WO2020091252A1 - 반도체 발광소자의 자가조립 장치 및 방법 - Google Patents

반도체 발광소자의 자가조립 장치 및 방법 Download PDF

Info

Publication number
WO2020091252A1
WO2020091252A1 PCT/KR2019/013162 KR2019013162W WO2020091252A1 WO 2020091252 A1 WO2020091252 A1 WO 2020091252A1 KR 2019013162 W KR2019013162 W KR 2019013162W WO 2020091252 A1 WO2020091252 A1 WO 2020091252A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
magnet
light emitting
substrate
emitting device
Prior art date
Application number
PCT/KR2019/013162
Other languages
English (en)
French (fr)
Inventor
조현우
심봉주
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/289,549 priority Critical patent/US20210399160A1/en
Priority to EP19879422.4A priority patent/EP3876269B1/en
Publication of WO2020091252A1 publication Critical patent/WO2020091252A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67709Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95101Supplying the plurality of semiconductor or solid-state bodies in a liquid medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95121Active alignment, i.e. by apparatus steering
    • H01L2224/95133Active alignment, i.e. by apparatus steering by applying an electromagnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention relates to a method for manufacturing a display device, and more particularly, to a self-assembly method and device for a semiconductor light emitting device.
  • LCD liquid crystal displays
  • OLED organic light-emitting device
  • micro LED displays are competing.
  • the self-assembly method is a method in which a semiconductor light emitting element locates itself in a fluid, and is the most advantageous method for realizing a large display device.
  • the present invention proposes a new type of manufacturing method and manufacturing apparatus in which the micro LED can be self-assembled.
  • One object of the present invention is to provide a new manufacturing process with high reliability in a large screen display using a micro-sized semiconductor light emitting device.
  • the present invention provides a fluid chamber having a space for accommodating a plurality of semiconductor light-emitting elements having a magnetic body, a transfer unit for transferring a substrate to an assembly position, a magnet disposed apart from the fluid chamber to apply magnetic force to the semiconductor light-emitting elements, the magnet And a position control unit formed to control the position of the magnet and the semiconductor light emitting elements to be seated at a predetermined position of the substrate in the process of moving by the position change of the magnet, so that the substrate induces electric field formation.
  • a power supply unit, and the position control unit provides a self-assembly device for a semiconductor light emitting device, characterized in that while rotating the magnet around a rotation axis, the rotation axis is transported along one direction.
  • the rotation axis is perpendicular to the substrate and may be formed outside the magnet.
  • the plurality of magnets may be used, and the position control unit may rotate the plurality of magnets together and transfer them along the one direction.
  • the position control unit may include a magnet array to which a plurality of magnets are fixed, and rotate the magnet array while transferring it along the one direction.
  • the N-pole and the S-pole of the magnet may be disposed in a horizontal direction with respect to the substrate so that a magnetic force applied to the semiconductor light emitting elements is formed in a horizontal direction with the substrate.
  • the magnet is disposed in a position adjacent to the first magnet and the first magnet in which either one of the N pole and the S pole faces the substrate, and the other of the N pole and the S pole is the A second magnet disposed to face the substrate may be provided.
  • the present invention may further include a magnet connecting portion connecting the magnet and the position control unit and guiding the vertical movement of the magnet with respect to the substrate.
  • At least a part of the substrate in the assembly position is made of a curved surface, and while the magnet connection part is being transported along the one direction while the magnet is rotating, the magnet moves up and down so that the magnet is in close contact with the substrate.
  • the magnet connecting portion may include at least one of a magnetic member that applies a magnetic force to the magnet, an elastic member that applies an elastic force to the magnet.
  • the present invention is a step of transferring a substrate to an assembly position, introducing semiconductor light emitting elements into a fluid chamber, and applying magnetic force to the semiconductor light emitting elements so that the semiconductor light emitting elements move in one direction in the fluid chamber. And inducing the semiconductor light emitting elements to the predetermined position by applying an electric field so that the semiconductor light emitting elements are seated at a predetermined position in the process of moving, and applying a magnetic force to the semiconductor light emitting elements.
  • a self-assembly method for a semiconductor light emitting device characterized in that while rotating the magnet around a rotation axis, the rotation axis is transported along the one direction.
  • the rotation axis is formed perpendicular to the substrate, and may be formed outside the magnet.
  • the magnets are formed of a plurality, the plurality of magnets rotate together, and may be transported along the one direction.
  • the N-pole and the S-pole of the magnet may be disposed in a horizontal direction with respect to the substrate so that a magnetic force applied to the semiconductor light emitting elements is formed in a horizontal direction with the substrate.
  • the magnet is disposed in a position adjacent to the first magnet and the first magnet in which either one of the N pole and the S pole faces the substrate, and the other of the N pole and the S pole is the A second magnet disposed to face the substrate may be provided.
  • applying a magnetic force to the semiconductor light emitting elements may include moving the magnet up and down relative to the substrate so that the magnet is in close contact with the substrate.
  • the present invention it is possible to transfer a semiconductor light emitting device to a large area substrate after pixelating the semiconductor light emitting device in a large amount on a small sized wafer. Through this, it is possible to manufacture a large-area display device at a low cost.
  • the semiconductor light emitting device when a magnetic force is applied to the semiconductor light emitting device, the semiconductor light emitting device is disposed horizontally on the substrate.
  • the present invention allows semiconductor light emitting elements to be accurately seated at a designated position on the substrate.
  • FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG. 2.
  • FIG. 4 is an enlarged view showing another embodiment of the semiconductor light emitting device of FIG. 2.
  • 5A to 5E are conceptual views for explaining a new process for manufacturing the aforementioned semiconductor light emitting device.
  • FIG. 6 is a conceptual diagram showing an example of a self-assembly device of a semiconductor light emitting device according to the present invention.
  • FIG. 7 is a block diagram of the self-assembly device of FIG. 6.
  • 8A to 8E are conceptual views illustrating a process of self-assembling a semiconductor light emitting device using the self-assembly device of FIG. 6.
  • FIGS. 8A to 8E are conceptual diagram illustrating the semiconductor light emitting device of FIGS. 8A to 8E.
  • FIG. 10 is a conceptual diagram showing the movement of the semiconductor light emitting device when the magnet is moved in a straight line.
  • FIG. 11 is a conceptual diagram showing a self-assembly method according to the present invention.
  • 12 and 13 are conceptual diagrams showing an embodiment of the present invention utilizing a plurality of magnets.
  • 14 to 16 are conceptual diagrams showing the structure of the magnet position control unit.
  • 17 is a conceptual diagram illustrating a change in distance between a magnet and a substrate while the substrate is bent.
  • 18 to 20 are cross-sectional views of the magnet connecting portion.
  • 21 and 22 are conceptual views illustrating an embodiment of controlling a direction of a magnetic force during self-assembly of a semiconductor light emitting device.
  • Display devices described herein include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, and slate PCs. , Tablet PC, Ultra Book, digital TV, digital signage, head mounting display (HMD), desktop computer, and the like.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • slate PCs slate PCs.
  • Tablet PC Ultra Book
  • digital TV digital signage
  • HMD head mounting display
  • desktop computer and the like.
  • the configuration according to the embodiment described in the present specification may be applied to a display-capable device even in a new product type developed later.
  • FIG. 1 is a conceptual view showing an embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 2 is a partially enlarged view of part A of the display device of FIG. 1
  • FIG. 3 is an enlarged view of the semiconductor light emitting device of FIG. 2.
  • 4 is an enlarged view showing another embodiment of the semiconductor light emitting device of FIG. 2.
  • information processed by the control unit of the display apparatus 100 may be output from the display module 140.
  • a closed-loop case 101 surrounding the edge of the display module may form a bezel of the display device.
  • the display module 140 includes a panel 141 on which an image is displayed, and the panel 141 is a micro-sized semiconductor light emitting device 150 and a wiring substrate 110 on which the semiconductor light emitting device 150 is mounted. It may be provided.
  • a wiring may be formed on the wiring substrate 110 to be connected to the n-type electrode 152 and the p-type electrode 156 of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 may be provided on the wiring substrate 110 as a self-emission individual pixel.
  • the image displayed on the panel 141 is visual information, and is implemented by independently controlling light emission of sub-pixels arranged in a matrix form through the wiring.
  • a micro LED Light Emitting Diode
  • the micro LED may be a light emitting diode formed with a size of 100 micro or less.
  • the semiconductor light emitting device 150 may be provided with blue, red, and green light emitting areas, respectively, and a unit pixel may be implemented by a combination of these. That is, the unit pixel means a minimum unit for realizing one color, and at least three micro LEDs may be provided in the unit pixel.
  • the semiconductor light emitting device 150 may have a vertical structure.
  • the semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) are added together to embody a high-power light emitting device that emits various light including blue. Can be.
  • GaN gallium nitride
  • Al aluminum
  • the vertical semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 formed on the p-type electrode 156, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer 154. It includes an n-type semiconductor layer 153 formed on, and an n-type electrode 152 formed on the n-type semiconductor layer 153.
  • the p-type electrode 156 positioned at the bottom may be electrically connected to the p electrode of the wiring board
  • the n-type electrode 152 positioned at the top may be electrically connected to the n electrode at the upper side of the semiconductor light emitting device. Since the vertical type semiconductor light emitting device 150 can arrange electrodes up and down, it has a great advantage of reducing the chip size.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device 250 includes a p-type electrode 256, a p-type semiconductor layer 255 on which the p-type electrode 256 is formed, and an active layer 254 formed on the p-type semiconductor layer 255. , An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 disposed horizontally apart from the p-type electrode 256 on the n-type semiconductor layer 253.
  • both the p-type electrode 256 and the n-type electrode 152 may be electrically connected to the p-electrode and the n-electrode of the wiring substrate under the semiconductor light emitting device.
  • the vertical semiconductor light emitting device and the horizontal semiconductor light emitting device may be green semiconductor light emitting devices, blue semiconductor light emitting devices, or red semiconductor light emitting devices, respectively.
  • gallium nitride (GaN) is mainly used, and indium (In) and / or aluminum (Al) are added together to realize a high power light emitting device that emits green or blue light.
  • the semiconductor light emitting device may be a gallium nitride thin film formed of various layers such as n-Gan, p-Gan, AlGaN, InGan, etc.
  • the p-type semiconductor layer is P-type GaN, and the n The type semiconductor layer may be N-type GaN.
  • the p-type semiconductor layer may be P-type GaAs, and the n-type semiconductor layer may be N-type GaAs.
  • the p-type semiconductor layer may be a case where the p-electrode is a P-type GaN doped with Mg, and the n-type semiconductor layer may be an N-type GaN doped with Si on the n electrode side.
  • the aforementioned semiconductor light emitting devices can be semiconductor light emitting devices without an active layer.
  • the self-emission unit pixels of the display panel may be arranged at a high resolution, and thus a high-definition display device may be implemented.
  • a semiconductor light emitting device grown on a wafer and formed through mesa and isolation is used as an individual pixel.
  • the micro-sized semiconductor light emitting device 150 must be transferred to a wafer at a predetermined position on the substrate of the display panel.
  • There is a pick and place as a transfer technology but the success rate is low and a lot of time is required.
  • there is a technique of transferring several elements at a time using a stamp or roll but there is a limit in yield, and thus it is not suitable for display on a large screen.
  • the present invention proposes a new manufacturing method and a manufacturing apparatus for a display device capable of solving these problems.
  • 5A to 5E are conceptual views for explaining a new process for manufacturing the aforementioned semiconductor light emitting device.
  • a display device using a passive matrix (PM) type semiconductor light emitting device is illustrated.
  • PM passive matrix
  • AM active matrix
  • a method for self-assembling the horizontal type semiconductor light emitting device is illustrated, but this is also applicable to a method for self assembling the vertical type semiconductor light emitting device.
  • the first conductive semiconductor layer 153, the active layer 154, and the second conductive semiconductor layer 155 are grown on the growth substrate 159, respectively (FIG. 5A).
  • the active layer 154 is grown on the first conductive semiconductor layer 153, and then the second conductive semiconductor is grown on the active layer 154.
  • Layer 155 is grown. As described above, when the first conductive semiconductor layer 153, the active layer 154, and the second conductive semiconductor layer 155 are sequentially grown, as shown in FIG. 5A, the first conductive semiconductor layer 153 , The active layer 154 and the second conductive semiconductor layer 155 form a stacked structure.
  • the first conductive type semiconductor layer 153 may be a p-type semiconductor layer
  • the second conductive type semiconductor layer 155 may be an n-type semiconductor layer.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • the p-type semiconductor layer may be a P-type GaN doped with Mg
  • the n-type semiconductor layer may be an N-type GaN doped with Si on the n-electrode side.
  • the growth substrate 159 may be formed of a material having light-transmitting properties, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO, but is not limited thereto.
  • the growth substrate 1059 may be formed of a material suitable for semiconductor material growth, a carrier wafer. It may be formed of a material having excellent thermal conductivity, and includes, for example, a conductive substrate or an insulating substrate, for example, at least one of SiC substrates, Si, GaAs, GaP, InP, and Ga2O3, which have higher thermal conductivity than sapphire (Al2O3) substrates. Can be used.
  • isolation is performed such that a plurality of light emitting elements form an array of light emitting elements. That is, the first conductive semiconductor layer 153, the active layer 154, and the second conductive semiconductor layer 155 are etched in a vertical direction to form a plurality of semiconductor light emitting devices.
  • the active layer 154 and the second conductivity type semiconductor layer 155 is partially removed in the vertical direction, the first conductive type semiconductor layer 153 to the outside
  • the exposed mesa process and subsequent isolation of the first conductive type semiconductor layer to form a plurality of semiconductor light emitting device arrays may be performed.
  • a second conductive electrode 156 (or p-type electrode) is formed on one surface of the second conductive semiconductor layer 155 (FIG. 5C).
  • the second conductive electrode 156 may be formed by a deposition method such as sputtering, but the present invention is not limited thereto.
  • the first conductive type semiconductor layer and the second conductive type semiconductor layer are n-type semiconductor layers and p-type semiconductor layers, respectively, the second conductive type electrode 156 may be an n-type electrode.
  • the growth substrate 159 is removed to provide a plurality of semiconductor light emitting devices.
  • the growth substrate 1059 may be removed using a laser lift-off (LLO) method or a chemical lift-off (CLO) method (FIG. 5D).
  • LLO laser lift-off
  • CLO chemical lift-off
  • the semiconductor light emitting elements 150 and the substrate are placed in a fluid-filled chamber, and the semiconductor light emitting elements are self-assembled to the substrate 1061 using flow, gravity, and surface tension.
  • the substrate may be an assembly substrate 161.
  • a wiring substrate may be placed in a fluid chamber, and the semiconductor light emitting elements 150 may be directly seated on the wiring substrate.
  • the substrate can be a wiring substrate.
  • the substrate is provided as an assembly substrate 161, and illustrates that the semiconductor light emitting elements 1050 are seated.
  • Cells into which the semiconductor light emitting elements 150 are fitted may be provided on the assembly substrate 161 so that the semiconductor light emitting elements 150 are easily seated on the assembly substrate 161. Specifically, cells on which the semiconductor light emitting elements 150 are seated are formed on the assembly substrate 161 where the semiconductor light emitting elements 150 are aligned with the wiring electrodes. The semiconductor light emitting elements 150 are moved in the fluid and then assembled to the cells.
  • the assembly substrate 161 After a plurality of semiconductor light emitting elements are arrayed on the assembly substrate 161, transfer of the semiconductor light emitting elements of the assembly substrate 161 to a wiring substrate enables large-area transfer. Therefore, the assembly substrate 161 may be referred to as a temporary substrate.
  • the present invention proposes a method and apparatus for minimizing the influence of gravity or friction and preventing non-specific binding in order to increase the transfer yield.
  • a magnetic material is disposed on the semiconductor light emitting device to move the semiconductor light emitting device using a magnetic force, and the semiconductor light emitting device is seated at a predetermined position using an electric field during the movement process.
  • FIG. 6 is a conceptual diagram illustrating an example of a self-assembly device of a semiconductor light emitting device according to the present invention
  • FIG. 7 is a block diagram of the self-assembly device of FIG. 6.
  • 8A to 8D are conceptual views illustrating a process of self-assembling a semiconductor light emitting device using the self-assembly device of FIG. 6, and
  • FIG. 9 is a conceptual diagram for explaining the semiconductor light emitting devices of FIGS. 8A to 8D.
  • the self-assembly device 160 of the present invention may include a fluid chamber 162, a magnet 163, and a position control unit 164.
  • the fluid chamber 162 has a space accommodating a plurality of semiconductor light emitting devices.
  • the space may be filled with fluid, and the fluid may include water or the like as an assembly solution. Therefore, the fluid chamber 162 may be a water tank, and may be configured as an open type. However, the present invention is not limited to this, and the fluid chamber 162 may be a closed type composed of the closed space.
  • a substrate 161 may be disposed such that an assembly surface on which the semiconductor light emitting elements 150 are assembled faces down.
  • the substrate 161 is transferred to an assembly position by a transfer unit, and the transfer unit may include a stage 165 on which the substrate is mounted.
  • the stage 165 is positioned by the control unit, through which the substrate 161 may be transferred to the assembly position.
  • the assembly surface of the substrate 161 at the assembly position faces the bottom of the fluid chamber 150.
  • the assembly surface of the substrate 161 is arranged to be immersed in the fluid in the fluid chamber 162. Therefore, the semiconductor light emitting device 150 is moved to the assembly surface in the fluid.
  • the substrate 161 is an assembled substrate capable of forming an electric field, and may include a base portion 161a, a dielectric layer 161b, and a plurality of electrodes 161c.
  • the base portion 161a is made of an insulating material, and the plurality of electrodes 161c may be a thin film or thick film bi-planar electrode patterned on one surface of the base portion 161a.
  • the electrode 161c may be formed of, for example, a stack of Ti / Cu / Ti, Ag paste, and ITO.
  • the dielectric layer 161b may be made of inorganic materials such as SiO2, SiNx, SiON, Al2O3, TiO2, and HfO2. Alternatively, the dielectric layer 161b may be composed of a single layer or a multi-layer as an organic insulator. The dielectric layer 161b may have a thickness of several tens of nm to several ⁇ m.
  • the substrate 161 according to the present invention includes a plurality of cells 161d partitioned by partition walls.
  • the cells 161d are sequentially arranged along one direction, and may be made of a polymer material.
  • the partition wall 161e forming the cells 161d is configured to be shared with neighboring cells 161d.
  • the partition wall 161e protrudes from the base portion 161a, and the cells 161d may be sequentially arranged in one direction by the partition wall 161e. More specifically, the cells 161d are sequentially arranged in the column and row directions, respectively, and may have a matrix structure.
  • the inside of the cells 161d has a groove for receiving the semiconductor light emitting device 150, and the groove may be a space defined by the partition wall 161e.
  • the shape of the groove may be the same or similar to the shape of the semiconductor light emitting device. For example, when the semiconductor light emitting device is rectangular, the groove may be rectangular. Further, although not shown, when the semiconductor light emitting device is circular, the grooves formed in the cells may be circular.
  • each of the cells is configured to accommodate a single semiconductor light emitting device. That is, one semiconductor light emitting element is accommodated in one cell.
  • the plurality of electrodes 161c may include a plurality of electrode lines disposed on the bottom of each cell 161d, and the plurality of electrode lines may be extended to neighboring cells.
  • the plurality of electrodes 161c are disposed under the cells 161d, and different polarities are applied to generate electric fields in the cells 161d.
  • the dielectric layer may cover the plurality of electrodes 161c, and the dielectric layer may form the bottom of the cells 161d.
  • the self-assembly device may include a magnet 163 for applying a magnetic force to the semiconductor light emitting elements.
  • the magnet 163 is arranged to be spaced apart from the fluid chamber 162 to apply magnetic force to the semiconductor light emitting elements 150.
  • the magnet 163 may be disposed to face the opposite surface of the assembly surface of the substrate 161, and the position of the magnet is controlled by a position control unit 164 connected to the magnet 163.
  • the semiconductor light emitting device 1050 may be provided with a magnetic body so as to move in the fluid by the magnetic field of the magnet 163.
  • a semiconductor light emitting device having a magnetic material includes a first conductive semiconductor layer in which a first conductive electrode 1052, a second conductive electrode 1056, and the first conductive electrode 1052 are disposed. (1053), the first conductive semiconductor layer 1052 overlaps, the second conductive semiconductor layer 1055 on which the second conductive electrode 1056 is disposed, and the first and second conductive semiconductors It may include an active layer 1054 disposed between the layers (1053, 1055).
  • the first conductive type is p-type
  • the second conductive type may be n-type, and vice versa.
  • it may be a semiconductor light emitting device without the active layer.
  • the first conductive electrode 1052 may be generated after the semiconductor light emitting device is assembled to the wiring board by self-assembly of the semiconductor light emitting device.
  • the second conductive electrode 1056 may include the magnetic material.
  • the magnetic material may mean a metal exhibiting magnetism.
  • the magnetic material may be Ni, SmCo, or the like, and as another example, may include a material corresponding to at least one of Gd, La, and Mn.
  • the magnetic material may be provided on the second conductive type electrode 1056 in the form of particles.
  • one layer of the conductive type electrode may be formed of a magnetic material.
  • the second conductive electrode 1056 of the semiconductor light emitting device 1050 may include a first layer 1056a and a second layer 1056b.
  • the first layer 1056a may be formed to include a magnetic material
  • the second layer 1056b may include a metal material that is not a magnetic material.
  • the first layer 1056a including a magnetic material may be disposed to contact the second conductive semiconductor layer 1055.
  • the first layer 1056a is disposed between the second layer 1056b and the second conductive semiconductor layer 1055.
  • the second layer 1056b may be a contact metal connected to the second electrode of the wiring board.
  • the present invention is not necessarily limited thereto, and the magnetic material may be disposed on one surface of the first conductive semiconductor layer.
  • the self-assembly device includes a magnet handler that can be automatically or manually moved in the x, y, and z axes on the upper portion of the fluid chamber, or the magnet 163 It may be provided with a motor that can rotate.
  • the magnet handler and the motor may constitute the position control unit 164. Through this, the magnet 163 rotates in a horizontal direction, a clockwise direction, or a counterclockwise direction with the substrate 161.
  • a light-transmitting bottom plate 166 is formed in the fluid chamber 162, and the semiconductor light emitting devices may be disposed between the bottom plate 166 and the substrate 161.
  • An image sensor 167 may be disposed to face the bottom plate 166 to monitor the interior of the fluid chamber 162 through the bottom plate 166.
  • the image sensor 167 is controlled by the control unit 172, and may include an inverted type lens, a CCD, and the like to observe the assembly surface of the substrate 161.
  • the self-assembly device described above is made to use a combination of a magnetic field and an electric field, and when this is used, the semiconductor light emitting elements may be seated at a predetermined position of the substrate by an electric field in the process of moving by the position change of the magnet. You can.
  • the assembly process using the self-assembly device described above will be described in more detail.
  • a plurality of semiconductor light emitting elements 1050 having a magnetic material is formed through the process described with reference to FIGS. 5A to 5C.
  • a magnetic material may be deposited on the semiconductor light emitting device.
  • the substrate 161 is transferred to the assembly position, and the semiconductor light emitting elements 1050 are introduced into the fluid chamber 162 (FIG. 8A).
  • the assembly position of the substrate 161 will be a position that is disposed in the fluid chamber 162 such that the assembly surface on which the semiconductor light emitting elements 1050 of the substrate 161 are assembled faces down. You can.
  • the semiconductor light emitting elements 1050 rise in the fluid toward the substrate 161.
  • the original position may be a position deviating from the fluid chamber 162.
  • the magnet 163 may be formed of an electromagnet. In this case, electricity is supplied to the electromagnet to generate an initial magnetic force.
  • a magnetic force is applied to the semiconductor light emitting elements 1050 so that the semiconductor light emitting elements 1050 move in one direction in the fluid chamber 162.
  • the magnet 163 is moved in a horizontal direction, a clockwise direction or a counterclockwise direction with the substrate (FIG. 8C).
  • the semiconductor light emitting elements 1050 move along a horizontal direction with the substrate 161 at a position spaced apart from the substrate 161 by the magnetic force.
  • a step of inducing the semiconductor light emitting elements 1050 to the predetermined position by applying an electric field such that the semiconductor light emitting elements 1050 are seated at a predetermined position in the process of moving the semiconductor light emitting elements 1050 is performed.
  • Proceed (FIG. 8C) For example, while the semiconductor light emitting elements 1050 are moved along the horizontal direction with the substrate 161, the electric field moves in a direction perpendicular to the substrate 161 by the electric field. It sits in the set position.
  • an electric field is generated by supplying power to the bi-planar electrode of the substrate 161, and by using this, it is induced to be assembled only at a predetermined position. That is, by using the selectively generated electric field, the semiconductor light emitting elements 1050 are self-assembled at the assembly position of the substrate 161. To this end, cells on which the semiconductor light emitting elements 1050 are fitted may be provided on the substrate 161.
  • a post-process for realizing a display device may be performed by transferring the aligned semiconductor light emitting devices to the wiring substrate as described above.
  • the magnet so that the semiconductor light emitting elements 1050 remaining in the fluid chamber 162 falls to the bottom of the fluid chamber 162.
  • the 163 may be moved in a direction away from the substrate 161 (FIG. 8D).
  • the magnet 163 is an electromagnet
  • semiconductor light emitting elements 1050 remaining in the fluid chamber 162 fall to the bottom of the fluid chamber 162.
  • the self-assembly device and method described above focuses distant parts near a predetermined assembly site using a magnetic field to increase assembly yield in fluidic assembly, and selectively applies parts to the assembly site by applying a separate electric field to the assembly site.
  • the assembly substrate is placed on the upper part of the water tank and the assembly surface is faced downward, thereby minimizing the influence of gravity due to the weight of the part and preventing non-specific binding to eliminate defects. That is, in order to increase the transfer yield, the assembly substrate is positioned on the top to minimize the influence of gravity or friction and prevents non-specific binding.
  • the present invention it is possible to transfer a semiconductor light emitting device to a large area substrate after pixelating the semiconductor light emitting device in a large amount on a small sized wafer. Through this, it is possible to manufacture a large-area display device at a low cost.
  • the present invention provides an apparatus and method for improving the accuracy of the self-assembly process described in FIGS. 8A to 8E.
  • FIG. 10 is a conceptual diagram showing the movement of the semiconductor light emitting device when the magnet is moved in a straight line
  • FIG. 11 is a conceptual diagram showing a self-assembly method according to the present invention.
  • a step of applying a magnetic force to the semiconductor light emitting elements 1050 is performed so that the semiconductor light emitting elements 1050 move in one direction within the fluid chamber 162.
  • the semiconductor light emitting elements may be moved in a straight line along the magnet by transferring the magnet in a straight line along one direction.
  • the magnetic force acting on the semiconductor light emitting element is formed in a direction facing the substrate obliquely.
  • Various structures such as partition walls for seating the semiconductor light emitting device may be disposed on the surface of the substrate.
  • the friction between the substrate and the semiconductor light emitting device is excessive. Will increase.
  • the present invention rotates the magnet with respect to the rotation axis in the step of applying a magnetic force to the semiconductor light emitting elements, and transfers the rotation axis along one direction.
  • the rotation axis may be a virtual axis, and in the case of the virtual axis of the rotation axis, transferring the rotation axis means that the position of the virtual rotation axis is changed.
  • the distance between the semiconductor light emitting element in the fluid chamber and the magnet periodically changes. Specifically, when the magnet 163 is rotated, the time between the magnet 163 and the semiconductor light emitting device 1050 increases, and the time between the magnet 163 and the semiconductor light emitting device 1050 approaches. Occurs. For this reason, a constant magnetic force is not applied to the semiconductor light emitting element 1050.
  • the effect of gravity is greater than that of the magnetic force on the semiconductor light emitting device 1050. Accordingly, for a period of time, the semiconductor light emitting device 1050 falls to the fluid floor.
  • the semiconductor light emitting device 1050 is moved toward the substrate 161a for a predetermined time.
  • the semiconductor light emitting element 1050 moves vertically and horizontally with respect to the substrate 161a. Accordingly, the semiconductor light emitting device 1050 moves horizontally with respect to the substrate 161a without being in contact with the substrate 161a for a predetermined period of time.
  • the semiconductor light emitting device 1050 moves horizontally to the substrate 161a without contacting the substrate 161a, friction between the semiconductor light emitting device 1050 and the substrate 161a does not work.
  • the present invention prevents the phenomenon that the movement of the semiconductor light emitting device 1050 is restricted or the substrate 161a and the semiconductor light emitting device 1050 are damaged due to friction between the semiconductor light emitting device 1050 and the substrate 161a. do.
  • the present invention by changing the horizontal distance between the magnet 163 and the semiconductor light emitting device 1050, the influence of the magnetic force and gravity on the semiconductor light emitting device 1050 alternately increases.
  • the rotating shaft should be formed perpendicular to the substrate 161a.
  • the rotating shaft is formed in the center of the magnet or inside the magnet, there is little change in horizontal distance between the magnet 163 and the semiconductor light emitting device 1050 due to rotation. Therefore, it is preferable that the rotating shaft is formed outside the magnet 163.
  • the present invention utilizes a plurality of magnets to shorten the process time.
  • 12 and 13 are conceptual diagrams showing an embodiment of the present invention utilizing a plurality of magnets.
  • a magnetic force of a certain intensity or more must be formed in the entire region of the substrate.
  • the magnetic force need not be simultaneously formed on the entire substrate, and may be formed sequentially from one region of the substrate.
  • the magnet 163 In order to form magnetic forces sequentially from one region of the substrate 161a, the magnet 163 must pass through the entire region of the substrate 161a. While the magnet 163 passes over the substrate 161a, the magnet 163 should be in a state within a certain distance and for a predetermined time with an arbitrary area of the substrate 161a. When manufacturing a large area display device, the area of the substrate 161a becomes very large. If a single magnet passes over the entire area of the substrate with a large area, the process time may be long.
  • the present invention utilizes a plurality of magnets to shorten the self-assembly process time.
  • the time to pass the entire area of the substrate with the four magnets 163a to 163d is shorter than the time to pass the entire area of the substrate with the single magnet 163.
  • the present invention can utilize this point, while rotating a plurality of magnets together, the plurality of magnets can be transported along one direction. Through this, the present invention can shorten the self-assembly process time.
  • a rotation axis for each of the plurality of magnets may be formed. At this time, the distance between the center of each of the plurality of magnets and the rotation axis, and the distance between the plurality of magnets are important.
  • each magnet passes and an area (c2) where a magnetic force of a predetermined intensity or more is formed by each magnet Is formed.
  • the c2 regions for each magnet may overlap each other, and accordingly, a semiconductor light emitting device may be concentrated in an unwanted region.
  • the radius of rotation of the magnet should be 20% or more of the magnet diameter and less than the distance between the magnets. Preferably, the radius of rotation should be equal to the radius of the magnet.
  • the present invention includes a device for rotating a plurality of magnets together.
  • the position control unit 300 for rotating a plurality of magnets together may include a rotating rod 310, an intermediate gear 320, a rotating gear 330, and magnet arrays 360a to 360e.
  • the intermediate gear 320 is fixed to the rotating rod 310 and rotates as the rotating rod 310 rotates.
  • the intermediate gear 320 and the rotating gear 330 are engaged with each other, and as the intermediate gear 320 rotates, the rotating gear 330 also rotates.
  • a separate connecting member 340 may be fixed to the rotating gear 330.
  • the connecting member 340 is connected to the fixed plate 350, and the fixed plate 350 is a magnet array 360a in which a plurality of magnets are fixed.
  • the magnet arrays 360a to 360e may be formed in various shapes depending on the shape of the magnet, the gap between the magnets, and the like. The present invention allows the magnet arrangement to be easily changed by replacing the magnet arrays 360a to 360e.
  • the fixing plate 350 is made of a paramagnetic material such as an iron plate, so that the magnet can be fixed to the fixing plate 350 only with magnetic force.
  • the intermediate gear 320 rotates.
  • the rotating gear 330 meshes with the intermediate gear 320 and rotates together, whereby plate rotation of the magnet arrays 360a to 360e occurs.
  • At least one of the intermediate gear 320 and the rotating gear 330 may be formed with an auxiliary shaft for adjusting the turning radius.
  • the above-described position control unit is only an embodiment of the present invention, and does not limit the structure of the position control unit.
  • the position control unit is not necessarily formed of the structures described in FIGS. 14 to 16.
  • the present invention provides a structure and method for solving the problem that occurs as the substrate is bent during the process of FIGS. 8A to 8E.
  • the area of the substrate increases.
  • a phenomenon in which the middle portion of the substrate sags downward may occur due to the load of the substrate.
  • the distance between the substrate and the magnet varies for each region of the substrate. Specifically, referring to the four right magnets of FIG. 17, when the substrate is bent, the distance between each of the magnets disposed at the edge of the substrate and the magnets disposed at the center of the substrate among the magnets disposed in the magnet array is different from each other.
  • the present invention allows the magnet to be in close contact with the substrate in the step of applying a magnetic force to the semiconductor light emitting elements. Specifically, the present invention allows the substrate to move up and down while the magnet is being rotated and transferred.
  • the magnet moves downward and is in close contact with the substrate.
  • the magnet moves upward and is in close contact with the substrate, and at the same time, prevents excessive frictional force from being formed between the substrate and the magnet.
  • the present invention may further include a magnet connection portion for guiding the vertical movement of the magnet with respect to the substrate.
  • 18 to 20 are cross-sectional views of the magnet connecting portion.
  • the magnet connection part 400 may include a moving member 410 for fixing the magnet and a guide 420 for guiding the vertical movement of the moving member 410.
  • a recess portion in which the moving member 410 can be inserted may be formed in the guide 420.
  • the side wall of the guide 420 guides the movable member 410 to allow vertical movement only.
  • protrusions 411 and 421 may be formed in each of the moving member 410 and the guide 420 so that the moving member 410 does not completely depart from the guide 420.
  • the protrusion 411 formed on the moving member 410 is engaged with the protrusion 421 formed on the guide 420 when the moving member 410 reaches the lower surface of the guide 420.
  • the magnet 163 is fixed to the lower side of the moving member 410.
  • the moving member 410 may be made of a box-based material so that the magnet can be fixed to the moving member 410 only with magnetic force, but is not limited thereto.
  • the present invention can vary the thickness of the projections 411 and 421 formed on each of the movable member 410 and the guide 420. Depending on the thickness of the protrusions 411 and 421, a vertical distance through which the moving member 410 can move may vary.
  • the magnet connection part 400 may not include the above-described moving member.
  • a magnet 163 may be inserted into the recess formed in the guide 420.
  • protrusions 163 ′ and 421 may be formed in each of the magnet 163 and the guide 420 so that the magnet 163 does not completely depart from the guide 420.
  • the protrusion 163 'formed in the magnet 163 is engaged with the protrusion 421 formed in the guide 420 when the magnet 163 reaches the lower surface of the guide 420.
  • the force applied to the substrate may be the same as the sum of the weight of the fixing member and the magnet or the weight of the magnet.
  • the structure described in Figure 18 is a structure in which the magnet is in close contact with the substrate by gravity.
  • the present invention provides a structure that allows the magnet to adhere to the substrate with a stronger force.
  • a magnetic member 440 may be disposed on the recess of the guide 420.
  • the magnetic member 440 pushes the moving member 410 out of the recess.
  • the magnetic force formed by the magnetic member 440 allows the magnet 163 to strongly adhere to the substrate.
  • the magnetic member and the magnet should be arranged so that the same poles face each other.
  • a protrusion 440 may be formed on the inner surface of the guide 420.
  • the protrusion 440 prevents the magnet 163 from moving in a direction other than the vertical direction to the substrate. Through this, the present invention facilitates the vertical movement of the magnet 163 and prevents the bias of the magnet from rotating and moving the magnet.
  • the above-described magnet connecting portion 400 may be fixed to the magnet array described with reference to FIG. 16, or the magnet connecting portion 400 itself may be integrally formed with the magnet array.
  • the magnet connecting portion according to the present invention adheres the magnet to the upper side of the substrate during self-assembly, so that even when the substrate is bent, the distance between the substrate and the magnet is constant.
  • the present invention allows uniform magnetic force to be applied to the entire substrate even when the area of the substrate is large. Accordingly, the self-assembly yield can be improved.
  • the present invention when a magnetic force is applied to the semiconductor light emitting device, so that the assembly surface of the semiconductor light emitting device can maintain a state facing the substrate.
  • the semiconductor light emitting device may include an assembly surface to be coupled to the substrate, an upper surface and side surfaces facing the assembly surface.
  • the width direction of the semiconductor light emitting element is level with the substrate.
  • the width direction of the semiconductor light emitting device is perpendicular to the substrate, that is, when the semiconductor light emitting device is vertically erected on the substrate, it is difficult for the semiconductor light emitting device to be accurately coupled to the designated position of the substrate.
  • the present invention maintains a state in which the width direction of the semiconductor light emitting device is horizontal to the substrate while applying a magnetic force to the semiconductor light emitting device.
  • the N-pole and the S-pole of the magnet may be arranged in a horizontal direction with the substrate so that the magnetic force applied to the semiconductor light emitting elements is in a horizontal direction with the substrate.
  • the direction of the magnetic force on the surface of the substrate becomes a direction parallel to the substrate. Accordingly, the assembling surface of the semiconductor light emitting elements aggregated around the substrate is disposed to face the substrate.
  • the present invention utilizes a plurality of magnets to increase the strength of the magnetic force acting on the semiconductor light emitting device.
  • the magnet according to the present invention is adjacent to the first magnet 163a and the first magnet 163a in which either one of the N-pole and the S-pole is facing the substrate.
  • a second magnet 163b is disposed at a position, and the other one of the N-pole and the S-pole faces the substrate.
  • the present invention prevents the semiconductor light emitting device from being vertically disposed on the substrate by the magnetic force applied to the semiconductor light emitting device, and induces the assembly surface of the semiconductor light emitting device to be accurately combined with the substrate.
  • the present invention it is possible to minimize the frictional force that may occur between the substrate and the semiconductor light emitting device during the transfer of the substrate. Through this, the present invention prevents the semiconductor light emitting device from being damaged during assembly or excessively agglomerating in one position, and further improves the transfer accuracy.
  • the semiconductor light emitting device when a magnetic force is applied to the semiconductor light emitting device, the semiconductor light emitting device is disposed horizontally on the substrate.
  • the present invention allows semiconductor light emitting elements to be accurately seated at a designated position on the substrate.
  • the present invention improves the transfer accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 자성체를 가지는 복수의 반도체 발광소자들을 수용하는 공간을 구비하는 유체 챔버, 기판을 조립위치로 이송하는 이송부, 상기 유체 챔버와 이격 배치되어 상기 반도체 발광소자들에 자기력을 가하는 자석, 상기 자석과 연결되며, 상기 자석의 위치를 제어하도록 형성되는 위치 제어부 및 상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 상기 기판의 기설정된 위치에 안착되도록, 상기 기판은 전기장 형성을 유도하는 전원 공급부를 포함하고, 상기 위치 제어부는 상기 자석을 회전축을 중심으로 회전시키면서, 상기 회전축을 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치를 제공한다.

Description

반도체 발광소자의 자가조립 장치 및 방법
본 발명은 디스플레이 장치의 제조방법에 관한 것으로 특히, 반도체 발광소자의 자가조립 방법 및 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 대면적 디스플레이를 구현하기 위하여, 액정 디스플레이(LCD), 유기 발광 소자(OLED) 디스플레이, 그리고 마이크로 LED 디스플레이 등이 경쟁하고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 백라이트에 의해 생성된 광의 낮은 효율 등의 문제점이 존재하고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 효율이 낮은 취약점이 존재한다.
이에 반해, 디스플레이에 100 마이크론 이하의 직경 또는 단면적을 가지는 반도체 발광소자(마이크로 LED (uLED))를 사용하면 디스플레이가 편광판 등을 사용하여 빛을 흡수하지 않기 때문에 매우 높은 효율을 제공할 수 있다. 그러나 대형 디스플레이에는 수백만 개의 반도체 발광소자들을 필요로 하기 때문에 다른 기술에 비해 소자들을 전사하는 것이 어려운 단점이 있다.
전사공정으로 현재 개발되고 있는 기술은 픽앤플레이스(pick & place), 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 자가조립 등이 있다. 이 중에서, 자가조립 방식은 유체내에서 반도체 발광소자가 스스로 위치를 찾아가는 방식으로서, 대화면의 디스플레이 장치의 구현에 가장 유리한 방식이다.
최근에는 미국등록특허 제9,825,202에서 자가조립에 적합한 마이크로 LED 구조를 제시한 바 있으나, 아직 마이크로 LED의 자가조립을 통하여 디스플레이를 제조하는 기술에 대한 연구가 미비한 실정이다. 이에, 본 발명에서는 마이크로 LED가 자가조립될 수 있는 새로운 형태의 제조방법과 제조장치를 제시한다.
본 발명의 일 목적은 마이크로 크기의 반도체 발광소자를 사용한 대화면 디스플레이에서, 높은 신뢰성을 가지는 새로운 제조공정을 제공하는 것이다.
본 발명의 또 다른 일 목적은 반도체 발광소자를 임시기판 또는 배선기판으로 자가조립할 때에, 전사 정밀도를 향상시킬 수 있는 제조공정을 제공하기 위한 것이다.
본 발명은 자성체를 가지는 복수의 반도체 발광소자들을 수용하는 공간을 구비하는 유체 챔버, 기판을 조립위치로 이송하는 이송부, 상기 유체 챔버와 이격 배치되어 상기 반도체 발광소자들에 자기력을 가하는 자석, 상기 자석과 연결되며, 상기 자석의 위치를 제어하도록 형성되는 위치 제어부 및 상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 상기 기판의 기설정된 위치에 안착되도록, 상기 기판은 전기장 형성을 유도하는 전원 공급부를 포함하고, 상기 위치 제어부는 상기 자석을 회전축을 중심으로 회전시키면서, 상기 회전축을 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치를 제공한다.
실시 예에 있어서, 상기 회전축은 상기 기판에 대하여 수직하고, 상기 자석 외부에 형성될 수 있다.
실시 예에 있어서, 상기 자석은 복수개이고, 상기 위치 제어부는 상기 복수의 자석을 함께 회전시키면서, 상기 일방향을 따라 이송시킬 수 있다.
실시 예에 있어서, 상기 위치 제어부는 복수의 자석이 고정되는 자석 어레이를 구비하고, 상기 자석 어레이를 회전시키면서, 상기 일방향을 따라 이송시킬 수 있다.
실시 예에 있어서, 상기 반도체 발광소자들에 가해지는 자기력이 상기 기판과 수평한 방향으로 형성되도록, 상기 자석의 N극 및 S극은 상기 기판과 수평한 방향으로 배치될 수 있다.
실시 예에 있어서, 상기 자석은 N극 및 S극 중 어느 하나가 상기 기판을 향하도록 배치되는 제1자석 및 상기 제1자석과 인접한 위치에 배치되고, 상기 N극 및 S극 중 다른 하나가 상기 기판을 향하도록 배치되는 제2자석을 구비할 수 있다.
실시 예에 있어서, 본 발명은 상기 자석과 상기 위치 제어부를 연결하고, 상기 기판에 대한 상기 자석의 상하 이동을 가이드하는 자석 연결부를 더 포함할 수 있다.
실시 예에 있어서, 상기 조립위치에서 기판의 적어도 일부는 곡면으로 이루어지고, 상기 자석 연결부는 상기 자석이 회전하면서 상기 일방향을 따라 이송되는 동안, 상기 자석이 상기 기판에 밀착되도록, 상기 자석의 상하 이동을 유도할 수 있다.
실시 예에 있어서, 상기 자석 연결부는 상기 자석에 탄성력을 가하는 탄성 부재 상기 자석에 자기력을 가하는 자성 부재 중 적어도 하나를 구비할 수 있다.
또한, 본 발명은 기판을 조립위치로 이송하고, 반도체 발광소자들을 유체 챔버에 투입하는 단계, 상기 유체 챔버 내에서 상기 반도체 발광소자들이 일방향을 따라 이동하도록, 상기 반도체 발광소자들에 자기력을 가하는 단계 및 상기 반도체 발광소자들이 이동하는 과정에서 상기 기판의 기설정된 위치에 안착되도록, 전기장을 가하여 상기 반도체 발광소자들을 상기 기설정된 위치로 유도하는 단계를 포함하고, 상기 반도체 발광소자들에 자기력을 가하는 단계는 자석을 회전축을 중심으로 회전시키면서, 상기 회전축을 상기 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 방법을 제공한다.
실시 예에 있어서, 상기 회전축은 상기 기판과 수직하게 형성되고, 상기 자석 외부에 형성될 수 있다.
실시 예에 있어서, 상기 자석은 복수개로 이루어지고, 상기 복수의 자석들은 함께 회전하며, 상기 일방향을 따라 이송될 수 있다.
실시 예에 있어서, 상기 반도체 발광소자들에 가해지는 자기력이 상기 기판과 수평한 방향으로 형성되도록, 상기 자석의 N극 및 S극은 상기 기판과 수평한 방향으로 배치될 수 있다.
실시 예에 있어서, 상기 자석은 N극 및 S극 중 어느 하나가 상기 기판을 향하도록 배치되는 제1자석 및 상기 제1자석과 인접한 위치에 배치되고, 상기 N극 및 S극 중 다른 하나가 상기 기판을 향하도록 배치되는 제2자석을 구비할 수 있다.
실시 예에 있어서, 상기 반도체 발광소자들에 자기력을 가하는 단계는, 상기 자석이 상기 기판에 밀착되도록, 상기 기판에 대하여 상기 자석을 상하이동 시키는 단계를 포함할 수 있다.
상기와 같은 구성의 본 발명에 의하면, 개별화소를 마이크로 발광 다이오드로 형성하는 디스플레이 장치에서, 다량의 반도체 발광소자를 한번에 조립할 수 있다.
이와 같이, 본 발명에 따르면 작은 크기의 웨이퍼 상에서 반도체 발광소자를 다량으로 화소화시킨 후 대면적 기판으로 전사시키는 것이 가능하게 된다. 이를 통하여, 저렴한 비용으로 대면적의 디스플레이 장치를 제작하는 것이 가능하게 된다.
또한, 본 발명에 따르면, 기판을 전사하는 도중 기판과 반도체 발광소자 간에 발생될 수 있는 마찰력을 최소화할 수 있다. 이를 통해, 본 발명은 반도체 발광소자가 조립 도중 파손되거나, 한 위치에 과도하게 응집되는 현상을 방지하며, 나아가 전사 정확도를 향상시킨다.
또한, 본 발명에 따르면, 반도체 발광소자에 자기력이 인가되었을 때, 반도체 발광소자가 기판에 수평하게 배치되도록 한다. 이를 통해, 본 발명은 반도체 발광소자들이 기판의 지정된 위치에 정확하게 안착되도록 한다.
또한, 본 발명에 따르면, 면적이 큰 기판이 전사도중 휘어지더라도, 반도체 발광소자와 자석들간의 간격을 일정하게 유지할 수 있게 되며, 이에 따라, 반도체 발광소자에 가해지는 자기력이 균일해진다. 이를 통해, 본 발명은 전사 정확도를 향상시킨다
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 디스플레이 장치의 A 부분의 부분 확대도이다.
도 3은 도 2의 반도체 발광소자의 확대도이다.
도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도 5a 내지 도 5e는 전술한 반도체 발광 소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이다.
도 7은 도 6의 자가조립 장치의 블록 다이어그램이다.
도 8a 내지 도 8e는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립하는 공정을 나타내는 개념도이다.
도 9는 도 8a 내지 도 8e의 반도체 발광소자를 설명하기 위한 개념도이다.
도 10은 자석을 직선으로 이동시킬 때, 반도체 발광소자의 움직임을 나타내는 개념도이다.
도 11은 본 발명에 따른 자가 조립 방법을 나타내는 개념도이다.
도 12 및 13은 복수의 자석을 활용하는 본 발명의 일 실시 예를 나타내는 개념도이다.
도 14 내지 16은 자석 위치 제어부의 구조를 나타내는 개념도이다.
도 17은 기판이 휘어진 상태에서 자석과 기판 간의 거리 변화를 나타내는 개념도이다.
도 18 내지 20은 자석 연결부의 단면도이다.
도 21 및 22는 반도체 발광소자의 자가 조립 시 자기력의 방향을 조절하는 일 실시 예를 나타내는 개념도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 디지털 사이니지, 헤드 마운팅 디스플레이(HMD), 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이고, 도 2는 도 1의 디스플레이 장치의 A 부분의 부분 확대도이고, 도 3은 도 2의 반도체 발광소자의 확대도이며, 도 4는 도 2의 반도체 발광소자의 다른 실시예를 나타내는 확대도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 디스플레이 모듈(140)에서 출력될 수 있다. 상기 디스플레이 모듈의 테두리를 감싸는 폐루프 형태의 케이스(101)가 상기 디스플레이 장치의 베젤을 형성할 수 있다.
상기 디스플레이 모듈(140)은 영상이 표시되는 패널(141)을 구비하고, 상기 패널(141)은 마이크로 크기의 반도체 발광소자(150)와 상기 반도체 발광소자(150)가 장착되는 배선기판(110)을 구비할 수 있다.
상기 배선기판(110)에는 배선이 형성되어, 상기 반도체 발광소자(150)의 n형 전극(152) 및 p형 전극(156)과 연결될 수 있다. 이를 통하여, 상기 반도체 발광소자(150)는 자발광하는 개별화소로서 상기 배선기판(110) 상에 구비될 수 있다.
상기 패널(141)에 표시되는 영상은 시각 정보로서, 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 상기 배선을 통하여 독자적으로 제어됨에 의하여 구현된다.
본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자(150)의 일 종류로서 마이크로 LED(Light Emitting Diode)를 예시한다. 상기 마이크로 LED는 100마이크로 이하의 작은 크기로 형성되는 발광 다이오드가 될 수 있다. 상기 반도체 발광소자(150)는 청색, 적색 및 녹색이 발광영역에 각각 구비되어 이들의 조합에 의하여 단위 화소가 구현될 수 있다. 즉, 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미하며, 상기 단위 화소 내에 적어도 3개의 마이크로 LED가 구비될 수 있다.
보다 구체적으로, 도 3을 참조하면, 상기 반도체 발광 소자(150)는 수직형 구조가 될 수 있다.
예를 들어, 상기 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이러한 수직형 반도체 발광 소자는 p형 전극(156), p형 전극(156) 상에 형성된 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154)상에 형성된 n형 반도체층(153), 및 n형 반도체층(153) 상에 형성된 n형 전극(152)을 포함한다. 이 경우, 하부에 위치한 p형 전극(156)은 배선기판의 p전극과 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(152)은 반도체 발광소자의 상측에서 n전극과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(150)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다른 예로서 도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
이러한 예로서, 상기 반도체 발광 소자(250)는 p형 전극(256), p형 전극(256)이 형성되는 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254) 상에 형성된 n형 반도체층(253), 및 n형 반도체층(253) 상에서 p형 전극(256)과 수평방향으로 이격 배치되는 n형 전극(252)을 포함한다. 이 경우, p형 전극(256)과 n형 전극(152)은 모두 반도체 발광소자의 하부에서 배선기판의 p전극 및 n전극과 전기적으로 연결될 수 있다.
상기 수직형 반도체 발광소자와 수평형 반도체 발광소자는 각각 녹색 반도체 발광소자, 청색 반도체 발광소자 또는 적색 반도체 발광소자가 될 수 있다. 녹색 반도체 발광소자와 청색 반도체 발광소자의 경우에 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 녹색이나 청색의 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다. 이러한 예로서, 상기 반도체 발광소자는 n-Gan, p-Gan, AlGaN, InGan 등 다양한 계층으로 형성되는 질화갈륨 박막이 될 수 있으며, 구체적으로 상기 p형 반도체층은 P-type GaN 이고, 상기 n형 반도체층은 N-type GaN 이 될 수 있다. 다만, 적색 반도체 발광소자의 경우에는, 상기 p형 반도체층은 P-type GaAs 이고, 상기 n형 반도체층은 N-type GaAs 가 될 수 있다.
또한, 상기 p형 반도체층은 p 전극 쪽은 Mg가 도핑된 P-type GaN 이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다. 이 경우에, 전술한 반도체 발광소자들은 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 도 1 내지 도 4를 참조하면, 상기 발광 다이오드가 매우 작기 때문에 상기 디스플레이 패널은 자발광하는 단위화소가 고정세로 배열될 수 있으며, 이를 통하여 고화질의 디스플레이 장치가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에서는 웨이퍼 상에서 성장되어, 메사 및 아이솔레이션을 통하여 형성된 반도체 발광소자가 개별 화소로 이용된다. 이 경우에, 마이크로 크기의 반도체 발광소자(150)는 웨이퍼에 상기 디스플레이 패널의 기판 상의 기설정된 위치로 전사되어야 한다. 이러한 전사기술로 픽앤플레이스(pick and place)가 있으나, 성공률이 낮고 매우 많은 시간이 요구된다. 다른 예로서, 스탬프나 롤을 이용하여 한 번에 여러개의 소자를 전사하는 기술이 있으나, 수율에 한계가 있어 대화면의 디스플레이에는 적합하지 않다. 본 발명에서는 이러한 문제를 해결할 수 있는 디스플레이 장치의 새로운 제조방법 및 제조장치를 제시한다.
이를 위하여, 이하, 먼저 디스플레이 장치의 새로운 제조방법에 대하여 살펴본다. 도 5a 내지 도 5e는 전술한 반도체 발광 소자를 제작하는 새로운 공정을 설명하기 위한 개념도들이다.
본 명세서에서는, 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다. 또한, 수평형 반도체 발광소자를 자가조립하는 방식에 대하여 예시하나, 이는 수직형 반도체 발광소자를 자가조립하는 방식에도 적용가능하다.
먼저, 제조방법에 의하면, 성장기판(159)에 제1도전형 반도체층(153), 활성층(154), 제2 도전형 반도체층(155)을 각각 성장시킨다(도 5a).
제1도전형 반도체층(153)이 성장하면, 다음은, 상기 제1도전형 반도체층(153) 상에 활성층(154)을 성장시키고, 다음으로 상기 활성층(154) 상에 제2도전형 반도체층(155)을 성장시킨다. 이와 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)을 순차적으로 성장시키면, 도 5a에 도시된 것과 같이, 제1도전형 반도체층(153), 활성층(154) 및 제2도전형 반도체층(155)이 적층 구조를 형성한다.
이 경우에, 상기 제1도전형 반도체층(153)은 p형 반도체층이 될 수 있으며, 상기 제2도전형 반도체층(155)은 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
또한, 본 실시예에서는 상기 활성층이 존재하는 경우를 예시하나, 전술한 바와 같이 경우에 따라 상기 활성층이 없는 구조도 가능하다. 이러한 예로서, 상기 p형 반도체층은 Mg가 도핑된 P-type GaN 이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다.
성장기판(159)(웨이퍼)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있으나, 이에 한정하지는 않는다. 또한, 성장기판(1059)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
다음으로, 제1도전형 반도체층(153), 활성층(154) 및 제2 도전형 반도체층(155)의 적어도 일부를 제거하여 복수의 반도체 발광소자를 형성한다(도 5b).
보다 구체적으로, 복수의 발광소자들이 발광 소자 어레이를 형성하도록, 아이솔레이션(isolation)을 수행한다. 즉, 제1도전형 반도체층(153), 활성층(154) 및 제2 도전형 반도체층(155)을 수직방향으로 식각하여 복수의 반도체 발광소자를 형성한다.
만약, 수평형 반도체 발광소자를 형성하는 경우라면, 상기 활성층(154) 및 제2 도전형 반도체층(155)은 수직방향으로 일부가 제거되어, 상기 제1도전형 반도체층(153)이 외부로 노출되는 메사 공정과, 이후에 제1도전형 반도체층을 식각하여 복수의 반도체 발광소자 어레이를 형성하는 아이솔레이션(isolation)이 수행될 수 있다.
다음으로, 상기 제2도전형 반도체층(155)의 일면 상에 제2도전형 전극(156, 또는 p형 전극)를 각각 형성한다(도 5c). 상기 제2도전형 전극(156)은 스퍼터링 등의 증착 방법으로 형성될 수 있으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 다만, 상기 제1도전형 반도체층과 제2도전형 반도체층이 각각 n형 반도체층과 p형 반도체층인 경우에는, 상기 제2도전형 전극(156)은 n형 전극이 되는 것도 가능하다.
그 다음에, 상기 성장기판(159)을 제거하여 복수의 반도체 발광소자를 구비한다. 예를 들어, 성장기판(1059)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다(도 5d).
이후에, 유체가 채워진 챔버에서 반도체 발광소자들(150)이 기판에 안착되는 단계가 진행된다(도 5e).
예를 들어, 유체가 채워진 챔버 속에 상기 반도체 발광소자들(150) 및 기판을 넣고 유동, 중력, 표면 장력 등을 이용하여 상기 반도체 발광소자들이 상기 기판(1061)에 스스로 조립되도록 한다. 이 경우에, 상기 기판은 조립기판(161)이 될 수 있다.
다른 예로서, 상기 조립기판(161) 대신에 배선기판을 유체 챔버내에 넣어, 상기 반도체 발광소자들(150)이 배선기판에 바로 안착되는 것도 가능하다. 이 경우에, 상기 기판은 배선기판이 될 수 있다. 다만, 설명의 편의상, 본 발명에서는 기판이 조립기판(161)으로서 구비되어 반도체 발광소자들(1050)이 안착되는 것을 예시한다.
반도체 발광소자들(150)이 조립기판(161)에 안착하는 것이 용이하도록, 상기 조립기판(161)에는 상기 반도체 발광소자들(150)이 끼워지는 셀들(미도시)이 구비될 수 있다. 구체적으로, 상기 조립기판(161)에는 상기 반도체 발광소자들(150)이 배선전극에 얼라인되는 위치에 상기 반도체 발광소자들(150)이 안착되는 셀들이 형성된다. 상기 반도체 발광소자들(150)은 상기 유체 내에서 이동하다가, 상기 셀들에 조립된다.
상기 조립기판(161)에 복수의 반도체 발광소자들이 어레이된 후에, 상기 조립기판(161)의 반도체 발광소자들을 배선기판으로 전사하면, 대면적의 전사가 가능하게 된다. 따라서, 상기 조립기판(161)은 임시기판으로 지칭될 수 있다.
한편, 상기에서 설명된 자가조립 방법은 대화면 디스플레이의 제조에 적용하려면, 전사수율을 높여야만 한다. 본 발명에서는 전사수율을 높이기 위하여, 중력이나 마찰력의 영향을 최소화하고, 비특이적 결합을 막는 방법과 장치를 제안한다.
이 경우, 본 발명에 따른 디스플레이 장치는, 반도체 발광소자에 자성체를 배치시켜 자기력을 이용하여 반도체 발광소자를 이동시키고, 이동과정에서 전기장을 이용하여 상기 반도체 발광소자를 기설정된 위치에 안착시킨다. 이하에서는, 이러한 전사 방법과 장치에 대하여 첨부된 도면과 함께 보다 구체적으로 살펴본다.
도 6은 본 발명에 따른 반도체 발광소자의 자가조립 장치의 일 예를 나타내는 개념도이고, 도 7은 도 6의 자가조립 장치의 블록 다이어그램이다. 또한, 도 8a 내지 도 8d는 도 6의 자가조립 장치를 이용하여 반도체 발광소자를 자가조립하는 공정을 나타내는 개념도이며, 도 9는 도 8a 내지 도 8d의 반도체 발광소자를 설명하기 위한 개념도이다.
도 6 및 도 7의 도시에 의하면, 본 발명의 자가조립 장치(160)는 유체 챔버(162), 자석(163) 및 위치 제어부(164)를 포함할 수 있다.
상기 유체 챔버(162)는 복수의 반도체 발광소자들을 수용하는 공간을 구비한다. 상기 공간에는 유체가 채워질 수 있으며, 상기 유체는 조립용액으로서 물 등을 포함할 수 있다. 따라서, 상기 유체 챔버(162)는 수조가 될 수 있으며, 오픈형으로 구성될 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니며, 상기 유체 챔버(162)는 상기 공간이 닫힌 공간으로 이루어지는 클로즈형이 될 수 있다.
상기 유체 챔버(162)에는 기판(161)이 상기 반도체 발광소자들(150)이 조립되는 조립면이 아래를 향하도록 배치될 수 있다. 예를 들어, 상기 기판(161)은 이송부에 의하여 조립위치로 이송되며, 상기 이송부는 기판이 장착되는 스테이지(165)를 구비할 수 있다. 상기 스테이지(165)가 제어부에 의하여 위치조절되며, 이를 통하여 상기 기판(161)은 상기 조립위치로 이송될 수 있다.
이 때에, 상기 조립위치에서 상기 기판(161)의 조립면이 상기 유체 챔버(150)의 바닥을 향하게 된다. 도시에 의하면, 상기 기판(161)의 조립면은 상기 유체 챔버(162)내의 유체에 잠기도록 배치된다. 따라서, 상기 반도체 발광소자(150)는 상기 유체내에서 상기 조립면으로 이동하게 된다.
상기 기판(161)은 전기장 형성이 가능한 조립기판으로서, 베이스부(161a), 유전체층(161b) 및 복수의 전극들(161c)을 포함할 수 있다.
상기 베이스부(161a)는 절연성 있는 재질로 이루어지며, 상기 복수의 전극들(161c)은 상기 베이스부(161a)의 일면에 패턴된 박막 또는 후막 bi-planar 전극이 될 수 있다. 상기 전극(161c)은 예를 들어, Ti/Cu/Ti 의 적층, Ag 페이스트 및 ITO 등으로 형성될 수 있다.
상기 유전체층(161b)은, SiO2, SiNx, SiON, Al2O3, TiO2, HfO2 등의 무기 물질로 이루어질 있다. 이와 다르게, 유전체층(161b)은, 유기 절연체로서 단일층이거나 멀티층으로 구성될 수 있다. 유전체층(161b)의 두께는, 수십 nm~수μm의 두께로 이루어질 수 있다.
나아가, 본 발명에 따른 기판(161)은 격벽에 의하여 구획되는 복수의 셀들(161d)을 포함한다. 셀들(161d)은, 일방향을 따라 순차적으로 배치되며, 폴리머(polymer) 재질로 이루어질 수 있다. 또한, 셀들(161d)을 이루는 격벽(161e)은, 이웃하는 셀들(161d)과 공유되도록 이루어진다. 상기 격벽(161e)은 상기 베이스부(161a)에서 돌출되며, 상기 격벽(161e)에 의하여 상기 셀들(161d)이 일방향을 따라 순차적으로 배치될 수 있다. 보다 구체적으로, 상기 셀들(161d)은 열과 행 방향으로 각각 순차적으로 배치되며, 매트릭스 구조를 가질 수 있다.
셀들(161d)의 내부는, 도시와 같이, 반도체 발광소자(150)를 수용하는 홈을 구비하며, 상기 홈은 상기 격벽(161e)에 의하여 한정되는 공간이 될 수 있다. 상기 홈의 형상은 반도체 발광소자의 형상과 동일 또는 유사할 수 있다. 예를 들어, 반도체 발광소자가 사각형상인 경우, 홈은 사각형상일 수 있다. 또한, 비록 도시되지는 않았지만, 반도체 발광소자가 원형인 경우, 셀들 내부에 형성된 홈은, 원형으로 이루어질 수 있다. 나아가, 셀들 각각은, 단일의 반도체 발광소자를 수용하도록 이루어진다. 즉, 하나의 셀에는, 하나의 반도체 발광소자가 수용된다.
한편, 복수의 전극들(161c)은 각각의 셀들(161d)의 바닥에 배치되는 복수의 전극라인을 구비하며, 상기 복수의 전극라인은 이웃한 셀로 연장되도록 이루어질 수 있다.
상기 복수의 전극들(161c)은 상기 셀들(161d)의 하측에 배치되며, 서로 다른 극성이 각각 인가되어 상기 셀들(161d) 내에 전기장을 생성한다. 상기 전기장 형성을 위하여, 상기 복수의 전극들(161c)을 상기 유전체층이 덮으면서, 상기 유전체층이 상기 셀들(161d)의 바닥을 형성할 수 있다. 이런 구조에서, 각 셀들(161d)의 하측에서 한 쌍의 전극(161c)에 서로 다른 극성이 인가되면 전기장이 형성되고, 상기 전기장에 의하여 상기 셀들(161d) 내부로 상기 반도체 발광소자가 삽입될 수 있다.
상기 조립위치에서 상기 기판(161)의 전극들은 전원공급부(171)와 전기적으로 연결된다. 상기 전원공급부(171)는 상기 복수의 전극에 전원을 인가하여 상기 전기장을 생성하는 기능을 수행한다.
도시에 의하면, 상기 자가조립 장치는 상기 반도체 발광소자들에 자기력을 가하기 위한 자석(163)을 구비할 수 있다. 상기 자석(163)은 상기 유체 챔버(162)와 이격 배치되어 상기 반도체 발광소자들(150)에 자기력을 가하도록 이루어진다. 상기 자석(163)은 상기 기판(161)의 조립면의 반대면을 마주보도록 배치될 수 있으며, 상기 자석(163)과 연결되는 위치 제어부(164)에 의하여 상기 자석의 위치가 제어된다.
상기 자석(163)의 자기장에 의하여 상기 유체내에서 이동하도록, 상기 반도체 발광소자(1050)는 자성체를 구비할 수 있다.
도 9를 참조하면, 자성체를 구비하는 반도체 발광 소자는 제1도전형 전극(1052) 및 제2도전형 전극(1056), 상기 제1도전형 전극(1052)이 배치되는 제1도전형 반도체층(1053), 상기 제1도전형 반도체층(1052)과 오버랩되며, 상기 제2도전형 전극(1056)이 배치되는 제2도전형 반도체층(1055), 그리고 상기 제1 및 제2도전형 반도체층(1053, 1055) 사이에 배치되는 활성층(1054)을 포함할 수 있다.
여기에서, 제1도전형은 p형이고, 제2도전형은 n형으로 구성될 수 있으며, 그 반대로도 구성될 수 있다. 또한, 전술한 바와 같이 상기 활성층이 없는 반도체 발광소자가 될 수 있다.
한편, 본 발명에서, 상기 제1도전형 전극(1052)은 반도체 발광소자의 자가조립 등에 의하여, 반도체 발광소자가 배선기판에 조립된 이후에 생성될 수 있다. 또한, 본 발명에서, 상기 제2도전형 전극(1056)은 상기 자성체를 포함할 수 있다. 자성체는 자성을 띄는 금속을 의미할 수 있다. 상기 자성체는 Ni, SmCo 등이 될 수 있으며, 다른 예로서 Gd 계, La계 및 Mn계 중 적어도 하나에 대응되는 물질을 포함할 수 있다.
자성체는 입자 형태로 상기 제2도전형 전극(1056)에 구비될 수 있다. 또한, 이와 다르게, 자성체를 포함한 도전형 전극은, 도전형 전극의 일 레이어가 자성체로 이루어질 수 있다. 이러한 예로서, 도 9에 도시된 것과 같이, 반도체 발광소자(1050)의 제2도전형 전극(1056)은, 제1층(1056a) 및 제2층(1056b)을 포함할 수 있다. 여기에서, 제1층(1056a)은 자성체를 포함하도록 이루어질 수 있고, 제2층(1056b)은 자성체가 아닌 금속소재를 포함할 수 있다.
도시와 같이, 본 예시에서는 자성체를 포함하는 제1층(1056a)이, 제2도전형 반도체층(1055)과 맞닿도록 배치될 수 있다. 이 경우, 제1층(1056a)은, 제2층(1056b)과 제2도전형 반도체층(1055) 사이에 배치된다. 상기 제2층(1056b)은 배선기판의 제2전극과 연결되는 컨택 메탈이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 자성체는 상기 제1도전형 반도체층의 일면에 배치될 수 있다.
다시 도 6 및 도 7을 참조하면, 보다 구체적으로, 상기 자가조립 장치는 상기 유체 챔버의 상부에 x,y,z 축으로 자동 또는 수동으로 움직일 수 있는 자석 핸들러를 구비하거나, 상기 자석(163)을 회전시킬 수 있는 모터를 구비할 수 있다. 상기 자석 핸들러 및 모터는 상기 위치 제어부(164)를 구성할 수 있다. 이를 통하여, 상기 자석(163)은 상기 기판(161)과 수평한 방향, 시계방향 또는 반시계방향으로 회전하게 된다.
한편, 상기 유체 챔버(162)에는 광투과성의 바닥판(166)이 형성되고, 상기 반도체 발광소자들은 상기 바닥판(166)과 상기 기판(161)의 사이에 배치될 수 있다. 상기 바닥판(166)을 통하여 상기 유체 챔버(162)의 내부를 모니터링하도록, 이미지 센서(167)가 상기 바닥판(166)을 바라보도록 배치될 수 있다. 상기 이미지 센서(167)는 제어부(172)에 의하여 제어되며, 기판(161)의 조립면을 관찰할 수 있도록 inverted type 렌즈 및 CCD 등을 구비할 수 있다.
상기에서 설명한 자가조립 장치는 자기장과 전기장을 조합하여 이용하도록 이루어지며, 이를 이용하면, 상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 전기장에 의하여 상기 기판의 기설정된 위치에 안착될 수 있다. 이하, 상기에서 설명한 자기조립 장치를 이용한 조립과정에 대하여 보다 상세히 설명한다.
먼저, 도 5a 내지 도 5c에서 설명한 과정을 통하여 자성체를 구비하는 복수의 반도체 발광소자들(1050)을 형성한다. 이 경우에, 도 5c의 제2도전형 전극을 형성하는 과정에서, 자성체를 상기 반도체 발광소자에 증착할 수 있다.
다음으로, 기판(161)을 조립위치로 이송하고, 상기 반도체 발광소자들(1050)을 유체 챔버(162)에 투입한다(도 8a).
전술한 바와 같이, 상기 기판(161)의 조립위치는 상기 기판(161)의 상기 반도체 발광소자들(1050)이 조립되는 조립면이 아래를 향하도록 상기 유체 챔버(162)에 배치되는 위치가 될 수 있다.
이 경우에, 상기 반도체 발광소자들(1050) 중 일부는 유체 챔버(162)의 바닥에 가라앉고 일부는 유체 내에 부유할 수 있다. 상기 유체 챔버(162)에 광투과성의 바닥판(166)이 구비되는 경우에, 상기 반도체 발광소자들(1050) 중 일부는 바닥판(166)에 가라앉을 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 수직방향으로 떠오르도록 상기 반도체 발광소자들(1050)에 자기력을 가한다(도 8b).
상기 자가조립 장치의 자석(163)이 원위치에서 상기 기판(161)의 조립면의 반대면으로 이동하면, 상기 반도체 발광소자들(1050)은 상기 기판(161)을 향하여 상기 유체 내에서 떠오르게 된다. 상기 원위치는 상기 유체 챔버(162)로부터 벗어난 위치가 될 수 있다. 다른 예로서, 상기 자석(163)이 전자석으로 구성될 수 있다. 이 경우에는 전자석에 전기를 공급하여 초기 자기력을 생성하게 된다.
한편, 본 예시에서, 상기 자기력의 크기를 조절하면 상기 기판(161)의 조립면과 상기 반도체 발광소자들(1050)의 이격거리가 제어될 수 있다. 예를 들어, 상기 반도체 발광소자들(1050)의 무게, 부력 및 자기력을 이용하여 상기 이격거리를 제어한다. 상기 이격거리는 상기 기판의 최외각으로부터 수 밀리미터 내지 수십 마이크로미터가 될 수 있다.
다음으로, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 일방향을 따라 이동하도록, 상기 반도체 발광소자들(1050)에 자기력을 가한다. 예를 들어, 상기 자석(163)을 상기 기판과 수평한 방향, 시계방향 또는 반시계방향으로 이동한다(도 8c). 이 경우에, 상기 반도체 발광소자들(1050)은 상기 자기력에 의하여 상기 기판(161)과 이격된 위치에서 상기 기판(161)과 수평한 방향으로 따라 이동하게 된다.
다음으로, 상기 반도체 발광소자들(1050)이 이동하는 과정에서 상기 기판(161)의 기설정된 위치에 안착되도록, 전기장을 가하여 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도하는 단계가 진행된다(도 8c). 예를 들어, 상기 반도체 발광소자들(1050)이 상기 기판(161)과 수평한 방향으로 따라 이동하는 도중에 상기 전기장에 의하여 상기 기판(161)과 수직한 방향으로 이동하여 상기 기판(161)의 기설정된 위치에 안착된다.
보다 구체적으로, 기판(161)의 bi-planar 전극에 전원을 공급하여 전기장을 생성하고, 이를 이용하여 기설정된 위치에서만 조립이 되도록 유도한게 된다. 즉 선택적으로 생성한 전기장을 이용하여, 반도체 발광소자들(1050)이 상기 기판(161)의 조립위치에 스스로 조립되도록 한다. 이를 위하여, 상기 기판(161)에는 상기 반도체 발광소자들(1050)이 끼워지는 셀들이 구비될 수 있다.
이후에, 상기 기판(161)의 언로딩 과정이 진행되며, 조립 공정이 완료된다. 상기 기판(161)이 조립기판인 경우에, 전술한 바와 같이 어레인된 반도체 발광소자들을 배선기판으로 전사하여 디스플레이 장치를 구현하기 위한 후공정이 진행될 수 있다.
한편, 상기 반도체 발광소자들(1050)을 상기 기설정된 위치로 유도한 후에, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지도록 상기 자석(163)을 상기 기판(161)과 멀어지는 방향으로 이동시킬 수 있다(도 8d). 다른 예로서, 상기 자석(163)이 전자석인 경우에 전원공급을 중단하면, 상기 유체 챔버(162) 내에 남아있는 반도체 발광소자들(1050)이 상기 유체 챔버(162)의 바닥으로 떨어지게 된다.
이후에, 상기 유체 챔버(162)의 바닥에 있는 반도체 발광소자들(1050)을 회수하면, 상기 회수된 반도체 발광소자들(1050)의 재사용이 가능하게 된다.
상기에서 설명된 자가조립 장치 및 방법은 fluidic assembly에서 조립 수율을 높이기 위해 자기장을 이용하여 먼거리의 부품들을 미리 정해진 조립 사이트 근처에 집중시키고, 조립 사이트에 별도 전기장을 인가하여 조립 사이트에만 선택적으로 부품이 조립되도록 한다. 이때 조립기판을 수조 상부에 위치시키고 조립면이 아래로 향하도록 하여 부품의 무게에 의한 중력 영향을 최소화하면서 비특이적 결합을 막아 불량을 제거한다. 즉, 전사수율을 높이기 위해 조립 기판을 상부에 위치시켜 중력이나 마찰력 영향을 최소화하며, 비특이적 결합을 막는다.
이상에서 살펴본 것과 같이, 상기와 같은 구성의 본 발명에 의하면, 개별화소를 반도체 발광소자로 형성하는 디스플레이 장치에서, 다량의 반도체 발광소자를 한번에 조립할 수 있다.
이와 같이, 본 발명에 따르면 작은 크기의 웨이퍼 상에서 반도체 발광소자를 다량으로 화소화시킨 후 대면적 기판으로 전사시키는 것이 가능하게 된다. 이를 통하여, 저렴한 비용으로 대면적의 디스플레이 장치를 제작하는 것이 가능하게 된다.
한편, 본 발명은 도 8a 내지 도 8e에서 설명한 자가 조립 공정의 정확도를 향상시키기 위한 장치 및 방법을 제공한다.
도 10은 자석을 직선으로 이동시킬 때, 반도체 발광소자의 움직임을 나타내는 개념도이고, 도 11은 본 발명에 따른 자가 조립 방법을 나타내는 개념도이다.
도 8c에서 설명한 바와 같이, 상기 유체 챔버(162) 내에서 상기 반도체 발광소자들(1050)이 일방향을 따라 이동하도록, 상기 반도체 발광소자들(1050)에 자기력을 가하는 단계가 진행된다.
이때에, 도 10과 같이, 자석을 일방향을 따라 직선으로 이송시킴으로써, 반도체 발광소자들이 상기 자석을 따라 직선으로 이동하도록 할 수 있다. 이 경우, 반도체 발광소자에 작용하는 자기력은 기판을 비스듬하게 향하는 방향으로 형성된다.
상기 기판의 표면에는 반도체 발광소자를 안착시키기 위한 격벽 등 다양한 구조물이 배치될 수 있는데, 반도체 발광소자에 작용하는 자기력이 기판을 비스듬하게 향하는 방향으로 형성될 경우, 기판과 반도체 발광소자간의 마찰력이 과도하게 증가하게 된다.
상기 마찰력으로 인하여, 유체내에서 반도체 발광소자들이 움직임이 제한되며, 나아가 반도체 발광소자 및 기판 표면이 파손될 수 있다. 또한, 상기 마찰력으로 인하여, 반도체 발광소자들이 상기 자석을 쉽게 따라올 수 없게되어 전사시간이 증가하는 문제도 발생된다.
도 11을 참조하면, 본 발명은 상술한 문제를 해결하기 위해, 상기 반도체 발광소자들에 자기력을 가하는 단계에서 상기 자석을 회전축에 대하여 회전시키고, 상기 회전축을 일방향을 따라 이송시킨다.
여기서, 상기 회전축은 가상의 축일 수 있으며, 상기 회전축의 가상의 축인 경우, 상기 회전축을 이송시킨다는 것은 상기 가상의 회전축의 위치가 변하도록 하는 것을 의미한다.
상기 자석(163)을 회전시킬 경우, 유체 챔버내의 반도체 발광소자와 자석 간의 거리가 주기적으로 변화한다. 구체적으로, 자석(163)을 회전시킬 경우, 자석(163)과 반도체 발광소자(1050)의 거리가 멀어지는 시간이 발생하고, 자석(163)과 반도체 발광소자(1050)의 거리가 가까워지는 시간이 발생한다. 이 때문에, 반도체 발광소자(1050)에 일정한 자기력이 가해지지 않게 된다.
자석(163)과 반도체 발광소자(1050) 간 거리가 멀어지는 시간에는 반도체 발광소자(1050)에 대한 자기력의 영향보다 중력의 영향이 더 커지게 된다. 이에 따라, 일정 시간동안 반도체 발광소자(1050)는 유체 바닥으로 낙하하게 된다.
한편, 자석(163)과 반도체 발광소자(1050) 간 거리가 가까워지는 시간에는 반도체 발광소자(1050)에 대한 자기력의 영향이 중력의 영향보다 더 커지게 된다. 이에 따라, 일정 시간동안 반도체 발광소자(1050)는 기판(161a)쪽으로 이동하게 된다.
상술한 바와 같이, 자석(163)을 회전시키면서 회전축을 일방향으로 이송시킬 경우, 반도체 발광소자(1050)는 기판(161a)에 대하여 수직 및 수평 이동을 하게 된다. 이에 따라, 반도체 발광소자(1050)는 일정시간동안 기판(161a)에 접촉하지 않은 상태에서 기판(161a)에 대한 수평이동을 하게 된다. 반도체 발광소자(1050)가 기판(161a)에 접촉하지 않은 상태에서 기판(161a)에 대한 수평 이동을 하는 경우, 반도체 발광소자(1050)와 기판(161a) 간의 마찰력이 작용하지 않게 된다. 이를 통해, 본 발명은 반도체 발광소자(1050)와 기판(161a) 간의 마찰력으로 인하여 반도체 발광소자(1050)의 움직임이 제한되거나, 기판(161a) 및 반도체 발광소자(1050)가 파손되는 현상을 방지한다.
여기서, 본 발명은 자석(163)과 반도체 발광소자(1050) 간의 수평 거리에 변화를 줌으로써, 반도체 발광소자(1050)에 대한 자기력 및 중력의 영향력이 번갈아가며 커지도록한다. 이를 위해서는 상기 회전축은 상기 기판(161a)에 대하여 수직하게 형성되어야 한다.
한편, 상기 회전축이 상기 자석 중심이나, 상기 자석 내부에 형성될 경우, 회전에 의한 상기 자석(163)과 반도체 발광소자(1050) 간의 수평 거리 변화가 거의 없게 된다. 따라서, 상기 회전축은 상기 자석(163) 외부에 형성되는 것이 바람직하다.
한편, 본 발명은 공정시간을 단축시키기 위해 복수의 자석들을 활용한다.
도 12 및 13은 복수의 자석을 활용하는 본 발명의 일 실시 예를 나타내는 개념도이다.
자가 조립시 기판 전체 영역에는 일정 세기 이상의 자기력이 형성되어야 한다. 자기력은 기판 전체 동시에 형성될 필요는 없으며, 기판의 일 영역부터 순차적으로 형성되어도 무방하다.
기판(161a)의 일 영역부터 순차적으로 자기력을 형성하기 위해, 상기 자석(163)은 기판(161a)의 전 영역을 지나쳐야 한다. 상기 자석(163)이 기판(161a)을 지나치는 동안, 상기 자석(163)은 기판(161a)의 임의의 영역과 일정 시간 동안, 일정 거리 이내인 상태이어야 한다. 일 대면적 디스플레이 장치를 제조하는 경우, 기판(161a)의 면적이 매우 커진다. 단일 자석으로 넓은 면적의 기판의 전 영역을 지나칠 경우, 공정시간이 길어질 수 있다. 본 발명은 자가 조립 공정시간을 단축시키기 위해, 복수의 자석들을 활용한다.
예를 들어, 도 12를 참조하면, 단일 자석(163)으로 기판의 전 영역을 지나치는 시간보다, 네 개의 자석(163a 내지 163d)으로 기판의 전 영역을 지나치는 시간이 더 짧다. 본 발명은 이러한 점을 활용하여, 복수의 자석을 함께 회전시키면서, 상기 복수의 자석들을 일방향을 따라 이송시킬 수 있다. 이를 통해, 본 발명은 자가 조립 공정시간을 단축시킬 수 있다.
한편, 복수의 자석을 함께 회전시키는 경우, 복수의 자석 각각에 대한 회전축이 형성될 수 있다. 이때에, 복수의 자석 각각의 중심과 회전축 간의 거리, 복수의 자석들 간의 거리가 중요하다.
예를 들어, 도 13과 같이, 네 개의 원통형 자석(163a 내지 163d)을 함께 회전시키는 경우, 각 자석이 지나치는 영역(c1)과 각 자석에 의해 일정 세기 이상의 자기력이 형성되는 영역(c2)이 형성된다. 자석 별 c2영역은 서로 중첩될 수 있는데, 이에 따라, 원하지 않는 영역에 반도체 발광소자가 집중될 수 있다.
이를 방지하기 위해, 자석의 회전 반경은 자석 지름의 20%이상, 자석간 거리 이하이어야 한다. 바람직하게는, 상기 회전 반경은 자석의 반지름과 동일해야 한다.
한편, 본 발명은 복수의 자석을 함께 회전시키기 위한 장치를 구비한다.
도 14 내지 16은 자석 위치 제어부의 구조를 나타내는 개념도이다. 도면을 참조하면, 복수의 자석을 함께 회전시키기 위한 위치 제어부(300)는 회전봉(310), 중간 기어(320), 회전 기어(330) 및 자석 어레이(360a 내지 360e)를 포함할 수 있다.
상기 중간 기어(320)는 상기 회전봉(310)에 고정되어 상기 회전봉(310)이 회전함에 따라, 회전한다. 상기 중간 기어(320)와 상기 회전 기어(330)는 서로 맞물려 있는 상태로, 상기 중간 기어(320)가 회전함에 따라 상기 회전 기어(330)도 함께 회전한다.
상기 회전 기어(330)에는 별도의 연결부재(340)가 고정될 수 있는데, 상기 연결부재(340)는 고정판(350)과 연결되며, 고정판(350)은 복수의 자석이 고정되는 자석 어레이(360a 내지 360e)와 결합될 수 있다. 상기 자석 어레이(360a 내지 360e)는 자석의 형태, 자석 간 간격 등에 따라 다양한 형태로 이루어질 수 있다. 본 발명은 상기 자석 어레이(360a 내지 360e)를 교체 함으로써, 용이하게 자석 배치를 변경할 수 있도록 한다.
한편, 상기 고정판(350)은 철판등의 상자성체로 이루어져, 자석이 자기력 만으로 상기 고정판(350)에 고정될 수 있도록 할 수 있다.
종합하면, 상기 회전봉(310)이 회전함에 따라, 상기 중간 기어(320)가 회전한다. 상기 회전 기어(330)는 상기 중간 기어(320)와 맞물려 함께 회전하며, 이에 따라, 자석 어레이(360a 내지 360e)의 판상 회전이 발생된다.
여기서, 상기 중간 기어(320) 및 회전 기어(330) 중 적어도 하나에는 회전 반경을 조절하는 보조축이 형성될 수 있다.
상술한 위치 제어부는 본 발명의 일 실시 예일 뿐, 위치 제어부의 구조를 한정하는 것은 아니다. 위치 제어부는 반드시 도 14 내지 16에서 설명한 구조로 형성될 필요는 없다.
한편, 본 발명은 도 8a 내지 8e의 공정 중 기판이 휘어짐에 따라 발생되는 문제를 해결하기 위한 구조 및 방법을 제공한다.
구체적으로, 제조하고자 하는 디스플레이 장치의 크기가 커질수록 상기 기판의 면적이 증가한다. 대면적 기판을 조립 위치에 배치할 경우, 기판의 하중으로 인해, 기판의 중간부분이 아래로 처지는 현상이 발생될 수 있다.
기판이 휘어진 상태에서, 자석 어레이를 통해 반도체 발광소자에 자기력을 인가하는 경우, 기판과 자석 간의 거리가 기판의 영역별로 달라지게 된다. 구체적으로, 도 17의 오른쪽 네 개의 자석을 참조하면, 기판이 휘어질 경우, 자석 어레이에 배치된 자석들 중 기판 테두리 쪽에 배치된 자석 및 기판 중앙부 쪽에 배치된 자석 각각과 기판 사이의 거리는 서로 다르다.
이에 따라, 유체 챔버에 투입된 반도체 발광소자들에 불균일한 자기력이 작용한다. 이는 반도체 발광소자의 조립 수율을 저하시키는 요인이 된다.
이를 해결 하기 위해, 본 발명은 반도체 발광소자들에 자기력을 가하는 단계에서 자석이 기판에 밀착되도록 한다. 구체적으로, 본 발명은 자석이 회전하면서 이송되는 중 기판에 대하여 상하이동을 하도록 한다.
도 17의 왼쪽 네 개의 자석(163)을 참조하면, 기판이 아래쪽으로 휘어진 영역에서 자석은 하측으로 이동하여 기판에 밀착된다. 이와 달리, 기판이 휘어지지 않은 영역에서 자석은 상측으로 이동하여 기판에 밀착됨과 동시에, 기판 및 자석 사이에 과도한 마찰력이 형성되는 것을 방지한다.
이를 위해, 본 발명은 상기 기판에 대한 상기 자석의 상하 이동을 가이드하는 자석 연결부를 더 포함할 수 있다.
도 18 내지 20은 자석 연결부의 단면도이다.
도 18을 참조하면, 자석 연결부(400)는 자석을 고정시키는 이동부재(410) 및 상기 이동부재(410)의 수직 이동을 가이드하는 가이드(420)를 포함할 수 있다. 상기 가이드(420)에는 상기 이동부재(410)가 삽입될 수 있는 리세스부가 형성될 수 있다. 상기 가이드(420)의 측벽은 상기 이동부재(410)가 수직이동만 가능하도록 가이드한다.
한편, 상기 이동부재(410)가 상기 가이드(420)로부터 완전히 이탈하지 않도록, 상기 이동부재(410) 및 가이드(420) 각각에는 돌출부(411 및 421)이 형성될 수 있다. 상기 이동부재(410)에 형성되는 돌출부(411)는 상기 이동부재(410)가 가이드(420)의 하측면에 도달하였을 때, 가이드(420)에 형성되는 돌출부(421)와 서로 맞물리게 된다.
도 18의 (a)와 같이 자석(163)은 이동부재(410)의 하측에 고정된다. 상기 자석이 자기력 만으로 이동부재(410)에 고정될 수 있도록, 상기 이동부재(410)는 상자기성 물질로 이루어질 수 있으나, 이에 한정되지 않는다.
한편, 도 18의 (a) 및 (b)와 같이, 본 발명은 상기 이동부재(410) 및 가이드(420) 각각에 형성되는 돌출부(411 및 421)의 두께를 다양하게 할 수 있다. 상기 돌출부(411 및 421)들의 두께에 따라 이동부재(410)가 움직일 수 있는 수직 거리가 달라질 수 있다.
한편, 상기 자석 연결부(400)는 상술한 이동부재를 포함하지 않을 수 있다. 구체적으로, 도 18의 (c)와 같이, 가이드(420)에 형성되는 리세스부에는 자석(163)이 삽입될 수 있다. 여기서, 상기 자석(163)이 상기 가이드(420)로부터 완전히 이탈하지 않도록, 상기 자석(163) 및 가이드(420) 각각에는 돌출부(163' 및 421)이 형성될 수 있다. 상기 자석(163)에 형성되는 돌출부(163')는 상기 자석(163)이 가이드(420)의 하측면에 도달하였을 때, 가이드(420)에 형성되는 돌출부(421)와 서로 맞물리게 된다.
도 18에서 설명한 구조에 따르면, 적어도 일부에 곡면을 포함하는 기판위로 자석이 이송될 때, 자석이 상하 이동을 통해 기판 상면에 밀착된다. 이때, 상기 기판에 가해지는 힘은 고정부재 및 자석 무게의 합 또는 자석의 무게와 동일할 수 있다.
한편, 도 18에서 설명한 구조는 중력에 의해 자석이 기판에 밀착되는 구조이다. 이와 달리, 본 발명은 자석이 보다 강한 힘으로 기판에 밀착되도록 하는 구조를 제공한다.
도 19를 참조하면, 자석에 탄성력을 가하는 탄성 부재 상기 자석에 자기력을 가하는 자성 부재 중 적어도 하나를 구비할 수 있다. 도 19의 (a)와 같이, 가이드(420)의 리세스부에는 탄성부재(430)가 배치될 수 있다. 상기 탄성부재(430)는 이동부재(410)를 상기 레세스부 바깥쪽으로 밀어낸다. 상기 탄성부재(430)에 의하여 형성되는 탄성력은 자석(163)이 기판에 강하게 밀착되도록 한다.
다른 일 실시 예에 있어서, 도 19의 (b)와 같이, 가이드(420)의 리세스부에는 자성부재(440)가 배치될 수 있다. 상기 자성부재(440)는 이동부재(410)를 상기 레세스부 바깥쪽으로 밀어낸다. 상기 자성부재(440)에 의하여 형성되는 자기력은 자석(163)이 기판에 강하게 밀착되도록 한다. 이때에, 상기 자성부재와 자석은 서로 같은 극이 마주보도록 배치되어야 한다.
한편, 도 20을 참조하면, 가이드(420) 내측면에는 돌출부(440)가 형성될 수 있다. 상기 돌출부(440)는 자석(163)이 기판에 대한 수직 방향 외에 다른 방향으로 움직이는 것을 방지한다. 이를 통해, 본 발명은 자석(163)의 수직 이동을 원활하게 하고, 자석의 회전 및 이동 시 자석의 치우침이 발생하지 않도록 한다.
상술한 자석 연결부(400)는 도 16에서 설명한 자석 어레이에 고정되거나, 자석 연결부(400) 자체가 자석 어레이와 일체형으로 형성될 수 있다.
상술한 바와 같이, 본 발명에 따른 자석 연결부는 자가 조립 중 자석을 기판의 상측에 밀착시킴으로써, 기판이 휘어지는 경우에도, 기판과 자석 간의 거리가 일정하도록 한다. 이를 통해, 본 발명은 기판의 면적이 큰 경우에도 기판 전체에 균일한 자기력이 가해지도록 한다. 이에 따라, 자가 조립 수율이 향상될 수 있다.
한편, 본 발명은 반도체 발광소자에 자기력이 가해질 때, 반도체 발광소자의 조립면이 기판과 마주본 상태를 유지할 수 있도록 한다.
구체적으로, 반도체 발광소자는 기판과 결합되어야 하는 조립면, 상기 조립면과 대향하는 상면 및 측면을 구비할 수 있다. 반도체 발광소자의 조립면이 기판의 지정된 위치에 접하는 경우, 반도체 발광소자의 폭방향은 기판과 수평한 상태가 된다. 반도체 발광소자의 폭방향이 상기 기판과 수직한 상태가 되는 경우, 즉, 반도체 발광소자가 기판에 수직하게 세워지는 경우, 반도체 발광소자가 기판의 지정된 위치에 정확하게 결합되기 어려워 진다.
본 발명은 반도체 발광소자에 자기력을 가하는 동안, 반도체 발광소자의 폭방향이 기판과 수평한 상태를 유지하도록 한다.
도 21 및 22는 반도체 발광소자의 자가 조립 시 자기력의 방향을 조절하는 일 실시 예를 나타내는 개념도이다.
상기 반도체 발광소자들에 가해지는 자기력이 상기 기판과 수평한 방향이 되도록, 상기 자석의 N극 및 S극은 기판과 수평한 방향으로 배치될 수 있다. 이와 같이, 자석을 배치하는 경우, 기판 표면에서 자기력의 방향은 기판과 수평한 방향이 된다. 이에 따라, 기판 주변에 응집되는 반도체 발광소자들의 조립면은 기판을 향하도록 배치된다.
한편, 본 발명은 상기 반도체 발광소자에 작용하는 자기력의 세기를 증가시키기 위해, 복수의 자석을 활용한다.
일 실시 예에 있어서, 도 21을 참조하면, 본 발명에 따른 자석은 N극 및 S극 중 어느 하나가 상기 기판을 향하도록 배치되는 제1자석(163a) 및 상기 제1자석(163a)과 인접한 위치에 배치되고, 상기 N극 및 S극 중 다른 하나가 상기 기판을 향하도록 배치되는 제2자석(163b)을 구비한다.
도 21과 같이, 복수의 자석을 인접한 위치에 배치하는 경우, 기판 주변에서는 도 22와 같은 자기력선이 형성된다. 이에 따라, 기판 표면과 인접한 위치에서 자기력은 기판에 수평한 방향으로 형성된다. 이를 통해, 본 발명은 반도체 발광소자에 가해지는 자기력에 의해 반도체 발광소자가 기판에 수직하게 배치되는 것을 방지하고, 반도체 발광소자의 조립면이 기판과 정확하게 결합되도록 유도한다.
본 발명에 따르면, 기판을 전사하는 도중 기판과 반도체 발광소자 간에 발생될 수 있는 마찰력을 최소화할 수 있다. 이를 통해, 본 발명은 반도체 발광소자가 조립 도중 파손되거나, 한 위치에 과도하게 응집되는 현상을 방지하며, 나아가 전사 정확도를 향상시킨다.
또한, 본 발명에 따르면, 반도체 발광소자에 자기력이 인가되었을 때, 반도체 발광소자가 기판에 수평하게 배치되도록 한다. 이를 통해, 본 발명은 반도체 발광소자들이 기판의 지정된 위치에 정확하게 안착되도록 한다.
또한, 본 발명에 따르면, 면적이 큰 기판이 전사도중 휘어지더라도, 반도체 발광소자와 자석들간의 간격을 일정하게 유지할 수 있게 되며, 이에 따라, 반도체 발광소자에 가해지는 자기력이 균일해진다. 이를 통해, 본 발명은 전사 정확도를 향상시킨다.

Claims (15)

  1. 자성체를 가지는 복수의 반도체 발광소자들을 수용하는 공간을 구비하는 유체 챔버;
    기판을 조립위치로 이송하는 이송부;
    상기 유체 챔버와 이격 배치되어 상기 반도체 발광소자들에 자기력을 가하는 자석;
    상기 자석과 연결되며, 상기 자석의 위치를 제어하도록 형성되는 위치 제어부; 및
    상기 반도체 발광소자들이 상기 자석의 위치변화에 의하여 이동하는 과정에서 상기 기판의 기설정된 위치에 안착되도록, 상기 기판은 전기장 형성을 유도하는 전원 공급부를 포함하고,
    상기 위치 제어부는,
    상기 자석을 회전축을 중심으로 회전시키면서, 상기 회전축을 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  2. 제1항에 있어서,
    상기 회전축은 상기 기판에 대하여 수직하고, 상기 자석 외부에 형성되는 것을 특징으로 하는 자가조립 장치.
  3. 제1항에 있어서,
    상기 자석은 복수개이고,
    상기 위치 제어부는,
    상기 복수의 자석을 함께 회전시키면서, 상기 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  4. 제1항에 있어서,
    상기 위치 제어부는,
    복수의 자석이 고정되는 자석 어레이를 구비하고,
    상기 자석 어레이를 회전시키면서, 상기 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  5. 제1항에 있어서,
    상기 반도체 발광소자들에 가해지는 자기력이 상기 기판과 수평한 방향으로 형성되도록, 상기 자석의 N극 및 S극은 상기 기판과 수평한 방향으로 배치되는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  6. 제5항에 있어서,
    상기 자석은,
    N극 및 S극 중 어느 하나가 상기 기판을 향하도록 배치되는 제1자석; 및
    상기 제1자석과 인접한 위치에 배치되고, 상기 N극 및 S극 중 다른 하나가 상기 기판을 향하도록 배치되는 제2자석을 구비하는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  7. 제1항에 있어서,
    상기 자석과 상기 위치 제어부를 연결하고, 상기 기판에 대한 상기 자석의 상하 이동을 가이드하는 자석 연결부를 더 포함하는 것을 반도체 발광소자의 자가조립 장치.
  8. 제7항에 있어서,
    상기 조립위치에서 기판의 적어도 일부는 곡면으로 이루어지고,
    상기 자석 연결부는,
    상기 자석이 회전하면서 상기 일방향을 따라 이송되는 동안, 상기 자석이 상기 기판에 밀착되도록, 상기 자석의 상하 이동을 유도하는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  9. 제7항에 있어서,
    상기 자석 연결부는,
    상기 자석에 탄성력을 가하는 탄성 부재 상기 자석에 자기력을 가하는 자성 부재 중 적어도 하나를 구비하는 것을 특징으로 하는 반도체 발광소자의 자가조립 장치.
  10. 기판을 조립위치로 이송하고, 반도체 발광소자들을 유체 챔버에 투입하는 단계;
    상기 유체 챔버 내에서 상기 반도체 발광소자들이 일방향을 따라 이동하도록, 상기 반도체 발광소자들에 자기력을 가하는 단계; 및
    상기 반도체 발광소자들이 이동하는 과정에서 상기 기판의 기설정된 위치에 안착되도록, 전기장을 가하여 상기 반도체 발광소자들을 상기 기설정된 위치로 유도하는 단계를 포함하고,
    상기 반도체 발광소자들에 자기력을 가하는 단계는,
    자석을 회전축을 중심으로 회전시키면서, 상기 회전축을 상기 일방향을 따라 이송시키는 것을 특징으로 하는 반도체 발광소자의 자가조립 방법.
  11. 제10항에 있어서,
    상기 회전축은,
    상기 기판과 수직하게 형성되고, 상기 자석 외부에 형성되는 것을 특징으로 하는 반도체 발광소자의 자가 조립 방법.
  12. 제10항에 있어서,
    상기 자석은 복수개로 이루어지고,
    상기 복수의 자석들은 함께 회전하며, 상기 일방향을 따라 이송되는 것을 특징으로 하는 반도체 발광소자의 자가 조립 방법.
  13. 제10항에 있어서,
    상기 반도체 발광소자들에 가해지는 자기력이 상기 기판과 수평한 방향으로 형성되도록, 상기 자석의 N극 및 S극은 상기 기판과 수평한 방향으로 배치되는 것을 특징으로 하는 반도체 발광소자의 자가조립 방법.
  14. 제13항에 있어서,
    상기 자석은,
    N극 및 S극 중 어느 하나가 상기 기판을 향하도록 배치되는 제1자석; 및
    상기 제1자석과 인접한 위치에 배치되고, 상기 N극 및 S극 중 다른 하나가 상기 기판을 향하도록 배치되는 제2자석을 구비하는 것을 특징으로 하는 반도체 발광소자의 자가조립 방법.
  15. 제10항에 있어서,
    상기 반도체 발광소자들에 자기력을 가하는 단계는,
    상기 자석이 상기 기판에 밀착되도록, 상기 기판에 대하여 상기 자석을 상하이동 시키는 단계를 포함하는 것을 특징으로 하는 반도체 발광소자의 자가조립 방법.
PCT/KR2019/013162 2018-10-30 2019-10-08 반도체 발광소자의 자가조립 장치 및 방법 WO2020091252A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/289,549 US20210399160A1 (en) 2018-10-30 2019-10-08 Self-assembly apparatus and method for semiconductor light emitting device
EP19879422.4A EP3876269B1 (en) 2018-10-30 2019-10-08 Self-assembly apparatus and method for semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180131209A KR102160048B1 (ko) 2018-10-30 2018-10-30 반도체 발광소자의 자가조립 장치 및 방법
KR10-2018-0131209 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020091252A1 true WO2020091252A1 (ko) 2020-05-07

Family

ID=70462703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013162 WO2020091252A1 (ko) 2018-10-30 2019-10-08 반도체 발광소자의 자가조립 장치 및 방법

Country Status (4)

Country Link
US (1) US20210399160A1 (ko)
EP (1) EP3876269B1 (ko)
KR (1) KR102160048B1 (ko)
WO (1) WO2020091252A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277310A1 (ko) * 2021-06-30 2023-01-05 삼성전자주식회사 무기 발광 소자, 디스플레이 모듈 및 그 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031318A (ko) * 2020-09-22 2023-03-07 엘지전자 주식회사 디스플레이 장치의 제조방법
KR20230107809A (ko) * 2020-11-23 2023-07-18 엘지전자 주식회사 자가조립장치
WO2022124455A1 (ko) * 2020-12-11 2022-06-16 엘지전자 주식회사 자석 모듈 및 이를 구비한 자가조립장치
KR102495877B1 (ko) * 2021-06-21 2023-02-06 알씨텍 주식회사 전사용기판에 엘이디 마이크로칩을 정렬하는 방법 및 이를 위한 정렬장치
KR102495876B1 (ko) * 2021-06-21 2023-02-06 알씨텍 주식회사 전사용기판에 엘이디 마이크로칩을 정렬하는 방법 및 이를 위한 정렬장치
WO2023090621A1 (ko) * 2021-11-19 2023-05-25 삼성전자주식회사 디스플레이 패널의 제조 방법
WO2023191159A1 (ko) * 2022-04-01 2023-10-05 엘지전자 주식회사 반도체 발광소자의 지능형 조립전사 통합 장치
WO2024147366A1 (ko) * 2023-01-02 2024-07-11 엘지전자 주식회사 화소용 반도체 발광소자의 마그넷 조립장치 및 이를 포함하는 디스플레이 화소용 반도체 발광소자의 자가 조립 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005294A1 (en) * 2000-06-06 2002-01-17 The Penn State Research Foundation Electro-fluidic assembly process for integration of electronic devices onto a substrate
US20070087472A1 (en) * 2005-10-19 2007-04-19 General Electric Company Methods for magnetically directed self assembly
JP2011013043A (ja) * 2009-06-30 2011-01-20 Beckman Coulter Inc 磁性粒子移送装置および磁性粒子移送方法
KR20130033450A (ko) * 2010-07-14 2013-04-03 샤프 가부시키가이샤 미세한 물체의 배치 방법, 배열 장치, 조명 장치 및 표시 장치
KR20150005628A (ko) * 2012-04-20 2015-01-14 렌슬러 폴리테크닉 인스티튜트 발광 다이오드들 및 이를 패키징하는 방법
US9825202B2 (en) 2014-10-31 2017-11-21 eLux, Inc. Display with surface mount emissive elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885187B1 (ko) * 2007-05-10 2009-02-23 삼성전자주식회사 플라즈마 챔버의 상태를 모니터링하는 방법 및 시스템
TWI440059B (zh) * 2012-05-10 2014-06-01 Ind Tech Res Inst 自組裝設備、使元件自組裝的方法以及熱電元件組裝方法
US10543486B2 (en) * 2014-10-31 2020-01-28 eLux Inc. Microperturbation assembly system and method
US10707377B2 (en) * 2018-04-19 2020-07-07 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005294A1 (en) * 2000-06-06 2002-01-17 The Penn State Research Foundation Electro-fluidic assembly process for integration of electronic devices onto a substrate
US20070087472A1 (en) * 2005-10-19 2007-04-19 General Electric Company Methods for magnetically directed self assembly
JP2011013043A (ja) * 2009-06-30 2011-01-20 Beckman Coulter Inc 磁性粒子移送装置および磁性粒子移送方法
KR20130033450A (ko) * 2010-07-14 2013-04-03 샤프 가부시키가이샤 미세한 물체의 배치 방법, 배열 장치, 조명 장치 및 표시 장치
KR20150005628A (ko) * 2012-04-20 2015-01-14 렌슬러 폴리테크닉 인스티튜트 발광 다이오드들 및 이를 패키징하는 방법
US9825202B2 (en) 2014-10-31 2017-11-21 eLux, Inc. Display with surface mount emissive elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876269A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277310A1 (ko) * 2021-06-30 2023-01-05 삼성전자주식회사 무기 발광 소자, 디스플레이 모듈 및 그 제조 방법

Also Published As

Publication number Publication date
US20210399160A1 (en) 2021-12-23
EP3876269A1 (en) 2021-09-08
KR102160048B1 (ko) 2020-09-25
EP3876269B1 (en) 2023-06-14
EP3876269A4 (en) 2022-07-27
KR20200048762A (ko) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2020091252A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021177673A1 (en) A substrate for manufacturing display device and a manufacturing method using the same
WO2021167149A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021107237A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021149861A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021149856A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020262752A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2021162155A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020262792A1 (ko) 디스플레이 장치의 제조방법 및 디스플레이 장치 제조를 위한 기판
WO2021145499A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021149862A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2020251136A1 (en) Method for manufacturing display device and substrate for manufacturing display device
WO2021095938A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
WO2020256203A1 (ko) 디스플레이 장치 제조를 위한 기판 및 디스플레이 장치의 제조방법
WO2020085677A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021107271A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2021261627A1 (ko) 디스플레이 장치 제조용 기판 및 이를 이용한 디스플레이 장치의 제조방법
WO2021117974A1 (ko) 반도체 발광소자 공급 장치 및 공급 방법
WO2021117956A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021153833A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021040111A1 (ko) 반도체 발광소자 수거 장치 및 수거 방법
WO2021049692A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021040110A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2022045392A1 (ko) 디스플레이 장치 제조용 기판
WO2021141168A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879422

Country of ref document: EP

Effective date: 20210531