WO2020261474A1 - リーン車両 - Google Patents

リーン車両 Download PDF

Info

Publication number
WO2020261474A1
WO2020261474A1 PCT/JP2019/025566 JP2019025566W WO2020261474A1 WO 2020261474 A1 WO2020261474 A1 WO 2020261474A1 JP 2019025566 W JP2019025566 W JP 2019025566W WO 2020261474 A1 WO2020261474 A1 WO 2020261474A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
starting
electric double
ion battery
layer capacitor
Prior art date
Application number
PCT/JP2019/025566
Other languages
English (en)
French (fr)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2019/025566 priority Critical patent/WO2020261474A1/ja
Priority to PCT/JP2020/024104 priority patent/WO2020262223A1/ja
Priority to JP2021526903A priority patent/JPWO2020262223A1/ja
Publication of WO2020261474A1 publication Critical patent/WO2020261474A1/ja
Priority to JP2023178912A priority patent/JP2024009992A/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a lean vehicle.
  • Patent Document 1 discloses a hybrid vehicle including an engine, a motor generator, and a power storage device.
  • the hybrid vehicle in Patent Document 1 is, for example, a four-wheeled vehicle, a two-wheeled vehicle, or a three-wheeled vehicle.
  • a starting lithium-ion battery is used as the power storage device in Patent Document 1.
  • the motor generator of Patent Document 1 functions as a generator, it receives rotational force from an engine or wheels to generate electric power, and the generated electric power is charged to a battery. Further, the motor generator of Patent Document 1 rotates using a battery as a power source.
  • the hybrid vehicle runs on EV by the power of the motor generator. Further, the power of the motor generator is transmitted to the output shaft of the engine during EV traveling. As a result, the engine can be started.
  • Lithium-ion batteries have a higher energy density than, for example, lead batteries. Therefore, according to the lithium ion battery, a large amount of electric power can be stored.
  • a lean vehicle that starts an engine using the electric power of a lithium-ion battery for starting can start an engine in a wide temperature range.
  • An object of the present invention is to provide a lean vehicle capable of starting an engine with a lithium-ion battery for starting in a wide temperature range.
  • the present inventors examined the starting of an engine using a lithium-ion battery for starting. As a result, the present inventors have found the following.
  • the starting lithium-ion battery has a high energy density by utilizing the movement of lithium ions.
  • the starting lithium ion battery tends to increase the transfer resistance (diffusion resistance) of lithium ions in the electrolytic solution and the resistance (charge transfer resistance) in the electrode reaction at a low temperature.
  • the mobility of lithium ions tends to decrease at low temperatures. Therefore, the starting lithium-ion battery tends to have an increased internal resistance at a low temperature as compared with, for example, a lead battery. Therefore, the current output from the starting lithium-ion battery tends to decrease at low temperatures.
  • a large-capacity lithium-ion battery for starting so that the starter motor does not start the engine for a long time due to the power of the battery at low temperature.
  • a four-wheeled vehicle as a hybrid vehicle can be equipped with a large-capacity starting lithium-ion battery.
  • attitude control is performed by the weight shift of the rider during running or turning.
  • the body of the lean vehicle is preferably made lighter or smaller so that the attitude control is smoothly performed by the weight shift of the rider. Therefore, in general, the installation space of the device in the vehicle body of the lean vehicle is severely limited. Since the battery is a relatively large heavy object in the lean vehicle, the installation space of the device is severely limited. Therefore, in a lean vehicle, it is not easy to increase the capacity of the starting lithium-ion battery to the extent that sufficient electric power can be output even at a low temperature.
  • the present inventors have considered connecting an electric double layer capacitor to the starting lithium-ion battery instead of increasing the capacity of the starting lithium-ion battery in the lean vehicle. In this study, the present inventors have found the following.
  • the electric power (current) that can be output from the starting lithium-ion battery in a unit time at low temperatures is small.
  • the power output from the starting lithium-ion battery can charge the electric double layer capacitor before starting.
  • the starting lithium-ion battery powers the motor, and at the same time, the precharged electric double layer capacitor can also power the motor.
  • Electric double layer capacitors do not utilize the chemical reaction of electrodes like batteries. Therefore, the electric double layer capacitor has less increase in internal resistance at low temperature than, for example, a battery.
  • the volume of the electric double layer capacitor is sufficient to have a capacitance capable of charging the amount of electric power for starting the engine at least once, when a large-capacity lithium-ion battery for starting such as a four-wheeled vehicle is installed. Can be made more compact than. Therefore, it can be mounted on a lean vehicle without impairing the degree of freedom in design. In this way, an electric double layer capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once is connected. As a result, the engine can be started by the starting lithium-ion battery in a wide temperature range including a low temperature without increasing the capacity of the starting lithium-ion battery as in the case of a four-wheeled vehicle, for example.
  • the lean vehicle of the present invention has the following configuration.
  • a lean vehicle that tilts to the left of the vehicle while turning left and tilts to the right of the vehicle while turning right.
  • the lean vehicle A wheel having a tread surface for grounding with the road surface and having an arcuate cross-sectional shape of the tread surface.
  • An engine that has a crankshaft and outputs torque for driving the wheels from the crankshaft, A permanent magnet type starting motor having a permanent magnet and rotating the crankshaft to start the engine, A starting lithium-ion battery that supplies power to the permanent magnet starting motor when the engine is started, It is connected to the starting lithium-ion battery that supplies electric power to the permanent magnet start motor when the engine is started, and the permanent magnet start motor can charge an amount of electric power that starts the engine at least once.
  • the lean vehicle in the above configuration includes wheels, an engine, a permanent magnet starter motor, a starting lithium-ion battery, and an electric double layer capacitor.
  • the wheel has a tread surface having an arcuate cross-sectional shape. Therefore, the lean vehicle can travel so as to tilt to the left of the vehicle during a left turn and to the right of the vehicle during a right turn.
  • the starting lithium-ion battery powers the permanent magnet starting motor when the engine is started.
  • the electric power (current) that can be output from a starting lithium-ion battery in a unit time at a low temperature is smaller than, for example, a lead battery having the same capacity. It is not easy to increase the capacity of the starting lithium-ion battery in a lean vehicle that runs incline when turning.
  • the starting lithium-ion battery included in the lean vehicle of this configuration is connected to an electric double layer capacitor. Therefore, the electric double layer capacitor can be charged before starting by the electric power output from the starting lithium ion battery.
  • the starting lithium-ion battery can power the motor, and at the same time, the precharged electric double layer capacitor can also power the motor.
  • Electric double layer capacitors do not utilize the chemical reaction of electrodes like batteries. Therefore, the electric double layer capacitor has less increase in internal resistance at low temperature than, for example, a battery.
  • the volume of the electric double layer capacitor is sufficient to have a capacitance capable of charging the amount of electric power for starting the engine at least once, when a large-capacity lithium-ion battery for starting such as a four-wheeled vehicle is installed. Can be made more compact than. Therefore, it can be mounted on a lean vehicle that travels so as to incline when turning without impairing the degree of freedom in design. In this way, an electric double layer capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once is connected. As a result, the engine can be started by the starting lithium ion battery in a wide temperature range including a low temperature without increasing the capacity of the starting lithium ion battery as in the case of a four-wheeled vehicle, for example.
  • the lean vehicle can adopt the following configuration.
  • the lean vehicle of (1) The electric double layer capacitor has a capacitance of 30 F or more.
  • the crankshaft is rotated for a period of time so that the engine can be started in a wide temperature range including low temperature without increasing the capacity of the starting lithium-ion battery as in the case of a four-wheeled vehicle, for example. Can be done.
  • the lean vehicle can adopt the following configuration. (3) Lean vehicle of (1) or (2) Five to seven electric double layer capacitors are connected in series.
  • the electric double layer capacitor connected in series can have a storage capacity capable of starting the engine even when the starting lithium ion battery provided in the lean vehicle does not function.
  • the lean vehicle can adopt the following configuration.
  • the electric double layer capacitor is attached to the vehicle body even if the starting lithium-ion battery is removed from the vehicle body for replacement, for example. Therefore, for example, even if the life of the starting lithium-ion battery is reached, the engine can be started by the starting lithium-ion battery in a wide temperature range including a low temperature simply by replacing the starting lithium-ion battery in the lean vehicle. ..
  • the lean vehicle can adopt the following configuration.
  • the permanent magnet type starting motor includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
  • a stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet start motor and a stator having windings provided so as to pass through the slots are provided.
  • the number of magnetic poles is larger than the number of the plurality of teeth.
  • a winding having a small electric resistance can be adopted in order to increase the torque at the time of starting the permanent magnet type starting motor while suppressing the loss when the permanent magnet type starting motor generates electric power. ..
  • a large current corresponding to the acceptance of the permanent magnet type starting motor can be supplied. Therefore, it is easy to start the engine with the lithium-ion battery for starting in a wide temperature range including low temperature.
  • the lean vehicle can adopt the following configuration.
  • the electric double layer capacitor is a lead type having a lead wire that functions as a terminal for connecting to the outside.
  • the electric double layer capacitor can be manufactured in an array configuration in a shorter time than in the case of, for example, a bolt type terminal by, for example, soldering to a substrate.
  • Lean vehicle is a type of saddle-mounted vehicle.
  • a lean vehicle is a vehicle that rides in a riding style. The driver sits across the saddle of the lean vehicle.
  • Lean vehicles include, for example, scooter type, moped type, off-road type, and on-road type motorcycles. Further, the lean vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like, or may be a motorcycle.
  • a tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • a wheel having a tread surface for grounding with the road surface and having an arcuate cross-sectional shape of the tread surface is, for example, such that the tread surface (the surface for grounding with the road surface) reaches the side surface of the wheel. It is configured.
  • the cross-sectional shape of the tread surface of the wheel is an arc or a shape similar to an arc.
  • the cross section of the tread surface is a cross section that passes through the rotation axis of the wheel.
  • the cross-sectional shape of the tread surface of the wheel may be such that the central portion in the vehicle width direction projects so as to form a ridgeline.
  • the tread surface of the wheel may be configured such that the contact area with the road surface during turning is larger than the contact area with the road surface during straight travel.
  • the wheel may be configured such that the area in contact with the road surface continuously changes, for example, according to the inclination of the lean vehicle.
  • the tread surface of the wheel does not include a cylindrical surface centered on the rotation axis of the wheel without contacting the road surface.
  • the cross-sectional shape of the outermost circumference of the wheel is not formed of a straight line without contacting the road surface.
  • the tread surface is formed on the tire of the wheel, for example.
  • the shape of the tread surface means a macroscopic shape ignoring the unevenness due to the groove.
  • the wheel is, for example, a wheel for a motorcycle specified in ISO or JIS.
  • the wheels of a vehicle other than the lean vehicle for example, an automobile
  • the permanent magnet type starting motor has a permanent magnet.
  • the magnetic starting motor is, for example, a magnetic starting generator.
  • the magnetic starting motor may be a motor that is not used as a generator.
  • the motor of the engine starting device includes, for example, an outer rotor type motor, an inner rotor type motor, and an axial gap type motor.
  • examples of the motor of the engine starting device include a brush motor and a brushless motor with an inverter.
  • the permanent magnet starter motor starts the engine at least with the crankshaft not rotating. That is, the permanent magnet starter motor starts the engine, at least with the lean vehicle stopped.
  • the permanent magnet type start motor may start the engine in a state where the crankshaft is rotating or in a state where the lean vehicle is running.
  • the starting lithium-ion battery is a battery that can be charged and discharged. That is, the battery is a storage battery.
  • a battery is a secondary battery that charges and discharges by a chemical reaction of electrodes. Batteries are charged and discharged by oxidation and reduction reactions of electrodes. Batteries store the charged power as chemical energy. Batteries convert stored chemical energy into electrical energy. The terminal voltage of the battery is not proportional to the amount of power stored in the battery.
  • the maximum discharge rated current of the starting lithium-ion battery is smaller than the maximum charge rated current. However, as the starting lithium-ion battery, a type having a maximum discharge rated current larger than the maximum charge rated current may also be adopted.
  • a starting lithium-ion battery is a battery that stores electric power for starting an engine.
  • the starting lithium-ion battery is used at least for starting the engine when the crankshaft is not rotating. That is, the starting lithium-ion battery is used at least for starting the engine when the lean vehicle is stopped. However, the starting lithium-ion battery may be used for starting the engine when the crankshaft is rotating or when the lean vehicle is running.
  • the electric double layer capacitor stores the electric power to be charged as an electric charge.
  • the electric double layer capacitor charges and discharges without involving a chemical reaction of the electrodes.
  • the terminal voltage of an electric double layer capacitor is substantially proportional to the charged charge, that is, the amount of electric power.
  • the electric double layer capacitor has a capacity to store electric power that contributes to the rotation of the motor of the engine starter.
  • the electric double layer capacitor is, in particular, a storage electric double layer capacitor. More specifically, electric double layer capacitors have a greater equivalent series resistance (ESR) than smoothing electric double layer capacitors.
  • ESR equivalent series resistance
  • Electric double layer capacitors have Equivalent Series Inductance (ESL) as a parasitic inductance that is larger than smoothing electric double layer capacitors.
  • the electric double layer capacitor connected to the starting lithium ion battery is connected in parallel to, for example, a lead battery.
  • the connection state is not limited to this, and the electric double layer capacitor may be connected in series with, for example, a starting lithium ion battery.
  • the electric double layer capacitor may be connected to the lead battery, for example, via a switch for switching the connection state. For example, when an electric double layer capacitor is connected in parallel with a battery when viewed from the engine starter, it is electrically connected so that the currents from both the electric double layer capacitor and the battery merge and flow to the engine starter. It means that it has been done.
  • the state in which the electric double layer capacitor is connected in parallel with the battery when viewed from the engine starter includes a state in which the battery and the electric double layer capacitor are connected only by wiring. Further, the state in which the electric double layer capacitor is connected in parallel with the battery when viewed from the engine starting device includes a state in which a device other than the wiring is inserted between the battery and the electric double layer capacitor.
  • a connector that electrically switches between the battery and the electric double layer capacitor depending on the operation.
  • states that include.
  • the state in which the electric double layer capacitor is connected in parallel with the battery when viewed from the engine starting device includes a state in which an electric component other than the connector is inserted between the battery and the electric double layer capacitor.
  • Examples of such electrical components include switches, relays, resistors, connection terminals, and fuses.
  • the wiring is, for example, a lead wire. However, the wiring is not limited to one composed of one lead wire, and may be a plurality of connected lead wires. Wiring also includes equipment whose main function is conduction. For example, wiring includes connectors, switches, relays, resistors, connection terminals, and fuses.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related enumerated components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “combined” and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
  • FIG. 1 It is a figure which shows typically the lean vehicle which concerns on one Embodiment of this invention. It is a figure which shows typically the lean vehicle and the electric system which are application examples of the embodiment shown in FIG. It is an external view which shows the starting lithium ion battery and the electric double layer capacitor shown in FIG. It is a partial cross-sectional view schematically showing the schematic structure of the engine unit shown in FIG. It is sectional drawing which shows the cross section perpendicular to the rotation axis of the permanent magnet type start motor shown in FIG. It is a circuit diagram which shows the electric schematic structure of the lean vehicle shown in FIG. It is a chart which shows the change of the electric current at the time of starting an engine in the lean vehicle shown in FIG. It is a circuit diagram which shows the electrical schematic structure of the lean vehicle in the 2nd application example.
  • FIG. 1 is a diagram schematically showing a lean vehicle according to an embodiment of the present invention.
  • Part (a) of FIG. 1 is a side view of a lean vehicle.
  • Part (b) of FIG. 1 is a partial cross-sectional view of the wheel shown in Part (a).
  • the lean vehicle 1 shown in FIG. 1 includes wheels 3a and 3b, an engine 10, a permanent magnet type starting motor 20, a starting lithium ion battery 4, and an electric double layer capacitor 71. Further, the lean vehicle 1 includes a vehicle body 2. The lean vehicle 1 is a saddle-mounted vehicle. FIG. 1 shows a motorcycle as an example of the lean vehicle 1. The lean vehicle 1 tilts to the left of the vehicle while turning left and tilts to the right of the vehicle while turning right.
  • the wheels 3a and 3b provided in the lean vehicle 1 are a front wheel 3a and a rear wheel 3b.
  • the rear wheel 3b is a driving wheel.
  • the wheel 3a has a tread surface TR for grounding with the road surface.
  • the tread surface TR is formed on, for example, a tire.
  • the cross-sectional shape of the tread surface TR is arcuate.
  • the part (b) of FIG. 1 shows a macroscopic shape ignoring the unevenness due to the groove formed on the tread surface TR.
  • the cross-sectional shape of the tread surface TR is the same for the rear wheel 3b.
  • the tread surface TR of the wheels 3a and 3b has an arcuate cross-sectional shape without contacting the road surface.
  • the wheels 3a and 3b that do not come into contact with the road surface do not include a cylindrical surface centered on the rotation axis of the wheel.
  • the portions of the wheels 3a and 3b in contact with the road surface are deformed into a flat shape according to the road surface due to the vehicle weight.
  • the shape of the portions of the wheels 3a and 3b that come into contact with the road surface is not the cross-sectional shape of the tread surface TR in the state of not contacting the road surface as described above.
  • the tread surfaces of the wheels 3a and 3b have an arcuate cross-sectional shape without contacting the road surface.
  • the shape of the tread surface of the wheels 3a and 3b is different from that of, for example, a four-wheeled vehicle.
  • the contact area between the wheels 3a and 3b and the road surface from a macroscopic viewpoint excluding the grooves formed on the tread surface TR and the unevenness due to scratches changes continuously with the tilting motion of the lean vehicle 1.
  • the engine 10 includes a crankshaft 15.
  • the engine 10 outputs power via the crankshaft 15.
  • the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
  • the wheels 3b receive the power of the crankshaft 15 to drive the lean vehicle 1.
  • the power output from the engine 10 can be transmitted to the wheels 3b via, for example, a transmission and a clutch.
  • the permanent magnet type starting motor 20 has a permanent magnet. More specifically, the permanent magnet type starting motor 20 includes a permanent magnet portion 37 composed of a permanent magnet.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 are power storage devices that can be charged and discharged.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 output the charged electric power to the outside.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 supply electric power to the permanent magnet type starting motor 20.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 supply electric power to the permanent magnet type starting motor 20 when the engine 10 is started. Further, the starting lithium ion battery 4 and the electric double layer capacitor 71 are charged by the electric power generated by the permanent magnet type starting motor 20.
  • the starting lithium-ion battery 4 supplies electric power to the permanent magnet type starting motor 20 when the engine 10 is started. Further, for example, after starting the engine, the starting lithium ion battery 4 is charged by receiving the current supplied from the permanent magnet type starting motor 20.
  • the electric double layer capacitor 71 is connected to the starting lithium ion battery 4.
  • the electric double layer capacitor 71 supplies electric power to the permanent magnet type starting motor 20 together with the starting lithium ion battery 4 when the engine 10 is started.
  • the electric double layer capacitor 71 has a capacitance capable of charging an amount of electric power for starting the engine 10 at least once by the permanent magnet type starting motor 20. For example, the total weight of the electric double layer capacitor 71 is smaller than the weight of the starting lithium ion battery 4.
  • the electric path from the electric double layer capacitor 71 to the permanent magnet type starting motor 20 is not provided with a fuse, or is provided with a fuse of 50 A or more (not shown).
  • a fuse of less than 50 A is provided, if the starting lithium ion battery 4 does not function and is started by the current from the electric double layer capacitor 71, the fuse may be blown and the start may not be possible. is there.
  • the lean vehicle 1 has, for example, five or more electric double layer capacitors 71.
  • the lean vehicle 1 has, for example, 5 to 7 electric double layer capacitors 71. This is to minimize the volume of the lean vehicle 1 while maintaining the pressure resistance suitable for the lean vehicle 1.
  • the lean vehicle 1 can have, for example, 5 or 6 electric double layer capacitors 71.
  • the electric double layer capacitor 71 has a capacitance of 30 F or more, for example. This makes it possible to support engines 10 belonging to a wide range of sizes at low temperatures. For example, even if the starting lithium-ion battery 4 does not function, that is, even if it does not output electric power, the engine 10 belonging to a wide range of sizes is started by supplying electric power to the permanent magnet type starting motor 20. be able to.
  • the electric double layer capacitor 71 can also start an engine having a displacement (stroke capacity) of 100 mL or more, for example.
  • the electric double layer capacitor 71 is connected in parallel or in series with, for example, the starting lithium ion battery 4.
  • the plurality of electric double layer capacitors 71 are connected in series with each other.
  • the plurality of electric double layer capacitors 71 are connected in series so as to increase the substantial storage capacity.
  • the storage capacity is rechargeable energy.
  • the energy that the electric double layer capacitor 71 can charge can be represented by, for example, an electric charge.
  • the storage capacity is different from the capacitance. In general, the combined capacitance of a plurality of capacitors in series is equal to the capacitance of the capacitors here.
  • the electric double layer capacitor 71 of the present embodiment has a maximum working voltage lower than the operating voltage used in the lean vehicle 1.
  • a configuration is conceivable in which the operating voltage is stepped down by using a step-down means such as a voltage converter or a voltage dividing resistor and charged.
  • the voltage discharged from only one electric double layer capacitor 71 is boosted by the boosting means and used.
  • the energy or charge charged in only one electric double layer capacitor 71 is equal to the product of capacitance and voltage. Therefore, the energy to be charged is small because the voltage is low. That is, the storage capacity is small.
  • the storage capacity is large.
  • the electric double layer capacitor 71 can be connected in parallel with, for example, the starting lithium ion battery 4.
  • the electric double layer capacitor 71 may be configured to be connected in series with the starting lithium ion battery 4. By connecting the electric double layer capacitor 71 in parallel with the starting lithium ion battery 4, the capacity is simply increased. Further, by connecting the electric double layer capacitor 71 in series with the starting lithium ion battery 4, for example, it can be charged even when the supplied voltage is high. Therefore, even in the case of series, the total storage capacity increases. Further, as a connection configuration, for example, the electric double layer capacitor 71 may be configured to switch between series connection and parallel connection with the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 are physically separate from each other.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 are provided at different positions with respect to the vehicle body 2.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 can be provided at positions adjacent to each other.
  • the arrangement relationship is not limited to this, and the starting lithium ion battery 4 and the electric double layer capacitor 71 may be arranged at positions separated from each other in the lean vehicle 1.
  • the starting lithium-ion battery 4 is provided on the vehicle body 2 so as to be replaceable.
  • the electric double layer capacitor 71 is provided on the vehicle body 2 together with the starting lithium ion battery 4 so as not to be removed from the vehicle body 2 when the starting lithium ion battery 4 is replaced.
  • the electric double layer capacitor 71 is attached to the vehicle body 2 so as to maintain the state of being attached to the vehicle body 2 when the starting lithium ion battery 4 is removed from the vehicle body 2. More specifically, the electric double layer capacitor 71 and the starting lithium ion battery 4 are attached to the vehicle body 2 by members different from each other.
  • the permanent magnet type starting motor 20 rotates the crankshaft 15 by the electric power of the starting lithium ion battery 4. As a result, the permanent magnet type start motor 20 starts the engine 10.
  • the electric double layer capacitor 71 and the starting lithium ion battery 4 are connected. Therefore, the permanent magnet type starting motor 20 rotates the crank shaft 15 by both the electric power charged in the electric double layer capacitor 71 and the electric power charged in the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 supplies electric power to the permanent magnet type starting motor 20 when the engine 10 is started.
  • the current that can be output from the starting lithium-ion battery 4 in a unit time at a low temperature is smaller than, for example, a lead battery having the same capacity.
  • the starting lithium-ion battery 4 is connected to the electric double layer capacitor 71. Therefore, the electric double layer capacitor 71 can be charged before starting by the electric power output from the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 can supply electric power to the permanent magnet type starting motor 20, and at the same time, the precharged electric double layer capacitor 71 can also supply electric power to the permanent magnet type starting motor 20. it can.
  • the electric double layer capacitor 71 does not utilize the chemical reaction of the electrodes like the starting lithium ion battery 4. Therefore, in the electric double layer capacitor 71, the increase in internal resistance at low temperature is small as compared with, for example, the starting lithium ion battery 4. Therefore, the electric double layer capacitor 71 can suppress a decrease in output current at a low temperature as compared with, for example, the starting lithium ion battery 4. Further, the volume of the electric double layer capacitor 71 can be made compact because the capacitance capable of charging the electric power for starting the engine 10 at least once is sufficient. Therefore, it can be mounted on the lean vehicle 1 that travels so as to incline when turning without impairing the degree of freedom in vehicle design.
  • the electric double layer capacitor 71 having a capacitance capable of charging the amount of electric power for starting the engine 10 at least once the low temperature without increasing the capacity of the starting lithium ion battery 4
  • the engine 10 can be started by the starting lithium-ion battery 4 in a wide temperature range including.
  • FIG. 2 is a diagram schematically showing a lean vehicle and an electric system which are application examples of the embodiment shown in FIG. Part (a) of FIG. 2 is a plan view of a lean vehicle. Part (b) of FIG. 2 is a partial cross-sectional view of the wheel shown in Part (a). Part (c) of FIG. 2 is a side view of the lean vehicle. Part (d) of FIG. 2 is a physical wiring diagram schematically showing the connection of the electric system of the lean vehicle.
  • FIGS. 2 and 2 the elements corresponding to the embodiments shown in FIG. 1 will be described with the same reference numerals as those in FIG.
  • the lean vehicle 1 shown in FIG. 2 includes a vehicle body 2.
  • the vehicle body 2 is provided with a seat 2a for the driver to sit on. The driver sits so as to straddle the seat 2a.
  • FIG. 2 shows a motorcycle as an example of the lean vehicle 1.
  • the lean vehicle 1 has a front wheel 3a and a rear wheel 3b, and the wheel 3a and the wheel 3b have a tread surface TR for grounding with the road surface.
  • the tread surfaces of the wheels 3a and 3b of the lean vehicle 1 have an arcuate cross-sectional shape without contacting the road surface.
  • the engine 10 constitutes an engine unit EU. That is, the lean vehicle 1 includes an engine unit EU.
  • the engine unit EU includes an engine 10 and a permanent magnet start motor 20.
  • the engine 10 outputs power via the crankshaft 15.
  • the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
  • the wheels 3b receive the power of the crankshaft 15 to drive the lean vehicle 1.
  • the engine 10 has, for example, a displacement of 100 mL or more.
  • the engine 10 has, for example, a displacement of less than 400 mL.
  • the lean vehicle 1 includes a transmission CVT and a clutch CL. The power output from the engine 10 is transmitted to the wheels 3b via the transmission CVT and the clutch CL.
  • the permanent magnet type starting motor 20 is driven by the engine 10 to generate electricity.
  • the permanent magnet type start motor 20 shown in FIG. 2 is a magnet type start generator.
  • the permanent magnet type starting motor 20 has a rotor 30 and a stator 40.
  • the rotor 30 includes a permanent magnet portion 37 composed of a permanent magnet.
  • the rotor 30 rotates with the power output from the crankshaft 15.
  • the stator 40 is arranged so as to face the rotor 30.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 are power storage devices that can be charged and discharged.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 output the charged electric power to the outside.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 supply electric power to the permanent magnet type starting motor 20 and the electric device L.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 supply electric power to the permanent magnet type starting motor 20 when the engine 10 is started. Further, the starting lithium ion battery 4 and the electric double layer capacitor 71 are charged by the electric power generated by the permanent magnet type starting motor 20.
  • the starting lithium-ion battery 4 supplies electric power to the permanent magnet type starting motor 20 when the engine 10 is started. Further, for example, after the engine 10 is started, the starting lithium ion battery 4 is charged by receiving the current supplied from the permanent magnet type starting motor 20.
  • the lean vehicle 1 includes an inverter 21.
  • the inverter 21 includes a plurality of switching units 211 that control the current flowing between the permanent magnet type starting motor 20 and the starting lithium ion battery 4.
  • the electric double layer capacitor 71 is connected to the starting lithium ion battery 4.
  • the lean vehicle 1 shown in FIG. 2 includes a plurality of electric double layer capacitors 71.
  • the electric double layer capacitors 71 are connected in series with each other.
  • the electric double layer capacitors 71 connected in series with each other electrically operate as one electric double layer capacitor.
  • the electric double layer capacitor 71 shown in FIG. 2 is connected in parallel with the starting lithium ion battery 4 when viewed from the inverter 21.
  • the electric double layer capacitor 71 supplies electric power to the permanent magnet type starting motor 20 together with the starting lithium ion battery 4 when the engine 10 is started.
  • the electric double layer capacitor 71 has a capacitance capable of charging an amount of electric power for starting the engine at least once by the permanent magnet type starting motor 20.
  • the total weight of the electric double layer capacitor 71 is smaller than the weight of the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 and the electric double layer capacitor 71 are physically separate from each other.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 are separately provided with respect to the vehicle body 2.
  • the starting lithium-ion battery 4 is provided on the vehicle body 2 so as to be replaceable.
  • the electric double layer capacitor 71 is provided on the vehicle body 2 together with the starting lithium ion battery 4 so as not to come off from the vehicle body 2 when the starting lithium ion battery 4 is replaced. That is, the electric double layer capacitor 71 is attached to the vehicle body 2 so that the state of being attached to the vehicle body 2 can be maintained even when the starting lithium ion battery 4 is removed from the vehicle body 2.
  • the electric double layer capacitor 71 and the starting lithium ion battery 4 are attached to the vehicle body 2 by members different from each other.
  • the electric double layer capacitor 71 can be provided so that it can be taken out from the vehicle body 2 on condition that the starting lithium ion battery 4 is taken out from the vehicle body 2.
  • the vehicle body 2 is provided with a storage recess for accommodating both the electric double layer capacitor 71 and the starting lithium ion battery 4, and the electric double layer capacitor 71 is arranged deeper than the starting lithium ion battery 4.
  • the electric double layer capacitor 71 may be provided so that the starting lithium ion battery 4 can be taken out from the vehicle body 2 in a state where the vehicle body 2 is attached.
  • the electric double layer capacitor 71 is arranged so that the distance between the electric double layer capacitor 71 and the inverter 21 is shorter than the distance between the starting lithium ion battery 4 and the inverter 21 based on the wiring distance. That is, the electric double layer capacitor 71 is arranged at a position closer to the inverter 21 than the starting lithium ion battery 4 with reference to the wiring distance.
  • the wiring distance from the electric double layer capacitor 71 to the permanent magnet type starting motor 20 via the inverter 21 is the permanent magnet type from the starting lithium ion battery 4 to the inverter 21. It is shorter than the wiring distance to the starting motor 20.
  • the permanent magnet type starting motor 20 rotates the crankshaft 15 by the electric power of the starting lithium ion battery 4. As a result, the permanent magnet type start motor 20 starts the engine 10. Since the electric double layer capacitor 71 and the starting lithium ion battery 4 are connected, the permanent magnet type starting motor 20 uses the electric power charged in the electric double layer capacitor 71 and the electric power charged in the starting lithium ion battery 4. The crank shaft 15 is rotated by both of the above.
  • the lean vehicle 1 includes a main switch 5.
  • the main switch 5 is a switch for supplying electric power to the electric device L (see FIG. 6) provided in the lean vehicle 1 according to the operation.
  • the electric device L is a collective representation of devices that operate while consuming electric power, except for the permanent magnet type starting motor 20.
  • the electric device L includes, for example, a headlight 9, a fuel injection device 18 described later, and a spark plug 19.
  • the lean vehicle 1 includes a starter switch 6.
  • the starter switch 6 is a switch for starting the engine 10 in response to an operation.
  • the lean vehicle 1 includes a main relay 75.
  • the main relay 75 opens and closes a circuit including the electric device L in response to a signal from the main switch 5.
  • the lean vehicle 1 includes an acceleration indicator 8.
  • the acceleration instruction unit 8 is an operator for instructing the acceleration of the lean vehicle 1 according to the operation.
  • the acceleration indicator 8 is, in detail, an accelerator grip.
  • the starting lithium-ion battery 4 supplies electric power to the permanent magnet type starting motor 20 when the engine 10 is started.
  • the current that can be output from the starting lithium-ion battery 4 in a unit time at a low temperature is smaller than, for example, a lead battery having the same capacity.
  • the starting lithium-ion battery 4 is connected to the electric double layer capacitor 71. Therefore, the electric double layer capacitor 71 can be charged before starting by the electric power output from the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 can supply electric power to the permanent magnet type starting motor 20, and at the same time, the precharged electric double layer capacitor 71 can also supply electric power to the permanent magnet type starting motor 20. it can.
  • the electric double layer capacitor 71 does not utilize the chemical reaction of the electrodes like the starting lithium ion battery 4. Therefore, in the electric double layer capacitor 71, the increase in internal resistance at low temperature is small as compared with, for example, the starting lithium ion battery 4. Therefore, in the electric double layer capacitor 71, a decrease in output current at a low temperature can be suppressed as compared with, for example, the starting lithium ion battery 4. Further, the volume of the electric double layer capacitor 71 can be made compact because the capacitance capable of charging the electric power for starting the engine 10 at least once is sufficient. Therefore, it can be mounted on the lean vehicle 1 that travels so as to incline when turning without impairing the degree of freedom in vehicle design.
  • the electric double layer capacitor 71 having a capacitance capable of charging the amount of electric power for starting the engine 10 at least once the low temperature without increasing the capacity of the starting lithium ion battery 4
  • the engine 10 can be started by the starting lithium-ion battery 4 in a wide temperature range including.
  • FIG. 3 is an external view showing the starting lithium ion battery 4 and the electric double layer capacitor 71 shown in FIG. Part (a) of FIG. 3 is a plan view. Part (b) of FIG. 3 is a side view. Part (b) of FIG. 3 is a bottom view.
  • the starting lithium-ion battery 4 shown in FIG. 3 has a rectangular parallelepiped shape.
  • the starting lithium-ion battery 4 has a top surface 4a, a bottom surface 4b, and four side surfaces 4c.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 shown in FIGS. 2 and 3 have a posture in which the upper surface 4a (FIG. 3) of the starting lithium ion battery 4 faces upward of the lean vehicle 1 in an upright state. Placed in.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 can be arranged in an inclined posture with respect to the posture shown in FIG.
  • the starting lithium-ion battery 4 has a positive terminal 41 and a negative terminal 42.
  • the terminals 41 and 42 are provided in recesses provided on the upper surface portion of the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 has a plurality of battery cells 45.
  • the battery cell 45 has a positive electrode and a negative electrode (not shown).
  • the positive electrode of the starting lithium ion battery 4 is made of a material containing a lithium transition metal composite oxide.
  • the starting lithium-ion battery 4 stores electric power supplied from the outside by a chemical reaction of the electrodes.
  • the starting lithium-ion battery 4 outputs electric power to the outside by a chemical reaction of the electrodes.
  • the starting lithium-ion battery 4 has a built-in battery control circuit (not shown) for controlling the charge amount of each battery cell 45.
  • the lean vehicle 1 has, for example, a plurality of electric double layer capacitors 71 (EDLC).
  • Each electric double layer capacitor 71 is an electric component that can function independently.
  • Each electric double layer capacitor 71 is a lead type provided with lead wires 71a and 71b that function as terminals. These electric double layer capacitors 71 are connected to the circuit board 72.
  • the plurality of electric double layer capacitors 71 and the circuit board 72 constitute an electric double layer capacitor block 7. That is, the electric double layer capacitor block 7 has a plurality of electric double layer capacitors 71 and a circuit board 72 connected to each electric double layer capacitor 71.
  • the electric double layer capacitor block 7 is provided in the lean vehicle 1.
  • the circuit board 72 is solder-connected to the electric double layer capacitor 71.
  • the circuit board has a wiring pattern 72p that connects the electric double layer capacitors 71 in series with each other.
  • the plurality of electric double layer capacitors 71 are connected in series to each other via the circuit board 72.
  • the lead type electric double layer capacitor 71 can be connected in series in a short time by being soldered to the circuit board 72 in the assembly process.
  • the plurality of electric double layer capacitors 71 connected in series with each other electrically function as one electric double layer capacitor. Therefore, a plurality of electric double layer capacitors 71 that electrically function as one electric double layer capacitor may be hereinafter simply referred to as an electric double layer capacitor 71.
  • FIG. 3 shows five or more electric double layer capacitors 71 as an example applied to the lean vehicle 1 (FIG. 2).
  • the lean vehicle 1 shown in FIG. 2 has, for example, six electric double layer capacitors 71.
  • the electric double layer capacitor 71 has an electrode (not shown) and an electrolytic solution, and the electrode includes a last train (not shown) and activated carbon.
  • the electric double layer capacitor 71 stores electric power by forming an electric double layer composed of an array of ions and electrons or holes at the interface where the activated carbon and the electrolytic solution are in contact with each other.
  • the electric double layer capacitor 71 stores electric power in the form of electric charges.
  • the electric double layer capacitor 71 stores electric power regardless of the chemical change of the electrodes. Therefore, the electric double layer capacitor 71 can be charged and discharged with a larger current than, for example, as compared with the starting lithium ion battery 4 having the same capacity.
  • the electric double layer capacitor 71 has less restrictions on the charging current at low temperatures than the starting lithium ion battery 4. Therefore, the electric double layer capacitor 71 can store a larger amount of electric power in a shorter time than the starting lithium ion battery 4 having the same capacity. Further, the electric double layer capacitor 71 has less restrictions on the discharge current at a low temperature than the lithium ion battery 4 for starting. Therefore, the electric double layer capacitor 71 can be discharged with a larger current than the starting lithium ion battery 4 having the same capacity.
  • the electric double layer capacitor 71 shown in FIG. 3 has a capacitance capable of charging the electric power for rotating the crank shaft 15 so that the permanent magnet type starting motor 20 starts the engine 10 at least once. .. Therefore, even if the starting lithium-ion battery 4 cannot output sufficient electric power to start the engine 10, the engine 10 can be started by the current charged in the electric double layer capacitor 71. Even if the starting lithium-ion battery 4 is not connected, the engine 10 can be started at least once with the current charged in the electric double layer capacitor 71.
  • the capacitance of the capacitor is the capacitance. Capacitance is represented by farad (F).
  • the capacity scale is matched with, for example, the starting lithium-ion battery 4, it can also be expressed by the current integrated amount (Ah or As) assuming the standard operating voltage of the battery.
  • the integrated current amount represents the electric charge stored in the capacitor. Therefore, the capacity scale can be expressed by the electric charge (C: coulomb) stored when assuming the standard operating voltage of the battery.
  • the standard operating voltage of a battery is, for example, 12V.
  • the standard operating voltage of the battery may be, for example, a voltage equal to or higher than 12V.
  • the standard operating voltage of the battery may be, for example, 24V.
  • the electric power stored in the electric double layer capacitor 71 connected in series may be represented by an electric charge (C) assuming an operating voltage. 1C is equal to 1As.
  • the electric double layer capacitor 71 has a columnar shape.
  • the plurality of columnar electric double layer capacitors 71 are arranged so as to be substantially parallel to each other.
  • six electric double layer capacitors 71 are arranged in six rows.
  • a pair of lead wires 71a and 71b protrude from one of the two bottom surfaces (upper surface and lower surface) of the cylindrical electric double layer capacitor 71.
  • Each electric double layer capacitor 71 is lined up with the bottom surface on which the lead wires 71a and 71b protrude toward the circuit board 72.
  • the electric double layer capacitor 71 is arranged below the lower edge line of the starting lithium ion battery 4 in the vertical direction of the lean vehicle 1, for example, when the lean vehicle 1 shown in FIG. 2 is viewed to the left.
  • the electric double layer capacitors 71 are arranged along the bottom surface of the starting lithium ion battery 4. It is arranged below the bottom surface of the starting lithium-ion battery 4.
  • the electric double layer capacitor 71 for example, a capacitor having a capacitance of 30 F or more is adopted. Further, as the electric double layer capacitor 71, an electric double layer capacitor having a maximum working voltage of 2.5 V or more and 5 V or less is adopted. As the electric double layer capacitor 71, for example, an electric double layer capacitor 71 having a maximum working voltage of 2.7 V or more and 3 V or less is adopted. The maximum working voltage of the electric double layer capacitor 71 is, for example, 2.7V.
  • the electric double layer capacitor 71 preferably has a capacity capable of charging the electric power for rotating the crankshaft 15 for the permanent magnet type starting motor 20 to start the engine 10 for at least 0.5 seconds. As a result, the engine 10 operates for at least one cycle including the compression stroke. This enables combustion operation. For example, when the current supplied to the permanent magnet type starting motor 20 for rotating the crankshaft 15 is 100 A or more, the electric power for rotating the crankshaft 15 for 0.5 seconds is larger than 200 J. Since the electric double layer capacitor 71 has a capacity of 30 F or more, when the standard operating voltage in the lean vehicle 1 is 12 V, the electric double layer capacitor 71 as a whole can store electric power larger than 400 J.
  • the permanent magnet start motor 20 rotates the crankshaft 15 to start the engine 10 for at least 0.5 seconds.
  • the electric double layer capacitor 71 has a capacity of being substantially fully charged within 20 seconds by the electric power generated by the permanent magnet type starting motor 20 when the engine 10 is idling.
  • the engine 10 can be restarted by the electric power of the electric double layer capacitor 71 after the engine 10 is stopped.
  • the electric double layer capacitor 71 has a capacity of 30 F or more, electric power larger than 400 J can be stored when the standard operating voltage in the lean vehicle 1 is 12 V.
  • the electric double layer capacitor 71 is fully charged within 20 seconds by the electric power generated by the permanent magnet type starting motor 20 when the engine 10 is idling.
  • the permanent magnet type starting motor 20 can rotate the crankshaft 15 to start the engine 10 for a maximum of 0.5 seconds.
  • the electric double layer capacitor 71 may have a capacity capable of charging the electric power for rotating the crankshaft 15 in order to start the engine 10 for the permanent magnet type starting motor 20 to be longer than at least 1 second. As a result, the engine 10 can be started at least once.
  • the electric power for rotating the crankshaft 15 for longer than 1 second is larger than about 400J. Since the electric double layer capacitor 71 has a capacity of 50 F or more, the crankshaft 15 can be rotated to start the engine 10 for longer than 1 second.
  • the engine 10 is started when the lean vehicle 1 is stopped and the crankshaft 15 is stopped rotating.
  • the electric double layer capacitor 71 becomes a standard operating voltage in the lean vehicle 1 within 20 seconds by the power generated by the permanent magnet type starting motor 20 when the engine 10 is idling.
  • the electric double layer capacitor 71 has a capacity of less than 400F, for example.
  • the electric double layer capacitor 71 a configuration having a capacity of being fully charged in a time shorter than 10 seconds by the electric power generated by the permanent magnet type starting motor 20 when the engine 10 is idling can be adopted.
  • the electric double layer capacitor 71 has a capacity of less than 200F, for example.
  • the inverter 21 shown in FIG. 2 includes a switching unit 211 (see FIG. 6).
  • the inverter 21 rotates the permanent magnet type start motor 20 by supplying electric power to the permanent magnet type start motor 20.
  • the inverter 21 controls the current by controlling the on / off of the current flowing in the winding of the permanent magnet type starting motor 20. Further, the inverter 21 supplies the electric power generated by the permanent magnet type starting motor 20 to the starting lithium ion battery 4 and the electric double layer capacitor 71 when the engine 10 is in combustion operation. In this case, the inverter 21 rectifies the current generated by the permanent magnet type starting motor 20.
  • the lean vehicle 1 includes a control device 60.
  • the control device 60 is physically provided integrally with the inverter 21. Specifically, the control device 60 and the inverter 21 of this application example have a common housing.
  • the control device 60 controls the current flowing between the permanent magnet type starting motor 20, the starting lithium ion battery 4, and the electric double layer capacitor 71 by controlling the operation of the switching unit 211 of the inverter 21. Thereby, the control device 60 controls the operation of the permanent magnet type start motor 20.
  • the control device 60 causes the inverter 21 to supply an electric current from the starting lithium ion battery 4 to the permanent magnet type starting motor 20 in response to the signal from the starter switch 6.
  • the control device 60 controls the inverter 21 so that the current from the permanent magnet type starting motor 20 flows through the starting lithium ion battery 4.
  • the starting lithium-ion battery 4 is charged by the generated power of the permanent magnet type starting motor 20.
  • the control device 60 supplies the power of the starting lithium ion battery 4 to the inverter 21 and the power of the starting lithium ion battery 4 to the permanent magnet type starting motor 20 in response to the operation of the acceleration instruction unit 8 even after the engine 10 is started, that is, even after the combustion operation is started. Let me. As a result, the running of the lean vehicle 1 by the engine 10 is assisted by the permanent magnet type starting motor 20.
  • control device 60 of this application example also has a function of an engine control unit that controls the supply of fuel to the engine 10.
  • the control device 60 controls the supply of fuel to the engine by controlling the operation of the fuel injection device 18, which will be described later.
  • the control device 60 includes a central processing unit and a memory (not shown). The supply of fuel to the engine 10 is controlled by executing the program stored in the memory.
  • the control device 60 includes a smoothing capacitor 61.
  • the smoothing capacitor 61 smoothes the voltage of the power supply terminal of the control device 60.
  • the permanent magnet type starting motor 20, the starting lithium ion battery 4, the electric double layer capacitor 71, the main relay 75, the control device 60 including the inverter 21, and the electric device L are It is electrically connected by wiring J.
  • the wiring code (J) is attached to a part of the wiring shown in the part (b) of FIG.
  • the wiring J is composed of, for example, a lead wire.
  • the wiring J may be composed of a plurality of connected lead wires.
  • the wiring J may include a connector for relaying a lead wire, a fuse, and a connection terminal. The illustration of connectors, fuses, and connection terminals is omitted. Further, in the physical wiring diagram of the part (d) of FIG.
  • connection of the positive electrode region is shown.
  • the negative electrode region that is, the ground region is electrically connected via the vehicle body 2. More specifically, the negative electrode region is electrically connected via a metal frame (not shown) of the vehicle body 2.
  • the distance of electrical connection of each device via the vehicle body 2 is usually equal to or shorter than the connection of the positive electrode region by a lead wire or the like. Therefore, in the part (d) of FIG. 2, the connection of the negative electrode region by the vehicle body 2 is not shown, and the wiring of the positive electrode region will be mainly described.
  • the wiring J shown in FIG. 2 is combined with other wiring provided in the vehicle to form a wire harness (not shown).
  • Part (d) of FIG. 2 shows only the wiring J that electrically connects the device shown in the figure.
  • Part (d) of FIG. 2 schematically shows the connection relationship of the wiring J between the devices and the distance of the wiring J.
  • FIG. 4 is a partial cross-sectional view schematically showing a schematic configuration of the engine unit EU shown in FIG.
  • the engine unit EU includes an engine 10.
  • the engine 10 includes a crankcase 11, a cylinder 12, a piston 13, a connecting rod 14, and a crankshaft 15.
  • the piston 13 is provided in the cylinder 12 so as to be reciprocating.
  • the crankshaft 15 is rotatably provided in the crankcase 11.
  • the crankshaft 15 is connected to the piston 13 via a connecting rod 14.
  • a cylinder head 16 is attached to the upper part of the cylinder 12.
  • a combustion chamber is formed by the cylinder 12, the cylinder head 16, and the piston 13.
  • the crankshaft 15 is supported by the crankcase 11 in a rotatable manner.
  • a permanent magnet type starting motor 20 is attached to one end portion 15a of the crankshaft 15.
  • a transmission CVT is attached to the other end 15b of the crankshaft 15.
  • the transmission CVT can change the gear ratio, which is the ratio of the rotation speed of the output to the rotation speed of the input.
  • the transmission CVT can change the gear ratio corresponding to the rotation speed of the wheels with respect
  • the engine unit EU is provided with a fuel injection device 18.
  • the fuel injection device 18 supplies fuel to the combustion chamber by injecting fuel.
  • the fuel injection device 18 injects fuel into the air flowing through the intake passage Ip.
  • a mixture of air and fuel is supplied to the combustion chamber of the engine 10.
  • the engine 10 is provided with a spark plug 19.
  • the engine 10 is an internal combustion engine.
  • the engine 10 is supplied with fuel.
  • the engine 10 outputs power by a combustion operation that burns the air-fuel mixture. That is, the piston 13 reciprocates by burning the air-fuel mixture containing the fuel supplied to the combustion chamber.
  • the crankshaft 15 rotates in conjunction with the reciprocating movement of the piston 13.
  • the power is output to the outside of the engine 10 via the crankshaft 15.
  • the fuel injection device 18 adjusts the power output from the engine 10 by adjusting the amount of fuel supplied.
  • the fuel injection device 18 is controlled by the control device 60.
  • the fuel injection device 18 is controlled to supply an amount of fuel based on the amount of air supplied to the engine 10.
  • the engine 10 outputs power via the crankshaft 15.
  • the power of the crankshaft 15 is transmitted to the wheels 3b via the transmission CVT and the clutch CL (see FIG. 2).
  • FIG. 5 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the permanent magnet type starting motor 20 shown in FIG.
  • the permanent magnet type starting motor 20 will be described with reference to FIGS. 4 and 5.
  • the permanent magnet type starting motor 20 has a rotor 30 and a stator 40.
  • the permanent magnet type starting motor 20 of this application example is a radial gap type.
  • the permanent magnet type starting motor 20 is an outer rotor type. That is, the rotor 30 is an outer rotor.
  • the stator 40 is an inner stator.
  • the rotor 30 has a rotor main body 31.
  • the rotor body 31 is made of, for example, a ferromagnetic material.
  • the rotor main body 31 has a bottomed tubular shape.
  • the rotor main body 31 has a tubular boss portion 32, a disc-shaped bottom wall portion 33, and a tubular back yoke portion 34.
  • the bottom wall portion 33 and the back yoke portion 34 are integrally formed.
  • the bottom wall portion 33 and the back yoke portion 34 may be configured separately.
  • the bottom wall portion 33 and the back yoke portion 34 are fixed to the crankshaft 15 via the tubular boss portion 32.
  • the rotor 30 is not provided with a winding to which a current is supplied.
  • the rotor 30 has a permanent magnet portion 37.
  • the rotor 30 has a plurality of magnetic pole portions 37a.
  • the plurality of magnetic pole portions 37a are formed by the permanent magnet portions 37.
  • the plurality of magnetic pole portions 37a are provided on the inner peripheral surface of the back yoke portion 34.
  • the permanent magnet portion 37 has a plurality of permanent magnets. That is, the rotor 30 has a plurality of permanent magnets.
  • the plurality of magnetic pole portions 37a are provided on each of the plurality of permanent magnets.
  • the permanent magnet portion 37 can also be formed by one annular permanent magnet. In this case, one permanent magnet is magnetized so that a plurality of magnetic pole portions 37a are lined up on the inner peripheral surface.
  • the plurality of magnetic pole portions 37a are provided so that the north pole and the south pole are alternately arranged in the circumferential direction of the permanent magnet type starting motor 20.
  • the number of magnetic poles of the rotor 30 facing the stator 40 is 24.
  • the number of magnetic poles of the rotor 30 means the number of magnetic poles facing the stator 40.
  • No magnetic material is provided between the magnetic pole portion 37a and the stator 40.
  • the magnetic pole portion 37a is provided outside the stator 40 in the radial direction of the permanent magnet type starting motor 20.
  • the back yoke portion 34 is provided outside the magnetic pole portion 37a in the radial direction.
  • the permanent magnet type starting motor 20 has more magnetic pole portions 37a than the number of tooth portions 43.
  • the rotor 30 may be of an embedded magnet type (IPM type) in which the magnetic pole portion 37a is embedded in a magnetic material, but as in this application example, the magnetic pole portion 37a is a surface magnet type exposed from the magnetic material. (SPM type) is preferable.
  • IPM type embedded magnet type
  • SPM type surface magnet type exposed from the magnetic material
  • the stator 40 has a stator core ST and a plurality of windings W.
  • the stator core ST has a plurality of tooth portions (teeth) 43 provided at intervals in the circumferential direction.
  • the plurality of tooth portions 43 integrally extend radially outward from the stator core ST.
  • a total of 18 tooth portions 43 are provided at intervals in the circumferential direction.
  • the stator core ST has a total of 18 slots SL formed at intervals in the circumferential direction.
  • the tooth portions 43 are arranged at equal intervals in the circumferential direction.
  • the rotor 30 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 43.
  • the number of magnetic poles is 4/3 of the number of slots.
  • FIG. 5 shows a state in which the winding W is in the slot SL.
  • the permanent magnet type starting motor 20 is a three-phase generator.
  • Each of the windings W belongs to any of U phase, V phase, and W phase.
  • the windings W are arranged so as to be arranged in the order of, for example, U phase, V phase, and W phase.
  • the power generated by the permanent magnet type starting motor 20 charges the starting lithium ion battery 4 and the electric double layer capacitor 71.
  • the power generated by the permanent magnet type starting motor 20 is consumed as heat, for example, by short-circuiting the windings without being used for charging.
  • the electric power consumed as heat when fully charged also increases. That is, the loss increases.
  • the motor When the motor generates electricity, the current flowing through the winding W is affected by the impedance generated in the winding W itself.
  • Impedance is an element that hinders the current flowing through the winding W. Impedance includes the product of rotational speed ⁇ and inductance.
  • the rotation speed ⁇ actually corresponds to the number of magnetic pole portions passing near the tooth portion in a unit time. That is, the rotation speed ⁇ is proportional to the ratio of the number of magnetic poles to the number of teeth in the motor and the rotation speed of the rotor.
  • the permanent magnet type starting motor 20 shown in FIG. 5 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 43. That is, the permanent magnet type starting motor 20 has a number of magnetic pole portions 37a that is larger than the number of slots SL. Therefore, the winding W has a large impedance.
  • the lean vehicle 1 includes an electric double layer capacitor 71 connected to a starting lithium ion battery 4. Therefore, when the permanent magnet type starting motor 20 that accepts a large current and increases the torque at the time of starting is adopted, it is possible to supply a large current corresponding to this acceptance even at a low temperature.
  • the rotor 30 of the permanent magnet type starting motor 20 is connected to the crankshaft 15 so as to rotate according to the rotation of the crankshaft 15.
  • FIG. 6 is a circuit diagram showing an electrical schematic configuration of the lean vehicle 1 shown in FIG.
  • the circuit diagram of FIG. 6 shows the electrical connection in the application example of the lean vehicle 1 shown in FIG.
  • the permanent magnet type starting motor 20 is electrically connected to the electric double layer capacitor 71 via the inverter 21.
  • the permanent magnet type starting motor 20 is electrically connected to the starting lithium ion battery 4 via the inverter 21 and the main relay 75.
  • the inverter 21 includes a switching unit 211.
  • the switching unit 211 constitutes a three-phase bridge inverter as the inverter 21.
  • the switching unit 211 is connected to each phase of the multi-phase winding W, and switches between application / non-application of a voltage between the multi-phase winding W and the starting lithium ion battery 4.
  • the plurality of switching units 211 thereby switch the passage / interruption of the current between the multi-phase winding W and the starting lithium ion battery 4.
  • the plurality of switching units 211 control the current flowing between the starting lithium ion battery 4 and the permanent magnet type starting motor 20. More specifically, when the permanent magnet type starting motor 20 functions as a starter motor, energization and energization stop for each of the plurality of phases of the winding W are switched by the on / off operation of the switching unit 211. When the permanent magnet type starting motor 20 functions as a generator, the on / off operation of the switching unit 211 switches the passage / cutoff of the current between each of the windings W and the starting lithium ion battery 4. By sequentially switching the switching unit 211 on and off, the rectification of the three-phase alternating current output from the permanent magnet type starting motor 20 and the voltage control are performed.
  • the control device 60 controls the current flowing between the permanent magnet type starting motor 20, the starting lithium ion battery 4, and the electric double layer capacitor 71 by controlling the operation of the switching unit 211.
  • the control device 60 rotates the permanent magnet type start motor 20 by controlling the switching unit 211 by a vector control method.
  • the control device 60 supplies the power generated by the permanent magnet type starting motor 20 to the starting lithium ion battery 4, the electric double layer capacitor 71, and the electric device L by controlling the switching unit 211 by a vector control method. ..
  • the method in which the control device 60 controls the switching unit 211 is not limited to this, and may be, for example, a 120-degree energization method or a phase control method.
  • Both the starting lithium-ion battery 4 and the electric double layer capacitor 71 are electrically connected to the inverter 21 of the permanent magnet type starting motor 20 via the main relay 75. Both the starting lithium-ion battery 4 and the electric double layer capacitor 71 are electrically connected to the electric device L via the main relay 75. Both the starting lithium-ion battery 4 and the electric double layer capacitor 71 are electrically connected to the permanent magnet type starting motor 20 via the main relay 75. Both the starting lithium-ion battery 4 and the electric double layer capacitor 71 are electrically connected to the control device 60.
  • the electric double layer capacitor 71 is a capacitor separate from the smoothing capacitor 61. The electric double layer capacitor 71 is connected in parallel with the smoothing capacitor 61.
  • the electric double layer capacitor 71 stores electric power for driving the permanent magnet type starting motor 20.
  • the smoothing capacitor 61 smoothes the power supply voltage.
  • the capacity of the electric double layer capacitor 71 is larger than the capacity of the smoothing capacitor 61.
  • the parasitic inductance is larger than the parasitic inductance of the smoothing capacitor 61.
  • the electric double layer capacitor 71 is composed of an electric double layer capacitor.
  • the smoothing capacitor 61 is composed of an electrolytic capacitor.
  • the devices shown in FIG. 6 actually include a connector (coupler), a fuse, a connection terminal, a current adjusting resistor, and the like.
  • components such as a connector, a fuse, a connection terminal, and a current adjusting resistor can be considered to be electrically included in the wiring, and thus illustration and description thereof will be omitted.
  • the fuse may not be included in the device shown in FIG.
  • All of the electric double layer capacitors 71 shown in FIG. 6 are connected in series. That is, almost all the current flowing through one electric double layer capacitor 71 flows through the remaining electric double layer capacitor 71.
  • the state in which the circuit including the starting lithium ion battery 4 is closed by operating the main relay 75 in FIG. 6 is referred to as an on state of the main relay 75.
  • the main switch 5 is turned on by operation. When the main switch 5 is in the on state, the main relay 75 is in the on state.
  • the electric double layer capacitor 71 and the starting lithium ion battery 4 are connected in parallel when viewed from the inverter 21.
  • the circuit including the inverter 21, the electric double layer capacitor 71, and the starting lithium ion battery 4 includes a main relay 75.
  • the electric double layer capacitor 71 and the starting lithium-ion battery 4 are connected in parallel. Therefore, when the engine is started when the main relay 75 is on and the starter switch 6 is on, the start is started.
  • the current output from the lithium-ion battery 4 for use and the current output from the electric double layer capacitor 71 merge and flow to the inverter 21.
  • the electric double layer capacitor 71 and the starting lithium ion battery 4 are connected in parallel.
  • the circuit including the inverter 21 and the starting lithium-ion battery 4 includes the main relay 75 and the inverter 21.
  • the main relay 75 When the main relay 75 is on and the engine 10 is in combustion operation, the current output from the permanent magnet type start motor 20 passes through the inverter 21 and then the electric double layer capacitor 71 and the starting lithium ion battery 4. It is supplied separately.
  • the electric double layer capacitor 71, the starting lithium ion battery 4, and the electric device L are connected in parallel.
  • the electric device L is, for example, a headlight 9 as described above.
  • the current output from the permanent magnet type starting motor 20 passes through the inverter 21, and then the electric double layer capacitor 71, the starting lithium ion battery 4, and the electric device. It is supplied separately from L.
  • the current of the starting lithium ion battery 4 is supplied to the electric device L.
  • the voltage of the electric double layer capacitor 71 is smaller than the voltage of the starting lithium ion battery 4, a part of the current output from the starting lithium ion battery 4 flows through the electric double layer capacitor 71. That is, the starting lithium-ion battery 4 charges the electric double layer capacitor 71.
  • the electric power of the electric double layer capacitor 71 is consumed by the electric device L.
  • the voltage of the electric double layer capacitor 71 becomes smaller than the voltage of the starting lithium ion battery 4.
  • the electric double layer capacitor 71 is charged by the electric power of the starting lithium ion battery 4.
  • the electric double layer capacitor 71 is charged until the voltage of the electric double layer capacitor 71 becomes equal to the voltage of the starting lithium ion battery 4.
  • the circuit diagram of FIG. 6 and the actual wiring diagram of part (d) of FIG. 2 show the same connection configuration. However, the actual wiring diagram of the part (d) of FIG. 2 is different from FIG. 6 in that it shows the actual connection relationship of the wiring J between each device and the distance of the wiring J.
  • the schematic usually shows the electrical connection of the device. More specifically, the schematic shows the circuit topology of the device. That is, the circuit diagram shows, for example, whether the devices are connected in series or in parallel, for example. The circuit diagram also shows whether the two devices are connected only by wiring or are connected via a device different from the two devices. The schematic does not show the actual wiring length. Moreover, the circuit diagram does not show the position of each device in space. For example, the fact that the three devices are arranged side by side in the circuit diagram does not mean that the three devices are actually arranged side by side in that order. Also, the arrangement in the circuit diagram does not mean that the three devices are actually arranged side by side. On the other hand, the physical wiring diagram shown in the part (b) of FIG. 2 schematically shows the actual wiring length between the devices in the lean vehicle 1.
  • the distance between the electric double layer capacitor 71 and the inverter 21 is the distance between the starting lithium ion battery 4 and the inverter 21 with reference to the wiring distance. It is arranged so as to be shorter than.
  • the wiring distance from the electric double layer capacitor 71 to the permanent magnet type starting motor 20 via the inverter 21 is shorter than the wiring distance from the starting lithium ion battery 4 to the permanent magnet type starting motor 20 via the inverter 21. ..
  • the electric double layer capacitor 71 is arranged so that the distance between the electric double layer capacitor 71 and the inverter 21 is longer than the distance between the electric double layer capacitor 71 and the starting lithium ion battery 4 based on the wiring distance.
  • the wiring distance from the electric double layer capacitor 71 to the permanent magnet type starting motor 20 via the inverter 21 is the wiring distance from the starting lithium ion battery 4 to the permanent magnet type starting motor 20 via the inverter 21. Longer than.
  • FIG. 7 is a chart showing a change in current when the engine 10 is started in the lean vehicle 1 shown in FIG.
  • the thick solid line in FIG. 7 indicates the current Im flowing through the inverter 21.
  • the thin solid line shows the current Ic flowing through the electric double layer capacitor 71.
  • the broken line indicates the current Ib flowing through the starting lithium-ion battery 4.
  • Above 0A on the vertical axis shows the charging current of the starting lithium ion battery 4 and the electric double layer capacitor 71, and below 0A shows the discharging current.
  • FIG. 7 shows the currents Im, Ic, and Ib when the current is not supplied to the electric device for easy understanding.
  • the chart of FIG. 7 shows the current when the crankshaft 15 for starting the engine 10 is rotated in the normal direction without performing the combustion operation such as supplying fuel to the engine 10.
  • the starter switch 6 is operated so as to be in the ON state for a predetermined period of time.
  • the inverter 21 supplies a current to the windings of each phase of the permanent magnet start motor 20 so as to rotate the permanent magnet start motor 20 under the control of the control device 60. That is, a predetermined start-up period (for example, 0.5 seconds) is obtained.
  • a predetermined start-up period for example, 0.5 seconds
  • a predetermined stop period (for example, 3 seconds) is obtained, after which the starter switch 6 is operated to be turned on again for the start period.
  • the first part (for example, 0.05 seconds) of the start period corresponds to the rotation start period.
  • the impedance of the winding of the permanent magnet type start motor 20 is small until the permanent magnet type start motor 20 that is stopped starts rotating. That is, during the rotation start period of the start period, a larger inrush current flows through the permanent magnet type start motor 20 than during rotation after the rotation start period. This current corresponds to the torque for the permanent magnet start motor 20 to start the rotation of the crankshaft 15 of the engine 10.
  • the electric double layer capacitor 71 is connected to the starting lithium ion battery 4.
  • the current Im flowing through the inverter 21 is the sum of the current Ib discharged from the starting lithium ion battery 4 and the current Ic discharged from the electric double layer capacitor 71.
  • the current Im which is the sum of the current Ib discharged from the starting lithium ion battery 4 and the current Ic discharged from the electric double layer capacitor 71, is the inverter. It flows to 21.
  • a large current Ic is discharged from the electric double layer capacitor 71, so that a large current Im of the inverter 21 is obtained.
  • the current Im of the inverter 21 a current sufficient for starting the engine 10 can be obtained. Therefore, the rotational speed of the crankshaft 15 is rapidly increased, and the startability of the engine 10 can be obtained.
  • the engine 10 can be started even when a sufficient current for starting the engine 10 is not output from the starting lithium ion battery 4 at a low temperature.
  • the impedance of the winding of the permanent magnet type start motor 20 increases as the crankshaft 15 starts to rotate.
  • both the current Ib discharged from the starting lithium ion battery 4 and the current Ic discharged from the electric double layer capacitor 71 are reduced.
  • the current Ic discharged from the electric double layer capacitor 71 is smaller than the current Ib discharged from the starting lithium ion battery 4. This is because as the impedance of the winding of the permanent magnet type starting motor 20 increases, the voltage drop in the winding of the permanent magnet type starting motor 20 becomes large, and the terminal voltage of the permanent magnet type starting motor 20 and the electric power after discharge are increased. This is considered to be because the difference from the terminal voltage of the multilayer capacitor 71 is reduced.
  • the starter switch 6 is in the off state.
  • the control device 60 stops the supply of current by the inverter 21 to the permanent magnet type start motor 20. Therefore, the current Im flowing through the inverter 21 is 0.
  • the current Ic of the electric double layer capacitor 71 indicates charging
  • the current Ib of the starting lithium ion battery 4 indicates discharging. This indicates that the electric double layer capacitor 71 whose terminal voltage has dropped due to the discharge during the starting period is charged by the power of the starting lithium ion battery 4.
  • Charging of the electric double layer capacitor 71 by the electric power of the starting lithium ion battery 4 continues until the terminal voltage of the electric double layer capacitor 71 becomes equal to the terminal voltage of the starting lithium ion battery 4.
  • the next starting period is started before the terminal voltage of the electric double layer capacitor 71 becomes equal to the terminal voltage of the starting lithium ion battery 4.
  • both the current Ib of the starting lithium ion battery 4 and the current Ic of the electric double layer capacitor 71 are 0 A.
  • the state before starting the engine 10 at time 0 means a state in which the electric double layer capacitor 71 is charged by the starting lithium ion battery 4. This is the result of the electric double layer capacitor 71 being charged by the electric power of the starting lithium ion battery 4 before the engine 10 is started. As described above, the electric power (current) that can be output from the starting lithium-ion battery 4 in a unit time is small. However, the starting lithium ion battery 4 included in the lean vehicle 1 is connected to the electric double layer capacitor 71.
  • the electric double layer capacitor 71 can be charged before the rotation start period by the electric power output from the starting lithium ion battery 4. Then, in the rotation start period, the permanent magnet type start motor 20 is driven by the current Im, which is the sum of the current Ib discharged from the starting lithium ion battery 4 and the current Ic discharged from the electric double layer capacitor 71.
  • the starting lithium-ion battery 4 supplies electric power to the permanent magnet type starting motor 20 when the engine 10 is started. Especially at low temperatures, the electric power (current) that can be output from the starting lithium-ion battery 4 in a unit time is smaller than, for example, a lead battery having the same capacity. However, the starting lithium ion battery 4 included in the lean vehicle 1 is connected to the electric double layer capacitor 71. Therefore, the electric double layer capacitor 71 can be charged before starting by the electric power output from the starting lithium ion battery 4. When the engine 10 is started, the starting lithium-ion battery 4 can supply electric power to the permanent magnet type starting motor 20, and at the same time, the precharged electric double layer capacitor 71 can also supply electric power to the permanent magnet type starting motor 20. it can.
  • the electric double layer capacitor 71 does not utilize the chemical reaction of electrodes like a battery. Therefore, the electric double layer capacitor 71 has less increase in internal resistance at low temperatures than, for example, the starting lithium ion battery 4. Further, since the volume of the electric double layer capacitor 71 is sufficient to have a capacitance capable of charging an amount of electric power for starting the engine 10 at least once, a large-capacity lithium-ion battery for starting such as a four-wheeled vehicle is installed. It can be made more compact than when it is used. Therefore, it can be mounted on the lean vehicle 1 without impairing the degree of freedom in design.
  • the capacity of the starting lithium ion battery 4 can be increased, for example, in the case of a four-wheeled vehicle.
  • the engine can be started by the starting lithium-ion battery 4 in a wide temperature range including low temperature without such an increase.
  • FIG. 8 is a circuit diagram showing an electrical schematic configuration of the lean vehicle 1 in the second application example.
  • connection switchers Sw1 and Sw2 are provided between the starting lithium ion battery 4 and the electric double layer capacitor 71.
  • the connection switchers Sw1 and Sw2 operate, for example, under the control of the control device 60.
  • the connection switchers Sw1 and Sw2 are composed of relays that operate under the control of, for example, the control device 60.
  • the connection switchers Sw1 and Sw2 can also be composed of semiconductor elements represented by transistors, for example.
  • the starting lithium ion battery 4 and the electric double layer capacitor 71 are connected in series.
  • the series state and the parallel state are switched by the control device 60. In this way, the starting lithium-ion battery 4 and the electric double layer capacitor 71 can be connected in series.
  • the control device 60 maintains a parallel state. As a result, for example, even when a sufficient current cannot be expected from the starting lithium ion battery 4 in a low temperature environment, the current from the starting lithium ion battery 4 and the current from the electric double layer capacitor 71 can be obtained. The engine 10 can be started by this current. This is the same as the application example described with reference to FIG. 6 and the like.
  • the control device 60 of the application example shown in FIG. 8 can switch the connection state to the series state.
  • the voltage can be increased by switching to the series state.
  • the control device 60 first charges the electric double layer capacitor 71 with the current output from the starting lithium ion battery 4 in a parallel state before starting the engine 10.
  • the voltage of the electric double layer capacitor 71 becomes substantially equal to that of the starting lithium ion battery 4.
  • the control device 60 is connected after the starter switch 6 is operated. To switch to the series state.
  • the sum of the voltage of the starting lithium ion battery 4 and the voltage of the electric double layer capacitor 71 is applied to the inverter 21. That is, a higher voltage can be applied to the permanent magnet type starting motor 20. As a result, a voltage higher than the induced electromotive force of the permanent magnet type starting motor 20 can be applied to the permanent magnet type starting motor 20 up to a range of higher rotation speeds. As a result, the rotational speed at which the permanent magnet type starting motor 20 can be driven can be increased. That is, when the engine 10 is started, the crankshaft 15 can be rotated to a higher rotation speed. Therefore, the startability of the engine 10 can be improved.
  • control device 60 of the application example shown in FIG. 8 is not limited to starting the engine 10, but even when the lean vehicle 1 is running and the engine 10 is rotating at high speed, the connection state is switched to the series state. , It is possible to assist the driving of the wheels 3b by the engine 10. Further, when the lean vehicle 1 is traveling at high speed, even if the permanent magnet type starting motor 20 outputs a voltage higher than the voltage at the time of starting by the regenerative operation, it may receive a high voltage depending on the series state. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明は、広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動可能なリーン車両を提供する。リーン車両は、路面と接地するためのトレッド面を有し、前記トレッド面の断面形状は円弧状である車輪と、クランク軸を有し前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、永久磁石を有し、前記クランク軸を回転させ前記エンジンを始動する永久磁石式始動モータと、前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する始動用リチウムイオンバッテリと、前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する前記始動用リチウムイオンバッテリと接続されており、前記永久磁石式始動モータによって前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタと、を備える。

Description

リーン車両
 本発明は、リーン車両に関する。
 リチウムイオンバッテリを搭載し、リチウムイオンバッテリの電力を用いてモータを駆動する車両が知られている。
 例えば、特許文献1には、エンジンと、モータジェネレータと、蓄電装置とを備えたハイブリッド車両が示されている。特許文献1におけるハイブリッド車両は、例えば四輪車、二輪車、又は三輪車である。特許文献1における蓄電装置として始動用リチウムイオンバッテリが用いられる。
 特許文献1のモータジェネレータは、ジェネレータとして機能する場合、エンジンや車輪から回転力を受けて発電し、その発電電力がバッテリに充電されるようになっている。
 また、特許文献1のモータジェネレータは、バッテリを電源として回転する。モータジェネレータの動力によってハイブリッド車両がEV走行を行う。また、EV走行中にモータジェネレータの動力がエンジンの出力軸に伝達される。これにより、エンジンを始動させることができる。
 リチウムイオンバッテリは、例えば鉛バッテリと比べて高いエネルギー密度を有している。このため、リチウムイオンバッテリによれば大きな電力を蓄えることができる。
特許5753582号公報
 始動用リチウムイオンバッテリの電力を用いてエンジンを始動させるリーン車両は、広い温度範囲でエンジンを始動可能であることが望まれている。
 本発明の目的は、広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動可能なリーン車両を提供することである。
 本発明者らは、始動用リチウムイオンバッテリを用いたエンジンの始動について検討した。この結果、本発明者らは、次のことを見いだした。
 始動用リチウムイオンバッテリは、リチウムイオンの移動を利用することにより高いエネルギー密度を有する。しかし、始動用リチウムイオンバッテリは、低温で、電解液中におけるリチウムイオンの移動抵抗(拡散抵抗)及び電極反応における抵抗(電荷移動抵抗)が増加する傾向を有する。特に、リチウムイオンの移動度は、低温で低下しやすい。このため、始動用リチウムイオンバッテリは、例えば鉛バッテリと比べて低温時における内部抵抗が増加しやすい。このため、低温時に始動用リチウムイオンバッテリから出力される電流は減少しやすい。
 低温時に、バッテリの電力でスタータモータがエンジンを始動する時間が長期化しないよう、大容量の始動用リチウムイオンバッテリを搭載することが考えられる。例えば、ハイブリッド車としての四輪車は、大容量の始動用リチウムイオンバッテリを搭載することができる。
 しかし、二輪車又は三輪車に代表されるリーン車両は、走行時乃至旋回時に、ライダーの体重移動によって姿勢制御が行われる。リーン車両の車体は、ライダーの体重移動によって円滑に姿勢制御が行われるように、軽量化乃至小型化されることが好ましい。そのため、一般的に、リーン車両の車体内における装置の設置スペースは、厳しく制限される。バッテリは、リーン車両の搭載物の中で、比較的大きい重量物であるため、装置の設置スペースは、厳しく制限される。このため、リーン車両において、低温でも充分な電力を出力できる程度に始動用リチウムイオンバッテリの容量を増大することは容易でない。
 そこで本発明者らは、リーン車両において、始動用リチウムイオンバッテリの容量を増大するのではなく、始動用リチウムイオンバッテリに電気二重層キャパシタを接続することを検討した。この検討の中で、本発明者らは次のことを見出した。
 低温時に始動用リチウムイオンバッテリから単位時間で出力することが可能な電力(電流)は小さい。しかし、始動用リチウムイオンバッテリから出力される電力によって、始動の前に電気二重層キャパシタを充電することができる。
 エンジンの始動時に、始動用リチウムイオンバッテリがモータに電力を供給すると同時に、事前に充電された電気二重層キャパシタも、モータに電力を供給することができる。電気二重層キャパシタは、バッテリのような電極の化学反応を利用していない。このため、電気二重層キャパシタは、例えばバッテリと比べて、低温時における内部抵抗の増大が少ない。また、電気二重層キャパシタの体積は、エンジンを少なくとも1回始動する量の電力を充電可能な静電容量で充分なので、例えば四輪車のような大容量の始動用リチウムイオンバッテリを搭載する場合と比べてコンパクトにできる。従って、設計の自由度を損なうことなく、リーン車両に搭載することができる。
 このように、エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタを接続する。これによって、始動用リチウムイオンバッテリの容量を例えば四輪車の場合ように増大することなく、低温を含む広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動することができる。
 本発明のリーン車両は、次の構成を備える。
 (1)左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜するリーン車両であって、
 前記リーン車両は、
 路面と接地するためのトレッド面を有し、前記トレッド面の断面形状は円弧状である車輪と、
 クランク軸を有し前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
 永久磁石を有し、前記クランク軸を回転させ前記エンジンを始動する永久磁石式始動モータと、
 前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する始動用リチウムイオンバッテリと、
 前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する前記始動用リチウムイオンバッテリと接続されており、前記永久磁石式始動モータによって前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタと、
を備える。
 上記構成におけるリーン車両は、車輪と、エンジンと、永久磁石式始動モータと、始動用リチウムイオンバッテリと、電気二重層キャパシタと、を備える。
 車輪は、断面形状が円弧状であるトレッド面を有している。このため、リーン車両は、左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜するように走行できる。
 始動用リチウムイオンバッテリは、エンジンの始動時に永久磁石式始動モータに電力を供給する。低温時に始動用リチウムイオンバッテリから単位時間で出力することが可能な電力(電流)は、例えば同じ容量を有する鉛バッテリよりも小さい。旋回時に傾斜するように走行するリーン車両において、始動用リチウムイオンバッテリの容量を増大することは容易でない。本構成のリーン車両が備える始動用リチウムイオンバッテリは、電気二重層キャパシタと接続されている。このため、始動用リチウムイオンバッテリから出力される電力によって、始動の前に電気二重層キャパシタを充電することができる。
 エンジンの始動時に、始動用リチウムイオンバッテリがモータに電力を供給すると同時に、事前に充電された電気二重層キャパシタもモータに電力を供給することができる。電気二重層キャパシタは、バッテリのような電極の化学反応を利用していない。このため、電気二重層キャパシタは、例えばバッテリと比べて、低温時における内部抵抗の増大が少ない。また、電気二重層キャパシタの体積は、エンジンを少なくとも1回始動する量の電力を充電可能な静電容量で充分なので、例えば四輪車のような大容量の始動用リチウムイオンバッテリを搭載する場合と比べてコンパクトにできる。従って、設計の自由度を損なうことなく、旋回時に傾斜するように走行するリーン車両に搭載することができる。
 このように、エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタを接続する。これによって、始動用リチウムイオンバッテリの容量を例えば四輪車の場合ように増大することなく、低温を含む広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動することができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (2) (1)のリーン車両であって、
 前記電気二重層キャパシタは、30F以上の静電容量を有する。
 上記構成によれば、始動用リチウムイオンバッテリの容量を例えば四輪車の場合ように増大することなく、低温を含む広い温度範囲でエンジンを始動させることができるような期間クランク軸を回転させることができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (3) (1)又は(2)のリーン車両であって、
 5から7つの前記電気二重層キャパシタが、直列接続されている。
 上記構成によれば、直列接続された電気二重層キャパシタは、リーン車両に備えられる始動用リチウムイオンバッテリが機能しないような場合でも、エンジンを始動させることができる蓄電容量を有することができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
(4) (1)から(3)いずれか1のリーン車両であって、
 前記電気二重層キャパシタは、前記始動用リチウムイオンバッテリが前記リーン車両の車体から取り外される時点で前記車体に取り付けられた状態を維持するように、前記車体に取り付けられている。
 上記構成によれば、始動用リチウムイオンバッテリが例えば交換のため車体から取り外されても、電気二重層キャパシタは車体に取り付けられている。このため、例えば始動用リチウムイオンバッテリの寿命が到来してもリーン車両において始動用リチウムイオンバッテリを交換するだけで、低温を含む広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動することができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (5) (1)から(4)いずれか1のリーン車両であって、
 前記永久磁石式始動モータは、前記永久磁石で構成された複数の磁極部を有するロータと、
複数のスロットが前記永久磁石式始動モータの周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
前記磁極部の数は前記複数のティースの数より多い。
 上記構成によれば、永久磁石式始動モータが発電する場合の損失を抑制しつつ、永久磁石式始動モータの始動時のトルクを増大するため例えば小さい電気抵抗を有する巻線を採用することができる。そして上記構成によれば、低温時にエンジンを始動する場合に永久磁石式始動モータの受け入れに対応した大きな電流を供給することができる。従って低温を含む広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動しやすい。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (6) (1)から(5)いずれか1のリーン車両であって、
 前記電気二重層キャパシタは、外部と接続する端子として機能するリード線を備えたリードタイプである。
 上記構成によれば、電気二重層キャパシタは例えば基板に半田接続することによって、例えばボルト型端子の場合と比べより短時間でアレイ構成を製造することができる。
 リーン車両は、鞍乗型車両の一種である。リーン車両は、騎乗スタイルで乗車する車両である。運転者は、リーン車両のサドルに跨って着座する。リーン車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、リーン車両としては、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよく、自動三輪車であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。
 「路面と接地するためのトレッド面を有し、前記トレッド面の断面形状は円弧状である車輪」は、例えば、トレッド面(路面と接地するための面)が車輪の側面にまで達するように構成されている。当該車輪におけるトレッド面の断面形状は、円弧又は円弧に類似する形状である。ここで、トレッド面の断面は、車輪の回転軸線を通る断面である。
 当該車輪におけるトレッド面の断面形状は、車幅方向の中央部が稜線を成すように突出する形状であってもよい。当該車輪におけるトレッド面は、旋回時における路面との接触面積が、直進時における路面との接触面積よりも大きくなるように構成されていてもよい。当該車輪は、例えば、リーン車両の傾斜に応じて、路面と接触する面積が連続的に変化するように構成されていてもよい。例えば、当該車輪のトレッド面は、路面と接触しない状態で車輪の回転軸線を中心とする円筒面を含まない。例えば、当該車輪における最外周の断面形状は、路面と接触しない状態で直線で構成されていない。
 トレッド面は、例えば、車輪が有するタイヤに形成されている。タイヤのトレッド面に溝が形成されている場合、上記トレッド面の形状は、溝による凹凸を無視した巨視的な形状を意味している。当該車輪は、例えば、ISO又はJISに規定されるモーターサイクル用の車輪である。これに対して、リーン車両以外の車両(例えば自動車)が有する車輪は、路面との接触面が比較的平坦な扁平状のトレッド面を有し、上述した車輪とは明確に区別され得る。
 永久磁石式始動モータは、永久磁石を有する。例えばロータに永久磁石ではなくコイルを備えた構成は、本構成におけるモータと異なる。
 磁石式始動モータは、例えば、磁石式始動発電機である。ただし、磁石式始動モータは、発電機として使用されないモータでもよい。
 エンジン始動装置のモータは、例えば、アウタロータ型モータ、インナロータ型モータ、及び、アキシャルギャップ型モータを含む。また、エンジン始動装置のモータとして、例えば、ブラシモータ、及びインバータ付きのブラシレスモータが挙げられる。
 永久磁石式始動モータは、少なくとも、クランク軸が回転していない状態のエンジンを始動する。つまり、永久磁石式始動モータは、少なくとも、リーン車両が停止している状態でエンジンを始動する。ただし、永久磁石式始動モータは、クランク軸が回転している状態、又はリーン車両の走行状態でエンジンを始動してもよい。
 始動用リチウムイオンバッテリは、充電及び放電が可能なバッテリである。つまり、バッテリは、蓄電池である。バッテリは、電極の化学反応によって充電及び放電を行う二次電池である。バッテリは、電極の酸化及び還元反応によって充電及び放電を行う。バッテリは、充電される電力を化学エネルギーとして蓄える。バッテリは、蓄えられた化学エネルギーを電気エネルギーに変換する。バッテリの端子電圧は、バッテリに蓄えられた電力量と比例しない。
 始動用リチウムイオンバッテリの最大放電定格電流は、最大充電定格電流よりも小さい。ただし、始動用リチウムイオンバッテリとして、最大放電定格電流は、最大充電定格電流よりも大きいタイプも採用され得る。
 始動用リチウムイオンバッテリは、エンジンを始動するための電力を蓄えるバッテリである。始動用リチウムイオンバッテリは、少なくとも、クランク軸が回転していない状態のエンジンの始動に用いられる。つまり、始動用リチウムイオンバッテリは、少なくとも、リーン車両が停止している状態でエンジンの始動に用いられる。ただし、始動用リチウムイオンバッテリは、クランク軸が回転している状態、又は、リーン車両の走行状態でエンジンの始動に用いられてもよい。
 電気二重層キャパシタは、充電される電力を電荷として蓄える。電気二重層キャパシタは、電極の化学反応を伴うことなく充電及び放電を行う。電気二重層キャパシタの端子電圧は、充電された電荷即ち電力量に略比例する。
 電気二重層キャパシタは、エンジン始動装置のモータの回転に寄与する電力を蓄える容量を有する。電気二重層キャパシタは、詳細には、蓄電電気二重層キャパシタである。より詳細には、電気二重層キャパシタは、平滑電気二重層キャパシタより大きな等価直列抵抗(Equivalent Series Resistance :ESR)を有する。電気二重層キャパシタは、平滑電気二重層キャパシタより大きな寄生インダクタンスとしての直列インダクタンス(Equivalent Series Inductance :ESL)を有する。
 始動用リチウムイオンバッテリと接続された電気二重層キャパシタは、例えば、鉛バッテリに対し並列接続される。但し、接続状態はこれに限られず、電気二重層キャパシタは、例えば、始動用リチウムイオンバッテリに対し直列接続されてもよい。電気二重層キャパシタは、例えば、接続状態を切換えるためのスイッチを介して鉛バッテリに接続されてもよい。
 例えば、電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続されることは、電気二重層キャパシタとバッテリの双方から出た電流が合流してエンジン始動装置に流れるように電気的に接続されていることを意味する。この逆に、例えば、電気二重層キャパシタから出た電流の全てがバッテリに流れ、この電流がさらにエンジン始動装置に流れることは、電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続されることとは異なる。電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続された状態は、バッテリと電気二重層キャパシタとが配線のみで接続された状態を含む。また、電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続された状態は、バッテリと電気二重層キャパシタの間に配線以外の装置が挿入されている状態を含む。例えば、電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続された状態は、バッテリと電気二重層キャパシタの間に、操作に応じて電気的に接続又は切断状態を切換えるコネクタ(カプラ)が含まれている状態を含む。また、例えば、電気二重層キャパシタがエンジン始動装置から見てバッテリと並列に接続された状態は、バッテリと電気二重層キャパシタの間に、コネクタ以外の電気部品が挿入された状態を含む。このような電気部品としては、例えば、スイッチ、リレー、抵抗器、接続端子、及びヒューズが挙げられる。なお、配線は、例えば、リード線である。ただし、配線は、1つのリード線で構成されるものに限られず、繋ぎ合わされた複数本のリード線でもよい。また、配線は、導通を主な機能とする装置を含む。例えば、配線は、コネクタ、スイッチ、リレー、抵抗器、接続端子、及びヒューズを含む。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
 本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
 本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
 一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、技術および工程の数が開示されていると理解される。
 これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
 それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しいリーン車両について説明する。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
 しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
 本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 本発明によれば、幅広い温度範囲で始動用リチウムイオンバッテリによりエンジンを始動可能なリーン車両を実現できる。
本発明の一実施形態に係るリーン車両を模式的に示す図である。 図1に示す実施形態の適用例であるリーン車両及び電気系統を模式的に示す図である。 図2に示す始動用リチウムイオンバッテリ及び電気二重層キャパシタを示す外観図である。 図2に示すエンジンユニットの概略構成を模式的に示す部分断面図である。 図4に示す永久磁石式始動モータの回転軸線に垂直な断面を示す断面図である。 図2に示すリーン車両の電気的な概略構成を示す回路図である。 図2に示すリーン車両において、エンジンの始動時における電流の変化を表すチャートである。 第二の適用例におけるリーン車両の電気的な概略構成を示す回路図である。
 以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係るリーン車両を模式的に示す図である。図1のパート(a)は、リーン車両の側面図である。図1のパート(b)は、パート(a)に示す車輪の一部断面図である。
 図1に示すリーン車両1は、車輪3a,3bと、エンジン10と、永久磁石式始動モータ20と、始動用リチウムイオンバッテリ4と、電気二重層キャパシタ71とを備えている。また、リーン車両1は、車体2を備えている。リーン車両1は、鞍乗型車両である。図1には、リーン車両1の一例として自動二輪車が示されている。
 リーン車両1は、左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜する。
 リーン車両1に備えられた車輪3a,3bは、前の車輪3aと後ろの車輪3bである。後ろの車輪3bは駆動輪である。図1のパート(b)に示すように、車輪3aは、路面と接地するためのトレッド面TRを有する。トレッド面TRは、例えばタイヤに形成される。トレッド面TRの断面形状は円弧状である。なお、図1のパート(b)は、トレッド面TRに形成された溝による凹凸を無視した巨視的な形状を示している。トレッド面TRの断面形状は、後ろの車輪3bについても同様である。
 車輪3a,3bのトレッド面TRは、路面と接触しない状態で円弧状の断面形状を有する。路面と接触しない車輪3a,3bは、車輪の回転軸線を中心とする円筒面を含まない。なお、車輪3a,3bが路面と接触する状態では、路面と接触する車輪3a,3bの部分は、車重により路面に応じた平面状に変形する。しかし、路面と接触する車輪3a,3bの部分の形状は、上述した、路面と接触しない状態でのトレッド面TRの断面形状ではない。
 車輪3a,3bのトレッド面は、路面と接触しない状態で円弧状の断面形状を有する。このような車輪3a,3bのトレッド面の形状は、例えば四輪車の場合と異なる。
 トレッド面TRに形成された溝及び傷による凹凸を除外した巨視的な観点における車輪3a,3bと路面の接触面積は、リーン車両1の傾斜動作に伴い連続的に変化する。
 エンジン10は、クランク軸15を備えている。エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15の動力を受け、リーン車両1を走行させる。
 エンジン10から出力される動力は、例えば、変速機及びクラッチを介して車輪3bに伝達されることができる。
 永久磁石式始動モータ20は、永久磁石を有する。より詳細には、永久磁石式始動モータ20は、永久磁石で構成された永久磁石部37を備えている。
 始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、充電及び放電することができる蓄電デバイスである。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、充電された電力を外部に出力する。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、電力を永久磁石式始動モータ20に供給する。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。また、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、永久磁石式始動モータ20で発電された電力によって充電される。
 始動用リチウムイオンバッテリ4は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。また、例えばエンジンの始動後、始動用リチウムイオンバッテリ4は、永久磁石式始動モータ20から供給される電流を受けて充電される。
 電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と接続されている。 電気二重層キャパシタ71は、エンジン10の始動時に始動用リチウムイオンバッテリ4と共に永久磁石式始動モータ20へ電力を供給する。電気二重層キャパシタ71は、永久磁石式始動モータ20によってエンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有している。例えば、電気二重層キャパシタ71の総計の重量は、始動用リチウムイオンバッテリ4の重量よりも小さい。
 電気二重層キャパシタ71から永久磁石式始動モータ20に至る電気経路には、ヒューズが設けられていないか、或いは、50A以上の図示しないヒューズが設けられている。
 例えば、50A未満のヒューズが設けられている場合、始動用リチウムイオンバッテリ4が機能せず電気二重層キャパシタ71からの電流で始動した場合に、ヒューズが切断して始動不可能となる可能性がある。
 電気二重層キャパシタ71から永久磁石式始動モータ20までの電気経路がヒューズ無し、又は50A以上の図示しないヒューズ付きで構成されることで、始動時にヒューズ切断による始動不能となる事態の発生が抑えられる。
 リーン車両1は、例えば、5つ以上の電気二重層キャパシタ71を有する。リーン車両1は、例えば、5から7個までの電気二重層キャパシタ71を有する。リーン車両1に適した耐圧を保持しつつ、リーン車両1における体積を最小に抑えるためである。リーン車両1は、例えば、5又は6個の電気二重層キャパシタ71を有することができる。
 電気二重層キャパシタ71は、例えば、30F以上の静電容量を有する。これによって、低温時に、幅広い範囲の大きさに属するエンジン10に対応することができる。
 例えば始動用リチウムイオンバッテリ4が機能しないような場合、即ち電力を出力しないような場合でも、永久磁石式始動モータ20へ電力を供給することによって、幅広い範囲の大きさに属するエンジン10を始動することができる。電気二重層キャパシタ71は、例えば、100mL以上の排気量(行程容量)を有するエンジンも始動することができる。
 ただし、電気二重層キャパシタ71として30F未満の静電容量を採用することも可能である。また、リーン車両1に備えられるエンジン10として、100mL未満の排気量を有するエンジンも採用可能である。
 電気二重層キャパシタ71は、例えば、始動用リチウムイオンバッテリ4と並列または直列に接続される。複数の電気二重層キャパシタ71は互いに直列に接続されている。
 複数の電気二重層キャパシタ71は、実質的な蓄電容量が増大するように直列に接続される。蓄電容量は、充電可能なエネルギーである。電気二重層キャパシタ71が充電できるエネルギーは例えば、電荷で表すことができる。蓄電容量は、静電容量とは異なる。一般的に、複数のキャパシタを直列した場合の合成静電容量は、ここのキャパシタの静電容量と等しい。
 しかし、本実施形態の電気二重層キャパシタ71は、リーン車両1で用いられる動作電圧よりも低い最大使用電圧を有する。
 例えば、リーン車両1が1つだけの電気二重層キャパシタ71を備える場合、動作電圧を電圧変換器や分圧抵抗器といった降圧手段を用いて降圧し、充電する構成が考えられる。この場合、1つだけの電気二重層キャパシタ71から放電される電圧は昇圧手段で昇圧され用いられる。この場合、1つだけの電気二重層キャパシタ71に充電されるエネルギー即ち電荷は、静電容量と電圧の積に等しい。従って、充電されるエネルギーは、電圧が低い分、小さい。即ち、蓄電容量は小さい。
 本実施形態では、5つ以上の電気二重層キャパシタ71を有することによって、降圧手段を介することなく始動用リチウムイオンバッテリ4と接続される。5つ以上の電気二重層キャパシタ71は、高い電圧で充電できるので、1つだけの電気二重層キャパシタの場合と比べて大きな電荷を充電できる。即ち、蓄電容量は大きい。
 電気二重層キャパシタ71は、例えば、始動用リチウムイオンバッテリ4と並列に接続されることができる。
 ただし、接続構成として、例えば電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と直列に接続されることが可能な構成も採用され得る。電気二重層キャパシタ71が始動用リチウムイオンバッテリ4と並列に接続されることで、単純に容量が増大する。また、電気二重層キャパシタ71が始動用リチウムイオンバッテリ4と直列に接続されることで、例えば、供給される電圧が高い場合にも充電することができる。従って直列の場合にも、総計の蓄電容量が増大する。
 また、接続構成として、例えば電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と直列接続及び並列接続を切換える構成も採用され得る。
 始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、物理的に互いに別体である。始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、車体2に対して異なる位置に設けられている。始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、互いに隣接した位置に設けられることが可能である。配置関係はこれに限られず、始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、リーン車両1において、互いに離隔した位置に配置されることもできる。
 例えば、始動用リチウムイオンバッテリ4は、交換可能であるように車体2に設けられている。電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4の交換が行われる時に始動用リチウムイオンバッテリ4と共に車体2から取り外されないように車体2に設けられている。つまり、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4が車体2から取り外される時点で車体2に取り付けられた状態を維持するように、車体2に取り付けられている。より具体的には、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とは、互いに異なる部材によって車体2に取り付けられている。
 永久磁石式始動モータ20は、始動用リチウムイオンバッテリ4の電力によってクランク軸15を回転させる。これによって永久磁石式始動モータ20はエンジン10を始動する。電気二重層キャパシタ71と始動用リチウムイオンバッテリ4は接続されている。このため、永久磁石式始動モータ20は、電気二重層キャパシタ71に充電された電力と、始動用リチウムイオンバッテリ4に充電された電力の双方によってクランク軸15を回転させる。
 図1に示す構成で、始動用リチウムイオンバッテリ4は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。低温時に始動用リチウムイオンバッテリ4から単位時間で出力することが可能な電流は、例えば同じ容量を有する鉛バッテリよりも小さい。しかし、始動用リチウムイオンバッテリ4は、電気二重層キャパシタ71と接続されている。このため、始動用リチウムイオンバッテリ4から出力される電力によって、始動の前に電気二重層キャパシタ71を充電することができる。
 エンジン10の始動時に、始動用リチウムイオンバッテリ4が永久磁石式始動モータ20に電力を供給すると同時に、事前に充電された電気二重層キャパシタ71も永久磁石式始動モータ20に電力を供給することができる。電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4のような電極の化学反応を利用していない。このため、電気二重層キャパシタ71では、例えば始動用リチウムイオンバッテリ4と比べて、低温時における内部抵抗の増大が少ない。従って、電気二重層キャパシタ71は、例えば始動用リチウムイオンバッテリ4と比べて、低温時における出力電流の減少が抑えられる。また、電気二重層キャパシタ71の体積は、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量で充分なのでコンパクトにできる。従って、車両設計の自由度を損なうことなく、旋回時に傾斜するように走行するリーン車両1に搭載することができる。
 このように、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタ71を接続することによって、始動用リチウムイオンバッテリ4の容量を増大することなく、低温を含む広い温度範囲で始動用リチウムイオンバッテリ4によりエンジン10を始動することができる。
[適用例]
 続いて、図1を参照して説明した実施形態の適用例を説明する。
 図2は、図1に示す実施形態の適用例であるリーン車両及び電気系統を模式的に示す図である。図2のパート(a)は、リーン車両の平面図である。図2のパート(b)は、パート(a)に示す車輪の一部断面図である。図2のパート(c)は、リーン車両の側面図である。図2のパート(d)は、リーン車両の電気系統の接続を模式的に示す実体配線図である。
 図2以降に示す適用例において、図1に示す実施形態に対応する要素は、図1と同じ符号を付して説明を行う。
 図2に示すリーン車両1は、車体2を備えている。車体2には、運転者が着座するためのシート2aが備えられている。運転者は、シート2aに跨がるようにして着座する。図2には、リーン車両1の一例として自動二輪車が示されている。
 リーン車両1は、前の車輪3aと後ろの車輪3bを備えている車輪3a及び車輪3bは、路面と接地するためのトレッド面TRを有する。リーン車両1の車輪3a,3bのトレッド面は、路面と接触しない状態で円弧状の断面形状を有する。
 エンジン10は、エンジンユニットEUを構成する。即ち、リーン車両1は、エンジンユニットEUを備えている。
 エンジンユニットEUは、エンジン10と、永久磁石式始動モータ20とを含む。
 エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15の動力を受け、リーン車両1を走行させる。エンジン10は、例えば100mL以上の排気量を有する。エンジン10は、例えば、400mL未満の排気量を有する。
 また、リーン車両1は、変速機CVT及びクラッチCLを備えている。エンジン10から出力される動力は、変速機CVT及びクラッチCLを介して車輪3bに伝達される。
 永久磁石式始動モータ20は、エンジン10に駆動されて発電する。図2に示す永久磁石式始動モータ20は、磁石式始動発電機である。
 永久磁石式始動モータ20は、ロータ30及びステータ40を有する。ロータ30は、永久磁石で構成された永久磁石部37を備えている。ロータ30は、クランク軸15から出力される動力で回転する。ステータ40は、ロータ30と対向するように配置されている。
 始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、充電及び放電することができる蓄電デバイスである。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、充電された電力を外部に出力する。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、電力を永久磁石式始動モータ20及び電気装置Lに供給する。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。また、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、永久磁石式始動モータ20で発電された電力によって充電される。
 始動用リチウムイオンバッテリ4は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。また、例えばエンジン10の始動後、始動用リチウムイオンバッテリ4は、永久磁石式始動モータ20から供給される電流を受けて充電される。
 リーン車両1は、インバータ21を備えている。インバータ21は、永久磁石式始動モータ20と始動用リチウムイオンバッテリ4との間を流れる電流を制御する複数のスイッチング部211を備えている。
 電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と接続されている。図2に示すリーン車両1は、複数の電気二重層キャパシタ71を備えている。電気二重層キャパシタ71は、互いに直列接続されている。互いに直列接続された電気二重層キャパシタ71は、電気的には1つの電気二重層キャパシタとして動作する。
 図2に示す電気二重層キャパシタ71は、インバータ21から見て始動用リチウムイオンバッテリ4と並列に接続されている。電気二重層キャパシタ71は、エンジン10の始動時に始動用リチウムイオンバッテリ4と共に永久磁石式始動モータ20へ電力を供給する。電気二重層キャパシタ71は、永久磁石式始動モータ20によって前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有している。電気二重層キャパシタ71の総計の重量は、始動用リチウムイオンバッテリ4の重量よりも小さい。
 始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、物理的に互いに別体である。始動用リチウムイオンバッテリ4と電気二重層キャパシタ71は、車体2に対して別々に設けられている。始動用リチウムイオンバッテリ4は、交換可能であるように車体2に設けられている。電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4の交換が行われる時に始動用リチウムイオンバッテリ4と共に車体2から外れないように車体2に設けられている。つまり、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4が車体2から取り外される場合にも車体2に取り付けられた状態を維持することができるように、車体2に取り付けられている。より具体的には、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とは、互いに異なる部材によって車体2に取り付けられている。
 電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4が車体2から取り出されたことを条件として車体2から取り出し可能となるように設けられることができる。例えば、車体2に、電気二重層キャパシタ71及び始動用リチウムイオンバッテリ4の双方を収納する収納凹部が設けられており、電気二重層キャパシタ71は始動用リチウムイオンバッテリ4よりも奥に配置されている。
 また、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4が車体2取り付けられた状態で車体2から取り出し可能となるように設けられることもできる。
 電気二重層キャパシタ71は、配線距離を基準として、電気二重層キャパシタ71とインバータ21との距離が、始動用リチウムイオンバッテリ4とインバータ21との距離よりも短くなるように配設されている。つまり、配線距離を基準として、始動用リチウムイオンバッテリ4よりも電気二重層キャパシタ71の方がインバータ21に近い位置に配設されている。図2のパート(d)に示す例において、電気二重層キャパシタ71からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離は、始動用リチウムイオンバッテリ4からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離よりも短い。
 永久磁石式始動モータ20は、始動用リチウムイオンバッテリ4の電力によってクランク軸15を回転させる。これによって永久磁石式始動モータ20はエンジン10を始動する。
 電気二重層キャパシタ71と始動用リチウムイオンバッテリ4は接続されているので、永久磁石式始動モータ20は、電気二重層キャパシタ71に充電された電力と、始動用リチウムイオンバッテリ4に充電された電力の双方によってクランク軸15を回転させる。
 リーン車両1は、メインスイッチ5を備えている。メインスイッチ5は、操作に応じてリーン車両1に備えられた電気装置L(図6参照)に電力を供給するためのスイッチである。電気装置Lは、永久磁石式始動モータ20を除いて、電力を消費しながら動作する装置をまとめて表したものである。電気装置Lは、例えば、前照灯9、後述する燃料噴射装置18、及び点火プラグ19を含む。
 リーン車両1は、スタータスイッチ6を備えている。スタータスイッチ6は、操作に応じてエンジン10を始動するためのスイッチである。リーン車両1は、メインリレー75を備えている。メインリレー75は、メインスイッチ5からの信号に応じて、電気装置Lを含む回路を開閉する。
 リーン車両1は、加速指示部8を備えている。加速指示部8は、操作に応じてリーン車両1の加速を指示するための操作子である。加速指示部8は、詳細には、アクセルグリップである。
 図2に示す構成で、始動用リチウムイオンバッテリ4は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。低温時に始動用リチウムイオンバッテリ4から単位時間で出力することが可能な電流は、例えば同じ容量を有する鉛バッテリよりも小さい。しかし、始動用リチウムイオンバッテリ4は、電気二重層キャパシタ71と接続されている。このため、始動用リチウムイオンバッテリ4から出力される電力によって、始動の前に電気二重層キャパシタ71を充電することができる。
 エンジン10の始動時に、始動用リチウムイオンバッテリ4が永久磁石式始動モータ20に電力を供給すると同時に、事前に充電された電気二重層キャパシタ71も永久磁石式始動モータ20に電力を供給することができる。電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4のような電極の化学反応を利用していない。このため、電気二重層キャパシタ71では、例えば始動用リチウムイオンバッテリ4と比べて、低温時における内部抵抗の増大が少ない。従って、電気二重層キャパシタ71では、例えば始動用リチウムイオンバッテリ4と比べて、低温時における出力電流の減少が抑えられる。
 また、電気二重層キャパシタ71の体積は、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量で充分なのでコンパクトにできる。従って、車両設計の自由度を損なうことなく、旋回時に傾斜するように走行するリーン車両1に搭載することができる。
 このように、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタ71を接続することによって、始動用リチウムイオンバッテリ4の容量を増大することなく、低温を含む広い温度範囲で始動用リチウムイオンバッテリ4によりエンジン10を始動することができる。
 図3は、図2に示す始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71を示す外観図である。
 図3のパート(a)は平面図である。図3のパート(b)は側面図である。図3のパート(b)は底面図である。
 [リチウムイオンバッテリ]
 図3に示す始動用リチウムイオンバッテリ4は、直方体状である。始動用リチウムイオンバッテリ4は、上面4a、底面4b及び4つの側面4cを有する。
 図2及び図3に示す始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4の上面4a(図3)が、直立状態でのリーン車両1の上方を向くような姿勢で配置される。ただし、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71は、図2に示す姿勢に対し、傾いた姿勢で配置されることも可能である。
 始動用リチウムイオンバッテリ4は、正の端子41及び負の端子42を有する。端子41,42は、始動用リチウムイオンバッテリ4の上面部分に設けられた凹部に設けられる。
 始動用リチウムイオンバッテリ4は、複数のバッテリセル45を有する。バッテリセル45は、図示しない正極及び負極を有する。始動用リチウムイオンバッテリ4における正極は、リチウム遷移金属複合酸化物を含んだ材料で構成されている。始動用リチウムイオンバッテリ4は、電極の化学反応によって外部から供給された電力を蓄える。始動用リチウムイオンバッテリ4は、電極の化学反応によって電力を外部に出力する。始動用リチウムイオンバッテリ4は、各バッテリセル45の充電量を制御するための図示しないバッテリ制御回路を内蔵している。
[キャパシタ]
 リーン車両1(図2参照)は、例えば、複数の電気二重層キャパシタ71(Electric Double Layer Capacitor, EDLC)を有する。
 それぞれの電気二重層キャパシタ71は、単体で機能することができる電気部品である。それぞれの電気二重層キャパシタ71は、端子として機能するリード線71a,71bを備えたリードタイプである。これらの電気二重層キャパシタ71は、回路基板72に接続されている。複数の電気二重層キャパシタ71と回路基板72とは、電気二重層キャパシタブロック7を構成している。即ち、電気二重層キャパシタブロック7は、複数の電気二重層キャパシタ71と、各々の電気二重層キャパシタ71に接続された回路基板72を有する。電気二重層キャパシタブロック7は、リーン車両1に備えられている。
 回路基板72は、電気二重層キャパシタ71と半田接続されている。回路基板は、電気二重層キャパシタ71を互いに直列接続する配線パターン72pを有する。複数の電気二重層キャパシタ71は、回路基板72を介して互いに直列接続されている。リードタイプの電気二重層キャパシタ71は、組立て工程において回路基板72に半田接続されることで、短時間で直列接続することができる。
 互いに直列接続された複数の電気二重層キャパシタ71は、電気的に1つの電気二重層キャパシタとして機能する。そこで、電気的に1つの電気二重層キャパシタとして機能する複数の電気二重層キャパシタ71を、以降、単に電気二重層キャパシタ71と称する場合もある。
 図3には、リーン車両1(図2)に適用される例として5つ以上の電気二重層キャパシタ71を示している。図2に示すリーン車両1は、例えば、6つの電気二重層キャパシタ71を有する。
 電気二重層キャパシタ71は、図示しない電極と電解液とを有し、電極は図示しない終電体及び活性炭を含む。電気二重層キャパシタ71は、活性炭と電解液が接する界面にイオンと電子又はホールとの並びから成る電気二重層を形成することによって電力を蓄える。電気二重層キャパシタ71は、電荷の形で電力を蓄える。電気二重層キャパシタ71は、電極の化学変化によらずに電力を蓄える。このため、電気二重層キャパシタ71は、例えば同じ容量を有する始動用リチウムイオンバッテリ4と比べた場合に、より大きな電流で充電及び放電することが可能である。
 特に、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と比べ、低温時における充電電流の制約が小さい。従って、電気二重層キャパシタ71は、同じ容量を有する始動用リチウムイオンバッテリ4と比べて、短時間でより大きな電力を蓄えることができる。また、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と比べ、低温時における放電電流の制約が小さい。従って、電気二重層キャパシタ71は、同じ容量を有する始動用リチウムイオンバッテリ4と比べて大きな電流で放電することが可能である。
 図3に示す電気二重層キャパシタ71は、永久磁石式始動モータ20が少なくとも1回エンジン10を始動させるためクランク軸15を回転させる電力を充電可能な静電容量を電気二重層キャパシタ71単体で有する。このため、始動用リチウムイオンバッテリ4がエンジン10を始動させるのに十分な電力を出力できない場合でも、電気二重層キャパシタ71に充電された電流でエンジン10を始動させることができる。仮に、始動用リチウムイオンバッテリ4が接続されない場合でも、電気二重層キャパシタ71に充電された電流でエンジン10を少なくとも1回始動させることができる。
 キャパシタの容量は、静電容量である。静電容量はファラッド(F)で表される。但し、容量の尺度は、例えば始動用リチウムイオンバッテリ4と合せるため、バッテリの標準的な動作電圧を想定した電流積算量(Ah又はAs)で表すこともできる。電流積算量は、キャパシタに蓄えられる電荷を表している。従って、容量の尺度は、バッテリの標準的な動作電圧を想定した場合に蓄えられる電荷(C:クーロン)で表すことができる。バッテリの標準的な動作電圧は、例えば12Vである。バッテリの標準的な動作電圧は、例えば12Vと等しいかそれより高い電圧でもよい。バッテリの標準的な動作電圧は、例えば24Vでもよい。
 本明細書においても、直列接続された電気二重層キャパシタ71に蓄えられる電力を、動作電圧を想定した場合の電荷(C)で表す場合もある。1Cは、1Asと等しい。
 [キャパシタ形状と並び]
 電気二重層キャパシタ71は、円柱状である。複数の円柱状の電気二重層キャパシタ71は、実質的に互いに平行になるように並ぶ。例えば、6つの電気二重層キャパシタ71は6列を成すように並んでいる。円柱状の電気二重層キャパシタ71の2つの底面(上面及び下面)のうち1つの底面から1対のリード線71a,71bが突出している。それぞれの電気二重層キャパシタ71は、リード線71a,71bが突出した底面を回路基板72に向けて並んでいる。
 [キャパシタとバッテリの配置]
 電気二重層キャパシタ71は、例えば図2に示すリーン車両1を左方に見て、リーン車両1の上下方向において、始動用リチウムイオンバッテリ4の下縁線よりも下方に配置されている。例えば、電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4の底面に沿って並んでいる。始動用リチウムイオンバッテリ4の底面よりも下方に配置されている。
 [寸法 関係]
 電気二重層キャパシタ71の直径φ及び高さLcと、始動用リチウムイオンバッテリ4の横の長さLb及び縦の長さWとの関係は下の式(A)及び(B)の通りである。
 (Lb/7)≦φ≦ (Lb/5)      (A)
  Lc ≦ W               (B)
 電気二重層キャパシタ71として、例えば30F以上の静電容量を有するキャパシタが採用される。また、電気二重層キャパシタ71として、2.5V以上5V以下の最大使用電圧を有する電気二重層キャパシタが採用される。電気二重層キャパシタ71として、例えば2.7V以上3V以下の最大使用電圧を有する電気二重層キャパシタ71が採用される。電気二重層キャパシタ71の最大使用電圧は、例えば2.7Vである。
 電気二重層キャパシタ71は、永久磁石式始動モータ20が少なくとも0.5秒間、エンジン10を始動させるためクランク軸15を回転させる電力を充電可能な容量を有することが好ましい。これによって、エンジン10が圧縮行程を含む少なくとも1サイクル分動作する。これによって、燃焼動作が可能になる。
 例えば、クランク軸15を回転させる永久磁石式始動モータ20に供給される電流が100A以上の場合、0.5秒間、クランク軸15を回転させる電力は、200Jよりも大きい。電気二重層キャパシタ71が30F以上の容量を有することにより、リーン車両1における標準的な動作電圧が12Vである場合に、複数の電気二重層キャパシタ71の全体で400Jよりも大きい電力が蓄えられる。複数の電気二重層キャパシタ71の電荷が満充電の半分になるまで放電した場合、200Jよりも大きいエネルギーを供給できる。
この場合、永久磁石式始動モータ20が少なくとも0.5秒間、エンジン10を始動させるためクランク軸15を回転させる。
 また、電気二重層キャパシタ71は、エンジン10のアイドリング時に永久磁石式始動モータ20で発電される電力により20秒以内に実質的に満充電となる容量を有する。エンジン10を20秒アイドリング状態にすると、エンジン10の停止後に、電気二重層キャパシタ71の電力によってエンジン10を再始動することができる。
 例えば、エンジン10にアイドリング状態で永久磁石式始動モータ20から供給される平均的な電流が20Aの場合、20秒で電気二重層キャパシタ71に供給される電力は、400Jよりも大きい。電気二重層キャパシタ71が30F以上の容量を有することにより、リーン車両1における標準的な動作電圧が12Vである場合に、400Jよりも大きい電力が蓄えられる。つまり、電気二重層キャパシタ71は、エンジン10のアイドリング時に永久磁石式始動モータ20により発電される電力により20秒以内に満充電となる。この結果、永久磁石式始動モータ20が最大で0.5秒間、エンジン10を始動させるためクランク軸15を回転させることが可能である。
 電気二重層キャパシタ71は、永久磁石式始動モータ20が少なくとも1秒間より長く、エンジン10を始動させるためクランク軸15を回転させる電力を充電可能な容量を有してもよい。これによって、少なくとも1回のエンジン10の始動が行える。永久磁石式始動モータ20に供給される電流が100Aの場合、1秒間より長くクランク軸15を回転させる電力は、約400Jより大きい。電気二重層キャパシタ71が50F以上の容量を有することにより、1秒間より長く、エンジン10を始動させるためクランク軸15を回転させることができる。
 ここでエンジン10の始動は、リーン車両1の停止状態、かつクランク軸15の回転停止状態における始動である。
 また、電気二重層キャパシタ71は、エンジン10のアイドリング時に永久磁石式始動モータ20で発電される電力により20秒以内にリーン車両1における標準的な動作電圧となる。電気二重層キャパシタ71は、例えば、400F未満の容量を有する。
 また、電気二重層キャパシタ71として、エンジン10のアイドリング時に永久磁石式始動モータ20により発電される電力により10秒より短い時間で満充電となる容量を有する構成も採用可能である。この場合、電気二重層キャパシタ71は、例えば、200F未満の容量を有する。エンジン10を10秒アイドリング状態にすると、エンジン10の停止後に、電気二重層キャパシタ71の電力によってエンジン10を再始動することができる。
 図2に示すインバータ21は、スイッチング部211(図6参照)を備えている。インバータ21は、永久磁石式始動モータ20に電力を供給することによって、永久磁石式始動モータ20を回転させる。インバータ21は、永久磁石式始動モータ20の巻線に流れる電流のオン・オフを制御することによって、電流を制御する。また、インバータ21は、エンジン10が燃焼動作している場合に、永久磁石式始動モータ20で発電された電力を、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71に供給する。この場合、インバータ21は、永久磁石式始動モータ20で発電された電流を整流する。
 リーン車両1は、制御装置60を備えている。制御装置60は、インバータ21と物理的に一体に設けられている。詳細には、本適用例の制御装置60とインバータ21とは共通の筐体を有している。制御装置60は、インバータ21のスイッチング部211の動作を制御することによって、永久磁石式始動モータ20と始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71との間で流れる電流を制御する。これによって、制御装置60は、永久磁石式始動モータ20の動作を制御する。
 例えば、制御装置60は、スタータスイッチ6からの信号に応じて、インバータ21に、始動用リチウムイオンバッテリ4から永久磁石式始動モータ20に電流を供給させる。これによって、始動用リチウムイオンバッテリ4から永久磁石式始動モータ20に電力が供給され、エンジン10が始動する。エンジンの始動後、即ち燃焼動作開始後、制御装置60は、永久磁石式始動モータ20からの電流を始動用リチウムイオンバッテリ4に流すようインバータ21を制御する。これによって、始動用リチウムイオンバッテリ4が永久磁石式始動モータ20の発電電力によって充電される。
 また、制御装置60は、エンジン10の始動後、即ち燃焼動作開始後も、加速指示部8の操作に応じてインバータ21に、始動用リチウムイオンバッテリ4の電力を永久磁石式始動モータ20に供給させる。これによって、エンジン10によるリーン車両1の走行が永久磁石式始動モータ20でアシストされる。
 また、本適用例の制御装置60は、エンジン10への燃料の供給を制御するエンジン制御部の機能も有する。制御装置60は、後述する燃料噴射装置18の動作を制御することによって、エンジンへの燃料の供給を制御する。
 制御装置60は、図示しない中央処理装置及びメモリを備えている。メモリに記憶されたプログラムを実行することによって、エンジン10への燃料の供給を制御する。制御装置60は、平滑キャパシタ61を備えている。平滑キャパシタ61は、制御装置60の電源端子の電圧を平滑化する。
 図2のパート(d)に示すように、永久磁石式始動モータ20、始動用リチウムイオンバッテリ4、電気二重層キャパシタ71、メインリレー75、インバータ21を含む制御装置60、及び電気装置Lは、配線Jで電気的に接続されている。符号の見やすさのため、配線の符号(J)は、図2のパート(b)に示す配線の一部に付している。
 配線Jは、例えばリード線で構成される。配線Jは、繋ぎ合わされた複数のリード線で構成される場合もある。また、配線Jは、リード線を中継するコネクタ、ヒューズ、及び接続端子を含む場合もある。コネクタ、ヒューズ、及び接続端子の図示は省略する。また、図2のパート(d)の実体配線図では、正極領域の接続が示されている。負極領域即ちグランド領域は、車体2を介して電気的に接続されている。より詳細には、負極領域は、車体2の図示しない金属製フレームを介して電気的に接続されている。車体2を介した各装置の電気的な接続の距離は、通常、リード線等による正極領域の接続と同等であるか、より短い。そこで、図2のパート(d)において、車体2による負極領域の接続の図示を省略し、主として、正極領域の配線について説明する。
 図2に示す配線Jは、車両に設けられた他の配線と組み合わされて図示しないワイヤハーネスを構成する。図2のパート(d)では、図に示された装置を電気的に接続する配線Jのみを示す。
 図2のパート(d)には、各装置間の配線Jの接続関係、及び配線Jの距離が概略的に示されている。
[エンジンユニット]
 図4は、図2に示すエンジンユニットEUの概略構成を模式的に示す部分断面図である。
 エンジンユニットEUは、エンジン10を備えている。エンジン10は、クランクケース11と、シリンダ12と、ピストン13と、コネクティングロッド14と、クランク軸15とを備えている。ピストン13は、シリンダ12内に往復動可能に設けられている。
 クランク軸15は、クランクケース11内に回転可能に設けられている。クランク軸15は、コネクティングロッド14を介して、ピストン13と連結されている。シリンダ12の上部には、シリンダヘッド16が取り付けられている。シリンダ12とシリンダヘッド16とピストン13とによって、燃焼室が形成される。クランク軸15は、クランクケース11に、回転自在な態様で支持されている。クランク軸15の一端部15aには、永久磁石式始動モータ20が取り付けられている。クランク軸15の他端部15bには、変速機CVTが取り付けられている。変速機CVTは、入力の回転速度に対する出力の回転速度の比である変速比を変更することができる。変速機CVTは、クランク軸15の回転速度に対する、車輪の回転速度に対応する変速比を変更することができる。
 エンジンユニットEUには、燃料噴射装置18が備えられている。燃料噴射装置18は、燃料を噴射することによって、燃焼室に燃料を供給する。吸気通路Ipを通って流れる空気に対し、燃料噴射装置18が燃料を噴射する。空気と燃料の混合気が、エンジン10の燃焼室に供給される。
 また、エンジン10には、点火プラグ19が設けられている。
 エンジン10は、内燃機関である。エンジン10は、燃料の供給を受ける。エンジン10は、混合気を燃焼する燃焼動作によって動力を出力する。即ち、ピストン13が、燃焼室に供給された燃料を含む混合気の燃焼によって往復動する。ピストン13の往復動に連動してクランク軸15が回転する。動力は、クランク軸15を介してエンジン10の外部に出力される。
 燃料噴射装置18は、供給燃料の量を調整することによって、エンジン10から出力される動力を調節する。燃料噴射装置18は、制御装置60によって制御される。燃料噴射装置18は、エンジン10に供給される空気の量に基づいた量の燃料を供給するよう制御される。
 エンジン10は、クランク軸15を介して動力を出力する。クランク軸15の動力は、変速機CVT及びクラッチCL(図2参照)を介して、車輪3bに伝達される。
 図5は、図4に示す永久磁石式始動モータ20の回転軸線に垂直な断面を示す断面図である。
 図4及び図5を参照して永久磁石式始動モータ20を説明する。
 永久磁石式始動モータ20は、ロータ30と、ステータ40とを有する。本適用例の永久磁石式始動モータ20は、ラジアルギャップ型である。永久磁石式始動モータ20は、アウタロータ型である。即ち、ロータ30はアウタロータである。ステータ40はインナーステータである。
 ロータ30は、ロータ本体部31を有する。ロータ本体部31は、例えば強磁性材料からなる。ロータ本体部31は、有底筒状を有する。ロータ本体部31は、筒状ボス部32と、円板状の底壁部33と、筒状のバックヨーク部34とを有する。底壁部33及びバックヨーク部34は一体的に形成されている。なお、底壁部33とバックヨーク部34とは別体に構成されていてもよい。底壁部33及びバックヨーク部34は筒状ボス部32を介してクランク軸15に固定されている。ロータ30には、電流が供給される巻線が設けられていない。
 ロータ30は、永久磁石部37を有する。ロータ30は、複数の磁極部37aを有する。複数の磁極部37aは永久磁石部37により形成されている。複数の磁極部37aは、バックヨーク部34の内周面に、設けられている。本適用例において、永久磁石部37は、複数の永久磁石を有する。即ち、ロータ30は、複数の永久磁石を有する。複数の磁極部37aは、複数の永久磁石のそれぞれに設けられている。
 なお、永久磁石部37は、1つの環状の永久磁石によって形成されることも可能である。この場合、1つの永久磁石は、複数の磁極部37aが内周面に並ぶように着磁される。
 複数の磁極部37aは、永久磁石式始動モータ20の周方向にN極とS極とが交互に配置されるように設けられている。本適用例では、ステータ40と対向するロータ30の磁極数が24個である。ロータ30の磁極数とは、ステータ40と対向する磁極数をいう。磁極部37aとステータ40との間には磁性体が設けられていない。
 磁極部37aは、永久磁石式始動モータ20の径方向におけるステータ40よりも外方に設けられている。バックヨーク部34は、径方向における磁極部37aよりも外方に設けられている。永久磁石式始動モータ20は、歯部43の数よりも多い磁極部37aを有している。
 なお、ロータ30は、磁極部37aが磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよいが、本適用例のように、磁極部37aが磁性材料から露出した表面磁石型(SPM型)であることが好ましい。
 ステータ40は、ステータコアSTと複数の巻線Wとを有する。ステータコアSTは、周方向に間隔を空けて設けられた複数の歯部(ティース)43を有する。複数の歯部43は、ステータコアSTから径方向外方に向かって一体的に延びている。本適用例においては、合計18個の歯部43が周方向に間隔を空けて設けられている。換言すると、ステータコアSTは、周方向に間隔を空けて形成された合計18個のスロットSLを有する。歯部43は周方向に等間隔で配置されている。
 ロータ30は、歯部43の数より多い数の磁極部37aを有する。磁極部の数は、スロット数の4/3である。
 各歯部43の周囲には、巻線Wが巻回している。つまり、複数相の巻線Wは、スロットSLを通るように設けられている。図5には、巻線Wが、スロットSLの中にある状態が示されている。
 永久磁石式始動モータ20は、三相発電機である。巻線Wのそれぞれは、U相、V相、W相の何れかに属する。巻線Wは、例えば、U相、V相、W相の順に並ぶように配置される。
 リーン車両1が走行中にエンジン10が動作状態している場合、永久磁石式始動モータ20で発電される電力によって、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71が充電される。始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71が満充電になると、永久磁石式始動モータ20で発電される電力は、充電に用いられることなく例えば巻線の短絡によって熱として消費される。例えば、永久磁石式始動モータ20において始動時のトルクを増大するため、電気抵抗の小さい太い巻線が採用されると、満充電時に熱として消費される電力も増大する。つまり、損失が増大する。
 モータが発電する場合、巻線Wを流れる電流は、巻線W自体に生じるインピーダンスの影響を受ける。インピーダンスは巻線Wを流れる電流を妨げる要素である。インピーダンスは、回転速度ωとインダクタンスの積を含む。ここで、回転速度ωは、実際には、単位時間に歯部近傍を通過する磁極部の数に相当する。即ち、回転速度ωは、モータおける歯部の数に対する磁極部の数の比と、ロータの回転速度とに比例する。
 図5に示す永久磁石式始動モータ20は、歯部43の数より多い数の磁極部37aを有する。即ち、永久磁石式始動モータ20は、スロットSLの数より多い数の磁極部37aを有する。このため、巻線Wが大きなインピーダンスを有する。従って、始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71が満充電の時に熱として消費される電力が少ない。このため、永久磁石式始動モータ20において始動時のトルクを増大するため、電気抵抗の小さい太い巻線を採用することができる。
 リーン車両1は、始動用リチウムイオンバッテリ4に接続された電気二重層キャパシタ71を備えている。このため、大きな電流を受け入れ始動時のトルクを増大する永久磁石式始動モータ20が採用されている場合に、低温時でも、この受け入れに対応した大きな電流を供給することができる。
 永久磁石式始動モータ20のロータ30は、クランク軸15の回転に応じて回転するようにクランク軸15と接続されている。
 図6は、図2に示すリーン車両1の電気的な概略構成を示す回路図である。
 図6の回路図は、図2に示すリーン車両1の適用例における電気的接続を示している。
 図6に示すように、永久磁石式始動モータ20は、インバータ21を介して、電気二重層キャパシタ71と電気的に接続されている。永久磁石式始動モータ20は、インバータ21及びメインリレー75を介して、始動用リチウムイオンバッテリ4と電気的に接続されている。
 インバータ21は、スイッチング部211を備えている。スイッチング部211によって、インバータ21としての三相ブリッジインバータが構成されている。
 スイッチング部211は、複数相の巻線Wの各相と接続され、複数相の巻線Wと始動用リチウムイオンバッテリ4との間の電圧の印加/非印加を切換える。複数のスイッチング部211は、これにより、複数相の巻線Wと始動用リチウムイオンバッテリ4との間の電流の通過/遮断を切換える。すなわち、複数のスイッチング部211は、始動用リチウムイオンバッテリ4と永久磁石式始動モータ20との間を流れる電流を制御する。より具体的には、永久磁石式始動モータ20がスタータモータとして機能する場合、スイッチング部211のオン・オフ動作によって複数相の巻線Wのそれぞれに対する通電及び通電停止が切換えられる。また、永久磁石式始動モータ20がジェネレータとして機能する場合、スイッチング部211のオン・オフ動作によって、巻線Wのそれぞれと始動用リチウムイオンバッテリ4との間の電流の通過/遮断が切換えられる。スイッチング部211のオン・オフが順次切換えられることによって、永久磁石式始動モータ20から出力される三相交流の整流及び電圧の制御が行われる。
 制御装置60は、スイッチング部211の動作を制御することによって、永久磁石式始動モータ20と始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71との間で流れる電流を制御する。例えば、制御装置60は、スイッチング部211をベクトル制御方式で制御することによって、永久磁石式始動モータ20を回転させる。また、制御装置60は、スイッチング部211をベクトル制御方式で制御することによって、永久磁石式始動モータ20による発電電力を始動用リチウムイオンバッテリ4、電気二重層キャパシタ71、及び電気装置Lに供給する。制御装置60がスイッチング部211を制御する方式は、これに限られず、例えば120度通電方式及び位相制御方式でもよい。
 始動用リチウムイオンバッテリ4と電気二重層キャパシタ71の双方は、メインリレー75を介して、永久磁石式始動モータ20のインバータ21と電気的に接続されている。始動用リチウムイオンバッテリ4と電気二重層キャパシタ71の双方は、メインリレー75を介して電気装置Lと電気的に接続されている。始動用リチウムイオンバッテリ4と電気二重層キャパシタ71の双方は、メインリレー75を介して永久磁石式始動モータ20と電気的に接続されている。
 始動用リチウムイオンバッテリ4と電気二重層キャパシタ71の双方は、制御装置60と電気的に接続されている。
 電気二重層キャパシタ71は、平滑キャパシタ61とは別個のキャパシタである。電気二重層キャパシタ71は、平滑キャパシタ61と並列接続されている。電気二重層キャパシタ71は、永久磁石式始動モータ20を駆動するための電力を蓄える。これに対し、平滑キャパシタ61は電源電圧を平滑化する。
 電気二重層キャパシタ71の容量は、平滑キャパシタ61の容量よりも大きい。寄生インダクタンスは、平滑キャパシタ61の寄生インダクタンスよりも大きい。電気二重層キャパシタ71は、電気二重層キャパシタで構成される。平滑キャパシタ61は、電解キャパシタで構成される。
 図6に示す装置の間には、実際には、コネクタ(カプラ)、ヒューズ、接続端子、及び電流調整用抵抗等が含まれている。本適用例では、コネクタ、ヒューズ、接続端子、及び電流調整用抵抗等の部品は、電気的には配線に含まれると考えることができるため、図示及び説明を省略する。ヒューズは図6に示す装置に含まれない場合もある。
 図6に示す電気二重層キャパシタ71の全ては、直列接続されている。つまり、ある1つの電気二重層キャパシタ71を流れる電流のほぼ全てが残りの電気二重層キャパシタ71に流れる。
 図6のメインリレー75が作動することによって、始動用リチウムイオンバッテリ4を含む回路を閉じる状態をメインリレー75のオン状態と称する。
 メインスイッチ5は、操作によりオン状態となる。メインスイッチ5がオン状態のとき、メインリレー75はオン状態になる。
 図6の回路図に示すように、インバータ21から見て、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とは並列接続されている。インバータ21と、電気二重層キャパシタ71と、始動用リチウムイオンバッテリ4とを含む回路には、メインリレー75が含まれている。インバータ21から見て、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とは並列接続されているので、メインリレー75がオン状態で且つスタータスイッチ6がオン状態であるエンジン始動時の場合、始動用リチウムイオンバッテリ4から出力される電流と電気二重層キャパシタ71から出力される電流が合流してインバータ21に流れる。
 また、インバータ21から見て、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とは並列接続されている。インバータ21と、始動用リチウムイオンバッテリ4とを含む回路には、メインリレー75及びインバータ21が含まれている。メインリレー75がオン状態で且つエンジン10が燃焼動作している場合、永久磁石式始動モータ20から出力された電流は、インバータ21を経た後、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4とに分かれて供給される。
 インバータ21から見て、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4と電気装置Lとは並列接続されている。電気装置Lは、上述したように例えば前照灯9である。従って、より詳細には、メインリレー75がオン状態の場合、永久磁石式始動モータ20から出力された電流は、インバータ21を経た後、電気二重層キャパシタ71と始動用リチウムイオンバッテリ4と電気装置Lとに分かれて供給される。
 永久磁石式始動モータ20が発電をしていない場合、始動用リチウムイオンバッテリ4の電流が電気装置Lに供給される。また更に、電気二重層キャパシタ71の電圧が始動用リチウムイオンバッテリ4の電圧よりも小さいとき、始動用リチウムイオンバッテリ4から出力された電流の一部が電気二重層キャパシタ71に流れる。つまり、始動用リチウムイオンバッテリ4が電気二重層キャパシタ71を充電する。
 例えば、エンジン10が燃焼動作していない場合、電気二重層キャパシタ71の電力は電気装置Lで消費される。この結果、電気二重層キャパシタ71の電圧は始動用リチウムイオンバッテリ4の電圧より小さくなる。この状態で、メインリレー75がオン状態になると、電気二重層キャパシタ71が始動用リチウムイオンバッテリ4の電力で充電される。この場合、電気二重層キャパシタ71は、電気二重層キャパシタ71の電圧が始動用リチウムイオンバッテリ4の電圧と等しくなるまで、充電される。
 図6の回路図と図2のパート(d)の実体配線図とは、同一の接続構成を示している。但し、図2のパート(d)の実体配線図は、各装置間の実際の配線Jの接続関係、及び配線Jの距離を示している点が、図6と異なる。
 回路図は、通常、装置の電気的な接続を示している。より詳細には、回路図は、装置の回路トポロジーを示している。つまり、回路図は、例えば、装置同士が例えば直列接続されているか、又は、並列接続されているかを示している。また、回路図は、ある2つの装置が、配線のみで接続されているか、又は、2つの装置とは異なる装置を介して接続されているかを示している。回路図は、実際の配線長を表していない。また、回路図は、各装置の空間上の位置を表していない。例えば、3つの装置が回路図に並んで配置されていることは、3つの装置が実際にその順番に並んで配置されていることを意味しない。また、回路図における配置は、3つの装置が実際に並んで配置されていることも意味しない。
 これに対し、図2のパート(b)に示す実体配線図は、リーン車両1における装置間の実際の配線長を概略で示している。
 図2のパート(b)に示すように、電気二重層キャパシタ71は、配線距離を基準として、電気二重層キャパシタ71とインバータ21との距離が、始動用リチウムイオンバッテリ4とインバータ21との距離よりも短くなるように配設されている。
 電気二重層キャパシタ71からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離は、始動用リチウムイオンバッテリ4からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離よりも短い。
 また、電気二重層キャパシタ71は、配線距離を基準として、電気二重層キャパシタ71とインバータ21との距離が電気二重層キャパシタ71と始動用リチウムイオンバッテリ4との距離よりも長くなるように配設されている。この結果、電気二重層キャパシタ71からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離は、始動用リチウムイオンバッテリ4からインバータ21を経て永久磁石式始動モータ20へ至るまでの配線距離よりも長い。
 次に、図7を参照して、リーン車両1におけるエンジン10の始動性について説明する。
 図7は、図2に示すリーン車両1において、エンジン10の始動時における電流の変化を表すチャートである。
 図7の太い実線は、インバータ21に流れる電流Imを示す。細い実線は電気二重層キャパシタ71に流れる電流Icを示す。破線は始動用リチウムイオンバッテリ4に流れる電流Ibを示す。縦軸の0Aより上は始動用リチウムイオンバッテリ4及び電気二重層キャパシタ71の充電電流を示し、0Aより下は放電電流を示す。なお、図7では、容易な理解のため電気装置へ電流が供給されていない時の電流Im、Ic、Ibが示されている。
 図7のチャートでは、エンジン10への燃料供給などの燃焼動作が行われずにエンジン10の始動のためのクランク軸15の正転動作が行われた時の電流が示されている。具体的な始動条件として、スタータスイッチ6が、所定期間にわたってオン状態になるよう操作される。この期間、制御装置60の制御によってインバータ21が、永久磁石式始動モータ20を回転させるよう、永久磁石式始動モータ20の各相の巻線に電流を供給する。つまり、所定の始動期間(例えば0.5秒間)が得られる。これによって、永久磁石式始動モータ20が上記始動期間にわたってクランク軸15を回転させる。この期間中、エンジン10の燃焼動作は行われない。次に、所定の停止期間(例えば3秒間)が得られ、その後、再度、スタータスイッチ6が、上記始動期間にわたってオン状態になるよう操作される。このように始動期間と停止期間とが交互に繰り返される。
 上記始動期間のうち始めの一部(例えば0.05秒)は、回転開始期間に対応する。停止中の永久磁石式始動モータ20が回転を開始するまでは、永久磁石式始動モータ20の巻線のインピーダンスが小さい。つまり、始動期間のうち回転開始期間では、永久磁石式始動モータ20に回転開始期間後の回転時より大きな突入電流が流れる。
 この電流は、永久磁石式始動モータ20が、エンジン10のクランク軸15の回転を開始するためのトルクに対応している。
 電気二重層キャパシタ71は、始動用リチウムイオンバッテリ4と接続されている。インバータ21に流れる電流Imは、始動用リチウムイオンバッテリ4から放電される電流Ibと電気二重層キャパシタ71から放電される電流Icの合計である。図7に示すように、始動期間のうちの回転開始期間では、始動用リチウムイオンバッテリ4から放電される電流Ibと、電気二重層キャパシタ71から放電される電流Icの和の電流Imが、インバータ21に流れる。
 回転開始期間では、大きな電流Icが電気二重層キャパシタ71から放電されることによって、大きなインバータ21の電流Imが得られる。つまり、インバータ21の電流Imとして、エンジン10の始動に十分な電流が得られる。従って、クランク軸15の回転速度が速やかに大きくなり、エンジン10の始動性が得られる。
 低温時に、始動用リチウムイオンバッテリ4からエンジン10の始動に十分な電流が出力されない場合であっても、エンジン10を始動できる。
 回転開始期間の経過後、クランク軸15が回転を開始することに伴い、永久磁石式始動モータ20の巻線のインピーダンスが増大する。この結果、始動用リチウムイオンバッテリ4から放電される電流Ibと電気二重層キャパシタ71から放電される電流Icの双方が減少する。
 始動用リチウムイオンバッテリ4から放電される電流Ibよりも、電気二重層キャパシタ71から放電される電流Icの方が小さい。これは、永久磁石式始動モータ20の巻線のインピーダンス増大に伴い、永久磁石式始動モータ20の巻線での電圧降下が大きくなり、永久磁石式始動モータ20の端子電圧と放電後の電気二重層キャパシタ71の端子電圧との差が減少するためと考えられる。換言すれば、始動用リチウムイオンバッテリ4の放電による端子電圧の変動が電気二重層キャパシタ71の放電による端子電圧の変動と比べて小さいので、始動用リチウムイオンバッテリ4では、上記回転開始期間の経過後の放電電流の変化が小さいと考えられる。
 始動期間の後の停止期間では、スタータスイッチ6がオフ状態になっている。この期間、制御装置60がインバータ21による、永久磁石式始動モータ20への電流の供給を停止する。従って、インバータ21に流れる電流Imが0である。この停止期間で、電気二重層キャパシタ71の電流Icが充電を示し、始動用リチウムイオンバッテリ4の電流Ibが放電を示している。これは、始動期間の放電によって端子電圧が低下した電気二重層キャパシタ71が、始動用リチウムイオンバッテリ4の電力によって充電されていることを示している。始動用リチウムイオンバッテリ4の電力による電気二重層キャパシタ71の充電は、電気二重層キャパシタ71の端子電圧が始動用リチウムイオンバッテリ4の端子電圧と等しくなるまで継続する。なお、図7の例では、電気二重層キャパシタ71の端子電圧が始動用リチウムイオンバッテリ4の端子電圧と等しくなる前に、次の始動期間が開始している。
 始動開始期間の前、例えば時間0において、始動用リチウムイオンバッテリ4の電流Ib及び電気二重層キャパシタ71の電流Ic双方が0Aとなっている。時間0のエンジン10の始動前の状態は、電気二重層キャパシタ71が始動用リチウムイオンバッテリ4によって充電された状態を意味している。
 エンジン10の始動前に、電気二重層キャパシタ71が、始動用リチウムイオンバッテリ4の電力によって充電された結果である。
 このように、始動用リチウムイオンバッテリ4から単位時間で出力することが可能な電力(電流)は小さい。しかし、リーン車両1が備える始動用リチウムイオンバッテリ4は、電気二重層キャパシタ71と接続されている。このため、始動用リチウムイオンバッテリ4から出力される電力によって、回転開始期間の前に電気二重層キャパシタ71を充電することができる。そして回転開始期間では、始動用リチウムイオンバッテリ4から放電される電流Ibと、電気二重層キャパシタ71から放電される電流Icの和の電流Imによって、永久磁石式始動モータ20を駆動する。
 始動用リチウムイオンバッテリ4は、エンジン10の始動時に永久磁石式始動モータ20に電力を供給する。特に低温時、始動用リチウムイオンバッテリ4から単位時間で出力することが可能な電力(電流)は、例えば同じ容量を有する鉛バッテリよりも小さい。
 しかし、リーン車両1が備える始動用リチウムイオンバッテリ4は、電気二重層キャパシタ71と接続されている。このため、始動用リチウムイオンバッテリ4から出力される電力によって、始動の前に電気二重層キャパシタ71を充電することができる。
 エンジン10の始動時に、始動用リチウムイオンバッテリ4が永久磁石式始動モータ20に電力を供給すると同時に、事前に充電された電気二重層キャパシタ71も永久磁石式始動モータ20に電力を供給することができる。電気二重層キャパシタ71は、バッテリのような電極の化学反応を利用していない。このため、電気二重層キャパシタ71は、例えば始動用リチウムイオンバッテリ4と比べて、低温時における内部抵抗の増大が少ない。また、電気二重層キャパシタ71の体積は、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量で充分なので、例えば四輪車のような大容量の始動用リチウムイオンバッテリを搭載する場合と比べてコンパクトにできる。従って、設計の自由度を損なうことなく、リーン車両1に搭載することができる。
 このように、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタ71を接続することによって、始動用リチウムイオンバッテリ4の容量を例えば四輪車の場合ように増大することなく、低温を含む広い温度範囲で始動用リチウムイオンバッテリ4によりエンジンを始動することができる。
[第二の適用例]
 続いて、第二の適用例を説明する。
 図8は、第二の適用例におけるリーン車両1の電気的な概略構成を示す回路図である。
 図8に示す適用例では、始動用リチウムイオンバッテリ4と、電気二重層キャパシタ71との間に接続切換器Sw1,Sw2が設けられている。接続切換器Sw1,Sw2は、例えば、制御装置60の制御によって動作する。接続切換器Sw1,Sw2は、例えば制御装置60の制御によって動作するリレーで構成される。ただし、接続切換器Sw1,Sw2は、例えばトランジスタに代表される半導体素子で構成することも可能である。
 接続切換器Sw1,Sw2が、図8に示す状態の場合には、図8に示す回路は電気的に図6に示す回路と等価である。この場合、始動用リチウムイオンバッテリ4と、電気二重層キャパシタ71とは、並列接続状態にある。接続切換器Sw1,Sw2状態が、図8に示す状態とは異なる状態に変化すると、始動用リチウムイオンバッテリ4と、電気二重層キャパシタ71とは直列接続状態となる。直列状態及び並列状態は、制御装置60によって切り換えられる。
 このように、始動用リチウムイオンバッテリ4と、電気二重層キャパシタ71とは、直列接続されることが可能である。
 制御装置60は、並列状態を維持する。これによって、例えば低温環境下で始動用リチウムイオンバッテリ4から十分な電流の電流が見込めない場合でも、始動用リチウムイオンバッテリ4からの電流と及び電気二重層キャパシタ71からの電流が得られる。この電流によって、エンジン10を始動することができる。このことは、図6等を参照して説明した適用例と同じである。
 これに加え、図8に示す適用例の制御装置60は、接続状態を直列状態に切り換えることも可能である。直列状態に切り換えることで、電圧を増大することができる。例えば制御装置60は、まずエンジン10の始動前に並列状態で、始動用リチウムイオンバッテリ4から出力される電流によって、電気二重層キャパシタ71を充電する。充電の結果、電気二重層キャパシタ71の電圧は、実質的に始動用リチウムイオンバッテリ4と等しくなる。
 例えば、始動用リチウムイオンバッテリ4から出力される電流のみによって永久磁石式始動モータ20がクランク軸15を駆動可能と判別される場合、制御装置60は、スタータスイッチ6が操作された後、接続状態を直列状態に切り換える。これにより、始動用リチウムイオンバッテリ4の電圧と電気二重層キャパシタ71の電圧の和がインバータ21に印可される。つまり、永久磁石式始動モータ20に、より高い電圧を印加することができる。この結果、より高い回転速度の範囲まで永久磁石式始動モータ20の誘導起電力よりも高い電圧を永久磁石式始動モータ20に印可することができる。これにより、永久磁石式始動モータ20を駆動可能な回転速度を増大することができる。つまり、エンジン10を始動するときに、クランク軸15をより高い回転速度まで回転させることができる。従って、エンジン10の始動性を高めることができる。
 また、図8に示す適用例の制御装置60は、エンジン10の始動に限らず、リーン車両1が走行中で、エンジン10が高速回転している場合でも、接続状態を直列状態に切り換えることによって、エンジン10による車輪3bの駆動をアシストすることができる。また、リーン車両1が高速で走行している場合に、永久磁石式始動モータ20が回生動作によって、例えば始動時の電圧よりも高い電圧を出力する場合でも、直列状態によって高い電圧を受けることができる。
 1  リーン車両
 3a,3b  車輪
 4  始動用リチウムイオンバッテリ
 10  エンジン
 15  クランク軸
 20  永久磁石式始動モータ
 71  電気二重層キャパシタ

Claims (6)

  1.  左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜するリーン車両であって、
     前記リーン車両は、
     路面と接地するためのトレッド面を有し、前記トレッド面の断面形状は円弧状である車輪と、
     クランク軸を有し前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
     永久磁石を有し、前記クランク軸を回転させ前記エンジンを始動する永久磁石式始動モータと、
     前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する始動用リチウムイオンバッテリと、
     前記エンジンの始動時に前記永久磁石式始動モータに電力を供給する前記始動用リチウムイオンバッテリと接続されており、前記永久磁石式始動モータによって前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有する電気二重層キャパシタと、
    を備える。
  2.  請求項1に記載のリーン車両であって、
     前記電気二重層キャパシタは、30F以上の静電容量を有する。
  3.  請求項1又は2に記載のリーン車両であって、
     5から7つの前記電気二重層キャパシタが、直列接続されている。
  4.  請求項1から3いずれか1項に記載のリーン車両であって、
     前記電気二重層キャパシタは、前記始動用リチウムイオンバッテリが前記リーン車両の車体から取り外される時点で前記車体に取り付けられた状態を維持するように、前記車体に取り付けられている。
  5.  請求項1から4いずれか1項に記載のリーン車両であって、
     前記永久磁石式始動モータは、前記永久磁石で構成された複数の磁極部を有するロータと、
    複数のスロットが前記永久磁石式始動モータの周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
    前記磁極部の数は前記複数のティースの数より多い。
  6.  請求項1から5いずれか1項に記載のリーン車両であって、
     前記電気二重層キャパシタは、外部と接続する端子として機能するリード線を備えたリードタイプである。
PCT/JP2019/025566 2019-06-27 2019-06-27 リーン車両 WO2020261474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/025566 WO2020261474A1 (ja) 2019-06-27 2019-06-27 リーン車両
PCT/JP2020/024104 WO2020262223A1 (ja) 2019-06-27 2020-06-19 リーン車両
JP2021526903A JPWO2020262223A1 (ja) 2019-06-27 2020-06-19
JP2023178912A JP2024009992A (ja) 2019-06-27 2023-10-17 リーン車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025566 WO2020261474A1 (ja) 2019-06-27 2019-06-27 リーン車両

Publications (1)

Publication Number Publication Date
WO2020261474A1 true WO2020261474A1 (ja) 2020-12-30

Family

ID=74059746

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/025566 WO2020261474A1 (ja) 2019-06-27 2019-06-27 リーン車両
PCT/JP2020/024104 WO2020262223A1 (ja) 2019-06-27 2020-06-19 リーン車両

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024104 WO2020262223A1 (ja) 2019-06-27 2020-06-19 リーン車両

Country Status (2)

Country Link
JP (2) JPWO2020262223A1 (ja)
WO (2) WO2020261474A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120348U (ja) * 2006-01-13 2006-03-30 古河電池株式会社 電源装置
JP2008306864A (ja) * 2007-06-08 2008-12-18 Fuji Heavy Ind Ltd 車両用制御装置
WO2015092886A1 (ja) * 2013-12-18 2015-06-25 新電元工業株式会社 内燃機関制御回路及び内燃機関制御方法
JP2015192499A (ja) * 2014-03-27 2015-11-02 本田技研工業株式会社 三相交流発電スタータ装置
JP2016210305A (ja) * 2015-05-11 2016-12-15 住友ゴム工業株式会社 モーターサイクル用タイヤ及びモーターサイクル用タイヤの製造方法
WO2018047746A1 (ja) * 2016-09-09 2018-03-15 株式会社ミツバ 回転電機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655909A (ja) * 1992-08-06 1994-03-01 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2008121606A (ja) * 2006-11-14 2008-05-29 Power System:Kk エンジン始動装置
JP5234590B2 (ja) * 2008-01-30 2013-07-10 ダイハツ工業株式会社 車両用電源制御装置
JP2015068625A (ja) * 2013-09-30 2015-04-13 有限会社 エートゥゼット 脱着式温度管理ユニット用電源システム
JP2017036666A (ja) * 2013-12-20 2017-02-16 ヤマハ発動機株式会社 エンジンユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120348U (ja) * 2006-01-13 2006-03-30 古河電池株式会社 電源装置
JP2008306864A (ja) * 2007-06-08 2008-12-18 Fuji Heavy Ind Ltd 車両用制御装置
WO2015092886A1 (ja) * 2013-12-18 2015-06-25 新電元工業株式会社 内燃機関制御回路及び内燃機関制御方法
JP2015192499A (ja) * 2014-03-27 2015-11-02 本田技研工業株式会社 三相交流発電スタータ装置
JP2016210305A (ja) * 2015-05-11 2016-12-15 住友ゴム工業株式会社 モーターサイクル用タイヤ及びモーターサイクル用タイヤの製造方法
WO2018047746A1 (ja) * 2016-09-09 2018-03-15 株式会社ミツバ 回転電機

Also Published As

Publication number Publication date
JPWO2020262223A1 (ja) 2020-12-30
WO2020262223A1 (ja) 2020-12-30
JP2024009992A (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5914337B2 (ja) 車両をハイブリッド車両に変換する方法
TW200804107A (en) All-wheel-drive vehicle
JP2013504488A (ja) 車両用動力要件低減ハイブリッド駆動システム
US7285889B2 (en) Pulsed-inertial electric motor
JP2013504491A (ja) 原動機としてエンジンを有する車両用ハイブリッド駆動システム
JP2021508643A (ja) ハイブリッドパワートレイン
US20090021099A1 (en) Pulsed Inertial Electric Motor
WO2020262225A1 (ja) リーン車両
WO2020262223A1 (ja) リーン車両
WO2020262224A1 (ja) リーン車両
WO2020261478A1 (ja) リーン車両
WO2020262226A1 (ja) リーン車両
JP6847140B2 (ja) 鞍乗型車両
WO2021117739A1 (ja) ストラドルドビークル
JP2008041620A (ja) 組電池システム
TWI764426B (zh) 跨坐型車輛
US20040134696A1 (en) Road vehicle with hybrid propulsion or alternatively thermal or electrical propulsion
OA20566A (en) Leaning vehicle.
TWI802830B (zh) 跨坐型車輛
CN106787066B (zh) 一种用于摩托车的磁电机以及混合动力系统
JP2023131296A (ja) 車両
TWI778044B (zh) 用於車輛的控制系統
CN204605503U (zh) 一种电动车的轮毂系统及其电动车
CN105142982B (zh) 具有串联电池的车辆系统
IT201800003810A1 (it) Veicolo ibrido con ruote elettriche sterzanti

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP