JP2008121606A - エンジン始動装置 - Google Patents

エンジン始動装置 Download PDF

Info

Publication number
JP2008121606A
JP2008121606A JP2006308060A JP2006308060A JP2008121606A JP 2008121606 A JP2008121606 A JP 2008121606A JP 2006308060 A JP2006308060 A JP 2006308060A JP 2006308060 A JP2006308060 A JP 2006308060A JP 2008121606 A JP2008121606 A JP 2008121606A
Authority
JP
Japan
Prior art keywords
engine
field winding
starting motor
torque
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006308060A
Other languages
English (en)
Inventor
Shigenori Kinoshita
繁則 木下
Atsushi Yamada
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006308060A priority Critical patent/JP2008121606A/ja
Publication of JP2008121606A publication Critical patent/JP2008121606A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)

Abstract

【課題】エンジン始動時にトルク伝達系に衝撃性ストレスが加わらないようにする。
【解決手段】電機子巻線32bと界磁巻線31bとが並列に接続されている直流分巻電動機3bからなるスターティングモータ30と、スターティングモータ30と電池4との間に接続されたエンジン始動スイッチ5aと、電機子巻線32bへの給電時にスターティングモータ30の出力軸をエンジン出力軸23に連結し、非給電時にその連結を解除する動力伝達機構2aと、エンジン始動スイッチ5aおよび界磁巻線31bに流される界磁巻線電流を制御する制御手段とを備えているエンジン始動装置において、上記制御手段は、電機子巻線32bへの給電に応じて動力伝達機構2aによりスターティングモータ30の出力軸がエンジン出力軸に連結されたのち、界磁巻線31bに界磁巻線電流を流してスターティングモータ30にトルクを発生させ、そのトルクが所定のトルク−時間特性となるように界磁巻線電流を制御する。
【選択図】図1

Description

本発明は、エンジン(内燃機関)を始動させるエンジン始動装置に関し、さらに詳しく言えば、スターティングモータのエンジン始動時および停止時におけるトルク制御技術に関するものである。
エンジン始動装置には、スターティングモータとして電池を電源とする直流電動機が用いられるが、多くの場合、直流直巻電動機もしくは直流分巻電動機のいずれかが選択されている。まず、図8aによりスターティングモータが直流直巻電動機である場合の第1従来例について説明する。
すなわち、第1従来例に係るエンジン始動装置では、スターティングモータ3として、界磁巻線31aと電機子巻線32aとが直列に接続された直流直巻電動機3aが用いられる(33はブラシ)。スターティングモータ3の出力軸は、動力伝達機構2およびエンジン1の減速ギアであるリングギア23を介してエンジン1の出力軸(クランク軸)に選択的に連結される。
スターティングモータ3の出力軸には、リングギア23を相手方とするピニオンギア22が取り付けられており、動力伝達機構2は、ピニオンギア22を摺動させてリングギア23に対して噛合・解離させるための制御機構21を備えている。図8bに制御機構21の詳細を示す。
通常、制御機構21は、リターンスプリング216により解離方向に付勢されているピニオンギア用シフトレバー215に対する駆動手段としてマグネチックスイッチ210を備える。
マグネチックスイッチ210には、ピニオンギア22の摺動用駆動コイル(シリースコイル)211と、スターティングモータ3に対する給電スイッチ212と、ピニオンギア22のかみ合いを保持するシャントコイル214とが含まれている。
摺動用駆動コイル211とシャントコイル214は巻き数はほぼ同じであるが、線径が異なり、摺動用駆動コイル211の方がシャントコイル214よりも線径が太い。また、制御機構21は、スターティングモータ3の出力軸に取り付けられるオーバーランニングクラッチ213を備えている。
摺動用駆動コイル211は、その一端側がエンジン始動スイッチ5を介して電源である電池4に接続され、他端側はスターティングモータ3に接続されている。給電スイッチ212は、電池4とスターティングモータ3の界磁巻線31aとの間に接続されていて、摺動用駆動コイル211によりピニオンギア22がリングギア23に噛み合わされた時点でオンとなるディレー的なスイッチである。
この給電スイッチ212を備える理由は、エンジン始動スイッチ5をオンにしてスターティングモータ3を起動させる際、ピニオンギア22がリングギア23に噛み合う前は摺動用駆動コイル211がスターティングモータ3に直列に接続され、小さな電流でピニオンギア22をゆるやかに回転させながらリングギア23に向かって摺動させ、ピニオンギア22とリングギア23が十分に噛み合ってからバッテリ4とスターティングモータ3が直接接続されて大きなトルクでリングギア23を駆動させるためである。
オーバーランニングクラッチ213はワンウェイクラッチで、エンジン1の始動完了後にエンジン1が自力で回転する際、それに連れてスターティングモータ3が規定回転数以上に回転するのを防止するためのクラッチである。なお、図8において、参照符号6はエンジン1に付設されているオルタネータ,7は自動車のその他の電気負荷である。
図8a,図8bを参照して、この第1従来例に係るエンジン始動装置の動作について説明する。エンジン始動開始前の初期状態では、リターンスプリング216によりピニオンギア22は図8aの実線に示す位置にあり、リングギア23から外されている。
この初期状態で、エンジン始動スイッチ5がオンにされると、摺動用駆動コイル211とシャントコイル214とに電流が流れるが、線径の太い摺動用駆動コイル211の吸引力が主となり、ゆるやかに回転を始めたピニオン22をリングギア23との噛み合い位置に押し込む。
この時点で、上記給電スイッチ212がオンとなり、スターティングモータ3に電池4から電流が供給され、スターティングモータ3は回転トルクを発生する。これにより、エンジン1が回転し燃料が供給されてエンジン1が自力回転に入る。エンジン回転数が上昇すると、オーバーランニングクラッチ213が作動し、スターティングモータ3がエンジン1から切り離される。
噛み合い状態ではシャントコイル214が噛み合いを維持するが、エンジン始動スイッチ5がオフにされると、その瞬間はまだマクネチックスイッチ210の接点は閉じられているため、摺動用駆動コイル211,シャントコイル214には、互いに磁力を打ち消す方向に電流が流れ、リターンスプリング216の付勢力によりピニオン22はリングギア23から素早く離脱し、図8aに示す実線の初期状態に戻される。
次に、図9によりスターティングモータが直流分巻電動機である場合の第2従来例について説明する。すなわち、第2従来例では、スターティングモータ3に、界磁巻線31bと電機子巻線32bとが並列に接続されている直流分巻電動機3bが用いられている(第2従来例については、特許文献1参照)。
この場合、電機子巻線32bは上記給電スイッチ212を介して電池4に接続されるが、界磁巻線31bは、界磁回路スイッチ8およびエンジン始動スイッチ5を介して電池4に接続されている。その他の構成は、図8に示した上記第1従来例と同じであってよい。なお、界磁回路スイッチ8は、実際には界磁巻線電流を制御する制御素子からなる。
この第2従来例では、エンジン始動スイッチ5がオンにされると、界磁回路スイッチ8もオンになり、界磁巻線31bに電池4の電圧が印加され界磁電流が流れる。また、上記摺動用駆動コイル211が励磁されることにより、ピニオンギア22が図9において左方向に摺動しリングギア23と噛み合った時点で、上記給電スイッチ212が励磁され、電機子巻線32bにも電流が流される。
これにより、スターティングモータ3に回転トルクが発生し、上記第1従来例と同様にしてエンジン1が始動される。なお、この第2従来例では、図示しない始動状態検知回路により始動状態を検知し、界磁回路スイッチ8をオン,オフ制御するようにしている。
次に、図10により、上記第1従来例で使用している直流直巻電動機3aと、上記第2従来例で使用している直流分巻電動機3bの各動作特性について説明する。図10(a)が直流直巻電動機3aの電流と発生トルクとの関係を示す動作特性グラフで、図10(b)が直流分巻電動機3bの電流と発生トルクとの関係を示す動作特性グラフである。
直流直巻電動機3aの場合、界磁巻線31aと電機子巻線32aが直列であるため、界磁巻線電流と電機子巻線電流は同じであるため、発生トルクはモータ電流の2乗に比例した特性となる。
トルク発生の立ち上がり時間は、エンジン回転数の立ち上がり時間に比べてきわめて短く無視できるので、モータ電流,トルクおよびエンジン回転数の時間に対する挙動は図10(a)に示すような特性となる。
これに対して、直流分巻電動機3bの場合、始動時、界磁巻線31bに電池電圧が印加されるため、その界磁巻線電流は電池電圧に比例したほぼ一定の電流となる。通常、界磁巻線31bと電機子巻線32bとにほぼ同時に電池電圧を印加してスターティングモータを始動する。
直流分巻電動機3bの発生トルクは、電機子巻線電流と界磁巻線電流の積に比例した値となる。直流分巻電動機3bの場合においても、トルク発生の立ち上がり時間は、エンジン回転数の立ち上がり時間に比べてきわめて短く無視できるので、モータ電流,トルクおよびエンジン回転数の時間に対する挙動は図10(b)に示すような特性となる。
図10(a)と図10(b)の特性の違いは、直流分巻電動機3bの発生トルクは、電機子巻線電流に比例する特性であるため、回転数の上昇に応じたトルクの減少が直流直巻電動機3aに比べて少ないことである。
いずれにしても、スターティングモータ3のトルクは、エンジン1が回転し始める前に発生するため、このトルクは衝撃性トルクとなってエンジン1側のリングギア(減速ギア)23に作用する。
特開2005−120914号公報
ところで、自動車の燃費向上および排気ガス低減などの観点から、近年、交差点などの停車時に、エンジンのアイドリング運転を停止させるアイドリングストップ運転が普及されつつある。
アイドリングストップ運転ではエンジン始動が頻繁に行われるため、その都度、スターティングモータの衝撃性トルクによる応力がトルク伝達系に加わることになる。これにより、トルク伝達系含まれる例えばギア比の大きなリングギア(減速ギア)に対するストレスが高まり減速ギアの歯を損傷させる懸念があるため、この点の改善が求められている。
特に、ディーゼルエンジンの場合、そのエンジンの特性からエンジン停止時のクランク軸の位置は固定されている。すなわち、毎回ほぼ同じ位置で停止する。したがって、エンジン再始動時には、減速機の歯車は常に同じ歯から始動することになり、特定の歯車の歯に衝撃性トルクが繰り返し加わるため、歯欠損が生じやすい。
また、アイドリングストップ車では、エンジンの始動が頻繁に行われるため、電池からのエンジン始動電流の通電頻度が増して電池寿命を短縮させることになる。この点の改善も求められている。
また、従来の動力伝達機構は、ピニオンギアの摺動機構、スターティングモータへの給電スイッチ、オーバーランニングクラッチで構成されており、構造が複雑であるため、より構成の簡単な動力伝達機構が求められている。
また、オーバーランニングクラッチはワンウェイクラッチで、エンジンのトルクをスターティングモータに伝達できないため、エンジンの運動エネルギーを回生することができない。このため、両方向トルクを伝達することができる機能を備えた動力伝達機構が求められている。
また、内燃機関の代表であるレシプロエンジンを搭載した自動車では、図11に示すように、アドリング運転中および停止時にエンジンの回転が変動する。特に、停止時にはエンジンの回転が大きく変動する。この回転変動は、エンジン自体さらには自動車の車体を振動させる。
エンジンの始動・停止を頻繁に繰り返すアイドリングストップ車においては、エンジン停止時の振動は自動車の乗り心地を悪化させる要因となるため、振動の少ないエンジン停止方法が求められている。また、アイドリング時の乗り心地の改善の観点から、アイドリング時の回転変動による振動の低減も望まれている。
したがって、本発明の第1の課題は、エンジン始動時にトルク伝達系に衝撃性ストレスが加わらないようにすることにある。本発明の第2の課題は、エンジンの始動が頻繁に繰り返されることによる電池寿命の短縮を防止することにある。本発明の第3の課題は、動力伝達機構の構成の簡素化を図ることにある。本発明の第4の課題は、アイドリング時およびエンジン停止時におけるエンジン回転の変動による振動を可及的に抑えることにある。また、本発明の第5の課題は、エンジンの運動エネルギーを電池に回収できるようにすることにある。
上記第1の課題を解決するため、請求項1に記載の発明は、電機子巻線と界磁巻線とが並列に接続されている直流分巻電動機からなるスターティングモータと、上記スターティングモータと電池との間に接続されたエンジン始動スイッチと、上記電機子巻線への給電時に上記スターティングモータの出力軸をエンジン出力軸に連結し、非給電時にその連結を解除する動力伝達機構と、上記エンジン始動スイッチおよび上記界磁巻線に流される界磁巻線電流を制御する制御手段とを備えているエンジン始動装置において、上記制御手段は、上記電機子巻線への給電に応じて上記動力伝達機構により上記スターティングモータの出力軸が上記エンジン出力軸に連結されたのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータにトルクを発生させ、そのトルクが所定のトルク−時間特性となるように上記界磁巻線電流を制御することを特徴としている。
請求項2に記載の発明は、請求項1に記載のエンジン始動装置において、上記制御手段は、チョッパを介して上記界磁巻線電流を制御することを特徴としている。
上記第2の課題を解決するため、請求項3に記載の発明は、請求項1または2に記載のエンジン始動装置において、上記エンジン始動スイッチと上記電池との間に、電気二重層キャパシタが上記電池に対して並列となるように接続されていることを特徴としている。
請求項4に記載の発明は、請求項3に記載のエンジン始動装置において、上記電気二重層キャパシタと上記エンジン始動スイッチ間の接続線は、上記電気二重層キャパシタと上記電池間の接続線よりも線径が太くされていることを特徴としている。
上記第3の課題を解決するため、請求項5に記載の発明は、請求項1ないし4のいずれか1項に記載のエンジン始動装置において、上記制御手段は、エンジン始動完了後、上記界磁巻線電流をゼロを含む最小値にして上記スターティングモータの発生トルクをほぼゼロとしたのち、上記エンジン始動スイッチをオフにして上記動力伝達機構による上記スターティングモータの出力軸とエンジン出力軸との連結を解除することを特徴としている。
上記第4の課題を解決するため、請求項6に記載の発明は、請求項1ないし5のいずれか1項に記載のエンジン始動装置において、上記制御手段は、上記エンジンがアイドリング運転状態のとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータに上記アイドリング運転時における上記エンジンの振動を抑制するトルクを発生させることを特徴としている。
また、上記第4の課題を解決するため、請求項7に記載の発明は、請求項1ないし6のいずれか1項に記載のエンジン始動装置において、上記制御手段は、上記エンジンが停止されるとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータに上記エンジン停止時における上記エンジンの振動を抑制するトルクを発生させることを特徴としている。
上記第5の課題を解決するため、請求項8に記載の発明は、請求項1ないし7のいずれか1項に記載のエンジン始動装置において、上記制御手段は、上記エンジンが停止されるとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータを発電機として動作させることを特徴としている。
請求項1に記載の発明によれば、スターティングモータを電機子巻線と界磁巻線とが並列に接続されている直流分巻電動機とし、スターティングモータの出力軸がエンジン出力軸に連結されたのち、界磁巻線に界磁巻線電流を流してスターティングモータにトルクを発生させ、そのトルクが所定のトルク−時間特性となるように界磁巻線電流を制御することにより、スターティングモータの発生トルクの立ち上がり特性を緩やかにして、エンジン始動時にトルク伝達系に衝撃性ストレスが加わらないようにすることができる。したがって、例えばアイドリングストップ車のように、頻繁にエンジンの始動・停止が繰り返される場合、そのエンジン始動トルク伝達系の寿命の短縮を抑制できる。
請求項2に記載の発明によれば、チョッパを介して界磁巻線電流を制御するようにしたことにより、界磁巻線電流の制御回路を低コストにて容易に構築することができる。
請求項3に記載の発明によれば、エンジン始動スイッチと電池との間に、電気二重層キャパシタを電池に対して並列となるように接続したことにより、エンジン始動時の急峻な大電流が電気二重層キャパシタから放電されるため、電池の電池寿命を延ばすことができる。
請求項3に関連して、請求項4に記載の発明によれば、電気二重層キャパシタとエンジン始動スイッチ間の接続線(給電線)の線径を、電気二重層キャパシタと電池間の接続線(給電線)の線径よりも太くしたことにより、電気二重層キャパシタからの給電量の負担割合が増加し、相対的に電池の給電量の負担割合が減少するため、電池の電池寿命をより一層延ばすことができる。
請求項5に記載の発明によれば、エンジン始動完了後、界磁巻線電流をゼロを含む最小値にしてスターティングモータの発生トルクをほぼゼロとしたのち、エンジン始動スイッチをオフにして動力伝達機構によるスターティングモータの出力軸とエンジン出力軸との連結を解除するようにしたことにより、動力伝達機構は、ピニオンギアの摺動機構のみでよく、上記第1,第2従来例でのオーバーランニングクラッチおよび給電スイッチが不要となることから、動力伝達機構の構成を大幅に簡素化することができる。
請求項6に記載の発明によれば、エンジンがアイドリング運転状態のとき、電機子巻線に給電したのち、界磁巻線に界磁巻線電流を流してスターティングモータを回転させ、スターティングモータのエンジン換算回転数がエンジンの回転数とほぼ一致した時点で、動力伝達機構によりスターティングモータの出力軸をエンジン出力軸に連結し、その後、界磁巻線電流を制御してスターティングモータにアイドリング運転時におけるエンジンの振動を抑制するトルクを発生させるようにしたことにより、別途に制振手段を用意することなく、直流分巻電動機の界磁巻線電流を制御するだけでアイドリング運転時におけるエンジンの振動を効果的に抑制することができる。
同様に、請求項7に記載の発明によれば、エンジンが停止されるとき、電機子巻線に給電したのち、界磁巻線に界磁巻線電流を流してスターティングモータを回転させ、スターティングモータのエンジン換算回転数がエンジンの回転数とほぼ一致した時点で、動力伝達機構によりスターティングモータの出力軸をエンジン出力軸に連結し、その後、界磁巻線電流を制御してスターティングモータにエンジン停止時におけるエンジンの振動を抑制するトルクを発生させるようにしたことにより、別途に制振手段を用意することなく、直流分巻電動機の界磁巻線電流を制御するだけでエンジン停止時におけるエンジンの振動を効果的に抑制することができる。
請求項8に記載の発明によれば、エンジンが停止されるとき、電機子巻線に給電したのち、界磁巻線に界磁巻線電流を流してスターティングモータを回転させ、スターティングモータのエンジン換算回転数がエンジンの回転数とほぼ一致した時点で、動力伝達機構によりスターティングモータの出力軸をエンジン出力軸に連結し、その後、界磁巻線電流を制御してスターティングモータを発電機として動作させることにより、エンジン停止時の運動エネルギーを直流電源に回生することができ、電力の有効利用が図られる。
まず、本発明の基本的に考え方ついて説明する。直流電動機の発生トルクは電機子巻線電流と界磁巻線電流の積に比例する。直流電動機には大別して、直流直巻電動機と直流分巻電動機とがあるが、直流分巻電動機の場合、電機子巻線電流を供給しても界磁巻線電流を流さないかぎりトルクは発生しない。
よって、直流分巻電動機によれば、界磁巻線電流を制御することにより、発生トルクパターンを衝撃性トルクとならないようにすることができる。また、界磁巻線電流を制御することにより、エンジンに対してスターティングモータを発電機として作用させることができる。
また、アイドリング時およびエンジン停止時に、エンジンにスターティングモータを連結して、スターティングモータにアイドリング時およびエンジン停止時に生ずる振動を打ち消すようなトルクを発生させることにより、アイドリング時およびエンジン停止時における振動を抑制することができる。
さらには、エンジン停止時には、界磁巻線電流を制御してスターティングモータを発電機とすることにより、エンジンの運動エネルギーを電池に回収することができる。
また、直流分巻電動機によれば、そのトルクは界磁巻線電流によって任意に制御することができるため、エンジンが自力回転に入った場合、界磁巻線電流をゼロを含む最小値とすることにより、上記従来例で用いられていたオーバーランニングクラッチおよび給電スッチを省略でき、動力伝達機構の構成を大幅に簡素化することが可能となる。
以下、図1ないし図7により、アイドリングストップ運転が適用された自動車を例にして本発明のいくつかの実施形態を説明するが、本発明はこれに限定されるものではなく、本発明は、自動車以外のエンジン(内燃機関)である船舶のエンジンや建設機械のエンジンなどにも適用可能である。
まず、図1により本発明によるエンジン始動装置の第1実施形態について説明する。本発明では、スターディングモータ30として、先の図9で説明した第2従来例と同じく、界磁巻線31bと電機子巻線32bとを並列に接続してなる直流分巻電動機3bが用いられる。なお、図9の第2従来例と同じ構成要素には同じ参照符号を付している。
第1実施形態において、界磁巻線31bは電流制御素子のひとつであるチョッパ8aに接続され、チョッパ8aはエンジン始動スイッチ5aを介して電池4に接続される。また、電機子巻線32bはエンジン始動スイッチ5aを介して電池4に接続される(33はブラシ)。
本発明では動力伝達機構2aは構成が大幅に簡素化され、動力伝達機構2aは、基本的な構成として、スターティングモータ30の出力軸に取り付けられているピニオンギア22を摺動させるピニオンギア摺動用駆動コイル(シリースコイル)211aと、図8bに示されている噛み合い維持用のシャントコイル214とを備えるが、上記第2従来例で用いられている給電スイッチ212とオーバーランニングクラッチ213を特に必要としない。ピニオンギア摺動用駆動コイル211aは、エンジン始動スイッチ5aを介して電池4に接続される。
トルク−時間特性が示されている図2を併せて参照して、第1実施形態の動作について説明する。まず、時刻tでエンジン始動スイッチ5aをオンにすると、ピニオンギア摺動用駆動コイル211aが励磁され、ピニオンギア22が図1の矢印方向(左方向)に摺動してリングギア(減速ギア)23と噛み合う。また、エンジン始動スイッチ5aのオンと同時に電機子巻線32bに電機子巻線電流iが流れる。この電機子巻線電流iは瞬時に立ち上がる。
これに対して、時刻t時点ではチョッパ8aの出力電流、すなわち界磁巻線電流iはゼロもしくは最小値にしておく。電機子巻線電流iが流れても界磁巻線電流iは流れていないかもしくは微小値であるため、スターティングモータ30の発生トルクはゼロである。
エンジン始動スイッチ5aをオンにしたのちの所定時刻で、スターティングモータ30のトルクが所定のパターン(一例として、図2(b)のトルクパターン)になるようにチョッパ8を制御して界磁巻線電流iを図2(a)の電流波形Waに示すように立ち上げる。そして、界磁巻線電流iが最大値IFMAXに達したら、その電流値を保持する。
これにより、スターティングモータ30に界磁巻線電流iに応じた図2(b)に示すような特性のトルクが発生し、エンジン1が始動し回転が上昇する。エンジン1の回転上昇に応じて電機子巻線電流iは減少していく。エンジン1が自立回転に移行したのちの時刻tでエンジン始動スイッチ5aをオフにする。
このようにして、界磁巻線電流iを制御して、スターティングモータ30の発生トルクの立ち上がりを緩やかにすることにより、トルク伝達系の特にリングギア23などに対する衝撃性トルクを緩和することができる。
なお、本発明によると、上記第2従来例に比べてトルク発生が遅くなる分、エンジン回転の立ち上がりも遅くなる。図2のグラフの時間軸において、t’は上記第2従来例でのスタートスイッチオフ時刻で、本発明におけるスタートスイッチオフ時刻tはt’よりも若干遅れることになるが、エンジン1が自立回転に至った時点で、図2(a)の電流波形Wbに示すように、界磁巻線電流iを減少させトルクをより早く低減させることも可能である。
アイドリングストップ車の場合、エンジンの始動が頻繁に繰り返されるため、電池4の消耗が激しく電池寿命が短くなる。そこで、本発明の第2実施形態では、図3に示すように、エンジン始動スイッチ5aと電池4との間に、電気二重層キャパシタ10を電池4に対して並列となるように接続し、エンジン始動時の急峻な大電流を電気二重層キャパシタ10から放電させることにより、電池4の電池寿命を延ばすようにしている。
この場合、電気二重層キャパシタ10とエンジン始動スイッチ5aとの間の接続線(給電線)の線径を、電気二重層キャパシタ10と電池4との間の接続線(給電線)の線径よりも太くすることにより、電気二重層キャパシタ10からの給電量の負担割合が増加し、相対的に電池の給電量の負担割合が減少するため、電池4の電池寿命をより一層延ばすことができる。
次に、図4により本発明の第3実施形態について説明する。この第3実施形態は、図1の上記第1実施形態の構成に加えて、図2に例示したトルクパターンを得るための制御手段を備える。なお、図4では電池4および自動車の電気負荷7の部分は図示が省略されている。
すなわち、第3実施形態では、図1の上記第1実施形態の構成に加えて、エンジン制御回路100と、電機子巻線電流を検出する電流検出器81と、界磁巻線電流指令回路82とを備える。
エンジン制御回路100は、エンジン始動スイッチ5aのオンオフを制御するとともに、図2に例示したトルクパターンを界磁巻線電流指令回路82に与える。
上記したように、直流分巻電動機3bの発生トルクは、電機子巻線電流と界磁巻線電流との積に比例するため、界磁巻線電流指令回路82は、電流検出器81で検出された電機子巻線電流の電流値から、エンジン制御回路100より指令されたトルクを発生させるのに必要な界磁巻線電流指令値を演算し、チョッパ8aに出力する。
エンジン制御回路100よりエンジン始動指令が出されると、エンジン始動スイッチ5aがオンになり、ピニオンギア摺動用駆動コイル211aが励磁されてピニオンギア22がリングギア23に連結される。ピニオンギア22がリングギア23に連結される過程で、電機子巻線32bに電機子巻線電流が流れるが、界磁巻線31bには電流が流れていないので、スターティングモータ30にはトルクが発生していない。
ピニオンギア22がリングギア23に連結されたのち、エンジン制御回路100から界磁巻線電流指令回路82にエンジン始動時の所定のトルクパターンが与えられる。界磁巻線電流指令回路82は、そのトルクパターンになるように電流検出器81の検出電流値から界磁巻線電流値を算出し、チョッパ8aに出力する。チョッパ8aは、界磁巻線電流指令回路82からの指令値にしたがって界磁巻線電流を制御する。
界磁巻線電流が流されることにより、スターティングモータ30は指令されたトルクを発生する。エンジン1が回転を始めたら、燃料供給によりエンジン1の回転は上昇する。エンジン回転数が上昇したら、エンジン始動スイッチ5aをオフにしてエンジン始動を終了させる。
エンジン始動スイッチ5aのオフと同時に界磁巻線電流もゼロになりスターティングモータ30のトルクもゼロとなる。また、エンジン始動スイッチ5aのオフにより、ピニオンギア摺動用駆動コイル211aが非励磁となるため、ピニオンギア22は図示しないバネ手段などによりリングギア23から外され元の位置に戻る。
この場合、界磁巻線電流をゼロにすることにより、スターティングモータ30のトルクもゼロとなり、スターティングモータ30はエンジン1と連れ回るだけであるため、素早くスターティングモータ30をエンジン1から切り離すことができる。これにより、上記第1,第2従来例におけるオーバーランニングクラッチ213を不要とすることができる。
次に、図5ないし図7により本発明の第4実施形態について説明する。この第4実施形態は、アイドリング運転時とエンジン停止時の制振技術に関するものであるが、まずアイドリング運転時について説明する。
アイドリング運転時には、先の図11に示したように、エンジンに回転変動が発生している。この第4実施形態では、図5に示すように、スターティングモータからエンジンの振動を打ち消すためのトルクを発生させ回転変動を低減する。
この発生トルクは正負に変動するトルクで、正側のトルクはエンジンの回転を加速するトルクで、負側のトルクはエンジンの回転を減速するトルクであり、エンジンが持っている運動エネルギーを回収することを意味している。
図6はアイドリング運転時の振動抑制の動作説明図で、エンジン回転,スターティングモータのモータトルク,電機子巻線電流および界磁巻線電流の推移が示されている。時刻Tからその後の動きを観察すると、エンジン回転数は矢印Aで示すように回転が増加しようとしている。この回転数が増加することを抑制するには、モータトルクは矢印Bに示すように負方向のトルクとする必要がある。
時刻Tでは、エンジン回転数は変化していないのでモータトルクはゼロでよく、したがって電機子巻線電流もゼロである。スターティングモータはエンジンに連れられて回転しているが、時刻Tでスターティングモータの発生電圧が電池電圧(電池4の電圧)と同じになっていれば電機子巻線電流は流れない。
電機子巻線電流がゼロであれば、モータトルクもゼロである。このときの界磁巻線電流はIである。スターティングモータの発生トルクを負にすることは、モータを発電機動作にすることであるので、モータの発生電圧を電池電圧より高くする。そのため、界磁巻線電流をIより矢印D方向に向けて大きくする。
時刻T以降では、時刻Tとは逆の動作を行う。以降、これに準じた動作を繰り返すことにより、エンジンを振動させる回転変動が抑制され、エンジンは滑らかに回転する。
また、エンジン停止時にも、先の図11に示したように、アイドリング時よりも大きな回転変動が生ずるが、アイドリング時と同様に、スターティングモータに正,負のトルクを発生させることにより、エンジンの回転変動による振動を抑制することができる。
図7により、上記した制振のためのトルク制御を実現し得る第4実施形態のエンジン始動装置の構成例について説明する。この第4実施形態は、上記第3実施形態をさらに発展させたものであり、上記第3実施形態と同じ構成要素には同じ参照符号を付している。
この第4実施形態では、上記第3実施形態に付加される構成要素として、エンジン主制御回路100aと、スターティングモータ動作指令回路110と、トルク指令回路120と、エンジン出力軸の回転位置を検出する第1回転位置センサ130と、スターティングモータ30の出力軸の回転位置を検出する第2回転位置センサ24とを備える。
また、この第4実施形態ではスイッチ制御回路50aを備え、スイッチ制御回路50aには、エンジン始動スイッチ5aと、エンジン始動スイッチ5aに対して並列に接続されるエンジン停止スイッチ9とが含まれている。また、エンジン始動スイッチ5aからピニオンギア摺動用駆動コイル211aに至る配線内には、その励磁電流をオンオフする励磁電流用スイッチ211bが接続されている。
エンジン主制御回路100aは、エンジン始動および停止のスイッチ動作を制御するスイッチ制御回路50a,スターティングモータ動作指令回路110および励磁電流用スイッチ211bに動作信号を出力する。
スターティングモータ動作指令回路110は、上記第3実施形態におけるエンジン制御回路100に相当し、トルク指令回路120に図2に例示したようなエンジン始動時のトルクパターンを出力する。
第1回転位置センサ130は、エンジン出力軸の回転位置を検出し、その検出信号をエンジン主制御回路100aとトルク指令回路120とに出力する。また、第2回転位置センサ24は、スターティングモータ30の出力軸の回転位置を検出し、その検出信号をエンジン主制御回路100aに出力する。
トルク指令回路120は、スターティングモータ動作指令回路110からのトルクパターンを受けて、そのトルクパターンを直接またはエンジン出力軸の回転角信号に対応したトルク指令を界磁巻線電流指令回路82に出力する。
次に、アイドリング運転中のトルク制御について説明する。まず、ステップ1として、エンジン主制御回路100aは、例えば第1回転位置センサ130の回転位置信号からエンジン回転数を演算し、そのエンジン回転数が規定回転数以下かどうかにより、アイドリング運転モードか非アイドリング運転モードかを判断する。
エンジン始動後は、スターティングモータ30はエンジン1との連結が切り離されているので、制振のため、アイドリング運転時に図5に示したモータトルクをエンジン1に伝達するには、スターティングモータ30をエンジン1に再連結する必要がある。
この場合、エンジン始動時と異なりエンジン1は回転しているため、エンジン1の回転とスターティングモータ30の回転とを同期させる必要がある。エンジン1の回転とスターティングモータ30の回転とが同期していれば、エンジン始動時と同じ方法、すなわちピニオンギア摺動用駆動コイル211aを励磁することにより連結することができる。
エンジン1の出力軸の回転数および回転位置は第1回転位置センサ130により検出され、また、スターティングモータ30の出力軸の回転数および回転位置も第2回転位置センサ24にて検出されるため、次のようにして同期させる。
上記ステップ1で、アイドリング運転モードであると判断された場合、ステップ2として、スイッチ制御回路50aにエンジン停止信号を出力してエンジン停止スイッチ9をオンにする(なお、エンジン始動後であるため、エンジン始動スイッチ5aはオフ)。
エンジン停止スイッチ9のオンにより電機子巻線32bに電機子巻線電流が流れても、界磁巻線31bには界磁巻線電流は流れていないため、スターティングモータ30にはトルクが発生せず回転しない。
ステップ3として、界磁巻線31bに界磁巻線電流を流して、スターティングモータ30を回転させ、その回転数がエンジン回転数と同じ回転数になるように界磁巻線電流を制御する。
ステップ4として、回転数が同じに達した時点で、励磁電流用スイッチ211bをオンにしてピニオンギア摺動用駆動コイル211aを励磁して、ピニオンギア22をリングギア23に連結する。
その後、ステップ5として、図5に例示したアイドリング運転時の振動抑制(制振)用のトルクパターンをトルク指令回路120から界磁巻線電流指令回路82に出力し、チョッパ8aにより界磁巻線電流を制御して、スターティングモータ30にアイドリング時の振動を打ち消すトルクを発生させる。
続いて、アイドリング運転で燃料をカットしてエンジン1を停止させる際のトルク制御について説明する。エンジン主制御回路100aからスターティングモータ動作指令回路110にエンジン停止運転モードが出されると、これを受けてスターティングモータ動作指令回路110は、図5に例示したエンジン時の振動抑制用のトルクパターンをトルク指令回路120に出力する。
これにより、トルク指令回路120は、エンジン1の出力軸の回転数および回転位置に対応したトルク指令値を界磁巻線電流指令回路82に出力する。これを受けた界磁巻線電流指令回路82は、指令されたトルクが発生されるように電機子巻線電流から界磁巻線電流を求め、その界磁巻線電流となるようにチョッパ8aを制御する。
以上説明したように、本発明によれば、スターティングモータとして直流分巻電動機を用い、その界磁巻線電流をチョッパにより制御して、エンジン始動時のモータ発生トルクを適切なパターンにして、エンジン始動トルク伝達系に衝撃性ストレスが加わらないようにしたことにより、アイドリングストップ車のように頻繁にエンジンを始動・停止する自動車の場合、エンジン始動トルク伝達系の寿命の短縮を抑制することができる。
また、動力伝達機構には、ピニオンギアを摺動させるピニオンギア摺動用駆動コイルがあればよく、従来必要とされていたオーバーランニングクラッチや給電スイッチ機構が不要となるため、動力伝達機構の大幅な簡素化が図れる。
また、エンジン始動スイッチと電池との間に電気二重層キャパシタを挿入し、好ましくは電気二重層キャパシタからスターティングモータに至る給電線は太く、これに対し電池と電気二重層キャパシタとの間の給電線は細くするようにしたことにより、電気二重層キャパシタからの給電量の負担割合が増加し、相対的に電池の給電量の負担割合が減少するため、電池の電池寿命をより一層延ばすことができる、等々の効果が奏される。
なお、本発明の適用範囲は、アイドリングストップ車に限定されるものではなく、これ以外のエンジン(内燃機関)である船舶のエンジンや建設機械のエンジンなどにも適用可能であることは上記したとおりである。
本発明の第1実施形態の構成例を示す模式図。 本発明で好ましいエンジン始動時のトルクパターンを示すグラフ。 本発明の第2実施形態の構成例を示す模式図。 本発明の第3実施形態の構成例を示す模式図。 本発明の第4実施形態でアイドリング時およびエンジン停止時に発生させるモータのトルクパターンを示すグラフ。 図5のトルクパターンを発生させる作用説明図。 本発明の第4実施形態の構成例を示す模式図。 第1従来例の構成を示す模式図。 従来の制御機構の構成をより詳細に示す模式図。 第2従来例の構成を示す模式図。 上記第1従来例と上記第2従来例で発生されるエンジン始動時のモータのトルクパターンを示すグラフ。 アイドリング時およびエンジン停止時におけるエンジンの振動状態を示すグラフ。
符号の説明
1 エンジン
2a 動力伝達機構
4 電池
22 ピニオンギア
23 リングギア(減速ギア)
211a ピニオンギア摺動用駆動コイル
3b 直流分巻電動機
30 スターティングモータ
31b 界磁巻線
32b 電機子巻線
4 電池
5a エンジン始動スイッチ
8a チョッパ
9 エンジン停止スイッチ
10 電気二重層キャパシタ
82 界磁巻線電流指令回路
100 制御回路

Claims (8)

  1. 電機子巻線と界磁巻線とが並列に接続されている直流分巻電動機からなるスターティングモータと、上記スターティングモータと電池との間に接続されたエンジン始動スイッチと、上記電機子巻線への給電時に上記スターティングモータの出力軸をエンジン出力軸に連結し、非給電時にその連結を解除する動力伝達機構と、上記エンジン始動スイッチおよび上記界磁巻線に流される界磁巻線電流を制御する制御手段とを備えているエンジン始動装置において、
    上記制御手段は、上記電機子巻線への給電に応じて上記動力伝達機構により上記スターティングモータの出力軸が上記エンジン出力軸に連結されたのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータにトルクを発生させ、そのトルクが所定のトルク−時間特性となるように上記界磁巻線電流を制御することを特徴とするエンジン始動装置。
  2. 上記制御手段は、チョッパを介して上記界磁巻線電流を制御することを特徴とする請求項1に記載のエンジン始動装置。
  3. 上記エンジン始動スイッチと上記電池との間に、電気二重層キャパシタが上記電池に対して並列となるように接続されていることを特徴とする請求項1または2に記載のエンジン始動装置。
  4. 上記電気二重層キャパシタと上記エンジン始動スイッチ間の接続線は、上記電気二重層キャパシタと上記電池間の接続線よりも線径が太くされていることを特徴とする請求項3に記載のエンジン始動装置。
  5. 上記制御手段は、エンジン始動完了後、上記界磁巻線電流をゼロを含む最小値にして上記スターティングモータの発生トルクをほぼゼロとしたのち、上記エンジン始動スイッチをオフにして上記動力伝達機構による上記スターティングモータの出力軸とエンジン出力軸との連結を解除することを特徴とする請求項1ないし4のいずれか1項に記載のエンジン始動装置。
  6. 上記制御手段は、上記エンジンがアイドリング運転状態のとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータに上記アイドリング運転時における上記エンジンの振動を抑制するトルクを発生させることを特徴とする請求項1ないし5のいずれか1項に記載のエンジン始動装置。
  7. 上記制御手段は、上記エンジンが停止されるとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータに上記エンジン停止時における上記エンジンの振動を抑制するトルクを発生させることを特徴とする請求項1ないし6のいずれか1項に記載のエンジン始動装置。
  8. 上記制御手段は、上記エンジンが停止されるとき、上記電機子巻線に給電したのち、上記界磁巻線に界磁巻線電流を流して上記スターティングモータを回転させ、上記スターティングモータのエンジン換算回転数が上記エンジンの回転数とほぼ一致した時点で上記動力伝達機構により上記スターティングモータの出力軸を上記エンジン出力軸に連結し、その後、上記界磁巻線電流を制御して上記スターティングモータを発電機として動作させることを特徴とする請求項1ないし7のいずれか1項に記載のエンジン始動装置。
JP2006308060A 2006-11-14 2006-11-14 エンジン始動装置 Withdrawn JP2008121606A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308060A JP2008121606A (ja) 2006-11-14 2006-11-14 エンジン始動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308060A JP2008121606A (ja) 2006-11-14 2006-11-14 エンジン始動装置

Publications (1)

Publication Number Publication Date
JP2008121606A true JP2008121606A (ja) 2008-05-29

Family

ID=39506614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308060A Withdrawn JP2008121606A (ja) 2006-11-14 2006-11-14 エンジン始動装置

Country Status (1)

Country Link
JP (1) JP2008121606A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060955A1 (en) 2007-11-07 2009-05-20 Ricoh Company, Ltd. Developer container and image forming apparatus including the developer container with sealing mechanism providing enhanced usability
WO2012137348A1 (ja) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 スタータの制御装置および制御方法、ならびに車両
CN103429885A (zh) * 2011-03-25 2013-12-04 丰田自动车株式会社 起动机的控制装置、控制方法和车辆
JP2016211381A (ja) * 2015-04-30 2016-12-15 三菱電機株式会社 エンジン始動装置及びエンジン始動方法
WO2020262224A1 (ja) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 リーン車両
WO2020262223A1 (ja) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 リーン車両

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060955A1 (en) 2007-11-07 2009-05-20 Ricoh Company, Ltd. Developer container and image forming apparatus including the developer container with sealing mechanism providing enhanced usability
CN103429885A (zh) * 2011-03-25 2013-12-04 丰田自动车株式会社 起动机的控制装置、控制方法和车辆
CN103429885B (zh) * 2011-03-25 2015-03-25 丰田自动车株式会社 起动机的控制装置、控制方法和车辆
WO2012137348A1 (ja) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 スタータの制御装置および制御方法、ならびに車両
CN102822500A (zh) * 2011-04-08 2012-12-12 丰田自动车株式会社 起动机的控制装置、控制方法和车辆
JP5105032B2 (ja) * 2011-04-08 2012-12-19 トヨタ自動車株式会社 スタータの制御装置および制御方法、ならびに車両
US8554453B2 (en) 2011-04-08 2013-10-08 Toyota Jidosha Kabushiki Kaisha Device and method for controlling starter, and vehicle
JP2016211381A (ja) * 2015-04-30 2016-12-15 三菱電機株式会社 エンジン始動装置及びエンジン始動方法
WO2020262224A1 (ja) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 リーン車両
WO2020262223A1 (ja) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 リーン車両
JPWO2020262223A1 (ja) * 2019-06-27 2020-12-30
JPWO2020262224A1 (ja) * 2019-06-27 2020-12-30

Similar Documents

Publication Publication Date Title
US8251035B2 (en) Engine control apparatus and engine control method
JP2008121606A (ja) エンジン始動装置
US20150096518A1 (en) Vehicle starting system
JP2010229882A (ja) 車両制御装置およびアイドルストップシステム
JP2004003434A (ja) エンジン始動システム
JP5392280B2 (ja) エンジン自動停止始動制御装置
US9255561B2 (en) Engine starting device
JP2007292079A (ja) エンジンの始動方法
EP2594777B1 (en) Engine starting device and vehicle mounted with same
WO2014192439A1 (ja) 内燃エンジンの始動制御装置及び始動制御方法
CN104912712A (zh) 发动机起动器单元
JP5644843B2 (ja) 車両の制御装置
JP6651975B2 (ja) 制御システム
JP5496412B2 (ja) エンジン自動停止始動装置およびエンジン自動停止始動制御方法
CN108953026B (zh) 发动机启动装置
JP6633180B2 (ja) エンジン装置の駆動システム
US20130019711A1 (en) Engine control device and control method, engine starting device, and vehicle
JP6459992B2 (ja) エンジン始動装置
JP4682920B2 (ja) 車両用動力装置およびその制御装置
JP4415851B2 (ja) アイドルストップ車両
JP2005188447A (ja) エンジン始動装置
JP6292771B2 (ja) アイドルストップシステムを採用した車両のエンジン始動装置
JP3985621B2 (ja) エンジンの始動装置、始動制御装置、始動システムおよび始動方法
JP4050185B2 (ja) エンジン始動装置
JP2005233109A (ja) 内燃機関の始動装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202