부로 노출되지 않는 경우, 전사 기판(400)에 의한 압력이 반도체 발광소자들(350)에 집중되지 않아 반도체 발광소자(350)가 조립 기판(161)으로부터 이탈할 확률이 낮아질 수 있다.
마지막으로, 도 10c를 참조하면, 상기 전사 기판(400)을 배선 기판(500)에 압착시켜, 반도체 발광소자들(350)을 상기 전사 기판(400)에서 상기 배선 기판 (500)으로 전사시키는 단계가 진행된다. 이때, 상기 배선 기판(500)에는 돌출부(510)가 형성될 수 있다. 상기 전사 기판(400)에 배치된 반도체 발광소자들(350)과 상기 돌출부(510)가 오버랩되도록, 상기 전사 기판(400)과 상기 배선 기판(500)을 얼라인 시킨다. 이후, 상기 전사 기판(400)과 상기 배선 기판(500)을 압착시킬 경우, 상기 돌출부(510)로 인하여 상기 반도체 발광소자들(350)이 상기 전사 기판(400)으로부터 이탈할 확률이 증가할 수 있다.
한편, 전사 기판(400)에 배치된 반도체 발광소자들(350)이 배선 기판 (500)으로 전사되기 위해서는, 상기 반도체 발광소자(350)와 상기 배선 기판(500) 간의 표면 에너지가 상기 반도체 발광소자(350)와 전사 기판(400)간의 표면 에너지보다 높아야 한다. 상기 반도체 발광소자(350)와 상기 배선 기판 (500) 간의 표면 에너지와 상기 반도체 발광소자(350)와 전사 기판(400)간의 표면 에너지의 차이가 클수록, 반도체 발광소자(350)가 전사 기판(400)으로부터 이탈될 확률이 높아지므로, 상기 두 표면 에너지의 차이는 클수록 바람직하다.
상기 배선 기판(500)으로 상기 전사 기판(400)에 배치된 반도체 발광소자를(350) 모두 전사한 후, 상기 반도체 발광소자들(350)과 배선 기판에 형성된 배선 전극 간에 전기적 연결을 형성하는 단계가 진행될 수 있다. 상기 배선 전극의 구조 및 전기적 연결을 형성하는 방법은 반도체 발광소자(350)의 종류에 따라 달라질 수 있다.
한편, 도시되지 않았지만, 상기 배선 기판(500)에는 이방성 전도성 필름이 배치될 수 있다. 이 경우, 상기 전사 기판(400)과 상기 배선 기판(500)을 압착시키는것 만으로 반도체 발광소자들(350)과 배선 기판(500)에 형성된 배선 전극들간에 전기적 연결이 형성될 수 있다.
한편, 서로 다른 색을 발광하는 반도체 발광소자들을 포함하는 디스플레이 장치를 제조하는 경우, 도 10a 내지 10c에서 설명한 방법은 다양한 방식으로 구현될 수 있다. 이하, 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광소자를 포함하는 디스플레이 장치의 제조 방법에 대하여 설명한다.
도 11 내지 13은 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광소자를 포함하는 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
서로 다른 색을 발광하는 반도체 발광소자들은 서로 다른 조립 기판에 개별적으로 조립될 수 있다. 구체적으로, 상기 조립 기판(161)은 제1색을 발광하는 반도체 발광소자들이 안착되는 제1조립 기판, 상기 제1색과 다른 제2색을 발광하는 반도체 발광소자들이 안착되는 제2조립 기판, 상기 제1색 및 제2색과 다른 제3색을 발광하는 반도체 발광소자들이 안착되는 제3조립 기판을 포함할 수 있다. 각각의 조립 기판에는 도 8a 내지 8e에서 설명한 방법에 따라, 서로 다른 종류의 반도체 발광소자들이 조립된다. 예를 들어, 제1 내지 제3조립 기판 각각에는 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광소자 각각이 조립될 수 있다.
도 11을 참조하면, 제1 내지 제3조립 기판(RED TEMPLATE, GREEN TEMPLATE, BLUE TEMPLATE) 각각에 RED 칩, GREEN 칩, BLUE 칩 각각이 조립될 수 있다. 이 상태에서, 상기 RED 칩, GREEN 칩, BLUE 칩 각각은 서로 다른 전사 기판에 의해 배선 기판으로 전사될 수 있다.
구체적으로, 조립 기판에 안착된 반도체 발광소자들을 배선 기판으로 전사하는 단계는, 상기 제1조립 기판(RED TEMPLATE)에 제1전사 기판 (스탬프(R))을 압착시켜, 상기 제1색을 발광하는 반도체 발광소자들(RED 칩)을 상기 제1조립 기판(RED TEMPLATE)에서 상기 제1전사 기판(스탬프(R))으로 전사시키는 단계, 상기 제2조립 기판(GREEN TEMPLATE)에 제2전사 기판 (스탬프(G))을 압착시켜, 상기 제2색을 발광하는 반도체 발광소자들(GREEN 칩)을 상기 제2조립 기판(GREEN TEMPLATE)에서 상기 제2전사 기판(스탬프(G))으로 전사시키는 단계 및 상기 제3조립 기판(BLUE TEMPLATE)에 제3전사 기판 (스탬프(B))을 압착시켜, 상기 제3색을 발광하는 반도체 발광소자들(BLUE 칩)을 상기 제3조립 기판(BLUE TEMPLATE)에서 상기 제3전사 기판(스탬프(B))으로 전사시키는 단계를 포함할 수 있다.
이후, 상기 제1 내지 제3전사 기판 각각을 상기 배선 기판에 압착시켜, 상기 제1 내지 제3색을 발광하는 반도체 발광소자들을 상기 제1 내지 제3전사 기판 각각에서 상기 배선 기판으로 전사시키는 단계가 진행된다.
도 11에 따른 제조방법에 따르면, RED 칩, GREEN 칩, BLUE 칩을 포함하는 디스플레이 장치를 제조하기 위해 세 종류의 조립 기판 및 세 종류의 전사 기판을 필요로 한다.
이와 달리, 도 12를 참조하면, 제1 내지 제3조립 기판(RED TEMPLATE, GREEN TEMPLATE, BLUE TEMPLATE) 각각에 RED 칩, GREEN 칩, BLUE 칩 각각이 조립될 수 있다. 이 상태에서, 상기 RED 칩, GREEN 칩, BLUE 칩 각각은 동일한 전사 기판에 의해 배선 기판으로 전사될 수 있다.
구체적으로, 상기 조립 기판 상에 안착된 반도체 발광소자들을 배선 기판으로 전사하는 단계는, 상기 제1조립 기판(RED TEMPLATE)에 전사 기판(RGB 통합 스탬프)을 압착시켜, 상기 제1색을 발광하는 반도체 발광소자들(RED 칩)을 상기 제1조립 기판(RED TEMPLATE)에서 상기 전사 기판(RGB 통합 스탬프)으로 전사시키는 단계, 상기 제2조립 기판(GREEN TEMPLATE)에 상기 전사 기판(RGB 통합 스탬프)을 압착시켜, 상기 제2색을 발광하는 반도체 발광소자들(GREEN 칩)을 상기 제2조립 기판(GREEN TEMPLATE)에서 상기 전사 기판(RGB 통합 스탬프)으로 전사시키는 단계, 상기 제3조립 기판(BLUE TEMPLATE)에 상기 전사 기판(RGB 통합 스탬프)을 압착시켜, 상기 제3색을 발광하는 반도체 발광소자들(BLUE 칩)을 상기 제3조립 기판(BLUE TEMPLATE)에서 상기 전사 기판(RGB 통합 스탬프)으로 전사시키는 단계를 포함한다.
이 경우, 상기 제1 내지 제3조립 기판 각각과 상기 전사 기판 간의 얼라인 위치가 서로 달라질 수 있다. 예를 들어, 조립 기판과 전사 기판 간의 얼라인이 완료되었을 때, 상기 제1조립 기판에 대한 상기 전사 기판의 상대적 위치와 상기 제2조립 기판에 대한 상기 전사 기판의 상대적 위치는 서로 다를 수 있다. 상기 전사 기판은 조립 기판의 종류가 바뀔 때마다, SUB PIXEL의 PITCH 만큼 얼라인 위치를 쉬프트할 수 있다. 이러한 방식을 통해, 상기 전사 기판을 상기 제1 내지 제3조립 기판에 순차적으로 압착시켰을 때, 세 종류의 칩이 모두 상기 전사 기판으로 전사되도록 할 수 있다.
이 후, 도 11과 마찬가지로, 상기 전사 기판을 상기 배선 기판에 압착시켜, 상기 제1 내지 제3색을 발광하는 반도체 발광소자들을 상기 전사 기판에서 상기 배선 기판으로 전사시키는 단계가 진행된다.
도 12에 따른 제조방법에 따르면, RED 칩, GREEN 칩, BLUE 칩을 포함하는 디스플레이 장치를 제조하기 위해 세 종류의 조립 기판 및 한 종류의 전사 기판을 필요로 한다.
상술한 도 11 및 12와는 달리, 도 13에 따르면, 하나의 조립 기판(RGB 통합 TEMPLATE)에 RED 칩, GREEN 칩, BLUE 칩 각각이 조립될 수 있다. 이 상태에서, 상기 RED 칩, GREEN 칩, BLUE 칩 각각은 동일한 전사 기판(RGB 통합 스탬프)에 의해 배선 기판으로 전사될 수 있다.
도 13에 따른 제조방법에 따르면, RED 칩, GREEN 칩, BLUE 칩을 포함하는 디스플레이 장치를 제조하기 위해 한 종류의 조립 기판 및 한 종류의 전사 기판을 필요로 한다.
상술한 바와 같이, 서로 다른 색을 발광하는 반도체 발광소자들을 포함하는 디스플레이 장치를 제조하는 경우, 그 제조방법은 다양한 방식으로 구현될 수 있다.
본 발명은 전술한 자가조립 방식에 있어서, 각각의 조립 전극들에 대하여 2 이상의 방향에서 특정 극성(+ 또는 -)의 전압 신호가 공급됨에 따라 전극 불량에 의한 반도체 발광소자의 조립률 저하를 개선할 수 있는 구조를 갖는 조립 기판에 관한 것으로, 이하에서는 첨부된 도면을 참조하여 본 발명의 다양한 실시예에 대해 설명하도록 한다.
먼저, 도 14 내지 도 16을 참조하여 종래의 조립 기판 구조 및 자가조립 시 조립 기판에 형성되는 전기장의 형태에 대해 간략하게 설명한다.
도 14는 종래 조립 기판의 구조를 나타낸 도면이고, 도 15는 조립 전극 사이에 형성되는 전기장의 형태를 설명하는 개념도이고, 도 16는 종래 조립 기판에 전극 불량이 발생한 경우 조립 상태를 나타낸 도면이다.
조립 기판(161)은 디스플레이 장치의 제조방법에 사용되는 기판으로서, 구체적으로 자가조립을 통한 디스플레이 장치의 제조방법에 사용되는 기판일 수 있다. 여기서, 자가조립은 전기장 및 자기장을 이용하여 반도체 발광소자들 (150)을 조립 기판(161)의 기 설정된 위치로 안착시키는 디스플레이 제조방법일 수 있다.
종래의 조립 기판(161)은 베이스부(161a), 유전체층(161b), 복수의 조립 전극들(161c), 반도체 발광소자(150)가 안착되는 셀(161d) 및 격벽(161e)으로 이루어진 것일 수 있다.
조립 전극들(161c)은 일 방향으로 연장 형성되어, 베이스부(161a) 상에 평행하게 배치될 수 있으며, 유전체층(161b)은 복수의 조립 전극들(161c)을 덮도록 베이스부(161a)에 적층될 수 있다.
유전체층(161b)에는 격벽(161e)이 적층될 수 있으며, 구체적으로, 격벽 (161e)은 조립 전극(161c)의 일부와 오버랩 되도록 조립 전극(161c)의 연장 방향을 따라 소정 간격으로 반도체 발광소자(150)가 안착되는 셀(161d)을 형성하면서 적층될 수 있다.
한편, 외부에서 조립 전극(161c)으로 전압이 인가됨에 따라 셀(161d) 내부에는 도 15와 같이 전기장(E1)이 형성될 수 있으며, 반도체 발광소자 (150)는 전기장(E1)에 의해 셀(161d)에 안착될 수 있다. 전기장(E1)의 형성을 위해 인접한 조립 전극(161c)에는 서로 다른 극성의 전압 신호가 인가될 수 있으며, 이로써 인접한 조립 전극(161c) 사이의 영역에 전기장(E1)이 형성될 수 있다. 전기장(E1)은 조립 전극들(161c)과 가까울수록 강하게 형성되며, 조립 전극들 (161c)로부터 멀어질수록 약해진다.
조립 기판(161)은 조립 전극들(161c)이 형성된 조립면에 외부에서 전원이 인가됨에 따라 조립 전극들(161c)에 전압을 공급하는 전압 인가부(170)를 포함할 수 있다. 전압 인가부(170)는 전원 공급부(미도시)와 연결되어 전원이 인가되는 전극 패드(171), 그리고 전극 패드(171) 및 조립 전극들(161c)과 연결되어 조립 전극들(161c)에 전압을 공급하는 버스 라인(172)을 포함할 수 있다.
전압 인가부(170)는 조립 전극들(161c)이 연장된 방향을 기준으로 양측에 각각 구비될 수 있다. 이 때, 일측에 구비된 전압 인가부(170a)는 조립 전극들 (161c)에 (+) 신호의 전압을 인가하고, 타측에 구비된 전압 인가부(170b)는 조립 전극들(161c)에 (-) 신호의 전압을 인가할 수 있다.
예를 들어, 도 14에서, 좌측에 연결된 전극 패드(171a) 및 버스 라인 (172a)은 조립 전극들(161c)에 (+) 신호의 전압을 공급하는 구성이고, 우측에 연결된 전극 패드(171b) 및 버스 라인(172b)은 조립 전극들(161c)에 (-) 신호의 전압을 공급하는 구성일 수 있다. 즉, 종래의 조립 기판(161) 구조에 의하면 각각의 조립 전극들(161c)에 대하여 일 방향에서만 전압이 인가될 수 있었다.
이러한 구조는 도 16과 같이 전극 불량(예: 단선)이 발생한 경우, 특정 극성의 전압 신호를 공급받지 못하게 되어 반도체 발광소자(150)가 셀(161d) 내부에 안착되지 못하는 문제가 있었다. 구체적으로, 도면 기준 우측에서 (-) 신호의 전압을 공급받는 조립 전극(161c)이 단선된 경우, A 영역에는 (-) 신호의 전압이 공급되지 못하였고, 좌측에서 (+) 신호의 전압을 공급받는 조립 전극 (161c)이 단선된 경우, B 및 C 영역에는 전기장(E1)이 형성되지 않아 반도체 발광소자(150)가 조립되지 못하는 문제가 있었다.
이하에서는 도 17 내지 도 20을 참조하여 본 발명의 실시예에 따른 2 이상의 방향에서 조립 전극으로 전압이 인가되는 구조의 조립 기판에 대하여 설명하도록 한다.
도 17은 본 발명의 일 실시예에 따른 조립 기판의 구조를 나타낸 도면이고, 도 18은 본 발명의 다른 실시예에 따른 조립 기판의 구조를 나타낸 도면이고, 도 19는 본 발명의 일 실시예에 따른 조립 기판에 전극 불량이 발생한 경우 조립 상태를 나타낸 도면이고, 도 20은 종래 및 본 발명의 실시예에 따른 조립 기판에 형성된 셀에 인가되는 전압에 대한 시뮬레이션 해석 결과를 나타내는 그래프이다.
본 발명의 실시예에 따른 조립 기판(200)은 종래의 조립 기판(161)과 동일하게 베이스부(210), 유전체층(220), 복수의 조립 전극들(230), 반도체 발광소자(150)가 안착되는 셀(240) 및 격벽(250), 그리고 조립 전극들(230)에 전압을 인가하는 전압 인가부(260)를 포함하여 이루어질 수 있다.
복수의 조립 전극들(230)은 일 방향으로 연장 형성되어, 베이스부(210) 상에 소정 간격으로 평행하게 배치될 수 있으며, 조립 전극들(230)은 인접한 조립 전극(230)과 대향하는 일면으로부터 돌출된 돌출부를 포함할 수 있다. 돌출부는 셀(240)과 오버랩될 수 있으며, 셀(240) 내부에 더욱 강한 전기장 (E1)을 형성할 수 있다.
유전체층(220)은 복수의 조립 전극들(230)을 덮도록 베이스부(210)에 적층될 수 있다. 유전체층(220)에는 격벽(250)이 적층될 수 있으며, 격벽(250)은 조립 전극(230)의 일부와 오버랩 되도록 조립 전극(230)의 연장 방향을 따라 소정 간격으로 반도체 발광소자(150)가 안착되는 셀(240)을 형성하면서 유전체층 (220)에 적층될 수 있다.
조립 전극들(230)에 전압이 인가됨에 따라 조립 전극(230)의 일부와 오버랩 되도록 형성된 셀(240) 내부에는 전기장(E1)이 형성될 수 있으며, 전기장 (E1)에 의해 반도체 발광소자(150)는 셀(240)에 안착될 수 있다.
본 발명의 실시예에 따르면, 도 17에 도시된 바와 같이, 전압 인가부 (260)는 조립 전극들(230)의 양측에 각각 구비될 수 있으며, 조립 전극들(230)의 양단에 각각 연결될 수 있다. 즉, 조립 전극들(230)은 양단에 연결된 전압 인가부(260)로부터 전압 신호를 공급받을 수 있으며, 각각의 조립 전극(230)에는 양단에 연결된 전압 인가부(260)로부터 동일한 극성의 전압이 인가될 수 있다.
전압 인가부(260)는 외부의 전원 공급부(미도시)와 연결되어 외부로부터 전원이 인가되는 전극 패드(261), 그리고 전극 패드(261) 및 조립 전극들(230)과 연결되는 버스 라인(262)을 포함할 수 있다. 버스 라인(262)의 일측은 전극 패드(261)와 연결되고, 타측은 복수의 조립 전극들(230)과 연결될 수 있으며, 버스 라인(262)은 일측에 연결된 전극 패드(261)에 전원이 인가됨에 따라 타측에 연결된 조립 전극들(230)에 전압 신호를 공급할 수 있다.
구체적으로, 전압 인가부(260)는 조립 전극들(230)에 (+) 신호의 전압을 인가하는 제1 전압 인가부(260a)와 (-) 신호의 전압을 인가하는 제2 전압 인가부(260b)를 포함할 수 있다. 제1 전압 인가부(260a)는 양극 전극 패드 (261a)를 포함하고, 제2 전압 인가부(260b)는 음극 전극 패드를 포함할 수 있다.
또한, 조립 기판(200)에는 상기 제1 전압 인가부(260a) 및 제2 전압 인가부 (260b)가 동일한 수로 구비될 수 있으며, 하나의 조립 기판(200)에는 제1 전압 인가부(260a) 및 제2 전압 인가부(260b)가 적어도 2개 이상 구비될 수 있다. 예를 들어, 제1 전압 인가부(260a) 및 제2 전압 인가부(260b)는 도 17과 같이 각각 서로 다른 조립 전극들(230)의 양단과 연결되어 조립 기판 (200)의 양측에 각각 구비될 수 있다.
한편, 복수의 조립 전극들(230) 중 인접한 조립 전극(230)에는 서로 다른 극성의 전압 신호가 공급될 수 있다. 구체적으로, 인접한 조립 전극(230) 중 어느 하나는 (+) 전압 신호를 공급하는 제1 전압 인가부(260a)와 연결되고, 다른 하나는 (-) 전압 신호를 공급하는 제2 전압 인가부(260b)와 연결될 수 있다. 이로써, 인접한 조립 전극(230) 사이에는 전기장(E1)이 형성될 수 있으며, 조립 전극(230)의 일부와 오버랩 되도록 형성된 셀(240) 내부에 전기장(E1)이 형성되어 반도체 발광소자(150)가 안착될 수 있다.
또한, 하나의 전압 인가부(260)는 동일한 극성의 전압 신호를 공급받는 복수의 조립 전극들(230)과 동시에 연결될 수 있다. 즉, 버스 라인(262a, 262b)은 특정 극성의 전압 신호를 인가하는 하나의 전극 패드(261a, 261b)와 일측에서 연결되며, 동일한 극성의 전압 신호를 공급받는 복수의 조립 전극들 (230)은 상기 특정 극성의 전압 신호를 공급하는 하나의 버스 라인(262a, 262b)에 병렬로 연결될 수 있다. 도 17을 참조하면, (+) 전압 신호가 공급되는 조립 전극들(230)은 일측이 양극 전극 패드(261a)와 연결된 버스 라인(262a)과 병렬로 연결될 수 있으며, (-) 전압 신호가 공급되는 조립 전극들(230)은 일측이 음극 전극 패드(261b)와 연결된 버스 라인(262b)과 병렬로 연결될 수 있다.
이와 같이 조립 전극들(230)의 양측에서 전압 신호가 인가되는 경우, 전극 불량이 발생하여 일 방향에서의 전압 신호 공급이 차단되더라도 다른 방향에서 전압 신호의 공급이 이루어지게 되므로, 반도체 발광소자(150)의 자가조립률을 향상시킬 수 있는 효과가 있다.
또한, 본 발명의 실시예에 따르면, 조립 전극(230)의 양방향에서 전압 신호가 공급되므로, 단일 방향에서 전압이 공급되는 종래의 조립 기판(161) 대비 신호 전달 경로의 단축으로 조립 전극(230)의 길이에 의한 저항을 반으로 줄일 수 있다.
도 20에서, A는 조립 기판(161, 200)에 인가되는 전압의 파형이고, B 및 C는 각각 본 발명 및 종래 조립 기판(200, 161)에 형성된 셀(240, 161d)에 인가되는 전압의 파형을 나타낸다. 본 발명에 따른 조립 기판(200)의 경우, 조립 전극(230)의 양 방향에서 전압이 공급됨에 따라 조립 전극(230)의 길이에 의한 저항이 반으로 감소하게 되며, 조립 기판(200)에 인가되는 전압의 파형에 가까운 전압 신호를 조립 기판(200)에 형성된 셀(240)에 공급할 수 있다. 아울러, 셀 (240) 내부에는 반도체 발광소자(150)의 조립을 위한 전기장(E1)이 더욱 강하게 형성될 수 있다.
본 발명의 다른 실시예에 따르면, 조립 기판(200)은 도 18과 같이 조립 전극들(230)의 양단부 이외의 영역과 연결되는 전압 인가부(260)를 더 포함할 수 있다. 구체적으로, 복수의 조립 전극들(230)은 조립 전극(230)의 연장 방향 상의 임의의 위치에서 양단에 연결된 전압 인가부(260)와 동일한 극성의 전압을 인가하는 전압 인가부(260)와 더 연결될 수 있다.
즉, 제1 전압 인가부(260a)와 연결된 조립 전극들(230) 및 제2 전압 인가부(260b)와 연결된 조립 전극들(230)은 연장 방향 상의 임의의 위치에서 각각 제1 전압 인가부(260a) 및 제2 전압 인가부(260b)와 추가적으로 연결될 수 있으며, 조립 전극들(230)의 연장 방향과 교차하는 방향에서 특정 극성의 전압 신호를 추가적으로 공급받을 수 있다.
바람직하게, 조립 전극들(230)은 전압 인가부(260)가 추가적으로 연결되는 상기 임의의 위치를 기준으로 동일한 길이를 갖는 복수의 영역으로 구분될 수 있다. 즉, 조립 전극들(230)은 연장 방향의 중간 지점에서 전압 인가부(260)와 추가적으로 연결될 수 있으며, 추가 연결된 전압 인가부(260)로부터 공급되는 전압 신호는 양방향으로 전달될 수 있다.
또한, 조립 전극들(230)은 연장 방향 상의 2 이상의 임의의 위치에서 전압 인가부(260)와 추가적으로 연결될 수도 있다.
이와 같이, 조립 전극들(230)은 양단에 결합된 전압 인가부(260) 이외에도 연장 방향 상의 임의의 위치에서 전압 인가부(260)와 더 연결되어 추가적인 전압 신호를 공급받을 수 있으며, 이 경우, 조립 전극(230)의 길이에 의한 저항은 더욱 감소할 수 있다. 또한, 반도체 발광소자(150)가 안착되는 셀(240) 내부에 조립 기판(200)에 인가되는 전압 신호의 파형에 가까운 전압 신호가 공급될 수 있다.
도 19와 같이 본 발명의 실시예에 따른 조립 기판(200) 구조에 의하면, 조립 전극(230)의 단선으로 인해 특정 방향에서 전압이 공급되지 않더라도 반대측으로부터 동일한 극성의 전압 신호가 공급될 수 있으므로, 셀(240) 내부에 전기장(E1)이 형성될 수 있고, 반도체 발광소자(150)의 조립에 영향을 미치지 않을 수 있다.
이하에서는, 본 발명의 실시예에 따른 전술한 조립 기판(200)을 이용한 디스플레이 제조방법에 대해 간략하게 설명한다.
본 발명에 의하면, 디스플레이 장치는 전술한 구조의 조립 기판(200)을 이용하여 종래의 자가조립 방식에 의한 디스플레이 장치의 제조 방법과 동일한 방식으로 제조될 수 있다.
구체적으로, 본 발명에 따른 디스플레이 장치의 제조방법은 전술한 구조의 조립 기판(200)을 조립위치로 이송하고, 자성체를 구비하는 복수의 반도체 발광소자들(150)을 유체 챔버 내 투입하는 단계, 유체 챔버 내 투입된 반도체 발광소자들(150)이 일방향을 따라 이동하도록 반도체 발광소자들(150)에 자기력을 가하는 단계, 반도체 발광소자들(150)이 이동하는 과정에서 조립 기판 (200) 상의 기 설정된 위치에 안착되도록 전기장을 가하여 반도체 발광소자들 (150)을 기 설정된 위치로 유도하는 단계, 및 조립 기판(200)에 안착된 반도체 발광소자들(150)을 배선이 형성된 최종 기판으로 전사시키는 단계를 포함할 수 있다.
본 발명의 제조방법에 사용되는 조립 기판(200)은 조립면에 전기장(E1)을 형성하기 위한 복수의 조립 전극들(230)이 소정 간격으로 배치되며, 복수의 조립 전극들(230)은 적어도 양단이 각각 전압 인가부(260)와 연결됨으로써, 조립 전극(230)의 양단에서 전기장(E1) 형성을 위한 전압 신호를 공급받을 수 있다. 또한, 각각의 조립 전극들(230)에는 특정 극성(+ 또는 -)의 전압 신호가 인가될 수 있다.
또한, 복수의 조립 전극들(230) 중 인접한 조립 전극에는 서로 다른 극성의 전압 신호가 공급되어 인접한 조립 전극 사이의 영역에 전기장(E1)이 형성될 수 있다. 반도체 발광소자(150)가 안착되는 기 설정된 위치는 상기 전기장(E1)이 형성되는 인접한 조립 전극 사이의 영역과 오버랩 될 수 있다.
한편, 전압 인가부(260)는 외부의 전원이 인가되는 전극 패드(261)와, 전극 패드(261) 및 복수의 조립 전극들(230)과 연결되어 조립 전극들(230)에 전압 신호를 공급하는 버스 라인(262)으로 구성될 수 있다. 전압 인가부(260)는 조립 전극들(230)과 동일한 조립면 상에 형성될 수 있으며, 조립 위치로 이송될 때 전극 패드(261)가 형성된 부분이 홀딩됨으로써 전극 패드(261)와 유체 사이의 접촉이 차단될 수 있다.
한편, 조립 기판(200)에 안착된 반도체 발광소자들(150)을 배선이 형성된 최종 기판으로 전사시키는 단계는 2회 이상의 전사 과정을 포함할 수 있다. 조립 기판(200)에 안착된 반도체 발광소자들(150)은 최종 기판으로 전사되기 전 전사용 기판(또는 전사 스탬프)에 전사된 후 최종 기판으로 전사될 수 있으며, 상기 과정은 복수 회 반복 수행될 수 있다.
전술한 본 발명은 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
Claims (10)
- 전기장 및 자기장을 이용하여 반도체 발광소자들을 조립 기판의 기 설정된 위치로 안착시키는 디스플레이 제조방법에 사용되는 조립 기판에 있어서,상기 조립 기판은,베이스부;일 방향으로 연장 형성되고, 상기 베이스부 상에 소정 간격으로 배치되는 복수의 조립 전극들;상기 조립 전극들을 덮도록 상기 베이스부에 적층되는 유전체층;상기 조립 전극의 일부와 오버랩 되도록 상기 조립 전극의 연장 방향을 따라 소정 간격으로 반도체 발광소자가 안착되는 셀을 형성하면서 상기 유전체층에 적층되는 격벽; 및적어도 상기 조립 전극들의 양단에 각각 연결되어 상기 조립 전극들에 전압 신호를 인가하는 전압 인가부를 포함하고,상기 조립 전극들은 양단에 연결된 상기 전압 인가부로부터 동일한 극성의 전압 신호가 인가되는 것을 특징으로 하는, 조립 기판.
- 제1항에 있어서,상기 전압 인가부는, 외부로부터 전원이 인가되는 전극 패드; 및상기 전극 패드 및 상기 조립 전극들과 연결되어, 상기 전극 패드에 전원이 인가된 경우 상기 연결된 조립 전극들에 전압 신호를 공급하는 버스 라인을 포함하는 것을 특징으로 하는, 조립 기판.
- 제2항에 있어서,상기 전압 인가부는, 양극 전극 패드를 포함하는 제1 전압 인가부 및 음극 전극 패드를 포함하는 제2 전압 인가부를 포함하며,상기 조립 기판은 동일한 수의 제1 전압 인가부 및 제2 전압 인가부를 포함하는 것을 특징으로 하는, 조립 기판.
- 제3항에 있어서,상기 복수의 조립 전극들 중 인접한 조립 전극에는 서로 다른 극성의 전압 신호가 공급되도록, 상기 인접한 조립 전극 중 어느 하나는 상기 제1 전압 인가부와 연결되고, 다른 하나는 상기 제2 전압 인가부와 연결되는 것을 특징으로 하는, 조립 기판.
- 제1항에 있어서,상기 전압 인가부는, 동일한 극성의 전압 신호를 공급받는 상기 복수의 조립 전극들과 연결되는 것을 특징으로 하는, 조립 기판.
- 제1항에 있어서,상기 복수의 조립 전극들은, 상기 조립 전극의 연장 방향 상의 임의의 위치에서 상기 양단에 연결된 전압 인가부와 동일한 극성의 전압 신호를 인가하는 전압 인가부와 더 연결되는 것을 특징으로 하는, 조립 기판.
- 제6항에 있어서,상기 복수의 조립 전극들은, 상기 임의의 위치를 기준으로 동일한 길이를 갖는 복수의 영역으로 구분되는 것을 특징으로 하는, 조립 기판.
- 조립 기판을 조립위치로 이송하고, 자성체를 구비하는 복수의 반도체 발광소자들을 유체 챔버 내 투입하는 단계;상기 유체 챔버 내 투입된 상기 반도체 발광소자들이 일방향을 따라 이동하도록 상기 반도체 발광소자들에 자기력을 가하는 단계;상기 반도체 발광소자들이 이동하는 과정에서 상기 조립 기판 상의 기 설정된 위치에 안착되도록 전기장을 가하여 상기 반도체 발광소자들을 상기 기 설정된 위치로 유도하는 단계; 및상기 조립 기판에 안착된 상기 반도체 발광소자들을 배선이 형성된 최종 기판으로 전사시키는 단계를 포함하고,상기 조립 기판에는 전기장을 형성하기 위한 복수의 조립 전극들이 소정 간격으로 배치되며, 상기 복수의 조립 전극들 각각은 적어도 양단에서 동일한 극성의 전압 신호가 인가되는 것을 특징으로 하는, 디스플레이 장치의 제조방법.
- 제8항에 있어서,상기 복수의 조립 전극들 중 인접한 조립 전극에는 서로 다른 극성의 전압 신호가 공급되어 상기 인접한 조립 전극 사이의 영역에 상기 전기장이 형성되는 것을 특징으로 하는, 디스플레이 장치의 제조방법.
- 제9항에 있어서,상기 반도체 발광소자들이 안착되는 기 설정된 위치는 전기장이 형성되는 상기 인접한 조립 전극 사이의 영역과 오버랩 되는 것을 특징으로 하는, 디스플레이 장치의 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/619,852 US12034107B2 (en) | 2019-06-28 | 2019-07-09 | Substrate for manufacturing display device and method for manufacturing display device |
EP19934921.8A EP3993048A4 (en) | 2019-06-28 | 2019-07-09 | SUBSTRATE FOR MAKING DISPLAY DEVICE AND METHOD FOR MAKING DISPLAY DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0078216 | 2019-06-28 | ||
KR1020190078216A KR102659765B1 (ko) | 2019-06-28 | 2019-06-28 | 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020262751A1 true WO2020262751A1 (ko) | 2020-12-30 |
Family
ID=69810051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/008443 WO2020262751A1 (ko) | 2019-06-28 | 2019-07-09 | 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12034107B2 (ko) |
EP (1) | EP3993048A4 (ko) |
KR (1) | KR102659765B1 (ko) |
WO (1) | WO2020262751A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220231209A1 (en) * | 2021-01-19 | 2022-07-21 | Innostar Service Inc. | Led display |
WO2023171832A1 (ko) * | 2022-03-10 | 2023-09-14 | 엘지전자 주식회사 | 디스플레이 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020005294A1 (en) * | 2000-06-06 | 2002-01-17 | The Penn State Research Foundation | Electro-fluidic assembly process for integration of electronic devices onto a substrate |
US6536106B1 (en) * | 1999-06-30 | 2003-03-25 | The Penn State Research Foundation | Electric field assisted assembly process |
JP2012004535A (ja) * | 2010-05-17 | 2012-01-05 | Sharp Corp | 発光装置の製造方法 |
KR101793542B1 (ko) * | 2016-08-26 | 2017-11-03 | 엘지전자 주식회사 | 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법 |
US20180102352A1 (en) * | 2014-10-31 | 2018-04-12 | eLux Inc. | Fluid-Suspended Microcomponent Harvest, Distribution, and Reclamation |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356106B1 (en) | 2000-09-12 | 2002-03-12 | Micron Technology, Inc. | Active termination in a multidrop memory system |
US7956382B2 (en) * | 2002-01-24 | 2011-06-07 | Massachusetts Institute Of Technology | Method and system for magnetically assisted statistical assembly of wafers |
JP4381428B2 (ja) | 2007-04-10 | 2009-12-09 | シャープ株式会社 | 微細構造体の配列方法及び微細構造体を配列した基板、並びに集積回路装置及び表示素子 |
KR20120138805A (ko) * | 2010-03-12 | 2012-12-26 | 샤프 가부시키가이샤 | 발광 장치의 제조 방법, 발광 장치, 조명 장치, 백라이트, 액정 패널, 표시 장치, 표시 장치의 제조 방법, 표시 장치의 구동 방법 및 액정 표시 장치 |
US9985190B2 (en) * | 2016-05-18 | 2018-05-29 | eLux Inc. | Formation and structure of post enhanced diodes for orientation control |
US10950583B2 (en) | 2015-08-26 | 2021-03-16 | Lg Electronics Inc. | Transfer head and transfer system for semiconductor light-emitting device and method for transferring semiconductor light-emitting device |
WO2017142877A1 (en) * | 2016-02-16 | 2017-08-24 | Glo Ab | Method of selectively transferring led die to a backplane using height controlled bonding structures |
KR102608419B1 (ko) | 2016-07-12 | 2023-12-01 | 삼성디스플레이 주식회사 | 표시장치 및 표시장치의 제조방법 |
US20180190614A1 (en) * | 2016-12-05 | 2018-07-05 | Ananda H. Kumar | Massively parallel transfer of microLED devices |
KR102236769B1 (ko) * | 2017-07-18 | 2021-04-06 | 삼성전자주식회사 | 엘이디 모듈 제조장치 및 엘이디 모듈 제조방법 |
US10361337B2 (en) * | 2017-08-18 | 2019-07-23 | Intel Corporation | Micro light-emitting diode (LED) display and fluidic self-assembly of same |
KR102513267B1 (ko) * | 2017-10-13 | 2023-03-23 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 제조 방법 |
US11127720B2 (en) * | 2019-01-21 | 2021-09-21 | Nanosys, Inc. | Pixel repair method for a direct view display device |
-
2019
- 2019-06-28 KR KR1020190078216A patent/KR102659765B1/ko active IP Right Grant
- 2019-07-09 EP EP19934921.8A patent/EP3993048A4/en active Pending
- 2019-07-09 WO PCT/KR2019/008443 patent/WO2020262751A1/ko active Application Filing
- 2019-07-09 US US17/619,852 patent/US12034107B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6536106B1 (en) * | 1999-06-30 | 2003-03-25 | The Penn State Research Foundation | Electric field assisted assembly process |
US20020005294A1 (en) * | 2000-06-06 | 2002-01-17 | The Penn State Research Foundation | Electro-fluidic assembly process for integration of electronic devices onto a substrate |
JP2012004535A (ja) * | 2010-05-17 | 2012-01-05 | Sharp Corp | 発光装置の製造方法 |
US20180102352A1 (en) * | 2014-10-31 | 2018-04-12 | eLux Inc. | Fluid-Suspended Microcomponent Harvest, Distribution, and Reclamation |
KR101793542B1 (ko) * | 2016-08-26 | 2017-11-03 | 엘지전자 주식회사 | 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3993048A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3993048A4 (en) | 2023-07-26 |
US12034107B2 (en) | 2024-07-09 |
US20220352445A1 (en) | 2022-11-03 |
KR102659765B1 (ko) | 2024-04-24 |
KR20200026682A (ko) | 2020-03-11 |
EP3993048A1 (en) | 2022-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021167149A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2021177673A1 (en) | A substrate for manufacturing display device and a manufacturing method using the same | |
WO2020262752A1 (ko) | 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 | |
WO2021149861A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2021107237A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2021145499A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2021149856A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2020262792A1 (ko) | 디스플레이 장치의 제조방법 및 디스플레이 장치 제조를 위한 기판 | |
WO2020256203A1 (ko) | 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법 | |
WO2020091252A1 (ko) | 반도체 발광소자의 자가조립 장치 및 방법 | |
WO2021162155A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
WO2021095938A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치의 제조방법 | |
WO2021100947A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치의 제조방법 및 이에 사용되는 자가조립 장치 | |
WO2020122698A2 (ko) | 디스플레이 장치 및 반도체 발광소자의 자가조립 방법 | |
WO2021149862A1 (ko) | 반도체 발광소자의 자가조립 장치 및 방법 | |
WO2020251136A1 (en) | Method for manufacturing display device and substrate for manufacturing display device | |
WO2021107271A1 (ko) | 마이크로 엘이디를 이용한 디스플레이 장치 | |
WO2020085677A1 (ko) | 반도체 발광소자의 자가조립 장치 및 방법 | |
WO2021261627A1 (ko) | 디스플레이 장치 제조용 기판 및 이를 이용한 디스플레이 장치의 제조방법 | |
WO2021117956A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2021117974A1 (ko) | 반도체 발광소자 공급 장치 및 공급 방법 | |
WO2021049692A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2021040110A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2021040111A1 (ko) | 반도체 발광소자 수거 장치 및 수거 방법 | |
WO2022045392A1 (ko) | 디스플레이 장치 제조용 기판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19934921 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019934921 Country of ref document: EP |