WO2020262566A1 - 繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池 - Google Patents

繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池 Download PDF

Info

Publication number
WO2020262566A1
WO2020262566A1 PCT/JP2020/025113 JP2020025113W WO2020262566A1 WO 2020262566 A1 WO2020262566 A1 WO 2020262566A1 JP 2020025113 W JP2020025113 W JP 2020025113W WO 2020262566 A1 WO2020262566 A1 WO 2020262566A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
fibrous carbon
secondary battery
mass
Prior art date
Application number
PCT/JP2020/025113
Other languages
English (en)
French (fr)
Inventor
一輝 谷内
伸弥 小村
大道 高弘
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74061268&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020262566(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020227003010A priority Critical patent/KR20220028025A/ko
Priority to EP20831373.4A priority patent/EP3993109A4/en
Priority to CN202080047387.XA priority patent/CN114072936B/zh
Priority to JP2020552418A priority patent/JP6860751B1/ja
Priority to US17/622,600 priority patent/US20220359881A1/en
Publication of WO2020262566A1 publication Critical patent/WO2020262566A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material layer for an all-solid-state lithium secondary battery, which is composed of fibrous carbon, and an all-solid-state lithium secondary battery, which is composed of the active material layer and a solid electrolyte.
  • the active material layer of an all-solid-state lithium secondary battery is composed of at least an active material and a solid electrolyte.
  • a conductive auxiliary agent to improve electron conductivity, an increase in resistance is suppressed.
  • a fibrous carbon material that enables long-distance electron conduction in an active material layer is attracting attention.
  • Patent Document 1 proposes an all-solid-state lithium secondary battery using a fibrous carbon material as a conductive auxiliary agent, which enables long-distance electron conduction in the active material layer even when added in a small amount. ..
  • Patent Document 2 proposes to use a combination of fibrous carbon and spherical carbon as a conductive auxiliary agent in order to increase the contact area between the active material and the conductive auxiliary agent.
  • Patent Document 2 specifically describes a case where the content of the conductive auxiliary agent, which is the sum of the fibrous carbon and the spherical carbon, is 5% by mass.
  • the active material layer is formed with voids for the electrolytic solution to enter. ..
  • the active material layer has no voids (for example, patent). Reference 3 paragraph 0039). This void can be reduced by pressing the electrode with high pressure. As a result, the volumetric energy density can be increased.
  • Patent Document 2 the contact area between the active material and the solid electrolyte can be increased, which also contributes to the improvement of battery characteristics such as reduction of interface resistance (Patent Document 2). That is, from the viewpoint of improving the volumetric energy density, it is considered that the closer the porosity of the active material layer is to 0, the more preferable it is.
  • Patent Document 3 describes a bulk type all-solid-state secondary battery containing a specific plastic crystal and a lithium salt in the voids of the negative electrode or positive electrode mixture layer and having a porosity of 0.01 to 20%. It is disclosed (paragraph 0039). However, acetylene black is only described as a specific example of the conductive auxiliary agent.
  • An object of the present invention is to provide an active material layer (hereinafter, also simply referred to as "active material layer") of an all-solid-state lithium secondary battery in which ionic conductivity and electron conductivity are unlikely to decrease even after repeated charging and discharging. There is.
  • the present inventors focused on the voids in the active material layer of the all-solid-state lithium secondary battery. As a result, it was found that by having voids, it is possible to suppress the occurrence of cracks in the active material layer even if charging and discharging accompanied by a volume change of the active material are repeated. It was also found that by using a predetermined fibrous carbon as a conductive auxiliary agent, it is possible to suppress a decrease in electron conductivity even if charging and discharging accompanied by a volume change of the active material are repeated.
  • the active material layer has voids, and by blending the active material layer with a conductive auxiliary agent containing fibrous carbon having a predetermined shape, the ionic conductivity and the electron conductivity are not easily deteriorated even if charging and discharging are repeated. We have found that it can be used as a material layer, and have completed the present invention.
  • the present invention is as follows.
  • An active material layer for an all-solid-state lithium secondary battery containing at least an active material, a conductive auxiliary agent, and a solid electrolyte.
  • the active material layer has voids and The proportion of the conductive auxiliary agent in the active material layer is 0.1% by mass or more and less than 5.0% by mass.
  • the conductive auxiliary agent contains fibrous carbon having an average fiber diameter of 10 to 900 nm, and the ratio of the fibrous carbon in the conductive auxiliary agent is 20% by mass or more. Active material layer.
  • the invention described in the above [1] or [2] is an active material layer for an all-solid-state lithium secondary battery containing fibrous carbon having a predetermined shape as a conductive auxiliary agent and having voids.
  • An all-solid-state lithium secondary battery having an active material layer composed of this combination can exhibit excellent battery performance. The reason is not always clear, but the specific fibrous carbon contributes to the formation and maintenance of the voids, and the volume change of the active material caused by charging and discharging due to the predetermined voids and the conductive auxiliary agent having a predetermined shape. This is thought to be because the impact can be mitigated.
  • the invention described in the above [3] is an active material layer having an increased electrical conductivity in the film thickness direction.
  • the electrical conductivity in the film thickness direction is increased by orienting the fibrous carbon having a predetermined shape in the film thickness direction.
  • the conductive auxiliary agent contained in the active material layer contains fibrous carbon, it has high electron conductivity even if the amount of the conductive auxiliary agent used is small.
  • the invention described in [5] above has a particularly high electron conductivity even when the amount of the conductive additive used is small, because the active material layer contains a predetermined amount of fibrous carbon.
  • the active material layer contains fibrous carbon and spherical particles, it is difficult for the fibrous carbon to be oriented in one direction in the active material layer. As a result, the fibrous carbon can be easily oriented in the film thickness direction of the active material layer.
  • the invention described in [11] above defines the ratio of the total surface area of the conductive auxiliary agent to the total surface area of the active material, and is responsible for ionic conduction because the surface of the active material is not completely covered with the conductive auxiliary agent. Sufficient contact points between the solid electrolyte and the active material can be secured, and good ionic conductivity can be ensured.
  • the active material layer of the present invention has voids and contains a fiber-shaped conductive auxiliary agent, even if the volume changes due to expansion and contraction of the active material during charging and discharging, the ion conduction path and the electron conduction path Is maintained. Therefore, both ionic conductivity and electron conductivity can be achieved at the same time. This makes it possible to provide a high-output all-solid-state lithium secondary battery with reduced reaction resistance.
  • the active material layer for all-solid-state lithium secondary battery of the present invention may be either a positive electrode active material layer or a negative electrode active material layer of an all-solid-state lithium secondary battery.
  • This active material layer is composed of at least an active material, a solid electrolyte, and a conductive additive.
  • the conductive auxiliary agent contains at least fibrous carbon.
  • the active material layer has voids.
  • the porosity is preferably 5.0% by volume or more and 50% by volume or less. When the porosity is in this range, cracks in the active material layer are particularly suppressed even if the charge / discharge cycle accompanied by the volume change of the active material is repeated. By using the active material layer having such voids, an all-solid-state lithium secondary battery having high electron conductivity and ionic conductivity and high output can be constructed.
  • the lower limit of the porosity is preferably 7.0% by volume, preferably 9.0% by volume, preferably 10% by volume, more preferably 11% by volume, further preferably 12% by volume, and 15% by volume. It is even more preferably by volume, particularly preferably 18% by volume.
  • the upper limit of the porosity is preferably 48% by volume, more preferably 45% by volume, further preferably 42% by volume, even more preferably 37% by volume, and 30% by volume. Is particularly preferable.
  • the void ratio of this active material layer is determined by the average fiber diameter and average effective fiber length of fibrous carbon described later, as well as the material, size, and content of the positive electrode or negative electrode active material to be used, and further when forming the active material layer. It can be adjusted by controlling the molding conditions and the like of the pressure molding performed as needed.
  • the method of calculating the porosity is not particularly limited, but for example, it is calculated from the true density and density of the active material layer based on the following formula (3), or from a three-dimensional image obtained by tomography such as X-ray CT. There is a way to do it.
  • Porosity (volume%) (true density-density of active material layer) / true density x 100 ... Equation (3)
  • the true density and the apparent density of the active material layer are measured, respectively.
  • the method for measuring the true density is, for example, a method of calculating from the true density and mass ratio of each material constituting the active material layer, a gas phase substitution method (pycnometer method) or a liquid phase method (archimedes method) after pulverizing the active material layer. ) Is used for measurement.
  • the electrical conductivity of the active material layer in the film thickness direction is preferably 1.0 ⁇ 10 -3 S / cm or more, more preferably 5.0 ⁇ 10 -3 S / cm or more. It is more preferably 0 ⁇ 10 -2 S / cm or more, and particularly preferably 1.6 ⁇ 10 -2 S / cm or more.
  • Such electrical conductivity can be achieved by containing a predetermined fibrous carbon as a conductive auxiliary agent.
  • the positive electrode active material layer of the present invention contains at least a positive electrode active material, a solid electrolyte, a conductive auxiliary agent, and may further contain a binder and the like.
  • the positive electrode active material a conventionally known material can be used.
  • a lithium-containing metal oxide capable of occluding and releasing lithium ions is suitable.
  • the lithium-containing metal oxide is a composite oxide containing lithium and at least one element selected from the group consisting of Co, Mg, Mn, Ni, Fe, Al, Mo, V, W, Ti and the like. Can be mentioned.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the value of x is a value before the start of charging / discharging, and varies depending on charging / discharging.
  • the surface of the positive electrode active material may be coated with a coat layer.
  • the coat layer can suppress the reaction between the positive electrode active material and the solid electrolyte (particularly the sulfide solid electrolyte).
  • the coat layer include Li-containing oxides such as LiNbO 3 , Li 3 PO 4 , and LiPON.
  • the average thickness of the coat layer is, for example, 1 nm or more. On the other hand, the average thickness of the coat layer is, for example, 20 nm or less, and may be 10 nm or less.
  • the average particle size of the positive electrode active material is preferably 20 ⁇ m or less, more preferably 0.05 to 15 ⁇ m, and even more preferably 1 to 12 ⁇ m. If the average particle size exceeds 20 ⁇ m, the efficiency of the charge / discharge reaction under a large current may decrease.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but is preferably 30 to 99% by mass, more preferably 40 to 95% by mass, and 50 to 90% by mass. Is more preferable. If it is less than 30% by mass, it may be difficult to apply it to power supply applications with high energy density requirements. If it exceeds 99% by mass, the content of substances other than the positive electrode active material may decrease, and the performance as the positive electrode active material layer may deteriorate.
  • the content of the solid electrolyte in the positive electrode active material layer is not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and 20 to 40% by mass. It is more preferable to have. If it is less than 5% by mass, the ionic conductivity of the positive electrode active material layer may be insufficient. If it exceeds 60% by mass, the content of the positive electrode active material becomes small, and it may be difficult to apply it to power supply applications with high energy density requirements.
  • the positive electrode active material layer may contain a small amount of a binder as long as it does not interfere with electron conductivity and ionic conductivity.
  • the thickness of the positive electrode active material layer is usually 10 to 1000 ⁇ m.
  • Negative electrode active material layer constituting the all-solid-state lithium secondary battery of the present invention contains at least a negative electrode active material, and contains a solid electrolyte, a conductive auxiliary agent, a binder and the like. May be good.
  • the negative electrode active material a conventionally known material can be selected and used.
  • Li metal carbon material, lithium titanate (Li 4 Ti 5 O 12 ), Si, Sn, In, Ag and Al, or alloys and oxides containing at least one of these may be used. it can.
  • Li metal is preferable from the viewpoint of increasing the energy density.
  • Carbon materials are widely used as negative electrode active materials other than Li metal.
  • the carbon material include natural graphite, artificial graphite produced by heat-treating petroleum-based or coal-based coke, hard carbon obtained by carbonizing a resin, and mesophase pitch-based carbon material.
  • hard carbon is preferable in that the crystal layer spacing is wide and the expansion and contraction during charging and discharging is not relatively large.
  • Hard carbon has a structure in which fine crystalline graphene layers are arranged irregularly, and due to lithium ion insertion into the graphene layer and lithium aggregation (lithium metallization) in the space formed between the graphene layers. Lithium ion is occluded.
  • Natural graphite refers to a graphite material that is naturally produced as an ore. Natural graphite is classified into two types, scaly graphite with high crystallinity and earth-like graphite with low crystallinity, depending on its appearance and properties. Scale graphite is further divided into foliate scaly graphite and massive scaly graphite. Natural graphite, which is a graphitic material, is not particularly limited in terms of origin, properties, and type. Further, natural graphite or particles produced from natural graphite may be heat-treated before use.
  • Artificial graphite refers to graphite widely made by artificial methods and a graphitic material that is close to a perfect crystal of graphite.
  • tar or coke obtained from dry distillation of coal, residue obtained by distillation of crude oil, etc. is used as a raw material and obtained through a firing step of about 500 to 1000 ° C. and a graphitization step of 2000 ° C. or higher.
  • Quiche graphite obtained by reprecipitating carbon from molten iron is also a type of artificial graphite.
  • an alloy containing at least one of Si and Sn in addition to the carbon material as the negative electrode active material increases the electric capacity as compared with the case where each of Si and Sn is used alone or when each oxide is used. It is effective in that it can be made smaller.
  • Si-based alloys are preferable.
  • the Si-based alloy at least one element selected from the group consisting of B, Mg, Ca, Ti, Fe, Co, Mo, Cr, V, W, Ni, Mn, Zn, Cu and the like, Si and Alloys and the like.
  • the above-mentioned materials may be used alone or in combination of two or more as the negative electrode active material.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably 30 to 100% by mass, more preferably 40 to 99% by mass, and 50 to 95% by mass. Is more preferable. If it is less than 30% by mass, it may be difficult to apply it to power supply applications with high energy density requirements.
  • the content of the solid electrolyte in the negative electrode active material layer is not particularly limited, but is preferably 0 to 60% by mass, more preferably 5 to 50% by mass, and 10 to 40% by mass. It is more preferable to have. If it exceeds 60% by mass, the content of the positive electrode active material becomes small, and it may be difficult to apply it to power supply applications with high energy density requirements.
  • the negative electrode active material layer may contain a small amount of a binder as long as it does not interfere with electron conductivity and ionic conductivity.
  • the thickness of the negative electrode active material layer is usually 1 to 1000 ⁇ m.
  • Solid Electrolyte As the solid electrolyte used in the present invention, conventionally known materials can be selected and used. For example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a hydride-based solid electrolyte, and a polymer electrolyte can be mentioned. In the present invention, it is preferable to use a sulfide-based solid electrolyte because the conductivity of lithium ions is high.
  • the sulfide-based solid electrolyte include a sulfide-based solid electrolyte (Li-AS) composed of Li, A, and S.
  • Li-AS sulfide-based solid electrolyte
  • a in the sulfide-based solid electrolyte Li-AS is at least one selected from the group consisting of P, Ge, B, Si, Sb and I.
  • Specific examples of such a sulfide-based solid electrolyte Li-AS include Li 7 P 3 S 11 , 70 Li 2 S-30 P 2 S 5 , LiGe 0.25 P 0.75 S 4 , 75 Li 2 S.
  • Li 7 P 3 S 11 is particularly preferable because of its high ionic conductivity.
  • hydride-based solid electrolyte examples include a complex hydride of lithium borohydride.
  • the complex hydride examples include LiBH 4- LiI-based complex hydride, LiBH 4- LiNH 2- based complex hydride, LiBH 4- P 2 S 5 , LiBH 4- P 2 I 4 and the like.
  • the solid electrolyte may be used alone, or in combination of two or more, if necessary.
  • the conductive auxiliary agent contained in the active material layer of the present invention contains fibrous carbon described later.
  • a carbon-based conductive auxiliary agent other than the fibrous form can also be contained.
  • the proportion of the conductive auxiliary agent contained in the active material layer is 0.1% by mass or more and less than 5% by mass.
  • the lower limit of the proportion of the conductive auxiliary agent is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, further preferably 1.2% by mass or more, and 1.5% by mass. It is particularly preferable that the mass is% or more.
  • the upper limit of the proportion of the conductive auxiliary agent is preferably 4.5% by mass or less, more preferably 4.0% by mass or less, still more preferably 3.5% by mass or less, 3 It is more preferably 0.0% by mass or less, and particularly preferably 2.5% by mass or less.
  • the ratio of the conductive auxiliary agent is in the above range, the balance between the electron conductivity and the lithium ion conductivity is good, the rate characteristic value is high, and the reaction resistance value can be lowered. Moreover, since the amount of the conductive auxiliary agent in the active material layer is small, the amount of the active material can be increased.
  • the above conductive aid contains at least fibrous carbon.
  • the ratio of fibrous carbon to the conductive auxiliary agent is preferably 20% by mass or more, more preferably 40% by mass or more, and more preferably 50% by mass or more, from the viewpoint of increasing the electron conductivity of the active material layer. It is more preferably 60% by mass or more, further preferably 70% by mass or more, further preferably 80% by mass or more, and further preferably 85% by mass or more. , 90% by mass or more is particularly preferable. Further, it may be 100% by mass. Moreover, it is preferably 99% by mass or less.
  • the specific surface area of the conductive auxiliary agent is preferably 1 m 2 / g or more and 50 m 2 / g or less.
  • the specific surface area of the conductive auxiliary agent is less than 1 m 2 / g, it is difficult to secure the contact point between the active material and the conductive auxiliary agent, and the electron conduction path may not be sufficiently formed.
  • the specific surface area is too large, it may hinder the ion conduction path.
  • the specific surface area of the conductive auxiliary agent exceeds 50 m 2 / g, the conductive auxiliary agent covers the surface of the active material, the contact point between the solid electrolyte responsible for ion conduction and the active material decreases, and the ion conduction is inhibited. It may be done.
  • the lower limit of the specific surface area is preferably at 2m 2 / g or more, more preferably 3m 2 / g or more, more preferably 5 m 2 / g or more, it is 7m 2 / g or more Especially preferable.
  • the upper limit of the specific surface area is preferably 40 m 2 / g or less, more preferably 30 m 2 / g or less, further preferably 25 m 2 / g or less, and preferably 20 m 2 / g or less. Especially preferable.
  • the active material and the conductive auxiliary agent contained in the active material layer preferably satisfy the following formula (2).
  • Xe Content (mass%) of conductive additive contained in the active material layer
  • Re Average particle size (average fiber diameter) ( ⁇ m) of the conductive additive contained in the active material layer
  • Ra Average particle size ( ⁇ m) of the active material contained in the active material layer
  • Xa Content of active material contained in the active material layer (mass%)
  • the average particle size (fiber diameter) of the conductive auxiliary agent is inversely proportional to the specific surface area of the conductive auxiliary agent
  • Xe / Re is proportional to the total surface area of the conductive auxiliary agent.
  • the ⁇ (Xe / Re) obtained by calculating the respective Xe / Re values and adding them is proportional to the specific surface area of the conductive auxiliary agent.
  • the average particle size of the active material: R is also inversely proportional to the specific surface area of the active material, so ⁇ (Xa / Ra) is proportional to the total surface area of the active material.
  • the left side of the formula (2) is proportional to (total surface area of the conductive additive) / (total surface area of the active material).
  • the right side of the formula (2) is preferably 8, preferably 7, preferably 6, preferably 5, preferably 4, preferably 3. It is particularly preferably .5.
  • ⁇ (Xe / Re) / ⁇ (Xa / Ra) is 9 or more, the total surface area of the conductive auxiliary agent becomes excessive with respect to the total surface area of the active material, and the contact point between the solid electrolyte responsible for ion conduction and the active material. May decrease and ionic conduction may be hindered.
  • the content of the active material and the conductive auxiliary agent contained in the active material layer, the specific surface area of the conductive auxiliary agent, and the average particle size of the active material preferably satisfy the following formula (3).
  • Xe Content (mass%) of conductive additive contained in the active material layer
  • Ra Average particle size ( ⁇ m) of the active material contained in the active material layer
  • Xa Content of active material contained in the active material layer (mass%)
  • Average particle size of active material Ra is inversely proportional to the specific surface area of the active material, so ⁇ (Xa / Ra) is proportional to the total surface area of the active material.
  • ⁇ ( ⁇ ⁇ Xe) is proportional to the total surface area of the conductive auxiliary agent. Therefore, the left side of the formula (3) is proportional to (total surface area of the conductive additive) / (total surface area of the active material).
  • the right side of the formula (3) is preferably 15, more preferably 13, more preferably 12, more preferably 10, more preferably 8, and even 6. Is more preferable, 5 is more preferable, and 4 is particularly preferable.
  • the total surface area of the conductive auxiliary agent becomes excessive with respect to the total surface area of the active material, and the contact point between the solid electrolyte responsible for ionic conduction and the active material. May decrease and ion conduction may be hindered.
  • the proportion of fibrous carbon contained in the active material layer is preferably 0.1% by mass or more and 4.0% by mass or less.
  • the lower limit of the proportion of fibrous carbon is more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, still more preferably 1.2% by mass or more. It is more preferably 5% by mass or more, and particularly preferably 1.8% by mass or more.
  • the upper limit of the proportion of fibrous carbon is more preferably 3.5% by mass or less, further preferably 3.0% by mass or less, still more preferably 2.5% by mass or less. It is particularly preferably 3% by mass or less.
  • the volume ratio of the conductive auxiliary agent is important in consideration of the formation of the conductive path in the active material layer.
  • the numerical value of the volume ratio of the conductive auxiliary agent in the active material layer is an apparent volume ratio in consideration of the voids of the active material layer.
  • the volume ratio of the conductive auxiliary agent to the active material layer is preferably 0.5% by volume or more and 4.0% by volume or less.
  • the lower limit of the volume ratio of the conductive auxiliary agent is more preferably 1.0% by volume or more, further preferably 1.2% by volume or more, and particularly preferably 1.5% by volume or more.
  • the upper limit of the volume ratio of the conductive auxiliary agent is more preferably 3.5% by volume or less, further preferably 3.0% by volume or less, further preferably 2.5% by volume or less, 2 It is more preferably 2% by volume or less, and particularly preferably 2.0% by volume or less. If the volume ratio of the conductive auxiliary agent is less than 0.5% by volume, the conductivity of the active material layer becomes insufficient, and the battery performance may not be sufficiently improved. When the volume ratio of the conductive auxiliary agent exceeds 4.0% by volume, the active material is coated with the conductive auxiliary agent due to the excess of the conductive auxiliary agent, and it becomes difficult to secure the contact point between the active material and the solid electrolyte. As a result, the conductivity of lithium ions is lowered, and the battery performance may not be sufficiently improved. Further, as a result of increasing the blending amount of the conductive auxiliary agent, the amount of the active material in the active material layer is relatively reduced.
  • the volume ratio of fibrous carbon in the active material layer is preferably 0.5% by volume or more and 4.0% by volume or less.
  • the numerical value of the volume ratio of fibrous carbon in the active material layer is an apparent volume ratio in consideration of the voids of the active material layer.
  • the lower limit of the volume ratio of the fibrous carbon is more preferably 1.0% by volume or more, further preferably 1.2% by volume or more, and particularly preferably 1.5% by volume or more.
  • the upper limit of the volume ratio of the fibrous carbon is more preferably 3.5% by volume or less, further preferably 3.0% by volume or less, further preferably 2.5% by volume or less, 2 It is more preferably 2% by volume or less, and particularly preferably 2.0% by volume or less.
  • the volume ratio of the fibrous carbon is less than 0.5% by volume, the conductivity of the active material layer becomes insufficient, and the battery performance may not be sufficiently improved.
  • the volume ratio of the fibrous carbon exceeds 4.0% by volume, the amount of the fibrous carbon is increased, and as a result, the amount of the active material in the active material layer is relatively reduced. Further, since the fibrous carbon is excessive, the active material may be coated with the fibrous carbon, and it may be difficult to secure the contact point between the active material and the solid electrolyte. As a result, the conductivity of lithium ions is lowered, and the battery performance may not be sufficiently improved.
  • the fibrous carbon contained in the active material layer of the present invention is not particularly limited as long as the effect of the present invention is exhibited, and natural graphite, petroleum-based and coal-based coke are heat-treated.
  • Typical examples include artificial graphite, non-graphitizable carbon, easily graphitizable carbon, carbon fiber, carbon nanotube (CNT), and vapor-grown carbon fiber (VGCF (registered trademark)) produced by the above. it can.
  • the fibrous carbon of the present invention preferably has a distance (d002) between adjacent graphite sheets measured by wide-angle X-ray measurement of 0.3400 nm or more, more preferably 0.3410 nm or more, and further preferably 0.3420 nm or more. preferable. Further, d002 is preferably 0.3450 nm or less, and more preferably 0.3445 nm or less. When d002 is 0.3400 nm or more, the fibrous carbon is unlikely to become brittle. Therefore, the fibers are not easily broken during processing such as crushing or preparing a kneaded slurry, and the fiber length is maintained. As a result, it becomes easy to form a long-distance conductive path. In addition, the conductive path is easily maintained by following the volume change of the active material due to the charging / discharging of the all-solid-state lithium secondary battery.
  • the fibrous carbon of the present invention preferably has a crystallite size (Lc002) measured by wide-angle X-ray measurement of 50 nm or less, and more preferably 30 nm or less.
  • the larger the crystallite size (Lc002) the higher the crystallinity and the better the conductivity.
  • the crystallite size (Lc002) is small, the fibrous carbon is unlikely to become brittle. Therefore, the fibers are not easily broken during processing such as crushing or preparing a kneaded slurry, and the fiber length is maintained. As a result, it becomes easy to form a long-distance conductive path.
  • the conductive path is easily maintained by following the volume change of the active material due to the charging / discharging of the all-solid-state lithium secondary battery.
  • the crystallite size (Lc002) refers to a value measured by the Japanese Industrial Standards JIS R 7651 (2007 version) "Lattice constant of carbon material and method for measuring crystallite size".
  • the average fiber diameter of the fibrous carbon used in the present invention is preferably 10 nm or more and 900 nm or less.
  • the upper limit is preferably 600 nm or less, more preferably 500 nm or less, further preferably 400 nm or less, and even more preferably 300 nm or less.
  • the lower limit is preferably 50 nm or more, more preferably 100 nm or more, further preferably 150 nm or more, further preferably 200 nm or more, and particularly preferably more than 200 nm.
  • Fibrous carbon having an average fiber diameter of less than 10 nm has a very small bulk density and is inferior in handleability. Further, when the active material layer is formed, the strength of the active material layer tends to decrease.
  • the fibrous carbon having an average fiber diameter of less than 10 nm has a large specific surface area and covers the surface of the active material in the active material layer. As a result, the number of contacts between the solid electrolyte and the active material is reduced, which leads to inhibition of the formation of the ion conduction path. Fibrous carbon having an average fiber diameter of more than 900 nm tends to cause gaps between fibers in the active material layer, and it may be difficult to increase the density of the active material layer.
  • the specific surface area of the fibrous carbon is preferably 1 m 2 / g or more and 50 m 2 / g or less.
  • the upper limit is preferably 40 m 2 / g or less, more preferably 30m 2 / g, 25m 2 / g more preferably below 20 m 2 / g or less is particularly preferred.
  • the lower limit is preferably more than 1 m 2 / g, more preferably at least 2m 2 / g, 3m 2 / g or more, and more preferably 5 m 2 / g or more is further more 7m 2 / g is particularly preferred.
  • the fibrous carbon used in the present invention has high conductivity in a state where the packing density is low. Fibrous carbon, which has high conductivity in a state where the packing density is low, can impart conductivity at a lower addition concentration.
  • the powder volume resistivity when packed at a packing density of 0.8 g / cm 3 is preferably 4.00 ⁇ 10 -2 ⁇ ⁇ cm or less, preferably 3.00 ⁇ 10 -2 ⁇ ⁇ cm. It is more preferably cm or less. If it exceeds 4.00 ⁇ 10-2 ⁇ ⁇ cm, the amount of fibrous carbon added to improve the conductivity is large, which is not preferable.
  • the lower limit is not particularly limited, but is generally about 0.0001 ⁇ ⁇ cm.
  • the powder volume resistivity when packed at a packing density of 0.5 g / cm 3 is preferably 0.10 ⁇ ⁇ cm or less, and more preferably 0.08 ⁇ ⁇ cm or less. If it exceeds 0.10 ⁇ ⁇ cm, the amount of fibrous carbon added to improve the conductivity is large, which is not preferable.
  • the lower limit is not particularly limited, but is generally about 0.0001 ⁇ ⁇ cm.
  • the average effective fiber length of the fibrous carbon used in the present invention is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more. It is particularly preferably 50 ⁇ m or more.
  • the average effective fiber length is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 120 ⁇ m or less.
  • the fibrous carbon When the active material layer is produced using fibrous carbon having an average effective fiber length of more than 200 ⁇ m, the fibrous carbon tends to be oriented in the in-plane direction in the active material layer. As a result, it may be difficult to form a conductive path in the film thickness direction.
  • the effective fiber length of fibrous carbon is defined as the length of the longest line segment in which both ends are in contact with a single fibrous carbon. In other words, it is the maximum linear distance at which elemental fibrous carbon can conduct. That is, when the fibrous carbon has a perfect linear structure, the effective length is substantially equal to the fiber length. When the fibrous carbon has a branched structure or is curled, it means the length of the maximum line segment connecting two points on the single fibrous carbon.
  • the coefficient of variation (CV value) of the effective fiber length in the fibrous carbon used in the present invention is preferably 20% or more, more preferably 30% or more, still more preferably 35% or more. It is particularly preferably 40% or more. Further, the coefficient of variation (CV value) of the effective fiber length in the fibrous carbon used in the present invention is preferably 90% or less, and more preferably 85% or less. When the coefficient of variation of the effective fiber length is 20% or more and 90% or less, the fibrous carbon having a long effective fiber length and the fibrous carbon having a short effective fiber length coexist.
  • the fibrous carbon having a long effective fiber length can efficiently form a long-distance conductive path in the active material layer, and the fibrous carbon having a short effective fiber length can secure a contact point with the active material.
  • the method for forming the active material layer is not particularly limited. For example, when each substance constituting the active material layer is dispersed in a liquid and applied / dried, fibrous carbon having a short effective fiber length is used. The action of inhibiting the in-plane orientation of fibrous carbon having a long effective fiber length can be enhanced, and a conductive path in the film thickness direction can be efficiently formed.
  • the fibrous carbon used in the present invention has the following formula (1) in which the average effective fiber length (A) and the average fiber length (B) are as follows. 0.500 ⁇ A / B ⁇ 0.990 ⁇ ⁇ ⁇ Equation (1) It is preferable to satisfy.
  • the lower limit of A / B is more preferably 0.550, further preferably 0.600, and particularly preferably 0.650.
  • the upper limit of A / B is more preferably 0.850, further preferably 0.800, and particularly preferably 0.750.
  • the fibrous carbon used in the present invention has a smaller average effective fiber length (A) than the average fiber length (B). That is, most of the fibrous carbons do not have a perfectly linear shape but have a slightly curved shape.
  • the fibrous carbon having such a shape suppresses the in-plane orientation of the fibrous carbon in the active material layer. That is, since the fibrous carbons are in contact with each other and have a bent shape, the fibrous carbons are randomly dispersed without being oriented in a certain direction. Therefore, a sufficient amount of fibrous carbon is oriented in the thickness direction of the active material layer. As a result, a large number of long-distance conductive paths can be formed in the thickness direction of the active material layer.
  • Fibrous carbon having such a shape can be produced by passing through a resin composite fiber produced under predetermined conditions and firing at a predetermined temperature in the process of producing the fibrous carbon.
  • the average aspect ratio of the present fibrous carbon that is, the ratio (L / D) of the average effective fiber length (L) to the average fiber diameter (D) is preferably 80 or more, and more preferably 100 or more. , 200 or more is particularly preferable.
  • the active material layer is produced using the present fibrous carbon by setting the average aspect ratio to 80 or more, a conductive path by the fibrous carbon is efficiently formed in the active material layer. As a result, the cycle characteristics of the battery manufactured including this active material layer can be improved.
  • the mechanical strength of the mixture layer can be increased, and even if the active material expands and contracts during charging and discharging and stress is applied to the active material layer, the active material layer becomes It is possible to prevent cracks from occurring.
  • the average aspect ratio is less than 80, when an active material layer is produced using this fibrous carbon, the formation of a conductive path by the fibrous carbon tends to be insufficient in the active material layer, and the film of the active material layer tends to be insufficient. The resistance value in the thickness direction may not decrease sufficiently. Further, since the mechanical strength of the active material layer is insufficient, cracks are likely to occur in the active material layer when stress is applied to the mixture layer when the volume of the active material changes due to charging and discharging.
  • the upper limit of the average aspect ratio is 10000, preferably 1000 or less, and more preferably 800 or less.
  • the fibrous carbons may be entangled with each other to form an agglomerate, which causes a bias in the electron conduction path in the active material layer and causes a non-uniform charge / discharge reaction. Therefore, the all-solid-state battery The performance of the battery may not be fully exhibited, or the all-solid-state battery may deteriorate.
  • the fibrous carbon used in the present invention preferably has a compression recovery degree of 50% or more and 90% or less represented by the following formula (1).
  • Compression recovery (%) Volume resistivity during recovery / Volume resistivity during compression ⁇ 100 ⁇ ⁇ ⁇ Equation (1)
  • the compression recovery (%) means that the pressure is 1.0 MPa to 0.1 MPa with respect to the amount of change in volume resistivity when the pressure is applied to the fibrous carbon from 0.1 MPa to 1.0 MPa.
  • the fibrous carbon flexibly follows the volume expansion and contraction of the active material due to the repetition of the charge / discharge cycle to maintain the voids and is not easily broken. Therefore, the conductive path formed in the active material layer is sufficiently maintained. Further, due to the excellent elastic force of the fibrous carbon, the mechanical strength of the active material layer can be increased, and the ionic conduction path formed by the solid electrolyte is sufficiently maintained. As a result, it is possible to provide an all-solid-state lithium secondary battery having high cycle characteristics.
  • the lower limit of the compression recovery rate is more preferably 53%, further preferably 56%, and particularly preferably 58%.
  • the upper limit of the compression recovery rate is more preferably 87%, further preferably 84%, and particularly preferably 78%.
  • the fibrous carbon used in the present invention has substantially no branching.
  • substantially no branching means that the degree of branching is 0.01 pieces / ⁇ m or less.
  • Branching refers to a granular part in which fibrous carbon is bonded to other fibrous carbon at a place other than the terminal portion, and the main shaft of the fibrous carbon is branched in the middle, and the main shaft of the fibrous carbon is branched. It means having a sub-axis of.
  • branched fibrous carbon for example, a vapor phase growth (gas phase method) carbon fiber produced by a vapor phase method in which a hydrocarbon such as benzene is vaporized in a high temperature atmosphere in the presence of a metal such as iron as a catalyst (gas phase method).
  • VGCF registered trademark manufactured by Showa Denko Co., Ltd. is known. Since the fibrous carbon in the present invention has a substantially linear structure, the dispersibility is better than that of the fibrous carbon having a branch, and it is easy to form a long-distance conductive path.
  • the degree of branching of the fibrous carbon used in the present invention means a value measured from a photographic drawing taken with a field emission scanning electron microscope at a magnification of 5,000 times.
  • the fibrous carbon may have a fibrous form as a whole, and for example, carbons having an aspect ratio less than the preferable range may come into contact with or bond with each other to have a fibrous shape integrally.
  • carbons having an aspect ratio less than the preferable range may come into contact with or bond with each other to have a fibrous shape integrally.
  • the fibrous carbon of the present invention does not substantially contain a metal element.
  • the total content of the metal elements is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less.
  • the content of metal elements means the total content of Li, Na, Ti, Mn, Fe, Ni and Co.
  • the Fe content is preferably 5 ppm or less, more preferably 3 ppm or less, and even more preferably 1 ppm or less. When the Fe content exceeds 5 ppm, the battery is particularly liable to deteriorate, which is not preferable.
  • the fibrous carbon used in the present invention preferably contains 0.5% by mass or less of hydrogen, nitrogen, and ash in the fiber, and more preferably 0.3% by mass or less.
  • all of hydrogen, nitrogen, and ash in the fibrous carbon is 0.5% by mass or less, structural defects of the graphite layer are further suppressed, and side reactions in the battery can be suppressed, which is preferable.
  • fibrous carbons other than carbon nanotubes (CNT) and vapor-grown carbon fibers (VGCF (registered trademark)) are particularly excellent in dispersibility in the active material layer.
  • CNT carbon nanotubes
  • VGCF vapor-grown carbon fibers
  • it is made from artificial graphite, non-graphitizable carbon, easily graphitizable carbon, etc., which have the above-mentioned structure and are produced by heat-treating natural graphite, petroleum-based and coal-based coke. It is conceivable to do this, or to go through the resin composite fiber in the manufacturing process. Since it is excellent in dispersibility even if it does not contain spherical particles in the active material layer, it is considered that a long-distance conductive path can be formed and excellent battery performance is exhibited even with a small content.
  • the fibrous carbon of the present invention may have a porous or hollow structure, but it is preferable to pass through a resin composite fiber obtained by melt-blend spinning in the process of producing the fibrous carbon. Therefore, it is preferable that the fibrous carbon of the present invention is substantially solid, has a basically smooth surface, and has a linear structure without branching as described above.
  • the fibrous carbon used in the present invention may be modified by chemically or physically modifying its surface.
  • the modifying substance and the form of modification are not particularly limited, and suitable ones are appropriately selected according to the purpose of modification.
  • the fibrous carbon used in the present invention contributes to the formation of a conductive path in the active material layer in the thickness direction, functions as a reinforcing filler that enhances the mechanical strength of the active material layer, and is inside the active material layer.
  • the present inventors consider that the present invention has a function of forming a void (space) at a specific porosity and maintaining the void. That is, by using the above-mentioned fibrous carbon, the mechanical strength of the active material layer is improved, and the voids contribute by forming predetermined voids in the active material layer and maintaining the voids so as not to disappear. Cushioning property and cushioning property based on the flexibility and elasticity of fibrous carbon are exhibited.
  • the fibrous carbon used in the present invention can be produced, for example, by the following method. First, a mesophase pitch composition in which the mesophase pitch is dispersed in a thermoplastic resin is prepared. Next, this mesophase pitch composition is formed into a filament or a film in a molten state. It is particularly preferable to spin. By spinning, the mesophase pitch dispersed in the thermoplastic resin is stretched inside the thermoplastic resin, and the mesophase pitch composition is fiberized to obtain a resin composite fiber.
  • This resin composite fiber has a sea-island structure in which a thermoplastic resin is a sea component and a mesophase pitch is an island component.
  • This resin composite stabilized fiber has a sea-island structure in which a thermoplastic resin is a sea component and a stabilized mesophase pitch is an island component.
  • thermoplastic resin which is a sea component of this resin composite stabilized fiber, is removed and separated to obtain a fibrous carbon precursor.
  • this fibrous carbon precursor is heated at a high temperature to obtain ultrafine carbon fibers which are fibrous carbons.
  • the fibrous carbon used in the present invention can be produced by going through the following steps.
  • the mesophase pitch is formed by molding a mesophase pitch composition composed of a thermoplastic resin, preferably 1 to 150 parts by mass with respect to 100 parts by mass of the thermoplastic resin, in a molten state. To obtain a resin composite fiber.
  • the dispersion diameter of the mesophase pitch in the thermoplastic resin is 0.01 to 50 ⁇ m. If the dispersion diameter of the mesophase pitch in the thermoplastic resin deviates from the range of 0.01 to 50 ⁇ m, it may be difficult to produce the desired fibrous carbon.
  • the mesophase pitch composition the mesophase pitch forms a spherical or elliptical island component, and the dispersion diameter in the present invention means the diameter when the island component is spherical, and when the island component is elliptical, it means the diameter. It means its major axis diameter.
  • the mesophase pitch composition can be produced by kneading the thermoplastic resin and the mesophase pitch, for example, in a molten state at a temperature of 100 to 400 ° C.
  • the melt-kneading of the thermoplastic resin and the mesophase pitch can be performed using a known device. For example, one or more types selected from the group consisting of a uniaxial kneader, a biaxial kneader, a mixing roll, and a Banbury mixer can be used.
  • the mesophase pitch is a pitch that can form an optically anisotropic phase (liquid crystal phase) in a molten state.
  • the mesophase pitch used in the present invention include those using a distillation residue of coal or petroleum as a raw material and those using an aromatic hydrocarbon such as naphthalene as a raw material.
  • the coal-derived mesophase pitch can be obtained by a treatment mainly consisting of hydrogenation / heat treatment of coal tar pitch, a treatment mainly consisting of hydrogenation / heat treatment / solvent extraction, or the like.
  • the optically anisotropic content (mesophase ratio) of the mesophase pitch is preferably 80% or more, and more preferably 90% or more.
  • the softening point of the mesophase pitch is preferably 100 to 400 ° C, more preferably 150 to 350 ° C.
  • thermoplastic resin needs to be able to maintain its morphology in the stabilization step and be easily removed in the step of obtaining the fibrous carbon precursor mixture described later.
  • thermoplastic resins include polyacrylate-based polymers such as polyolefin, polymethacrylate, and polymethylmethacrylate, polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyester carbonate, polysulfone, polyimide, polyetherimide, polyketone, and poly. Lactic acid and the like are preferably used.
  • polyolefins such as polyethylene, polypropylene, poly-4-methylpentene-1, and copolymers containing them are preferably used.
  • thermoplastic resin used in the present invention has a glass transition temperature of 250 ° C. or lower in the case of amorphous and a melting point of 300 ° C. or lower in the case of crystallinity because it can be easily melt-kneaded with a mesophase pitch. preferable.
  • ⁇ Resin composite fiber> As a method for producing a resin composite fiber from the above-mentioned mesophase pitch composition, a method of melt-spinning the mesophase pitch composition from a spinneret can be exemplified. As a result, the initial orientation of the mesophase pitch contained in the resin composite fiber can be increased. The initial orientation may affect the fiber diameter and fiber length of the finally obtained fibrous carbon.
  • the average single yarn diameter of the resin composite fiber is preferably 10 to 200 ⁇ m. If it exceeds 200 ⁇ m, it becomes difficult for the reactive gas to come into contact with the mesophase pitch dispersed inside the resin composite fiber during the stabilization step described later. Therefore, productivity is reduced. On the other hand, if it is less than 10 ⁇ m, the strength of the resin composite fiber may decrease and the process stability may decrease.
  • the temperature at which the resin composite fiber is produced (spun) from the mesophase pitch composition needs to be higher than the melting temperature of the mesophase pitch, and is preferably 150 to 400 ° C. When the temperature exceeds 400 ° C., the deformation relaxation rate of the mesophase pitch increases, and it becomes difficult to maintain the morphology of the fibers.
  • the resin composite fiber obtained through these steps is fiberized with the mesophase pitch microdispersed in the thermoplastic resin at the time of kneading.
  • the resin composite stabilized fiber can be produced by contacting the above-mentioned resin composite fiber with a reactive gas containing oxygen. By contacting the reactive gas, the mesophase pitch contained in the resin composite fiber is stabilized (infusible).
  • a stabilization step is performed in which a gas containing oxygen is brought into contact with the resin composite fiber to stabilize the mesophase pitch.
  • the gas containing oxygen include air.
  • the reactive gas may contain an oxidizing gas or an inert gas other than oxygen.
  • the oxidizing gas include nitrogen dioxide, nitric oxide and sulfur dioxide
  • examples of the inert gas include carbon dioxide, nitrogen and argon.
  • the preferable oxygen concentration is 0.1 to 21% by volume, although it varies depending on the type of mesophase pitch and the fiber diameter of the resin composite fiber.
  • the mesophase pitch is stabilized in the state of a resin composite fiber composited with a thermoplastic resin. Therefore, the process stability is not impaired even if the fiber diameter of the mesophase pitch is reduced as compared with the case where the fiber formed by melt-spinning only the mesophase pitch is stabilized.
  • At the time of stabilization for example, it can be treated in a temperature range of 25 to 400 ° C. for 10 minutes to 10 hours.
  • thermoplastic resin is removed from the resin composite stabilized fiber to obtain a fibrous carbon precursor.
  • the method for decomposing and removing the thermoplastic resin include a method for removing the thermoplastic resin using a solvent and a method for thermally decomposing and removing the thermoplastic resin at, for example, 350 to 600 ° C.
  • the method of removing with a solvent requires a large amount of solvent and also needs to be recovered, and has a problem that the process cost increases. Therefore, the latter removal by thermal decomposition is realistic and preferable.
  • thermoplastic resin When removing the thermoplastic resin by thermal decomposition, it can also be performed under reduced pressure.
  • the thermoplastic resin can be removed more efficiently by thermally decomposing under reduced pressure.
  • Fibrous carbon is obtained by heating the fibrous carbon precursor in an inert gas atmosphere to carbonize or graphitize the fibrous carbon precursor. This step affects the crystal structure of fibrous carbon, in particular, the distance between the graphite sheets (d002), the crystallite size (Lc002), the conductivity (the powder volume resistivity), and the compression recovery. The degree can be adjusted.
  • Examples of the inert gas used in the high-temperature heating step include nitrogen and argon.
  • the oxygen concentration in the inert gas is preferably 20 volume ppm or less.
  • the heating and firing temperature during carbonization and / or graphitization is preferably 500 to 3500 ° C.
  • the heating time is preferably 0.1 to 24 hours.
  • a container made of metal, ceramic, or graphite can be used depending on the heating temperature, but a crucible-shaped container made of graphite is preferable.
  • Carbon-based conductive auxiliary agent other than fibrous carbon examples include carbon black, acetylene black, scaly carbon, graphene, and graphite. These carbon-based conductive aids may be used alone or in combination of two or more.
  • the shape of these carbon-based conductive aids is not particularly limited, but spherical particles such as carbon black and acetylene black are preferable.
  • the average particle size (primary particle size) of the carbon-based conductive auxiliary agent is preferably 10 to 200 nm, more preferably 20 to 100 nm.
  • the aspect ratio of these carbon-based conductive aids is 10 or less, preferably 1 to 5, and more preferably 1 to 3.
  • the content of the carbon-based conductive auxiliary agent other than the fibrous carbon in the active material layer of the present invention is preferably 0.1 to 4% by mass, preferably 0.5 to 3% by mass, based on the active material layer. More preferably, it is more preferably 1 to 2% by mass.
  • the mass ratio of the fibrous carbon is preferably 20% by mass or more and 99 from the viewpoint of achieving both electron conductivity and ionic conductivity. It is mass% or less, and the mass ratio of the spherical particles is 1 mass% or more and 80 mass% or less. More preferably, the mass ratio of the fibrous carbon is 40% by mass or more and 99% by mass or less, and the mass ratio of the spherical particles is 1% by mass or more and 60% by mass or less.
  • the lower limit of the mass ratio of the fibrous carbon is preferably 50% by mass or less, more preferably 60% by mass or less, more preferably 70% by mass or less, and more preferably 80% by mass or less. Is more preferable, and 85% by mass or less is particularly preferable.
  • the upper limit of the mass ratio of the spherical particles is preferably 50% by mass or more, more preferably 40% by mass or more, more preferably 30% by mass or more, and preferably 20% by mass or more. It is more preferable, and it is particularly preferable that it is 15% by mass or more. It is considered that the small amount of spherical particles also acts as a cushioning function to buffer the volume change of the active material due to the repetition of the charge / discharge cycle.
  • a slurry in which the above-mentioned active material, solid electrolyte, conductive additive, etc. and a solvent are mixed is prepared.
  • This slurry can be adhered to a current collector by coating or the like, then the solvent is dried and removed, and if necessary, pressure molding is performed by a press to produce the slurry.
  • the above-mentioned active material, solid electrolyte, conductive auxiliary agent and the like can be mixed with powder and then pressure-molded by a press to produce the product.
  • All-solid-state lithium secondary battery has the positive electrode active material layer, the solid electrolyte layer made of a solid electrolyte, and the negative electrode active material layer, and sandwiches the solid electrolyte layer. As described above, the positive electrode active material layer and the negative electrode active material layer are arranged. Normally, a positive electrode current collector is provided on the positive electrode active material layer and a negative electrode current collector is provided on the negative electrode active material layer so as to sandwich them, and a battery case is arranged so as to cover all of them. ..
  • the all-solid-state lithium secondary battery of the present invention is not particularly limited as long as it has at least an active material layer and a solid electrolyte layer, and usually, as described above, the positive electrode current collector and the negative electrode It has a current collector, a battery case, etc.
  • the active material layer and the solid electrolyte layer do not have to have a clear interface.
  • a layer in which 10% by volume or more of the active material is present within 10 ⁇ m in the thickness direction can be regarded as an active material layer.
  • the X-ray diffraction measurement was performed by using RINT-2100 manufactured by Rigaku Co., Ltd. in accordance with the JIS R7651 method, and the lattice spacing (d002) and crystallite size (Lc002) were measured.
  • the powder resistivity is measured using a powder resistance system (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and a four-probe electrode unit under a load of 0.02 to 2.50 kN. Was measured.
  • the volume resistivity is calculated from the relationship diagram of the volume resistivity with the change of the packing density, and the value of the volume resistivity at the packing density of 0.8 g / cm at 3 o'clock and 0.5 g / cm at 3 o'clock is taken as the powder volume resistivity of the sample. did.
  • the degree of compression recovery was measured using a powder resistance system (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. under a load of 0.02 to 0.40 kN using a four-probe electrode unit. ..
  • the volume resistivity during compression is the amount of change in volume resistivity between 0.1 MPa and 1.0 MPa from the relationship diagram of volume resistivity with pressure change when a load is applied from 0.02 to 0.40 kN. Obtained by calculation.
  • the volume resistivity at the time of recovery is the amount of change in the volume resistivity between 0.1 MPa and 1.0 MPa from the relationship diagram of the volume resistivity with the pressure change when the load is relaxed from 0.40 kN to 0.02 kN. Obtained by calculation.
  • the coal tar pitch at a softening point of 80 ° C. from which the quinoline insoluble matter was removed was hydrogenated at a pressure of 13 MPa and a temperature of 340 ° C. in the presence of a Ni—Mo catalyst to obtain a hydrogenated coal tar pitch.
  • This hydrogenated coal tar pitch was heat-treated at 480 ° C. under normal pressure and then reduced in pressure to remove low boiling points to obtain a mesophase pitch.
  • This mesophase pitch was filtered using a filter at a temperature of 340 ° C. to remove foreign substances in the pitch to obtain a purified mesophase pitch.
  • EXCEED linear low-density polyethylene
  • MFR 1 g / 10 min
  • mesophase pitch mesophase ratio 90
  • this mesophase pitch composition was formed into long fibers having a fiber diameter of 90 ⁇ m by a melt spinning machine using a circular mouthpiece having a diameter of 0.2 mm and an introduction angle of 60 °.
  • the base temperature was 360 ° C.
  • the discharge rate per spinning hole was 16.8 g / base / hour
  • the draft ratio which is the ratio of the discharge line speed to the take-up speed, was 5.
  • the mesophase pitch was stabilized by holding in air at 215 ° C. for 3 hours to obtain a stabilized mesophase pitch-containing fiber bundle.
  • the stabilized mesophase pitch-containing fiber bundle is depressurized to 1 kPa after nitrogen replacement in a vacuum gas replacement furnace, and under the depressurized state, the temperature is raised to 500 ° C. at a heating rate of 5 ° C./min to 500 ° C. By holding at ° C. for 1 hour, the thermoplastic resin was removed to obtain stabilized fibers. Then, the stabilized fiber was held in a nitrogen atmosphere at 1000 ° C. for 30 minutes for carbonization, further heated to 1500 ° C. for 30 minutes in an argon atmosphere, and held for 30 minutes for graphitization. Then, the graphitized carbon fiber aggregate was pulverized to obtain a powdery carbon fiber aggregate. The carbon fibers had a linear structure with no branches.
  • Crystallite interplanar spacing d002 is 0.3441 nm
  • crystallite size Lc002 is 5.4 nm
  • average fiber diameter is 270 nm
  • average effective fiber length is 90 ⁇ m
  • fiber diameter CV value is 56%
  • effective fiber length CV value is 83.
  • Average fiber length is 136 ⁇ m
  • average aspect ratio is 333
  • average effective fiber length / average fiber length ratio is 0.657
  • powder volume resistance is 0.0677 ⁇ ⁇ cm, 0.
  • the powder volume resistance at 8 g / cm 3 was 0.0277 ⁇ ⁇ cm, the compression recovery was 59%, and the specific surface area was 10 m 2 / g.
  • the metal content was less than 20 ppm.
  • the obtained carbon fiber was an excellent fibrous carbon having a large d002, a large aspect ratio, a long effective fiber length, and high conductivity.
  • this fibrous carbon may be abbreviated as "CNF (i)".
  • LPS Manufacturing method of solid electrolyte
  • a sulfide-based solid electrolyte (LPS) was prepared by mixing Li 2 S and P 2 S 5 at a molar ratio of 75:25 and subjecting them to ball milling (100 cycles of rotation at 500 rpm for 12 min and then resting for 8 min). ..
  • this sulfide-based solid electrolyte may be abbreviated as "LPS”.
  • Acetylene black hereinafter, may be abbreviated as "AB”.
  • "Denka Black” (registered trademark) manufactured by Denka Co., Ltd., 75% pressed product, average particle diameter: 0.036 ⁇ m, specific surface area: 65 m 2 / G)
  • Example 1> Metal for producing positive electrode mixture
  • LPS liquid phase polymer
  • positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average particle size: 10.18 ⁇ m, D 50 : 10.26 ⁇ m, powder electrical conductivity: 5.46 ⁇ 10-7 @ 2.47 g / cm 3 , hereinafter abbreviated as "NCM" was used.
  • An all-solid-state battery evaluation cell container was filled with 10 parts by mass of LPS and pressed 100 MPa ⁇ 3 times to form a solid electrolyte layer. 1 part by mass of the positive electrode mixture was added, pressed 100 MPa ⁇ 3 times, and allowed to stand for 30 seconds to form a positive electrode active material layer on one surface of the solid electrolyte layer. Li foil (thickness 47 ⁇ m) and In foil (thickness 50 ⁇ m) are set as negative electrode active materials on the opposite surface of the solid electrolyte layer, pressed at 80 MPa, and finally the cell is bolted to maintain a pressurized state of 8N. An all-solid-state battery evaluation cell was prepared. The thicknesses of the positive electrode active material layer and the solid electrolyte layer are as shown in Table 1.
  • the density of the active material layer was calculated from the total weight of the composition of the active material layer and the volume of the active material layer.
  • the volume ratio of each composition in the active material layer was calculated from the true density and filling amount of each composition and the volume of the active material layer, and the remaining volume was calculated as a void.
  • Density and porosity of solid electrolyte layer The density and porosity of the solid electrolyte were calculated from the mass of the packed solid electrolyte and the volume of the solid electrolyte.
  • the discharge rate characteristics were measured using the cells charged and discharged for one cycle as described above.
  • the charge / discharge test was always carried out at 70 ° C.
  • the measurement conditions for the discharge rate characteristics are as follows.
  • As the charging conditions after charging with a constant current of 0.05 C to 3.7 V, it was switched to discharge.
  • the lower limit voltage was set to 2.0 V, and constant current discharge was performed at each discharge rate.
  • the discharge rate was gradually increased in the order of 0.1C ⁇ 0.2C ⁇ 0.5C ⁇ 1C.
  • the discharge capacity (mAh / g) per weight of the active material at each discharge rate is shown in the table. The larger the discharge capacity, the higher the output of the all-solid-state lithium secondary battery.
  • AC impedance measurement The AC impedance of each cell was measured using a potentiostat / galvanostat (VersaSTAT4 manufactured by Princeton Applied Research). The measurement was always carried out at 70 ° C. For the measurement, as in the case of the discharge rate characteristic, a cell in a charged state was used after performing a precycle using a charging / discharging device. The reaction resistance ( ⁇ ) of each cell is shown in the table. The lower the reaction resistance, the higher the output of the all-solid-state lithium secondary battery, which has both electron conductivity and ionic conductivity.
  • Example 2 The same procedure as in Example 1 was carried out except that 1.6 parts by mass of CNF (i) and 0.4 parts by mass of AB were used instead of 2 parts by mass of CNF (i) of Example 1.
  • Example 3 The same procedure as in Example 1 was carried out except that 1 part by mass of CNF (i) and 1 part by mass of AB were used instead of 2 parts by mass of CNF (i) of Example 1.
  • Example 4 Electrical conductivity in the film thickness direction of the positive electrode active material layer of Example 1 (press pressure changed from 100 MPa to 500 MPa), method for producing an all-solid-state battery evaluation cell (press pressure after adding the positive electrode mixture from 100 MPa) The same as in Example 1 except that (changed to 500 MPa) was changed.
  • Example 5 The same procedure as in Example 4 was carried out except that 1.6 parts by mass of CNF (i) and 0.4 parts by mass of AB were used instead of 2 parts by mass of CNF (i) in Example 4.
  • Example 6> The same procedure as in Example 4 was carried out except that 1 part by mass of CNF (i) and 1 part by mass of AB were used instead of 2 parts by mass of CNF (i) of Example 4.
  • Example 7 It was the same as that of Example 1 except that the method for producing the positive electrode mixture of Example 1 was changed as follows. In an argon atmosphere, 35 parts by mass of LPS, 60 parts by mass of positive electrode active material, and 5 parts by mass of CNF (i) were mixed in an agate mortar. As the positive electrode active material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (D 50 : 10.26 ⁇ m) was used.
  • Example 8> The same procedure as in Example 7 was carried out except that 4 parts by mass of CNF (i) and 1 part by mass of AB were used instead of 5 parts by mass of CNF (i) of Example 7.
  • Example 9 The same operation as in Example 1 was performed except that the surface of the positive electrode active material was coated with LiNbO 3 (sometimes referred to as “surface coated NCM”).
  • Carbon fibers were obtained in the same manner as in the method for producing fibrous carbon (CNF (i)) except that the graphitization temperature was set to 1700 ° C. No branching of the obtained carbon fiber could be confirmed by SEM photograph (the degree of branching was less than 0.01 / ⁇ m).
  • the crystallite interplanar spacing d002 is 0.3432 nm
  • the crystallite size Lc002 is 8.7 nm
  • the average fiber diameter is 326 nm
  • the average effective fiber length is 81 ⁇ m
  • the fiber diameter CV value is 56%
  • the effective fiber length CV value is 80.
  • the average effective fiber length / ratio of the average fiber length is a powder volume resistivity at 0.696,0.5g / cm 3 0.0602 ⁇ ⁇ cm, 0.
  • the powder volume resistance at 8 g / cm 3 was 0.0205 ⁇ ⁇ cm, the compression recovery was 73%, and the specific surface area was 9 m 2 / g.
  • the obtained carbon fiber was an excellent fibrous carbon having a large d002, a large aspect ratio, a long effective fiber length, and high conductivity.
  • this fibrous carbon may be abbreviated as "CNF (ii)".
  • Example 10 LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average particle size: 7.14 ⁇ m, D 50 : 6.55 ⁇ m, hereinafter abbreviated as “NCM (ii)”) is used as the positive electrode active material. This was the same as in Example 4 except that CNF (ii) was used instead of CNF (i).
  • Example 3 From the results of Example 3 and Example 6, it can be seen that the reaction resistance of Example 3 is small and the rate characteristics are good, even though the mass ratios of the members constituting the active material layer are the same. .. That is, it is suggested that the porosity is more preferably 9% by volume or more, and it is presumed that the voids buffer the volume change due to the expansion and contraction of the active material due to the charge / discharge reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明により、 活物質と、導電助剤と、固体電解質とを少なくとも含む全固体リチウム二次電池用の活物質層であって、 前記活物質層は空隙を有し、 前記活物質層における前記導電助剤の割合が0.1質量%以上5.0質量%未満であり、 前記導電助剤が平均繊維径10~900nmの繊維状炭素を含有するとともに、前記導電助剤における前記繊維状炭素の割合が20質量%以上であることを特徴とする全固体リチウム二次電池用の活物質層が提供される。

Description

繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池
 本発明は、繊維状炭素を含んで構成される、全固体リチウム二次電池用の活物質層、及び当該活物質層と固体電解質とを含んで構成される全固体リチウム二次電池に関する。
 全固体リチウム二次電池の活物質層は、少なくとも活物質と固体電解質とを含んで構成される。この活物質層に導電助剤を添加して電子伝導性を向上させることにより、抵抗上昇を抑制することが行われている。導電助剤としては、活物質層における長距離の電子伝導を可能とする繊維状の炭素材料が注目されている。
 特許文献1では、少量の添加であっても活物質層内に長距離の電子伝導を可能とする、繊維状の炭素材料を導電助剤として用いた全固体リチウム二次電池が提案されている。
 特許文献2では、活物質と導電助剤との接触面積を増大させるために、導電助剤として繊維状炭素と球状炭素とを組み合わせて使用することが提案されている。特許文献2には、繊維状炭素と球状炭素とを合計した導電助剤の含有量として、具体的に5質量%の場合が記載されている。
 従来の電解液を用いる電池では、活物質と液体電解質との間におけるリチウムイオン伝導を確保するために、活物質層には電解液が侵入するための空隙が形成されていることが必要である。一方、全固体リチウム二次電池の場合には、活物質と固体電解質との間でリチウムイオンが移動するため、活物質層には空隙を有さないことが望ましいと考えられている(例えば特許文献3の段落0039)。高圧力で電極をプレスすることで、この空隙を減らすことができる。これにより、体積エネルギー密度を上げることができる。さらには、高圧力で電極をプレスすることで、活物質と固体電解質との接触面積を増大させることができ、界面抵抗の低減など電池特性の向上にも寄与する(特許文献2)。即ち、体積エネルギー密度向上の観点から、活物質層の空隙率は0に近いほど好ましいと考えられている。
 特許文献3には、負極又は正極合剤層の空隙内に、特定の柔粘性結晶とリチウム塩を含有し、当該空隙率が0.01~20%である、バルク型全固体二次電池が開示されている(段落0039)。しかしながら、導電助剤の具体例としては、アセチレンブラックが記載されているに過ぎない。
 
特開2010-262764号公報 特開2016-9679号公報 WO2016/157348公報
 活物質層の空隙率を低下させることを目的として、高圧力で電極をプレスすると、活物質の破壊を生じ易い。また、高圧力でプレスされた電極は、充放電時の活物質の膨張収縮による体積変化により、活物質層にクラックが生じ、イオン伝導性や電子伝導性が低下し易い。その結果、電池性能が低下することがある。本発明の目的は、充放電を繰り返しても、イオン伝導性や電子伝導性の低下が生じ難い全固体リチウム二次電池の活物質層(以下、単に「活物質層」ともいう)を提供することにある。
 
 本発明者らは、全固体リチウム二次電池の活物質層における空隙に着目した。その結果、空隙を有することで、活物質の体積変化を伴う充放電を繰り返しても、活物質層にクラックが生じることを抑制できることを見出した。また、所定の繊維状炭素を導電助剤として用いることにより、活物質の体積変化を伴う充放電を繰り返しても、電子伝導性の低下を抑制できることを見出した。即ち、活物質層が空隙を有するとともに、活物質層に所定形状の繊維状炭素を含む導電助剤を配合することにより、充放電を繰り返してもイオン伝導性や電子伝導性が低下し難い活物質層とすることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりのものである。
 〔1〕 活物質と、導電助剤と、固体電解質とを少なくとも含む全固体リチウム二次電池用の活物質層であって、
 前記活物質層は空隙を有し、
 前記活物質層における前記導電助剤の割合が0.1質量%以上5.0質量%未満であり、
 前記導電助剤が平均繊維径10~900nmの繊維状炭素を含有するとともに、前記導電助剤における前記繊維状炭素の割合が20質量%以上であることを特徴とする全固体リチウム二次電池用の活物質層。
 〔2〕 前記活物質層の空隙率が5.0体積%以上50体積%以下である〔1〕に記載の全固体リチウム二次電池用の活物質層。
 上記〔1〕又は〔2〕に記載の発明は、所定形状の繊維状炭素を導電助剤として含み、且つ空隙を有する全固体リチウム二次電池用の活物質層である。この組み合わせで構成される活物質層を備える全固体リチウム二次電池は、優れた電池性能を発揮できる。その理由は必ずしも明らかではないが、特定の繊維状炭素が、空隙の形成及び維持に寄与し、所定の空隙と所定の形状を有する導電助剤とによって、充放電により生じる活物質の体積変化による影響を緩和できるためと考えられる。
 〔3〕 前記活物質層の膜厚方向における電気伝導度が1.0×10-3 S/cm以上である、〔1〕又は〔2〕に記載の全固体リチウム二次電池用の活物質層。
 上記〔3〕に記載の発明は、膜厚方向の電気伝導度が高められた活物質層である。膜厚方向の電気伝導度は、所定形状の繊維状炭素が膜厚方向に配向することによって高められている。
 〔4〕 前記活物質層における前記導電助剤の体積割合が0.5体積%以上4.0体積%以下である、〔1〕乃至〔3〕の何れかに記載の全固体リチウム二次電池用の活物質層。
 上記〔4〕に記載の発明は、活物質層に含まれる導電助剤が繊維状炭素を含むため、導電助剤の使用量が少なくても高い電子伝導性を有する。
 〔5〕 前記活物質層における前記繊維状炭素の体積割合が0.5体積%以上4体積%以下である、〔1〕乃至〔4〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔5〕に記載の発明は、活物質層に所定量の繊維状炭素を含むため、導電助剤の使用量が少なくても特に高い電子伝導性を有する。
 〔6〕 前記導電助剤が、前記繊維状炭素と球状粒子とを含む、〔1〕乃至〔5〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔6〕に記載の発明は、活物質層に繊維状炭素と球状粒子とを含むため、繊維状炭素が活物質層内の一方向に配向し難い。その結果、繊維状炭素を活物質層の膜厚方向に配向させ易い。
 〔7〕 前記繊維状炭素のX線回折法により測定される結晶子面間隔(d002)が0.3400nm以上である、〔1〕乃至〔6〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔7〕に記載の発明は、活物質層に含まれる繊維状炭素が折損し難いため、充放電により生じる活物質の体積変化によっても電子伝導性が低下し難い。
 〔8〕 前記繊維状炭素の実効繊維長の変動係数が35%以上90%以下である、〔1〕乃至〔7〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔8〕に記載の発明は、活物質層に実効繊維長の長い繊維状炭素と短い繊維状炭素とが共存しているため、実効繊維長の長い繊維状炭素によって長距離の導電パスを形成できる。また、実効繊維長の短い繊維状炭素が存在するため、実効繊維長の長い繊維状炭素が面内方向へ配向することが抑制される。
 〔9〕 前記繊維状炭素の、下記式(1)
 圧縮回復度(%) = 回復時の体積抵抗率 / 圧縮時の体積抵抗率 × 100   ・・・式(1)
で表される圧縮回復度が50%以上90%以下である、〔1〕乃至〔8〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔9〕に記載の発明は、活物質層内に含まれる繊維状炭素が弾性力を有しており、折損され難いため、充放電により生じる活物質の体積変化によっても電子伝導性が低下し難い。
 〔10〕 前記導電助剤の比表面積が1m/g以上50m/g以下である〔1〕乃至〔9〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
 上記〔10〕に記載の発明は、導電助剤の比表面積が所定の範囲にあるため、活物質や導電助剤との接触面積を十分に確保できる。
 〔11〕 前記活物質と前記導電助剤とが、下記式(2)を満たす、〔1〕乃至〔10〕のいずれかに記載の全固体リチウム二次電池用の活物質層。
     Σ(Xe/Re) / Σ(Xa/Ra)<9 ・・・式(2)
 Xe:活物質層に含まれる導電助剤の含有量(質量%)、
 Re:活物質層に含まれる導電助剤の平均粒子径(平均繊維径)(μm)、
 Ra:活物質層に含まれる活物質の平均粒子径(μm)、
 Xa:活物質層に含まれる活物質の含有量(質量%)
 上記〔11〕に記載の発明は、活物質の総表面積に対する導電助剤の総表面積の割合を規定したものであり、活物質の表面が導電助剤により完全に被覆されないため、イオン伝導を担う固体電解質と活物質との接点が十分に確保され、良好なイオン伝導性を確保することができる。
 〔12〕 〔1〕乃至〔11〕のいずれかに記載の活物質層と、固体電解質とを含む全固体リチウム二次電池。
 
 本発明の活物質層は、空隙を有し、且つ繊維形状の導電助剤が配合されているため、充放電時に活物質の膨張収縮による体積変化が生じても、イオン伝導パス及び電子伝導パスが維持される。そのため、イオン伝導性と電子伝導性とを両立させることができる。これにより、反応抵抗を低減させた高出力の全固体リチウム二次電池を提供することができる。
 
1.全固体リチウム二次電池用の活物質層
 本発明の全固体リチウム二次電池用活物質層は、全固体リチウム二次電池の正極活物質層又は負極活物質層のいずれであってもよい。この活物質層は、少なくとも、活物質、固体電解質、導電助剤を含んで構成される。導電助剤としては、少なくとも繊維状炭素を含む。
 活物質層は空隙を有する。その空隙率は、好ましくは5.0体積%以上50体積%以下である。空隙率がこの範囲であると、活物質の体積変化を伴う充放電サイクルを繰り返しても、活物質層にクラックを生じることが特に抑制される。このような空隙を有する活物質層を用いることにより、電子伝導性及びイオン伝導性が高く、高出力の全固体リチウム二次電池を構成することができる。空隙率の下限値は、7.0体積%が好ましく、9.0体積%が好ましく、10体積%が好ましく、11体積%であることがより好ましく、12体積%であることがさらに好ましく、15体積%であることがさらにより好ましく、18体積%であることが特に好ましい。空隙率の上限値は、48体積%であることが好ましく、45体積%であることがより好ましく、42体積%であることがさらに好ましく、37体積%であることがさらにより好ましく、30体積%であることが特に好ましい。
 この活物質層の空隙率は、後述する繊維状炭素の平均繊維径や平均実効繊維長のほか、用いる正極又は負極活物質の材質、大きさ、含有量、さらには活物質層を形成する際に必要に応じて行われる加圧成形の成形条件等を制御することによって調整することができる。
 空隙率の算出方法は特に限定されないが、例えば活物質層の真密度及び密度から以下の式(3)に基づいて算出する方法や、X線CTなどのトモグラフィーにより得られた3次元画像から算出する方法などがある。
 空隙率(体積%)=(真密度-活物質層の密度)/真密度×100 ・・・式(3)
 式(3)に基づいて算出する場合には、真密度及び活物質層の見かけ密度をそれぞれ測定する。真密度の測定方法は、例えば、活物質層を構成する各材料の真密度及び質量比率より算出する方法や、活物質層を粉砕後に気相置換法(ピクノメータ法)又は液相法(アルキメデス法)を用いて測定する方法がある。活物質層の見かけ密度は、例えば活物質層の質量と体積から、以下の式(4)により算出することができる。
 活物質層の見かけ密度=活物質層の質量/(活物質層の膜厚×面積) ・・・式(4)
 活物質層の膜厚方向の電気伝導度は、1.0×10-3S/cm以上であることが好ましく、5.0×10-3S/cm以上であることがより好ましく、1.0×10-2S/cm以上であることがさらに好ましく、1.6×10-2S/cm以上であることが特に好ましい。このような電気伝導度は、導電助剤として所定の繊維状炭素を含有することにより、達成することができる。
(1) 正極活物質層
 本発明の正極活物質層は、少なくとも正極活物質と、固体電解質と、導電助剤とを含み、さらに結着剤等を含んでいてもよい。
 正極活物質としては、従来公知の材料を用いることができる。例えば、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも1種の元素と、を含む複合酸化物を挙げることができる。
 具体的には、LiCoO、LiNiO、LiMnO、LiCoNi1-aO、LiCo1-b、LiCoFe1-b、LiMn、LiMnCo2-c、LiMnNi2-c、LiMn2-c、LiMnFe2-c、LiNiMnCo1-a―d、LiNiCoAl1-a―d、(ここで、x=0.02~1.2、a=0.1~0.9、b=0.8~0.98、c=1.2~1.96、d=0.1~0.9、z=2.01~2.3である。)などからなる群より選ばれる少なくとも1種が挙げられる。好ましいリチウム含有金属酸化物としては、LiCoO、LiNiO、LiMnO、LiCoNi1-a、LiMn、LiMnCo2-c、LiMnNi2-c、LiCo1-b、LiNiMnCo1-a―d、LiNiCoAl1-a―d(ここで、x、a、b、c、d及びzは上記と同じである。)からなる群より選ばれる少なくとも1種を挙げることができる。正極活物質は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、xの値は充放電開始前の値であり、充放電により変動する。
 正極活物質の表面は、コート層で被覆されていてもよい。コート層により、正極活物質と固体電解質(特に硫化物固体電解質)とが反応することを抑制できる。コート層としては、例えば、LiNbO、LiPO、LiPON等のLi含有酸化物が挙げられる。コート層の平均厚さは、例えば1nm以上である。一方、コート層の平均厚さは、例えば20nm以下であり、10nm以下であってもよい。
 正極活物質の平均粒子径は、20μm以下であることが好ましく、0.05~15μmであることがより好ましく、1~12μmであることがさらに好ましい。平均粒子径が20μmを超えると、大電流下での充放電反応の効率が低下してしまう場合がある。
 正極活物質層における正極活物質の含有量は、特に制限されるものではないが、30~99質量%であることが好ましく、40~95質量%であることがより好ましく、50~90質量%であることがさらに好ましい。30質量%未満である場合、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。99質量%を超える場合、正極活物質以外の物質の含有量が少なくなり、正極活物質層としての性能が低下する場合がある。
 正極活物質層における固体電解質の含有量は、特に制限されるものではないが、5~60質量%であることが好ましく、10~50質量%であることがより好ましく、20~40質量%であることがさらに好ましい。5質量%未満である場合、正極活物質層のイオン伝導度が不十分となる場合がある。60質量%を超える場合、正極活物質の含有量が少なくなり、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。
 正極活物質層には、電子伝導性およびイオン伝導性を阻害しない範囲で、少量の結着剤を含有してもよい。
 正極活物質層の厚みは、通常、10~1000μmである。
 
(2)負極活物質層
 本発明の全固体リチウム二次電池を構成する負極活物質層は、少なくとも負極活物質を含み、固体電解質と、導電助剤と、結着剤等とを含んでいてもよい。
 負極活物質としては、従来公知の材料を選択して用いることができる。例えば、Li金属、炭素材料、チタン酸リチウム(LiTi12)、Si、Sn、In、Ag及びAlの何れか、又はこれらの少なくとも1種を含む合金や酸化物などを用いることができる。これらの中でもエネルギー密度を上げる観点からLi金属が好ましい。
 Li金属以外の負極活物質としては、炭素材料が広く用いられている。炭素材料としては、天然黒鉛、石油系又は石炭系コークスを熱処理することで製造される人造黒鉛、樹脂を炭素化したハードカーボン、メソフェーズピッチ系炭素材料などが挙げられる。
 全固体電池の負極活物質として選択される炭素材料としては、結晶の層間隔が広く、充放電時の膨張収縮が比較的大きくないという点で、ハードカーボンが好ましい。ハードカーボンは、微細な結晶性グラフェン層が規則性なく配置されている構造を有し、グラフェン層へのリチウムイオン挿入と、グラフェン層間に形成された空間へのリチウム凝集(リチウム金属化)により、リチウムイオンの吸蔵が行われる。
 天然黒鉛や人造黒鉛を用いる場合、電池容量の増大の観点から、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)が0.335~0.337nmの範囲にあるものが好ましい。天然黒鉛とは、鉱石として天然に産出する黒鉛質材料のことをいう。天然黒鉛は、その外観と性状によって、結晶化度の高い鱗状黒鉛と結晶化度が低い土状黒鉛の2種類に分けられる。鱗状黒鉛はさらに外観が葉状の鱗片状黒鉛と、塊状である鱗状黒鉛とに分けられる。黒鉛質材料となる天然黒鉛は、産地や性状、種類は特に制限されない。また、天然黒鉛又は天然黒鉛を原料として製造した粒子に熱処理を施して用いてもよい。
 人造黒鉛とは、広く人工的な手法で作られた黒鉛及び黒鉛の完全結晶に近い黒鉛質材料をいう。代表的な例としては、石炭の乾留、原油の蒸留による残渣などから得られるタールやコークスを原料にして、500~1000℃程度の焼成工程、2000℃以上の黒鉛化工程を経て得たものが挙げられる。また、溶解鉄から炭素を再析出させることで得られるキッシュグラファイトも人造黒鉛の一種である。
 負極活物質として炭素材料の他に、Si及びSnの少なくとも1種を含む合金を使用することは、Si及びSnのそれぞれを単体で用いる場合やそれぞれの酸化物を用いる場合に比べ、電気容量を小さくすることができる点で有効である。これらの中でも、Si系合金が好ましい。Si系合金としては、B、Mg、Ca、Ti、Fe、Co、Mo、Cr、V、W、Ni、Mn、Zn及びCuなどからなる群より選ばれる少なくとも1種の元素と、Siと、の合金などが挙げられる。具体的には、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、VSi、WSi、ZnSiなどからなる群より選ばれる少なくとも1種が挙げられる。
 本発明の全固体リチウム二次電池用活物質層においては、負極活物質として、既述の材料を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極活物質層における負極活物質の含有量は、特に制限されるものではないが、30~100質量%であることが好ましく、40~99質量%であることがより好ましく、50~95質量%であることがさらに好ましい。30質量%未満である場合、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。
 負極活物質層における固体電解質の含有量は、特に制限されるものではないが、0~60質量%であることが好ましく、5~50質量%であることがより好ましく、10~40質量%であることがさらに好ましい。60質量%を超える場合、正極活物質の含有量が少なくなり、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。
 負極活物質層には、電子伝導性およびイオン伝導性を阻害しない範囲で、少量の結着剤を含有してもよい。
 負極活物質層の厚みは、通常、1~1000μmである。
 
(3)固体電解質
 本発明に用いられる固体電解質は、従来公知の材料を選択して用いることができる。例えば、硫化物系固体電解質、酸化物系固体電解質、水素化物系固体電解質、ポリマー電解質を挙げることができる。本発明においては、リチウムイオンの伝導性が高いことから、硫化物系固体電解質を用いることが好ましい。
 硫化物系固体電解質としては、具体的にはLi、A、Sからなる硫化物系固体電解質(Li-A-S)を挙げることができる。上記硫化物系固体電解質Li-A-S中のAは、P、Ge、B、Si、SbおよびIからなる群より選ばれる少なくとも一種である。このような硫化物系固体電解質Li-A-Sとしては、具体的にはLi11、70LiS-30P、LiGe0.250.75、75LiS-25P、80LiS-20P、Li10GeP12、Li9.54Si1.741.4411.7Cl0.3、LiS-SiS、LiPSCl等を挙げることができ、イオン伝導度が高いことから、特にLi11が好ましい。
 水素化物系固体電解質としては、具体的には水素化ホウ素リチウムの錯体水素化物などが挙げられる。錯体水素化物としては、例えば、LiBH-LiI系錯体水素化物およびLiBH-LiNH系錯体水素化物、LiBH-P、LiBH-Pなどが挙げられる。
 前記固体電解質は、単独で用いてもよく、必要に応じて、二種以上を併用してもよい。
 
(4)導電助剤
 本発明の活物質層に含まれる導電助剤は、後述の繊維状炭素を含有する。繊維状炭素の他に繊維形態以外の炭素系導電助剤を含むこともできる。
 活物質層に含まれる導電助剤の割合は、0.1質量%以上5質量%未満である。導電助剤の割合の下限は、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、1.2質量%以上であることがさらに好ましく、1.5質量%以上であることが特に好ましい。また、導電助剤の割合の上限は、4.5質量%以下であることが好ましく、4.0質量%以下であることがより好ましく、3.5質量%以下であることがさらに好ましく、3.0質量%以下であることがよりさらに好ましく、2.5質量%以下であることが特に好ましい。導電助剤の割合が上記範囲であることで、電子伝導性とリチウムイオン伝導性とのバランスが良好であり、レート特性値が高く、かつ反応抵抗値を低くすることができる。また、活物質層における導電助剤の量が少ないので、活物質の量を増やすことができる。
 上記の導電助剤は、少なくとも繊維状炭素を含む。導電助剤に占める繊維状炭素の割合は、活物質層の電子伝導性を高くする観点から、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、85質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。また、100質量%であってもよい。かつ、99質量%以下であることが好ましい。
 導電助剤の比表面積は1m/g以上50m/g以下であることが好ましい。導電助剤の比表面積が1m/g未満の場合、活物質と導電助剤との接点が確保され難く、電子伝導パスが十分に形成されないことがある。
 一方、比表面積が大きすぎると、イオン伝導パスの阻害要因になることがある。すなわち、導電助剤の比表面積が50m/gを超える場合、導電助剤が活物質の表面を覆ってしまい、イオン伝導を担う固体電解質と活物質との接点が減少し、イオン伝導が阻害されてしまうことがある。比表面積の下限は、2m/g以上であることが好ましく、3m/g以上であることがより好ましく、5m/g以上であることがさらに好ましく、7m/g以上であることが特に好ましい。比表面積の上限は、40m/g以下であることが好ましく、30m/g以下であることがより好ましく、25m/g以下であることがさらに好ましく、20m/g以下であることが特に好ましい。
 活物質層に含まれる活物質および導電助剤は、下記式(2)を満たすことが好ましい。
     Σ(Xe/Re) / Σ(Xa/Ra)<9 ・・・式(2)
 Xe:活物質層に含まれる導電助剤の含有量(質量%)、
 Re:活物質層に含まれる導電助剤の平均粒子径(平均繊維径)(μm)、
 Ra:活物質層に含まれる活物質の平均粒子径(μm)、
 Xa:活物質層に含まれる活物質の含有量(質量%)
 導電助剤の平均粒子径(繊維径)は導電助剤の比表面積に反比例するため、Xe/Reは導電助剤の総表面積に比例する。導電助剤が繊維状炭素及び球状炭素のいずれも含む場合には、それぞれのXe/Reの値を算出して足し合わせたΣ(Xe/Re)が導電助剤の比表面積に比例する。活物質の平均粒子径:Rも同様に、活物質の比表面積に反比例するため、Σ(Xa/Ra)は活物質の総表面積に比例する。したがって、式(2)の左辺は、(導電助剤の総表面積)/(活物質の総表面積)に比例する。
 式(2)の右辺は8であることが好ましく、7であることが好ましく、6であることが好ましく、5であることが好ましく、4であることが好ましく、3であることが好ましく、2.5であることが特に好ましい。Σ(Xe/Re) / Σ(Xa/Ra)が9以上の場合、活物質の総表面積に対して、導電助剤の総表面積が過剰となり、イオン伝導を担う固体電解質と活物質との接点が減少し、イオン伝導が阻害されてしまうことがある。
 活物質層に含まれる活物質及び導電助剤の含有量と、導電助剤の比表面積と、活物質の平均粒子径とは、下記式(3)を満たすことが好ましい。
     Σ(σ×Xe)/Σ(Xa/Ra)<20 ・・・式(3)
 σ:活物質層に含まれる導電助剤の比表面積(m/g)、
 Xe:活物質層に含まれる導電助剤の含有量(質量%)、
 Ra:活物質層に含まれる活物質の平均粒子径(μm)、
 Xa:活物質層に含まれる活物質の含有量(質量%)
 活物質の平均粒子径:Raは活物質の比表面積に反比例するため、Σ(Xa/Ra)は活物質の総表面積に比例する。一方、Σ(σ×Xe)は導電助剤の総表面積に比例する。したがって、式(3)の左辺は、(導電助剤の総表面積)/(活物質の総表面積)に比例する。
 式(3)の右辺は15であることが好ましく、13であることがより好ましく、12であることがより好ましく、10であることがより好ましく、8であることがより好ましく、6であることがより好ましく、5であることがより好ましく、4であることが特に好ましい。Σ(σ×Xe)/Σ(Xa/Ra)が20以上の場合、活物質の総表面積に対して、導電助剤の総表面積が過剰となり、イオン伝導を担う固体電解質と活物質との接点が減少し、イオン伝導が阻害されてしまうことがある。
 活物質層に含まれる繊維状炭素の割合は、0.1質量%以上4.0質量%以下であることが好ましい。繊維状炭素の割合の下限は、0.5質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましく、1.2質量%以上であることがさらに好ましく、1.5質量%以上であることがさらに好ましく、1.8質量%以上であることが特に好ましい。繊維状炭素の割合の上限は、3.5質量%以下であることがより好ましく、3.0質量%以下であることがさらに好ましく、2.5質量%以下であることがさらに好ましく、2.3質量%以下であることが特に好ましい。
 本発明の活物質層は、活物質層中の導電パスの形成を考慮すると、導電助剤の体積割合が重要となる。活物質層には、空隙が存在する。そのため、活物質層における導電助剤の体積割合の数値は、いずれも活物質層の空隙を加味した見かけの体積割合である。活物質層に占める導電助剤の体積割合は、0.5体積%以上4.0体積%以下であることが好ましい。導電助剤の体積割合の下限は、1.0体積%以上であることがより好ましく、1.2体積%以上であることがさらに好ましく、1.5体積%以上であることが特に好ましい。導電助剤の体積割合の上限は、3.5体積%以下であることがより好ましく、3.0体積%以下であることがさらに好ましく、2.5体積%以下であることがさらに好ましく、2.2体積%以下であることがさらに好ましく、2.0体積%以下であることが特に好ましい。
 導電助剤の体積割合が0.5体積%未満であると、活物質層の導電性が不十分となり、電池性能を十分に向上できないことがある。
 導電助剤の体積割合が4.0体積%を超えると、導電助剤が過剰なために、活物質が導電助剤で被覆されて活物質と固体電解質との接点が確保され難くなる。その結果、リチウムイオンの伝導性が低下し、電池性能を十分に向上できないことがある。また、導電助剤の配合量が多くなる結果、活物質層における活物質の量が相対的に低下する。
 活物質層に占める繊維状炭素の体積割合は、0.5体積%以上4.0体積%以下であることが好ましい。活物質層には、空隙が存在する。そのため、活物質層における繊維状炭素の体積割合の数値は、いずれも活物質層の空隙を加味した見かけの体積割合である。繊維状炭素の体積割合の下限は、1.0体積%以上であることがより好ましく、1.2体積%以上であることがさらに好ましく、1.5体積%以上であることが特に好ましい。繊維状炭素の体積割合の上限は、3.5体積%以下であることがより好ましく、3.0体積%以下であることがさらに好ましく、2.5体積%以下であることがさらに好ましく、2.2体積%以下であることがさらに好ましく、2.0体積%以下であることが特に好ましい。繊維状炭素の体積割合が0.5体積%未満であると、活物質層の導電性が不十分となり、電池性能を十分に向上できないことがある。繊維状炭素の体積割合が4.0体積%を超えると、繊維状炭素の配合量が多くなる結果、活物質層における活物質の量が相対的に低下する。また、繊維状炭素が過剰なために、活物質が繊維状炭素で被覆されて活物質と固体電解質との接点が確保され難くなる場合がある。その結果、リチウムイオンの伝導性が低下し、電池性能を十分に向上できないことがある。
 
(4-1)繊維状炭素
 本発明の活物質層に含まれる繊維状炭素は、本発明の効果を奏すれば、特に限定されることはなく、天然黒鉛、石油系及び石炭系コークスを熱処理することで製造される人造黒鉛や難黒鉛化性炭素、易黒鉛化性炭素、炭素繊維、カーボンナノチューブ(CNT)、気相成長炭素繊維(VGCF(登録商標))などを代表例として挙げることができる。
 本発明の繊維状炭素は、広角X線測定により測定した隣接するグラファイトシート間の距離(d002)が0.3400nm以上であることが好ましく、0.3410nm以上がより好ましく、0.3420nm以上がさらに好ましい。また、d002は0.3450nm以下が好ましく、0.3445nm以下であることがより好ましい。d002が0.3400nm以上の場合、繊維状炭素が脆くなり難い。そのため、解砕時や混練スラリーを作成するなどの加工時に、繊維が折損し難く、繊維長が保持される。その結果、長い距離の導電パスを形成し易くなる。また、全固体リチウム二次電池の充放電に伴う活物質の体積変化に追従して導電パスが維持され易い。
 本発明の繊維状炭素は、広角X線測定により測定した結晶子大きさ(Lc002)が50nm以下であることが好ましく、30nm以下であることがより好ましい。結晶子大きさ(Lc002)は大きいほど結晶性が高く、導電性が優れる。しかし、結晶子大きさ(Lc002)が小さい場合、繊維状炭素が脆くなり難い。そのため、解砕時や混練スラリーを作成するなどの加工時に、繊維が折損し難く、繊維長が保持される。その結果、長い距離の導電パスを形成し易くなる。また、全固体リチウム二次電池の充放電に伴う活物質の体積変化に追従して導電パスが維持され易い。
 本発明において、結晶子大きさ(Lc002)とは、日本工業規格JIS R 7651(2007年度版)「炭素材料の格子定数及び結晶子の大きさ測定方法」により測定される値をいう。
 本発明で用いられる繊維状炭素の平均繊維径は、10nm以上900nm以下であることが好ましい。該上限値は、600nm以下であることが好ましく、500nm以下であることがより好ましく、400nm以下であることがさらに好ましく、300nm以下であることがよりさらに好ましい。該下限値は、50nm以上であることが好ましく、100nm以上であることがより好ましく、150nm以上であることがさらに好ましく、200nm以上であることがさらに好ましく、200nm超であることが特に好ましい。
 平均繊維径が10nm未満である繊維状炭素は、嵩密度が非常に小さくハンドリング性に劣る。また、活物質層を構成した際、活物質層の強度が低下する傾向がある。また、平均繊維径が10nm未満である繊維状炭素はその比表面積が大きく、活物質層内において活物質の表面を被覆してしまう。その結果、固体電解質と活物質の接点が減少することとなり、イオン伝導パスの形成の阻害につながる。平均繊維径が900nmを超える繊維状炭素は、活物質層内において繊維間に隙間が生じ易くなり、活物質層密度を高くすることが困難となる場合がある。
 繊維状炭素の比表面積は1m/g以上50m/g以下が好ましい。上限は40m/g以下が好ましく、30m/g以下がより好ましく、25m/g以下がさらに好ましく、20m/g以下が特に好ましい。下限は1m/g以上が好ましく、2m/g以上がより好ましく、3m/g以上がさらに好ましく、5m/g以上がさらにより好ましく、7m/g以上が特に好ましい。
 本発明に用いられる繊維状炭素は、充填密度が低い状態において高い導電性を有する。充填密度が低い状態において高い導電性を有する繊維状炭素は、より低い添加濃度で導電性を付与することができる。
 具体的には、充填密度0.8g/cmで充填した際の粉体体積抵抗率が4.00×10-2Ω・cm以下であることが好ましく、3.00×10-2Ω・cm以下であることがより好ましい。4.00×10-2Ω・cmを超える場合、導電性を向上させるのに要する繊維状炭素の添加量が多くなり好ましくない。下限値は特に限定されないが、一般的には0.0001Ω・cm程度である。
 また、充填密度0.5g/cmで充填した際の粉体体積抵抗率は0.10Ω・cm以下であることが好ましく、0.08Ω・cm以下であることがより好ましい。0.10Ω・cmを超える場合、導電性を向上させるのに要する繊維状炭素の添加量が多くなり好ましくない。下限値は特に限定されないが、一般的には0.0001Ω・cm程度である。
 本発明に用いられる繊維状炭素の平均実効繊維長は10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましく、40μm以上であることがさらにより好ましく、50μm以上であることが特に好ましい。また、平均実効繊維長は、200μm以下であることが好ましく、150μm以下であることがより好ましく、120μm以下であることがさらに好ましい。平均実効繊維長が10μm未満の繊維状炭素を用いて活物質層を製造した場合、該活物質層中において導電パスの形成が不十分になり易く、活物質層の膜厚方向の抵抗値が十分に低下しない場合がある。平均実効繊維長が200μmを超える繊維状炭素を用いて活物質層を製造した場合、繊維状炭素が活物質層中においてその面内方向に配向し易くなる。その結果、膜厚方向への導電パスを形成し難い場合がある。
 本発明において、繊維状炭素の実効繊維長は、単体の繊維状炭素に両端が接する最長の線分の長さとして定義される。換言すれば、単体の繊維状炭素が導電することができる最大の直線距離である。即ち、繊維状炭素が完全な直線構造を有する場合は、実効長はその繊維長と略等しい。繊維状炭素が分岐構造を有する場合や丸まっている場合は、その単体の繊維状炭素上にある2点間を結ぶ最大の線分の長さをいう。
 本発明に用いられる繊維状炭素における実効繊維長の変動係数(CV値)は、20%以上であることが好ましく、30%以上であることがより好ましく、35%以上であることがさらに好ましく、40%以上であることが特に好ましい。さらに、本発明に用いられる繊維状炭素における実効繊維長の変動係数(CV値)は、90%以下であることが好ましく、85%以下であることがより好ましい。実効繊維長の変動係数が20%以上90%以下であることにより、実効繊維長の長い繊維状炭素と短い繊維状炭素とが共存する状態となる。そのため、実効繊維長の長い繊維状炭素によって活物質層内に長距離の導電パスを効率的に形成できるとともに、実効繊維長の短い繊維状炭素によって活物質との接点を確保することができる。また、活物質層の形成方法は特に限定されないが、例えば活物質層を構成する各物質を液体に分散させて塗布・乾燥する方法をとった場合には、実効繊維長の短い繊維状炭素によって実効繊維長の長い繊維状炭素が面内方向へ配向することを阻害する作用を高くすることができ、膜厚方向への導電パスを効率的に形成することができる。
 
 本発明に用いられる繊維状炭素は、平均実効繊維長(A)と平均繊維長(B)とが以下の式(1)
 0.500 < A/B < 0.900   ・・・式(1)
を満たすことが好ましい。A/Bの下限値は0.550であることがより好ましく、0.600であることがさらに好ましく、0.650であることが特に好ましい。A/Bの上限値は0.850であることがより好ましく、0.800であることがさらに好ましく、0.750であることが特に好ましい。
 本発明に用いられる繊維状炭素は、平均繊維長(B)と比較して平均実効繊維長(A)が小さい。即ち、繊維状炭素が完全な直線形状ではなく、僅かに曲がった形状を有しているものが大部分である。このような形状を有する繊維状炭素は、活物質層内において、繊維状炭素が面内方向へ配向することが抑制される。即ち、繊維状炭素が互いに接触するとともに曲がった形状を有しているので、繊維状炭素が一定方向に配向せずにランダムに分散する。そのため、活物質層の厚み方向にも十分な量の繊維状炭素が配向する。その結果、活物質層の厚み方向に長距離の導電パスを多数形成することができる。
 このような形状を有する繊維状炭素は、繊維状炭素の製造工程において、所定の条件で製造された樹脂複合繊維を経由すること、及び所定の温度で焼成することにより製造することができる。
 本繊維状炭素の平均アスペクト比、すなわち、平均実効繊維長(L)と平均繊維径(D)との比(L/D)は80以上であることが好ましく、100以上であることがより好ましく、200以上であることが特に好ましい。平均アスペクト比を80以上とすることにより、本繊維状炭素を用いて活物質層を製造した場合、該活物質層中において繊維状炭素による導電パスが効率的に形成される。その結果、この活物質層を含んで製造される電池のサイクル特性を高くすることができる。また、平均アスペクト比を80以上とすることにより、合材層の機械的強度を高めることができ、充放電時に活物質が膨張収縮して活物質層に応力がかかっても、活物質層にクラックが生じることを防ぐことができる。
 平均アスペクト比が80未満の場合、この繊維状炭素を用いて活物質層を製造した場合、該活物質層中において繊維状炭素による導電パスの形成が不十分になり易く、活物質層の膜厚方向の抵抗値が十分に低下しない場合がある。また、活物質層の機械的強度が不足するため、充放電に伴う活物質の体積変化時に合材層に応力がかかった際に、活物質層にクラックが生じやすい。平均アスペクト比の上限値は10000であり、1000以下であることが好ましく、800以下であることがより好ましい。アスペクトが10000を超える場合、繊維状炭素同士が絡まりあって凝集体を形成することがあり、活物質層中の電子伝導パスに偏りが生じ、不均一な充放電反応が起きるため、全固体電池の性能を十分に発揮できなかったり、全固体電池の劣化を招いたりすることがある。
 本発明に用いられる繊維状炭素は、以下の式(1)で表される圧縮回復度が50%以上90%以下であることが好ましい。
 圧縮回復度(%) = 回復時の体積抵抗率 / 圧縮時の体積抵抗率 × 100   ・・・式(1)
 圧縮回復度(%)とは、具体的には、繊維状炭素に、圧力を0.1MPaから1.0MPaまで印加したときの体積抵抗率の変化量に対する、圧力を1.0MPaから0.1MPaまで下げたときの体積抵抗率の変化量の割合(%)をいう。
 圧縮回復度がこの範囲であれば、繊維状炭素が、充放電サイクルの繰り返しによる活物質の体積膨張収縮に柔軟に追従して空隙を維持するとともに折損され難い。そのため、活物質層内に形成された導電パスが十分に維持される。また、繊維状炭素の優れた弾性力に起因して、活物質層の機械的強度を上げることができ、固体電解質によって形成されるイオン伝導パスが十分に維持される。その結果、サイクル特性が高い全固体リチウム二次電池を提供することができる。
 圧縮回復率の下限値は、53%であることがより好ましく、56%であることがさらに好ましく、58%であることが特に好ましい。
 圧縮回復率の上限値は、87%であることがより好ましく、84%であることがさらに好ましく、78%であることが特に好ましい。
 本発明に用いられる繊維状炭素は、実質的に分岐を有さないことが好ましい。ここで、実質的に分岐を有さないとは、分岐度が0.01個/μm以下であることをいう。分岐とは、繊維状炭素が末端部以外の場所で他の繊維状炭素と結合した粒状部をいい、繊維状炭素の主軸が中途で枝分かれしていること、及び繊維状炭素の主軸が枝状の副軸を有することをいう。分岐を有する繊維状炭素としては、例えば、触媒として鉄などの金属の存在下、高温雰囲気中でベンゼン等の炭化水素を気化させる気相法によって製造した気相成長(気相法)炭素繊維(例えば昭和電工社製VGCF(登録商標))が知られている。本発明における繊維状炭素は実質的に直線構造なので、分岐を有する繊維状炭素に比べて分散性が良好であり、長距離の導電パスを形成しやすい。
 ここで、本発明に用いられる繊維状炭素の分岐度は、電界放射型走査電子顕微鏡によって倍率5,000倍にて撮影した写真図から測定された値を意味する。
 なお、この繊維状炭素は、全体として繊維状の形態を有していればよく、例えば、上記アスペクト比の好ましい範囲未満のものが接触したり結合したりして一体的に繊維形状を有しているもの(例えば、球状炭素が数珠状に連なっているもの、極めて短い少なくとも1本または複数本の繊維が融着等によりつながっているものなど)も含む。
 本発明の繊維状炭素は、実質的に金属元素を含有しないことが好ましい。具体的には、金属元素の含有率が合計で50ppm以下であることが好ましく、30ppm以下であることがより好ましく、20ppm以下であることがさらに好ましい。金属元素の含有率が50ppmを超える場合、金属の触媒作用により電池を劣化させ易くなる。本発明において、金属元素の含有率とは、Li、Na、Ti、Mn、Fe、Ni及びCoの合計含有率を意味する。特に、Feの含有率は5ppm以下であることが好ましく、3ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。Feの含有率が5ppmを超える場合、特に電池を劣化させ易くなるため好ましくない。
 本発明に用いられる繊維状炭素は、繊維中の水素、窒素、灰分の何れもが0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。繊維状炭素中の水素、窒素、灰分の何れもが0.5質量%以下である場合、グラファイト層の構造欠陥が一段と抑制され、電池中での副反応抑制できるため好ましい。
 本発明の繊維状炭素のうち、カーボンナノチューブ(CNT)及び気相成長炭素繊維(VGCF(登録商標))以外の繊維状炭素は、活物質層中での分散性に特に優れている。その理由は明らかではないが、前記した構造を有すること、天然黒鉛、石油系及び石炭系コークスを熱処理することで製造される人造黒鉛や難黒鉛化性炭素、易黒鉛化性炭素などを原料とすること、製造工程で樹脂複合繊維を経由すること、等が考えられる。活物質層内において、球状粒子を含有しなくても分散性に優れるので、長距離の導電パスを形成でき、少量の含有量で優れた電池性能を発揮すると考えられる。
 本発明の繊維状炭素は、多孔質や中空構造であってもよいが、繊維状炭素の製造過程において、溶融ブレンド紡糸で得られる樹脂複合繊維を経ることが好ましい。そのため、本発明の繊維状炭素は実質的に中実であり、表面は基本的に平滑であり、前述のとおり分岐を有さない直線構造であることが好ましい。
 本発明に用いられる繊維状炭素は、その表面を化学的又は物理的に修飾し、改質してもよい。修飾物質、修飾の形式は特に限定されず、改質の目的に応じて適宜好適なものが選択される。
 本発明に用いられる繊維状炭素は、活物質層中の厚み方向への導電パスの形成に寄与するとともに、当該活物質層の機械的強度を高める補強フィラーとしての機能、及び当該活物質層内において特定の空隙率で空隙(空間)を形成し、且つその空隙を維持する機能を有すると本発明者らは考えている。即ち、上記繊維状炭素を用いることで、活物質層の機械強度を向上させるとともに、活物質層内に所定の空隙を形成させ、かつその空隙が消失しないように維持させることにより、空隙が寄与するクッション性と、繊維状炭素の持つ柔軟性や弾力性に基づくクッション性とが発揮される。その結果、充放電時の活物質の膨張収縮による体積変化が生じても、電子伝導性及びイオン伝導性が高く維持され、全固体リチウム二次電池用の性能を向上させていると推察される。
 本発明に用いられる繊維状炭素は、例えば以下の方法により製造できる。
 先ず、熱可塑性樹脂内にメソフェーズピッチが分散して成るメソフェーズピッチ組成物を調製する。次に、このメソフェーズピッチ組成物を溶融状態で糸状またはフィルム状に成形する。特に紡糸することが好ましい。紡糸により、熱可塑性樹脂内に分散するメソフェーズピッチを熱可塑性樹脂内部で引き延ばすとともに、メソフェーズピッチ組成物を繊維化して樹脂複合繊維を得る。この樹脂複合繊維は、熱可塑性樹脂を海成分とし、メソフェーズピッチを島成分とする海島構造を有する。
 次に、得られた樹脂複合繊維に酸素を含む気体を接触させてメソフェーズピッチを安定化させて樹脂複合安定化繊維を得る。この樹脂複合安定化繊維は、熱可塑性樹脂を海成分とし、安定化メソフェーズピッチを島成分とする海島構造を有する。
 続いて、この樹脂複合安定化繊維の海成分である熱可塑性樹脂を除去、分離し、繊維状炭素前駆体を得る。
 さらに、この繊維状炭素前駆体を高温加熱して、繊維状炭素である極細炭素繊維を得る。
 すなわち、以下の工程を経ることにより、本発明に用いられる繊維状炭素を製造することができる。
(1) 熱可塑性樹脂と、メソフェーズピッチと、からなるメソフェーズピッチ組成物を溶融状態で成形することによりこのメソフェーズピッチを繊維化して樹脂複合繊維を得る成形工程、
(2) 酸素を含む気体をこの樹脂複合繊維に接触させて、メソフェーズピッチを安定化させて、樹脂複合安定化繊維を得る安定化工程、
(3) この樹脂複合安定化繊維から熱可塑性樹脂を除去し、繊維状炭素前駆体を得る除去工程、
(4) この繊維状炭素前駆体を高温加熱し、繊維状炭素を得る高温加熱工程。
 次に、各工程について説明する。
 <成形工程>
 成形工程では、熱可塑性樹脂と、好ましくはこの熱可塑性樹脂100質量部に対して1~150質量部のメソフェーズピッチと、からなるメソフェーズピッチ組成物を溶融状態で成形することによりこのメソフェーズピッチを繊維化して樹脂複合繊維を得る。
 平均繊維径が10~900nmである極細炭素繊維を製造するためには、熱可塑性樹脂中におけるメソフェーズピッチの分散径を0.01~50μmとすることが好ましい。メソフェーズピッチの熱可塑性樹脂中への分散径が0.01~50μmの範囲を逸脱すると、所望の繊維状炭素を製造することが困難となることがある。なお、メソフェーズピッチ組成物中において、メソフェーズピッチは球状又は楕円状の島成分を形成するが、本発明における分散径とは、島成分が球状の場合はその直径を意味し、楕円状の場合はその長軸径を意味する。
 メソフェーズピッチ組成物は、熱可塑性樹脂とメソフェーズピッチとを、例えば温度が100~400℃の溶融状態において混練することにより製造することができる。熱可塑性樹脂とメソフェーズピッチとの溶融混練は公知の装置を用いて行うことができる。例えば、一軸式混練機、二軸式混練機、ミキシングロール、バンバリーミキサーからなる群より選ばれる1種類以上を用いることができる。
<メソフェーズピッチ>
 メソフェーズピッチとは、溶融状態において光学的異方性相(液晶相)を形成しうるピッチである。本発明で使用するメソフェーズピッチとしては、石炭や石油の蒸留残渣を原料とするものや、ナフタレン等の芳香族炭化水素を原料とするものが挙げられる。例えば、石炭由来のメソフェーズピッチは、コールタールピッチの水素添加・熱処理を主体とする処理、水素添加・熱処理・溶剤抽出を主体とする処理等により得られる。
 メソフェーズピッチの光学的異方性含有率(メソフェーズ率)は、80%以上であることが好ましく、90%以上であることがより好ましい。
 メソフェーズピッチの軟化点は、100~400℃であることが好ましく、150~350℃であることがより好ましい。
<熱可塑性樹脂>
 熱可塑性樹脂は、安定化工程において形態を維持でき、かつ後述する繊維状炭素前駆体混合物を得る工程において、容易に除去される必要がある。このような熱可塑性樹脂としては、例えばポリオレフィン、ポリメタクリレート、ポリメチルメタクリレート等のポリアクリレート系ポリマー、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリエステルカーボネート、ポリサルホン、ポリイミド、ポリエーテルイミド、ポリケトン、ポリ乳酸等が好ましく用いられる。これらの中でも、ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1及びこれらを含む共重合体などのポリオレフィンが好ましく用いられる。
 本発明で使用する熱可塑性樹脂は、メソフェーズピッチと容易に溶融混練できるという点から、非晶性の場合はガラス転移温度が250℃以下、結晶性の場合は融点が300℃以下であることが好ましい。
<樹脂複合繊維>
 上記のメソフェーズピッチ組成物から樹脂複合繊維を製造する方法としては、メソフェーズピッチ組成物を紡糸口金より溶融紡糸する方法を例示することができる。これにより、樹脂複合繊維に含まれるメソフェーズピッチの初期配向性を高くすることができる。初期配向性は、最終的に得られる繊維状炭素の繊維径や繊維長に影響を与えることがある。
 樹脂複合繊維の平均単糸径は、好ましくは10~200μmである。200μmを超える場合、後述の安定化工程の際に反応性ガスが樹脂複合繊維の内部に分散するメソフェーズピッチと接触し難くなる。そのため、生産性が低下する。一方、10μm未満の場合、樹脂複合繊維の強度が低下して工程安定性が低下する恐れがある。
 メソフェーズピッチ組成物から樹脂複合繊維を製造(紡糸)する際の温度は、メソフェーズピッチの溶融温度よりも高いことが必要であり、150~400℃であることが好ましい。400℃を超える場合、メソフェーズピッチの変形緩和速度が大きくなり、繊維の形態を保つことが難しくなる。
 これらの工程を経て得られた樹脂複合繊維は混練時の熱可塑性樹脂中にメソフェーズピッチがミクロ分散した状態で繊維化されている。
<安定化工程>
 樹脂複合安定化繊維は、上述の樹脂複合繊維に酸素を含む反応性ガスを接触させることにより製造できる。反応性ガスを接触させることにより、樹脂複合繊維内に含まれるメソフェーズピッチが安定化(不融化)される。
 この工程では、酸素を含む気体を樹脂複合繊維に接触させて、メソフェーズピッチを安定化させる安定化工程が行われる。酸素を含む気体としては空気が挙げられる。
 安定化工程において、反応性ガスには酸素以外の酸化性ガスや不活性ガスを含んでいてもよい。酸化性ガスとしては二酸化窒素、一酸化窒素、二酸化硫黄などが例示され、不活性ガスとしては二酸化炭素、窒素、アルゴンなどが例示される。好ましい酸素濃度は、メソフェーズピッチの種類や樹脂複合繊維の繊維径によっても相違するが、0.1~21体積%である。
 本発明によれば、メソフェーズピッチは、熱可塑性樹脂と複合化した樹脂複合繊維の状態で安定化される。そのため、メソフェーズピッチのみを溶融紡糸して成る繊維を安定化する場合と比較して、メソフェーズピッチの繊維径を小さくしても工程安定性を損なわない。
 安定化の際には、例えば25~400℃の温度範囲で、10分~10時間処理することができる。
 <除去工程>
 上記樹脂複合安定化繊維から熱可塑性樹脂が除去されて、繊維状炭素前駆体を得る。熱可塑性樹脂を分解・除去する方法としては、例えば、溶剤を用いて熱可塑性樹脂を除去する方法や、熱可塑性樹脂を例えば350~600℃で熱分解して除去する方法が挙げられる。このうち、溶剤で除去する方法は、溶剤が大量に必要になり、回収の必要もあるなど、工程コストが増大する課題がある。したがって、後者の熱分解による除去が現実的であり好ましい。
 熱可塑性樹脂を熱分解によって除去する場合、減圧下で行うこともできる。減圧下で熱分解することにより、熱可塑性樹脂をより効率的に除去することができる。
<高温加熱工程>
 繊維状炭素は繊維状炭素前駆体を不活性ガス雰囲気下で加熱して繊維状炭素前駆体を炭素化乃至黒鉛化することにより得られる。この工程は、繊維状炭素の結晶構造に影響を与え、特に、前記グラファイトシート間の距離(d002)、前記結晶子大きさ(Lc002)、導電性(前記粉体体積抵抗率)、前記圧縮回復度を調整することができる。
 上記高温加熱工程に使用される不活性ガスとしては、窒素、アルゴン等が挙げられる。不活性ガス中の酸素濃度は、20体積ppm以下であることが好ましい。炭素化及び/又は黒鉛化時の加熱焼成温度は、500~3500℃が好ましい。加熱時間は、0.1~24時間が好ましい。
 高温加熱工程で使用する容器としては、加熱する温度によって金属製、セラミック製、黒鉛製を使用することが可能であるが、黒鉛製のルツボ状のものが好ましい。
 
(4-2) 繊維状炭素以外の炭素系導電助剤
 繊維状炭素以外の炭素系導電助剤としては、例えば、カーボンブラック、アセチレンブラック、鱗片状炭素、グラフェン、グラファイトを挙げることができる。これらの炭素系導電助剤は、単独で用いてもよいし、2種以上を併用しても良い。
 これらの炭素系導電助剤の形状は特に限定されないが、カーボンブラックやアセチレンブラックなどの球状粒子であることが好ましい。炭素系導電助剤の平均粒子径(一次粒子径)は10~200nmであることが好ましく、20~100nmであることがより好ましい。これらの炭素系導電助剤のアスペクト比は、10以下であり、1~5であることが好ましく、1~3であることがより好ましい。
 本発明の活物質層における繊維状炭素以外の炭素系導電助剤の含有量は、当該活物質層に対し0.1~4質量%であることが好ましく、0.5~3質量%であることがより好ましく、1~2質量%であることがさらに好ましい。
 前記導電助剤が、前述の繊維状炭素と上記球状粒子とを含む場合、電子伝導性およびイオン伝導性を両立するという観点から、好ましくは、前記繊維状炭素の質量割合が20質量%以上99質量%以下であり、前記球状粒子の質量割合が1質量%以上80質量%以下である。より好ましくは、前記繊維状炭素の質量割合が40質量%以上99質量%以下であり、前記球状粒子の質量割合が1質量%以上60質量%以下である。前記繊維状炭素の質量割合の下限は、50質量%以下であることが好ましく、60質量%以下であることがより好ましく、70質量%以下であることがより好ましく、80質量%以下であることがより好ましく、85質量%以下であることが特に好ましい。前記球状粒子の質量割合の上限は、50質量%以上であることが好ましく、40質量%以上であることがより好ましく、30質量%以上であることがより好ましく、20質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。少量の球状粒子は、充放電サイクルの繰り返しによる活物質の体積変化を緩衝するクッション機能としても作用すると考えられる。
 
(5) 全固体リチウム二次電池用の活物質層の製造方法
 本発明の活物質層は、例えば、上記の活物質、固体電解質、導電助剤等、及び溶媒を混合したスラリーを準備する。このスラリーを、集電体上に塗布等により付着させ、次いで溶媒を乾燥させ除去し、必要によりプレスにより加圧成形して製造することができる。または、上記の活物質、固体電解質及び導電助剤等を粉体混合後、プレスにより加圧成形して製造することができる。
 
(6) 全固体リチウム二次電池
 全固体リチウム二次電池は、前記正極活物質層と、固体電解質からなる固体電解質層と、前記負極活物質層を有するものであり、固体電解質層を挟持するように正極活物質層と負極活物質層が配置されたものである。通常、これらを挟持するように正極活物質層上に正極集電体と、負極活物質層上に負極集電体が設けられており、さらにこれら全体を覆うように電池ケースが配置されている。
 本発明の全固体リチウム二次電池においては、少なくとも、活物質層と、固体電解質層を有するものであれば特に限定されるものではなく、通常は、上述したように、正極集電体、負極集電体、電池ケース等を有する。
 全固体リチウム二次電池において、活物質層と固体電解質層は明確な界面を有していなくてもよい。明確な界面を有していない場合は、厚み方向の10μm内に活物質が10体積%以上存在する層を活物質層とみなすことができる。
 
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。実施例中の各種測定や分析は、それぞれ以下の方法に従って行った。
(繊維状炭素の形状確認)
 繊維状炭素の実効繊維長及び繊維長は、繊維状炭素(試料)を1-メチル-2-ピロリドンに分散させた希薄分散液を、画像解析粒度分布計(ジャスコインターナショナル株式会社製、型式IF-200nano)を用いて測定を行った。繊維状炭素の平均実効繊維長、及び平均繊維長は、体積基準による平均値である。
 繊維状炭素の繊維径は、走査型電子顕微鏡(株式会社日立製作所製S-2400)を用いて観察及び写真撮影を行い、得られた電子顕微鏡写真から無作為に300箇所を選択して繊維径を測定し、それらのすべての測定結果(n=300)の平均値を平均繊維径とした。
 また、それら平均値と標準偏差からCV値を求めた。さらに、平均実効繊維長と平均繊維径から平均アスペクト比を算出した。
(炭素繊維のX線回折測定)
 X線回折測定はリガク社製RINT-2100を用いてJIS R7651法に準拠し、格子面間隔(d002)及び結晶子大きさ(Lc002)を測定した。
(粉体体積抵抗率の測定方法)
 粉体体積抵抗率の測定は、株式会社三菱化学アナリテック社製の粉体抵抗システム(MCP-PD51)を用いて0.02~2.50kNの荷重下で四探針方式の電極ユニットを用いて測定した。体積抵抗率は充填密度の変化に伴う体積抵抗率の関係図から充填密度が0.8g/cm時及び0.5g/cm時の体積抵抗率の値をもって試料の粉体体積抵抗率とした。
(圧縮回復度の測定方法)
 圧縮回復度の測定は株式会社三菱化学アナリテック社製の粉体抵抗システム(MCP-PD51)を用いて0.02~0.40kNの荷重下で四探針方式の電極ユニットを用いて測定した。圧縮回復度は、試料を圧縮する際の体積抵抗率と圧縮をゆるめた回復の際の体積抵抗率から算出される(圧縮回復度(%)=回復時の体積抵抗率/圧縮時の体積抵抗率×100)。圧縮時の体積抵抗率は、0.02から0.40kNへ荷重をかけた際の圧力変化にともなう体積抵抗率の関係図から0.1MPaと1.0MPaの際の体積抵抗率の変化量を算出して得た。回復時の体積抵抗率は、0.40kNから0.02kNへ荷重をゆるめた際の圧力変化にともなう体積抵抗率の関係図から0.1MPaと1.0MPaの際の体積抵抗率の変化量を算出して得た。
(比表面積の測定方法)
 比表面積測定は、島津製作所社製の比表面積測定装置(トライスターII 3020)を用いて、JIS Z8830に定められた方法に準拠し、BETの式により比表面積を算出した。
 
(メソフェーズピッチの製造方法)
 キノリン不溶分を除去した軟化点80℃のコールタールピッチを、Ni-Mo系触媒存在下、圧力13MPa、温度340℃で水添し、水素化コールタールピッチを得た。この水素化コールタールピッチを常圧下、480℃で熱処理した後、減圧して低沸点分を除き、メソフェーズピッチを得た。このメソフェーズピッチを、フィルターを用いて温度340℃でろ過を行い、ピッチ中の異物を取り除き、精製されたメソフェーズピッチを得た。
(繊維状炭素(CNF)の製造方法(i))
 熱可塑性樹脂として直鎖状低密度ポリエチレン(EXCEED(登録商標)1018HA、ExxonMobil社製、MFR=1g/10min)60質量部、及び(メソフェーズピッチの製造方法)で得られたメソフェーズピッチ(メソフェーズ率90.9%、軟化点303.5℃)40質量部を同方向二軸押出機(東芝機械(株)製「TEM-26SS」、バレル温度300℃、窒素気流下)で溶融混練してメソフェーズピッチ組成物を調製した。
 次いで、このメソフェーズピッチ組成物を溶融紡糸機により、直径が0.2mm、導入角60°である円形口金を用いて繊維径90μmの長繊維に成形した。口金温度は360℃、1紡糸孔当たりの吐出量は16.8g/口金/時間、吐出線速度と引取り速度との比率であるドラフト比は5であった。
 上記操作で得られたメソフェーズピッチ含有繊維束0.1kgを用い、空気中において215℃で3時間保持することにより、メソフェーズピッチを安定化させ、安定化メソフェーズピッチ含有繊維束を得た。上記安定化メソフェーズピッチ含有繊維束を、真空ガス置換炉中で窒素置換を行った後に1kPaまで減圧し、該減圧状態下で、5℃/分の昇温速度で500℃まで昇温し、500℃で1時間保持することにより、熱可塑性樹脂を除去して安定化繊維を得た。
 ついで、この安定化繊維を窒素雰囲気下、1000℃で30分間保持して炭素化し、さらにアルゴンの雰囲気下、1500℃に加熱し30分間保持して黒鉛化した。
 ついで、この黒鉛化した炭素繊維集合体を粉砕し、粉体状の炭素繊維集合体を得た。炭素繊維は分岐のない直線構造であった。
 得られた炭素繊維は、SEM写真による分岐が確認できなかった(分岐度は0.01個/μm未満であった)。結晶子面間隔d002が0.3441nm、結晶子大きさLc002が5.4nm、平均繊維径が270nm、平均実効繊維長が90μm、繊維径のCV値が56%、実効繊維長のCV値が83%、平均繊維長が136μm、平均アスペクト比が333、平均実効繊維長/平均繊維長の比が0.657、0.5g/cmにおける粉体体積抵抗率が0.0677Ω・cm、0.8g/cmにおける粉体体積抵抗率が0.0277Ω・cm、圧縮回復度が59%、比表面積が10m/gであった。金属含有量は20ppm未満であった。
 得られた炭素繊維は、d002は大きいがアスペクト比が大きくかつ実効繊維長が長く、導電性が高い優れた繊維状炭素であった。以下、この繊維状炭素を「CNF(i)」と略記する場合がある。
(固体電解質(LPS)の製造方法)
 LiSとPをモル比75:25で混合し、ボールミル処理(500rpmで12min回転後、8min休止するサイクルを100サイクル)を施すことで硫化物系固体電解質(LPS)を作製した。以下、この硫化物系固体電解質を「LPS」と略記する場合がある。
 ・球状粒子: アセチレンブラック(以下、「AB」と略記する場合がある。「デンカブラック」(登録商標)デンカ株式会社製、75%プレス品、平均粒子径:0.036μm、比表面積:65m/g)
<実施例1>
(正極合剤の作製方法)
 アルゴン雰囲気中にて、36質量部のLPS、62質量部の正極活物質、及び2質量部の繊維状炭素(CNF(i))をメノウ乳鉢で混合した。正極活物質としては、LiNi1/3Co1/3Mn1/3(平均粒子径:10.18μm、D50:10.26μm、粉体電気伝導度:5.46×10-7@2.47g/cm、以下、「NCM」と略記する。)を用いた。
(正極活物質層の膜厚方向の電気伝導度)
 上記のように作製した正極合剤を電気伝導度測定セルに入れ、上下から100MPaを印加しながら膜厚方向の電気伝導度を測定した。結果を表1に示す。
(全固体電池評価用セルの作製方法)
 全固体電池評価用セル容器にLPSを10質量部充填し、100MPa×3回プレスすることで固体電解質層を形成させた。正極合剤1質量部を加え、100MPa×3回プレスし、30秒静置することで、固体電解質層の一面に正極活物質層を形成させた。固体電解質層の反対面に負極活物質としてLi箔(厚み47μm)およびIn箔(厚み50μm)をセットし、80MPaでプレスし、最後にセルをボルト固定することで8Nの加圧状態を維持させた全固体電池評価用セルを作製した。正極活物質層および固体電解質層の厚みは表1のとおりであった。
(活物質層の密度及び体積比率)
 活物質層の密度は、活物質層の組成物の総重量および活物質層の体積より算出した。活物質層中の各組成物の体積比率は、各組成物の真密度と充填量及び活物質層の体積より算出し、残りの体積を空隙として算出した。
(固体電解質層の密度及び空隙率)
 固体電解質の密度及び空隙率は、充填した固体電解質の質量及び固体電解質の体積から算出した。
(初回充放電測定)
 上記のように作製したセルを用いて、70℃で初回充放電測定試験を実施した。充放電条件は、3.7Vまで0.05C定電流充電後、4時間定電圧充電し、2.0Vまで0.05C定電流放電とした。充電容量、放電容量、充放電効率を表に示す。
(レート特性評価)
 上記のように1サイクル充放電したセルを用いて、放電レート特性の測定を行った。充放電試験は常時70℃で実施した。放電レート特性の測定条件は次の通りである。充電条件としては、3.7Vまで0.05C定電流充電後、放電に切り替えた。放電条件としては、下限電圧を2.0Vに設定し各放電レートにて定電流放電とした。放電レートは0.1C→0.2C→0.5C→1Cのように段階的に上げることとした。各放電レートにおける活物質重量あたりの放電容量(mAh/g)を表に示す。放電容量が大きいほど、高出力な全固体リチウム二次電池である。
(交流インピーダンス測定)
 ポテンショスタット/ガルバノスタット(Princeton Applied Research社製 VersaSTAT4)を用いて、各セルの交流インピーダンス測定を行った。測定は常時70℃で実施した。測定には、放電レート特性と同様に、充放電装置を用いてプレサイクルを実施し、充電状態としたセルを用いた。各セルの反応抵抗(Ω)を表に示す。反応抵抗が低いほど、電子伝導性およびイオン伝導性が両立された高出力な全固体リチウム二次電池である。
<実施例2>
 実施例1のCNF(i)2質量部の代わりに、CNF(i)1.6質量部、AB0.4質量部を用いた以外は実施例1と同様とした。
<実施例3>
 実施例1のCNF(i)2質量部の代わりに、CNF(i)1質量部、AB1質量部を用いた以外は実施例1と同様とした。
<比較例1>
 実施例1のCNF(i)2質量部の代わりに、AB2質量部を用いた以外は実施例1と同様とした。
<実施例4>
 実施例1の正極活物質層の膜厚方向の電気伝導度(プレス圧を100MPaから500MPaに変更)、全固体電池評価用セルの作製方法(正極合材を加えた後のプレス圧を100MPaから500MPaに変更)を変更した以外は実施例1と同様した。
<実施例5>
 実施例4のCNF(i)2質量部の代わりに、CNF(i)1.6質量部、AB0.4質量部を用いた以外は実施例4と同様とした。
<実施例6>
 実施例4のCNF(i)2質量部の代わりに、CNF(i)1質量部、AB1質量部を用いた以外は実施例4と同様とした。
<比較例2>
 実施例4のCNF(i)2質量部の代わりに、AB2質量部を用いた以外は実施例4と同様とした。
<実施例7>
 実施例1の正極合剤の作製方法を以下のように変更した以外は実施例1と同様した。
 アルゴン雰囲気中にて、35質量部のLPS、60質量部の正極活物質、及び5質量部のCNF(i)をメノウ乳鉢で混合した。正極活物質としては、LiNi1/3Co1/3Mn1/3(D50:10.26μm)を用いた。
<実施例8>
 実施例7のCNF(i)5質量部の代わりに、CNF(i)4質量部、AB1質量部を用いた以外は実施例7と同様とした。
<実施例9>
 正極活物質の表面をLiNbOで被覆(「表面コートNCM」ということがある)した以外は、実施例1と同様の操作を行った。
(繊維状炭素(CNF(ii))の製造方法)
 黒鉛化温度を1700℃とした以外は、前記繊維状炭素(CNF(i))の製造方法と同様にして炭素繊維を得た。
 得られた炭素繊維は、SEM写真による分岐が確認できなかった(分岐度は0.01個/μm未満であった)。結晶子面間隔d002が0.3432nm、結晶子大きさLc002が8.7nm、平均繊維径が326nm、平均実効繊維長が81μm、繊維径のCV値が56%、実効繊維長のCV値が80%、平均繊維長が117μm、平均アスペクト比が248、平均実効繊維長/平均繊維長の比が0.696、0.5g/cmにおける粉体体積抵抗率が0.0602Ω・cm、0.8g/cmにおける粉体体積抵抗率が0.0205Ω・cm、圧縮回復度が73%、比表面積が9m/gであった。
 得られた炭素繊維は、d002は大きいがアスペクト比が大きくかつ実効繊維長が長く、導電性が高い優れた繊維状炭素であった。以下、この繊維状炭素を「CNF(ii)」と略記する場合がある。
<実施例10>
 正極活物質としてLiNi1/3Co1/3Mn1/3(平均粒子径:7.14μm、D50:6.55μm、以下、「NCM(ii)」と略記する。)を用い、CNF(i)の代わりにCNF(ii)を用いたこと以外は実施例4と同様とした。
 実施例3と実施例6の結果から、活物質層を構成する各部材の質量比が同等であるにもかかわらず、実施例3の反応抵抗が小さく、かつレート特性が良好であることがわかる。すなわち、空隙率が9体積%以上であることがより好ましいことを示唆しており、充放電反応に伴う活物質の膨張収縮に伴う体積変化を、空隙が緩衝させていると推測される。
 実施例1~3と比較例1の結果から、導電助剤として繊維状炭素を含むことで反応抵抗が小さく、かつレート特性が良好であることがわかる。充放電反応に伴う活物質の膨張収縮に伴う体積変化が起きても導電パスが維持されていることが示唆され、繊維状炭素によって長距離の導電パスが形成されている効果であると推測される
 実施例4、5、6及び比較例2の結果から、少なくとも500MPaのプレス圧力で成形された活物質層の場合、繊維状炭素の含有量の増大とともに、空隙率が大きくなっている。プレス圧力が高くなった際に、繊維状炭素が空隙の維持、形成に寄与していることが推察される。

 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1.  活物質と、導電助剤と、固体電解質とを少なくとも含む全固体リチウム二次電池用の活物質層であって、
     前記活物質層は空隙を有し、
     前記活物質層における前記導電助剤の割合が0.1質量%以上5.0質量%未満であり、
     前記導電助剤が平均繊維径10~900nmの繊維状炭素を含有するとともに、前記導電助剤における前記繊維状炭素の割合が20質量%以上であることを特徴とする全固体リチウム二次電池用の活物質層。
  2.  前記活物質層の空隙率が5.0体積%以上50体積%以下である請求項1記載の全固体リチウム二次電池用の活物質層。
  3.  前記活物質層の膜厚方向における電気伝導度が1.0×10-3 S/cm以上である、請求項1又は2に記載の全固体リチウム二次電池用の活物質層。
  4.  前記活物質層における前記導電助剤の体積割合が0.5体積%以上4.0体積%以下である、請求項1乃至3の何れか1項に記載の全固体リチウム二次電池用の活物質層。
  5.  前記活物質層における前記繊維状炭素の体積割合が0.5体積%以上4.0体積%以下である、請求項1乃至請求項4のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  6.  前記導電助剤が、前記繊維状炭素と球状粒子とを含む、請求項1乃至請求項5のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  7.  前記繊維状炭素のX線回折法により測定される結晶子面間隔(d002)が0.3400nm以上である、請求項1乃至請求項6のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  8.  前記繊維状炭素の実効繊維長の変動係数が35%以上90%以下である、請求項1乃至請求項7のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  9.  前記繊維状炭素の、下記式(1)
     圧縮回復度(%) = 回復時の体積抵抗率 / 圧縮時の体積抵抗率 × 100   ・・・式(1)
    で表される圧縮回復度が50%以上90%以下である、請求項1乃至請求項8のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  10.  前記導電助剤の比表面積が1m/g以上50m/g以下である請求項1乃至請求項9のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
  11.  前記活物質と前記導電助剤とが、下記式(2)を満たす、請求項1乃至請求項10のいずれか1項に記載の全固体リチウム二次電池用の活物質層。
         Σ(Xe/Re) / Σ(Xa/Ra)<9 ・・・式(2)
     Xe:活物質層に含まれる導電助剤の含有量(質量%)、
     Re:活物質層に含まれる導電助剤の平均粒子径(平均繊維径)(μm)、
     Ra:活物質層に含まれる活物質の平均粒子径(μm)、
     Xa:活物質層に含まれる活物質の含有量(質量%)
  12.  請求項1乃至請求項11のいずれか1項に記載の活物質層と、固体電解質とを含む全固体リチウム二次電池。

     
PCT/JP2020/025113 2019-06-28 2020-06-26 繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池 WO2020262566A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227003010A KR20220028025A (ko) 2019-06-28 2020-06-26 섬유상 탄소를 포함하는 전고체 리튬 이차 전지용의 활물질층, 및 전고체 리튬 이차 전지
EP20831373.4A EP3993109A4 (en) 2019-06-28 2020-06-26 CARBON FIBER CONTAINING ACTIVE MATERIAL LAYER FOR SOLID LITHIUM SECONDARY BATTERY AND SOLID LITHIUM SECONDARY BATTERY
CN202080047387.XA CN114072936B (zh) 2019-06-28 2020-06-26 含有纤维状碳的全固体锂二次电池用活性物质层及全固体锂二次电池
JP2020552418A JP6860751B1 (ja) 2019-06-28 2020-06-26 繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池
US17/622,600 US20220359881A1 (en) 2019-06-28 2020-06-26 Fibrous-carbon-containing active material layer for all-solid lithium secondary battery and all-solid lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019122507 2019-06-28
JP2019-122507 2019-06-28
JP2019151605 2019-08-21
JP2019-151605 2019-08-21

Publications (1)

Publication Number Publication Date
WO2020262566A1 true WO2020262566A1 (ja) 2020-12-30

Family

ID=74061268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025113 WO2020262566A1 (ja) 2019-06-28 2020-06-26 繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池

Country Status (6)

Country Link
US (1) US20220359881A1 (ja)
EP (1) EP3993109A4 (ja)
JP (2) JP6860751B1 (ja)
KR (1) KR20220028025A (ja)
TW (1) TW202115949A (ja)
WO (1) WO2020262566A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132304A1 (ja) * 2022-01-04 2023-07-13 パナソニックホールディングス株式会社 正極材料および電池
JP7469920B2 (ja) 2020-03-13 2024-04-17 マクセル株式会社 全固体電池用正極および全固体電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188395A1 (ja) * 2022-03-31 2023-10-05 ビークルエナジージャパン株式会社 リチウムイオン二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244911A (ja) * 2009-04-08 2010-10-28 Mitsubishi Rayon Co Ltd 電極セル及びリチウムイオン二次電池
JP2010262764A (ja) 2009-04-30 2010-11-18 Toyota Motor Corp 正極合剤層形成用スラリーおよび正極合剤層
WO2014115852A1 (ja) * 2013-01-25 2014-07-31 帝人株式会社 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層
JP2016009679A (ja) 2014-06-26 2016-01-18 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体リチウム二次電池
WO2016157348A1 (ja) 2015-03-30 2016-10-06 株式会社日立製作所 バルク型全固体リチウム二次電池
JP2018181706A (ja) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 全固体リチウムイオン二次電池の製造方法
JP2019185897A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 全固体電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964277B1 (ko) * 2015-10-30 2019-04-01 주식회사 엘지화학 전고체 전지용 전극의 제조방법
DE102016217705A1 (de) * 2016-09-15 2018-03-15 Bayerische Motoren Werke Aktiengesellschaft Faserverstärkte Sinterelektrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244911A (ja) * 2009-04-08 2010-10-28 Mitsubishi Rayon Co Ltd 電極セル及びリチウムイオン二次電池
JP2010262764A (ja) 2009-04-30 2010-11-18 Toyota Motor Corp 正極合剤層形成用スラリーおよび正極合剤層
WO2014115852A1 (ja) * 2013-01-25 2014-07-31 帝人株式会社 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層
JP2016009679A (ja) 2014-06-26 2016-01-18 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体リチウム二次電池
WO2016157348A1 (ja) 2015-03-30 2016-10-06 株式会社日立製作所 バルク型全固体リチウム二次電池
JP2018181706A (ja) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 全固体リチウムイオン二次電池の製造方法
JP2019185897A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 全固体電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Measurement of Lattice Parameters and Crystallite Sizes of Carbon Materials", 2007, JAPAN INDUSTRIAL STANDARD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469920B2 (ja) 2020-03-13 2024-04-17 マクセル株式会社 全固体電池用正極および全固体電池
WO2023132304A1 (ja) * 2022-01-04 2023-07-13 パナソニックホールディングス株式会社 正極材料および電池

Also Published As

Publication number Publication date
EP3993109A1 (en) 2022-05-04
JPWO2020262566A1 (ja) 2021-09-13
EP3993109A4 (en) 2022-12-07
CN114072936A (zh) 2022-02-18
TW202115949A (zh) 2021-04-16
JP2021101430A (ja) 2021-07-08
US20220359881A1 (en) 2022-11-10
JP6860751B1 (ja) 2021-04-21
KR20220028025A (ko) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6860751B1 (ja) 繊維状炭素を含む全固体リチウム二次電池用の活物質層、及び全固体リチウム二次電池
EP2950375B1 (en) Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
KR102626158B1 (ko) 섬유상 탄소 및 그 제조 방법, 및 비수 전해질 이차 전지용 전극 합제층, 및 비수 전해질 이차 전지용 전극, 및 비수 전해질 이차 전지
JP6630368B2 (ja) 炭素繊維集合体及びその製造方法並びに非水電解質二次電池用電極合剤層並びに非水電解質二次電池用電極並びに非水電解質二次電池
JP7108372B2 (ja) 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池
JP7489438B2 (ja) 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
WO2022255307A1 (ja) リチウムイオン二次電池用電極シート
JP2017066546A (ja) ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池
CN114072936B (zh) 含有纤维状碳的全固体锂二次电池用活性物质层及全固体锂二次电池
JP2017010935A (ja) 非電解質二次電池用電極合剤層、それを含む非水電解質二次電池用電極及び非水電解質二次電池
WO2022050211A1 (ja) 樹脂結合繊維、並びにこれを用いる活物質層、電極、及び非水電解質二次電池
JP6666088B2 (ja) 非水電解質二次電池用として好適な複合体
JP2023152600A (ja) 耐熱性集電フィルム
JP2017008473A (ja) 炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552418

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227003010

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020831373

Country of ref document: EP

Effective date: 20220128