WO2020259472A1 - 一种板块太阳能光伏组件加工工艺 - Google Patents

一种板块太阳能光伏组件加工工艺 Download PDF

Info

Publication number
WO2020259472A1
WO2020259472A1 PCT/CN2020/097604 CN2020097604W WO2020259472A1 WO 2020259472 A1 WO2020259472 A1 WO 2020259472A1 CN 2020097604 W CN2020097604 W CN 2020097604W WO 2020259472 A1 WO2020259472 A1 WO 2020259472A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
station
welding
inspection
photovoltaic module
Prior art date
Application number
PCT/CN2020/097604
Other languages
English (en)
French (fr)
Inventor
张雨军
陶爱兵
Original Assignee
苏州携创新能源科技有限公司
无锡携创新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州携创新能源科技有限公司, 无锡携创新能源科技有限公司 filed Critical 苏州携创新能源科技有限公司
Publication of WO2020259472A1 publication Critical patent/WO2020259472A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of photovoltaic module processing, in particular to a process for processing panel solar photovoltaic modules.
  • the existing photovoltaic module processing technology is relatively inconvenient for front-side inspection and repair, especially for the front-side solar cell soldering strips that need to be repaired.
  • the current photovoltaic modules require separate bus bar welding in the series interconnection, and they also face more complicated equipment and processes to complete, and the separate bus bar welding equipment is also relatively expensive.
  • a processing technique for a plate solar photovoltaic module includes:
  • the battery slices are welded at the welding station to form battery plates and then transferred to the typesetting station, where at least two battery plates processed by the welding station are placed on the front plate in order and face up Typesetting and front processing on the top to form the cell layer;
  • the semi-finished photovoltaic module performs appearance inspection and EL inspection on the back of the semi-finished photovoltaic module, and when it detects that there is a bad appearance and/or poor EL on the back, the semi-finished photovoltaic module is transferred to the rework station for back repair and then transferred to the turnover worker The station re-executes the appearance inspection and EL inspection on the back, otherwise it is directly sent to the laminating station;
  • the semi-finished photovoltaic module is processed at the laminating station to form a solar photovoltaic module.
  • bus bars are welded at both ends of the battery plate output from the welding station, and the bus bars at the tails of two adjacent battery plates are connected at the typesetting station;
  • bus bars are welded at both ends of the battery plate output from the welding station, the bus bars at the tails of two adjacent battery plates are connected at the turning station;
  • bus bars are welded at the two ends of each battery plate at the typesetting station and the tails of the two adjacent battery plates Bus bar to connect;
  • bus bars are welded at the two ends of each battery plate at the typesetting station, and adjacent to each other at the turning station The bus bars at the ends of the two battery plates are connected.
  • a further technical solution is to automatically weld lead wires on the bus bars of the heads of the two adjacent battery plates for the battery plates that have been welded on both ends of the battery plates, or to turn them over.
  • the work station welds lead wires on the bus bars at the heads of two adjacent battery plates.
  • a further technical solution is to set identification codes on the bus bars at both ends of the battery plate, and the setting methods of the identification codes include, but are not limited to, attaching, printing, coding and engraving.
  • each battery panel includes at least two battery strings, and the at least two battery strings are connected in parallel through the inter-string interconnecting bar; then when the back side processing is performed in the turning station, the confluence is completed A virtual line is laid on the battery sheet layer on which a strip and a lead-out line are laid, one end of each virtual line is welded to the inter-series interconnection strip in the battery plate block, and the other end is connected to the position of the lead-out line of the battery plate block; A dummy wire insulation layer is laid on the battery sheet layer to insulate the dummy wire and the battery sheet; after fixing each battery plate in the battery sheet layer, the rear adhesive film layer and the rear board are laid in sequence to form the photovoltaic Semi-finished components.
  • the battery slices are connected in series to form a battery string through the inter-chip interconnection bar to realize the battery slice welding and at least two battery strings are welded at the same time; in the welding station, the inter-string interconnection bar is connected to the inter-chip interconnection bar in at least two battery strings Welding is performed, and the at least two batteries are connected in series and parallel to form one battery block.
  • a further technical solution is that, in the typesetting station, a front adhesive film layer and a welding tool are sequentially laid on the front plate, and then the at least two battery plates are placed on the welding tool with the front face up.
  • the battery sheet layer is turned over, the welding tool is removed, the front adhesive film layer and the front plate are cleaned, and the reversed battery sheet layer is placed with the back side upward Performing backside processing on the front adhesive film layer;
  • the work station reverses the battery sheet layer, removes the welding tool, cleans the front plate, and lays the front adhesive film layer, and places the reversed battery sheet layer on the back side upward. Back side processing on the front film layer;
  • the at least two battery plates are directly placed on the front plate face up, then the battery slice layer is turned over at the turning station, and the front After the board is cleaned, the front adhesive film layer is laid, and the reversed battery sheet layer is placed on the front adhesive film layer with the back side facing up for back processing.
  • the processing technology also includes: marking the cells with poor appearance and/or poor EL during appearance inspection and EL inspection.
  • the marking method includes but is not limited to: A predetermined mark is added to the cells with poor and/or poor EL, and the cells in the cell layer are coded according to the coding principle, and the codes corresponding to the cells with poor appearance and/or poor EL are recorded.
  • a further technical solution is that the processing flow of the repair process is controlled by the MES system, and the processing technology further includes: acquiring cell images during appearance inspection and EL inspection and sending them to the MES system, and the repair station workers The station obtains from the MES system the image of the cell corresponding to the cell with poor appearance and/or poor EL.
  • a further technical solution is that the processing flow of the rework process is controlled by the inspection components corresponding to the appearance inspection and EL inspection, and the processing process further includes: acquiring the image of the cell during the appearance inspection and the EL inspection and sending it directly to the Rework station.
  • a further technical solution is that the processing process further includes: after the rework station obtains the battery slice image corresponding to the battery slice with poor appearance and/or poor EL, manual or intelligent AI will display the battery according to The image of the slice and the physical object of the cell are confirmed whether there is a defect. If it is confirmed that there is a defect, the front side is repaired and sent to the turning station, otherwise it is directly sent to the turning station.
  • a further technical solution thereof is that the processing process further includes: at the rework station, identifying the cells with poor appearance and/or poor EL by means of projection.
  • a further technical solution is that when performing appearance inspection on the front side of the battery sheet layer, the appearance inspection and the front side processing are performed simultaneously.
  • the EL detection on the front side of the battery sheet layer includes: performing EL detection on the front side of the battery sheet layer after the bus bar welding is completed, and the two electrified electrodes of the EL are correspondingly pressed on On the bus bars at both ends of the battery plate.
  • This application discloses a process for processing solar photovoltaic modules.
  • the solar cells are directly welded into solar panels from a welding machine, and the solar panels are placed face up on the front plate for typesetting.
  • Reversing the cell layer can detect poor appearance and EL defects on the front side in advance to prevent poor batches from flowing into the back of the production line, and then perform lamination after completing the appearance inspection and EL inspection on the back to ensure the yield of the components.
  • Two inspection procedures and two rework procedures can make the yield rate of the finished components obtained by production higher.
  • the entire processing process has a high degree of automation, which can improve production efficiency, greatly reduce the number of personnel, reduce labor costs, and can well avoid the defects caused by personnel operations and make the products produced with high stability.
  • the appearance inspection in the welding process and the EL inspection in the layout process can timely understand the yield of the welding process and avoid the problem of defects in large quantities.
  • automatic discrimination can be realized, and bad cells can be marked, which is convenient for the operators in the subsequent process to confirm and repair, and can improve the repair speed of the operators.
  • the solar photovoltaic module processing technology of this plate is relatively easy to implant automatic actions in the layout, bus bar welding, circuit connection and other processes, and the operation process is relatively simple. It can also realize the seamless connection of single-glass and double-glass modules without modification.
  • the equipment is directly used when switching, and has high versatility.
  • FIG. 1 is a schematic diagram of the process flow of the processing technology of the panel solar photovoltaic module disclosed in the present application.
  • Fig. 2 is a schematic diagram when multiple strings of cells are welded simultaneously.
  • Fig. 3 is a schematic diagram of connecting multiple strings of batteries in series and parallel through the inter-series interconnection bar during welding.
  • Figure 4a is a schematic diagram of a structure of the battery plate output from the welding station.
  • Figure 4b is a schematic diagram of another structure of the battery plate output from the welding station.
  • Figure 5 is a schematic diagram of the structure of the cell layer output by the typesetting station.
  • Fig. 6 is a schematic diagram of virtual wire welding.
  • Fig. 7 is a cross-sectional view of a panel solar photovoltaic module formed by processing.
  • This application discloses a processing technology of a panel solar photovoltaic module. Please refer to the flowchart in FIG. 1.
  • the processing technology flow includes the following steps:
  • Step S1 the welding process, that is, the battery sheet welding and the interconnection bar welding between the strings are formed by the welding machine at the welding station to form the battery plate.
  • the cell welding refers to connecting the cells 2 in series through the inter-chip interconnecting strip 1 to form a battery string.
  • One half of the inter-chip interconnecting strip 1 is located above one cell 2 and the other half is located below the other cell 2, thereby Connecting two adjacent solar cells 2 together, the number of inter-chip interconnecting strips 1 and the sorting interval are based on the design requirements of photovoltaic module products, and the technology itself is not limited.
  • Cell 2 is any one of whole cell, 1/2 cell, 1/3 cell, 1/4 cell, 1/5 cell, and 1/6 cell.
  • the inter-chip interconnecting strip 1 can be specifically realized as a photovoltaic welding tape, a conductive tape, or a conductive glue.
  • a dedicated welding machine is used to weld at least two battery strings at the same time with the existing photovoltaic module layout. For example, the commonly used welding machine produces three battery strings at a time, as shown in FIG. 2.
  • Inter-series interconnection bar welding refers to welding the inter-series interconnection bar 3 and the inter-chip interconnection bar 1 in at least two battery strings, thereby connecting the at least two batteries in series and parallel to form a battery panel, as shown in FIG. 3.
  • the inter-string interconnecting strips 3 can be specifically implemented as photovoltaic soldering tape, conductive tape or conductive glue.
  • the number and sorting interval of the inter-string interconnecting strips 3 are based on the design requirements for photovoltaic module products, and there is no limitation on the technology itself.
  • the welding of the bus bar can also be completed at the welding station, that is, the bus bar is welded on both ends of each battery plate. After the welding is completed, the welding station transfers the battery plate to the layout station. If bus bars are welded to both ends of the battery plate at the welding station, the two ends of the battery plate output from the welding station to the typesetting station already have bus bars 4, as shown in Figure 4a. If no bus bars are welded to both ends of the battery plate at the welding station, the two ends of the battery plate output from the welding station to the typesetting station do not have bus bars, as shown in Figure 4b.
  • step S2 the glass feeding process is performed, and the front plate is conveyed to the typesetting station.
  • the front plate is usually glass. It should be noted that the glass feeding process and the cell welding process performed by the welding station can be performed simultaneously.
  • Step S3 At the typesetting station, at least two battery plates processed by the welding station are placed on the front plate in sequence and face up for typesetting, and the front side is processed to form a battery sheet layer.
  • types method There are mainly the following types method:
  • step S2 Lay the front adhesive film layer and welding tooling on the front panel in sequence, then the above step S2 after the glass feeding process is completed, also includes the front adhesive film layer laying process, that is, the front adhesive film layer is laid on the front panel; It also includes the tooling loading process, that is, placing the welding tooling on the front film layer.
  • the welding tooling includes but not limited to epoxy board jigs for welding and high-temperature servo cloth. Then, at least two battery plates processed by the welding station are placed in the welding tool in order and face up for typesetting and front processing.
  • step S2 Laying welding tooling directly on the front plate, that is, in step S2, after completing the glass loading process, perform the tooling loading process to place the welding tooling, and then place at least two battery plates processed by the welding station in order And the front side is placed on the welding tooling for typesetting and front processing, and the tooling loading process is automatically placed by the equipment.
  • bus bars 4 at both ends of the battery plate output from the welding station can be connected at the typesetting station at this time , Or connect again in the subsequent process.
  • bus bars 4 have not been welded at both ends of the battery plate output from the welding station, as shown in Figure 4b, then the bus bars 4 are welded at the two ends of each battery plate at the typesetting station at this time, and the diagram is formed The structure of 4a. After the bus bars 4 are welded on both ends of the battery plate block, the bus bars 4 at the tails of two adjacent battery plate blocks can also be connected, or the connection can be performed in a subsequent process.
  • an identification code can be set on the bus bar 4 to facilitate statistics on the operating status of each machine.
  • the identification code includes but is not limited to barcode, QR code or settings RFID tags, etc.
  • the identification code setting methods include but are not limited to attaching, printing, coding and engraving.
  • a lead wire 5 is automatically welded to the bus bar 4 of the head.
  • the welding of the lead wire 5 is an optional execution step here, and the welding of the lead wire can also be performed in a subsequent step.
  • the specific structure of the cell layer produced by the typesetting station will be different.
  • This application uses the typesetting station to connect the bus bars 4 at the tails of two adjacent battery plates, and Take the connection of the lead wires at the typesetting station as an example, the structure of the cell layer produced by the typesetting station is shown in Figure 5.
  • Step S4 Perform appearance inspection and EL inspection on the front side of the cell layer.
  • Appearance inspection is mainly used to detect whether there are foreign objects or dirt left on the battery string and to detect whether the battery sheet has broken pieces or corners. Appearance inspection is carried out after typesetting and can be carried out at the same time as the front processing.
  • EL inspection is mainly used to detect whether there are internal defects in the battery. The EL inspection is carried out after the bus bar is welded. The two electrodes of the EL are pressed on the bus bar at both ends of the battery plate to avoid direct physical contact with the battery. Risk of pressure injury.
  • the battery pieces that are determined to have bad appearance and/or bad EL are marked to facilitate subsequent repair personnel to find and repair the battery pieces.
  • the marking method includes but is not limited to: adding a predetermined mark to the battery slice with poor appearance, and encoding the battery slice in the battery slice layer according to the coding principle and recording the code corresponding to the battery slice with the bad appearance.
  • step S5 if it is determined during the appearance inspection and EL inspection process that there are no defective appearance and EL defects on the front of the cell layer, the layout station directly transports the front plate with the cell layer to the turning station.
  • the layout station will transport the front plate with the cell layer to the rework station for the front side of the cell layer Rework.
  • the process of appearance inspection and EL inspection it is necessary to take pictures of the cells to obtain the cell image of each cell.
  • the rework station can obtain the marked cell images of the cells with poor appearance and/or poor EL.
  • Manual or intelligent AI will judge whether the cells are defective and need to be repaired according to the displayed cell images and the actual objects.
  • the front plate with the cell layer after the front repair is transported to the turning station for the next step, otherwise it will be placed directly
  • the front plate with cell layers is transported to the turning station for the next step.
  • the processing shop uses MES (Manufacturing Execution System) system
  • the processing flow of the rework process is controlled by the MES system
  • the judgment results of the appearance inspection and EL inspection are sent to the MES system
  • the MES system transports the front plate with the cell layer to the rework station or flips according to the judgment result The station.
  • the obtained cell image is sent to the MES system, and the rework station can obtain the marked cell image of the cell with poor appearance and/or poor EL from the MES system. .
  • the processing workshop does not use the MES system, and the processing flow of the repair process is directly controlled by the inspection components corresponding to the appearance inspection and EL inspection, and the obtained cell image is directly sent during the appearance inspection and EL inspection
  • the rework station can obtain the cell images corresponding to the cells with poor appearance and/or poor EL.
  • the rework station can also identify cells with poor appearance and/or poor EL through projection.
  • step S6 the battery sheet layer is turned over at the turning station, so that the battery sheet layer originally facing the front face becomes the back face up. If in the above step S2, the front adhesive film layer and welding tooling are laid on the front plate, the welding tooling is first removed in this step and the tooling loading process is automatically transferred, and then the front adhesive film layer and the front plate are cleaned to prevent There is a welding foreign body, and then put the reversed battery sheet layer back up on the front adhesive film layer for back side processing.
  • step S2 only welding tooling is laid on the front plate, the welding tooling is first removed and the tooling loading process is automatically transferred in this step, then the front plate is cleaned, and then the cleaned front plate is laid The front adhesive film layer, and finally the reversed battery layer is placed on the front adhesive film layer with the back side facing up for back processing. If the battery sheet layer is directly placed on the front plate in step S2, the front plate is cleaned in this step, and then the front adhesive film layer is laid on the cleaned front plate, and finally the reversed battery layer is placed on the back Place it upward on the front film layer for back processing.
  • step S7 the back surface processing can be performed after the inversion and placement of the cell layers are completed.
  • the bus bar at the tail between the two adjacent battery plates is not connected on the front in the above step S3, then at this time, the tail between the two adjacent battery plates is at the turning station.
  • the bus bar is connected.
  • the lead wire 5 is welded on the bus bar of the heads of the two adjacent battery plate blocks at this time. Welding is usually manual welding.
  • a virtual wire 6 connects one end of each virtual wire 6 to an inter-string interconnecting strip 3 of the battery plate block, and the other end to the lead wire 5 position, as shown in FIG. 6.
  • a dummy wire insulation layer is laid on the battery sheet layer to insulate the dummy wire 6 and the battery sheet 2 to prevent the dummy wire 6 and the battery sheet 2 from being short-circuited.
  • a fixing tape can be used to prevent displacement between the battery plates during subsequent lamination.
  • the rear adhesive film layer and the rear plate are sequentially laid on the solar cell layer to form a semi-finished photovoltaic module.
  • the rear adhesive film layer has an opening treatment at the position of the lead line 5, and the opening can be automatically cut and laid by equipment.
  • the rear plate is also treated with openings at the position of the lead line 5. This process can be automatically cut and laid by the equipment or the equipment is automatically laid.
  • the rear plate is realized as a back plate in a single glass module and a glass in a double glass module. That is to say, this application is common to single glass modules and double glass modules.
  • the lead wire 5 is manually passed through the rear adhesive film layer and the rear board and fixed.
  • the insulating material of the dummy wire can be transparent.
  • Step S8 Perform appearance inspection and EL inspection on the back of the semi-finished photovoltaic module through the corresponding inspection component of the turning station. If in the process of appearance inspection and EL inspection, it is determined that there are no bad appearance and EL defects on the back of the semi-finished photovoltaic module, the semi-finished photovoltaic module is directly transported to the laminating station.
  • the semi-finished photovoltaic module will be transported to the repair station for back repair, and the repair station will check the appearance of the semi-finished photovoltaic module Defects and/or EL defects should be confirmed and repaired and repaired.
  • the repair station will transport the semi-finished photovoltaic module that has been repaired back to the turning station to perform the back appearance inspection and EL inspection again.
  • the specific details of the appearance inspection and EL inspection on the back are similar to the appearance inspection and EL inspection on the front, and will not be described in detail in this application.
  • Step S9 The laminating station performs high-temperature treatment on the delivered semi-finished photovoltaic module, and presses the front sheet, front adhesive film layer, cell layer, rear adhesive film layer and back sheet of the semi-finished photovoltaic module into a whole, and then repairs it. Edge, EL inspection, frame installation, junction box installation, curing, light effect, final inspection and packaging, etc., are finally processed to form solar photovoltaic modules.
  • the cross-sectional view of the solar photovoltaic modules obtained is shown in Figure 7, including from top to The front sheet 74, the front adhesive film layer 72, the battery sheet layer 71, the rear adhesive film layer 73 and the rear sheet 75 are stacked in sequence.
  • the front adhesive film layer 72 and the rear adhesive film layer 73 are filled on both sides of the battery sheet layer 71.
  • the battery sheet layer 71 forms a package and bonds the front plate 74 and the rear plate 75 into a whole.

Abstract

本申请公开了一种板块太阳能光伏组件加工工艺,涉及光伏组件加工领域,在本申请的加工工艺中,从焊接工站加工出电池板块,将电池板块正面朝上摆放于前板材上进行排版,完成正面的外观检测和EL检测后对电池片层进行翻转加工,可以快速准确检测正面的外观不良和EL不良,然后完成背面的外观检测和EL检测后进行层压,采用两道检测工序和两道返修工序可以快速发现制程异常,避免批量不良流入后段工序,大大提高组件成品良率;而且整个加工过程自动化程度高,可以提高生产效率、大大减少人工人员数量、减少人工成本,且可以很好地避免人员操作带来的不良,使得生产出来的产品稳定性高。

Description

一种板块太阳能光伏组件加工工艺 技术领域
本申请涉及光伏组件加工领域,尤其是一种板块太阳能光伏组件加工工艺。
背景技术
随着能源价格的上涨,开发利用新能源成为当今能源领域研究的主要课题。由于太阳能具有无污染、无地域性限制、取之不竭等优点,研究太阳能发电成为开发利用新能源的主要方向。利用太阳能电池发电是当今人们使用太阳能的一种主要方式。
为了提高光伏组件的发电效率,目前通常会采用半片、1/3片、1/4片、 1/5片、1/6片电池片来降低光伏组件的电流,减少光伏组件的内损耗。但使用经过分切的电池片会导致光伏组件的加工难度增大,一方面,经过分切的电池片容易破片,一旦清理不当,碎电池片会粘到电池片或电池串上容易造成组件不良;另一方面,所需要的焊带需求也变小,串联用的焊带越来越细,也越来越软,在生产过程中,容易会发生焊带偏移的现象。现有的光伏组件加工工艺在当前串焊机串出来直接都是背面朝上,对正面的检测和返修都是比较不便利的,尤其对正面电池片焊带等需要进行返修处理的。另外当前的光伏组件在串互联都需要单独的汇流条焊接,也同样面临比较复杂的设备和工艺来完成,单独的汇流条焊接设备还比较昂贵。
技术问题
现有的光伏组件加工工艺对正面的检测和返修都是比较不便利的,尤其对正面电池片焊带等需要进行返修处理的。另外当前的光伏组件在串互联都需要单独的汇流条焊接,也同样面临比较复杂的设备和工艺来完成,单独的汇流条焊接设备还比较昂贵。
技术解决方案
一种板块太阳能光伏组件加工工艺,该加工工艺包括:
在焊接工站对电池片进行焊接形成电池板块后传送到排版工站,在所述排版工站将所述焊接工站加工完成的至少两个电池板块按顺序且正面朝上摆放于前板材上进行排版以及正面加工形成电池片层;
对所述电池片层的正面进行外观检测和EL检测,在检测到正面存在外观不良和/或EL不良时将所述电池片层传送到返修台工站,正面返修后传送到翻转工站,否则直接传送到所述翻转工站;
在所述翻转工站将所述电池片层翻转为背面朝上并进行背面加工形成光伏组件半成品;
对所述光伏组件半成品的背面进行外观检测和EL检测,在检测到背面存在外观不良和/或EL不良时将所述光伏组件半成品传送到返修台工站进行背面返修后传送到所述翻转工站重新进行背面的外观检测和EL检测,否则直接传送到所述层压工站;
在所述层压工站将所述光伏组件半成品加工形成板块太阳能光伏组件。
其进一步的技术方案为,所述焊接工站输出的电池板块的两端焊接有汇流条,则在所述排版工站将相邻两个电池板块的尾部的汇流条进行连接;
或者,所述焊接工站输出的电池板块的两端焊接有汇流条,则在所述翻转工站将相邻两个电池板块的尾部的汇流条进行连接;
或者,所述焊接工站输出的电池板块的两端不存在汇流条,则在所述排版工站在每个所述电池板块的两端焊接汇流条并将相邻两个电池板块的尾部的汇流条进行连接;
或者,所述焊接工站输出的电池板块的两端不存在汇流条,则在所述排版工站在每个所述电池板块的两端焊接汇流条,并在所述翻转工站将相邻两个电池板块的尾部的汇流条进行连接。
其进一步的技术方案为,对于两端已经焊接有汇流条的电池板块,在所述排版工站在相邻两个电池板块的头部的汇流条上自动焊接引出线,或者,在所述翻转工站在相邻两个电池板块的头部的汇流条上焊接引出线。
其进一步的技术方案为,在电池板块两端的汇流条上设置标识码,所述标识码的设置方式包括但不限于贴附、冲印、喷码和雕刻。
其进一步的技术方案为,每个所述电池板块包括至少两个电池串,所述至少两个电池串通过串间互联条并联;则在所述翻转工站中进行背面加工时,在完成汇流条和引出线铺设的所述电池片层上铺设虚拟线,每根所述虚拟线的一端与电池板块中的串间互联条焊接、另一端连接到所述电池板块的引出线的位置;在所述电池片层上铺设虚拟线绝缘层对所述虚拟线和电池片进行绝缘;对所述电池片层中的各个电池板块进行固定后,依次铺设后胶膜层和后板材形成所述光伏组件半成品。
其进一步的技术方案为,所述在焊接工站对电池片进行焊接形成电池板块,包括:
在焊接工站通过片间互联条将电池片串联形成电池串实现电池片焊接且同时焊接至少两个电池串;在焊接工站将串间互联条与至少两个电池串中的片间互联条进行焊接,将所述至少两个电池串并联形成一个所述电池板块。
其进一步的技术方案为,在所述排版工站,在所述前板材上依次铺设前胶膜层和焊接工装后将所述至少两个电池板块正面朝上摆放于所述焊接工装上,则在所述翻转工站对所述电池片层进行翻转,移除所述焊接工装,对所述前胶膜层和前板材进行清洁后将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工;
或者,在所述排版工站,在所述前板材上直接铺设焊接工装后将所述至少两个电池板块正面朝上摆放于所述焊接工装或整张伺服布上,则在所述翻转工站对所述电池片层进行翻转,移除所述焊接工装,对所述前板材进行清洁后铺设前胶膜层,并将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工;
或者,在所述排版工站,将所述至少两个电池板块正面朝上直接摆放于所述前板材上,则在所述翻转工站对所述电池片层进行翻转,对所述前板材进行清洁后铺设前胶膜层,并将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工。
其进一步的技术方案为,该加工工艺还包括:在进行外观检测和EL检测时,对检测确定存在外观不良和/或EL不良的电池片进行标记,标记的方法包括但不限于:在存在外观不良和/或EL不良的电池片上添加预定记号,以及,按照编码原则对所述电池片层中的电池片进行编码并记录存在外观不良和/或EL不良的电池片对应的编码。
其进一步的技术方案为,返修工序的加工流向由MES系统控制,则所述加工工艺还包括:在进行外观检测和EL检测时获取电池片图像并发送给所述MES系统,所述返修台工站从MES系统获取存在外观不良和/或EL不良的电池片对应的电池片图像。
其进一步的技术方案为,返修工序的加工流向由外观检测和EL检测对应的检测组件控制,则所述加工工艺还包括:在进行外观检测和EL检测时获取电池片图像并直接发送给所述返修台工站。
其进一步的技术方案为,所述加工工艺还包括:当所述返修台工站获取到存在外观不良和/或EL不良的电池片对应的电池片图像后,由人工或智能AI根据展示的电池片图像与电池片实物确认是否存在不良,若确认存在不良则进行正面返修后传送到所述翻转工站,否则直接传送到所述翻转工站。
其进一步的技术方案为,所述加工工艺还包括:在所述返修台工站,通过投影的方式标识出存在外观不良和/或EL不良的电池片。
其进一步的技术方案为,对所述电池片层的正面进行外观检测时,外观检测与正面加工同时进行。
其进一步的技术方案为,所述对所述电池片层的正面进行EL检测,包括:在汇流条焊接完成后对所述电池片层的正面进行EL检测,EL通电的两个电极对应压在电池板块两端的汇流条上。
有益效果
本申请公开了一种板块太阳能光伏组件加工工艺,从焊接机将电池片直接焊接成电池板块,将电池板块正面朝上摆放于前板材上进行排版,完成正面的外观检测和EL检测后对电池片层进行翻转,可以提前发现正面的外观不良和EL不良,避免批量性不良流入到产线后段,然后完成背面的外观检测和EL检测后才进行层压,确保组件的良率,采用两道检测工序和两道返修工序可以使生产得到的组件成品良率更高。而且整个加工过程自动化程度高,可以提高生产效率、大大减少人工人员数量、减少人工成本,且可以很好地避免人员操作带来的不良使得生产出来的产品稳定性高。
在焊接工序做外观检测、排版工序做EL检测,可以及时了解焊接工序的良率,避免大批量出现不良的问题。在检测过程中可以实现自动判别,并对不良电池片进行标记,方便后工序操作人员确认和维修,可以提高操作人员的维修速度。
该板块太阳能光伏组件加工工艺在排版、汇流条焊接、电路连接等工序都比较容易植入自动化动作,操作流程都比较简单,也可以实现单玻组件和双玻组件的无缝对接,不需要更改设备,切换时直接使用,通用性高。
附图说明
图1是本申请公开的板块太阳能光伏组件加工工艺的工艺流程示意图。
图2是多串电池片同时进行电池片焊接时的示意图。
图3是串间互联条焊接时通过串间互联条将多串电池串并联的示意图。
图4a是焊接工站输出的电池板块的一种结构示意图。
图4b是焊接工站输出的电池板块的另一种结构示意图。
图5是排版工站输出的电池片层的结构示意图。
图6是虚拟线焊接的示意图。
图7是加工形成的板块太阳能光伏组件的剖视图。
本申请的实施方式
本申请公开了一种板块太阳能光伏组件加工工艺,请参考图1的流程图,该加工工艺流程包括如下步骤:
步骤S1,焊接工序,也即在焊接工站利用焊接机进行电池片焊接和串间互联条焊接形成电池板块。
其中,电池片焊接是指通过片间互联条1将电池片2串联形成一个电池串,片间互联条1的一半位于一片电池片2的上方、另一半位于另一片电池片2的下方,从而将相邻两个电池片2连接起来,片间互联条1的数量和排序间隔基于对光伏组件产品的设计要求,技术本身没有限制。电池片2是整片电池片、1/2片电池片、1/3片电池片、1/4片电池片、1/5片电池片、1/6片电池片中的任意一种。片间互联条1具体可以实现为光伏焊带、导电胶带或导电胶等。在本申请中,采用专用的焊接机配合现有的光伏组件版型同时焊接至少两串电池串,比如常用的利用焊接机一次产出3串电池串,如图2所示。
串间互联条焊接是指将串间互联条3与至少两个电池串中的片间互联条1进行焊接,从而将这至少两个电池串并联形成一个电池板块,如图3所示。串间互联条3具体可以实现为光伏焊带、导电胶带或导电胶等。串间互联条3的数量和排序间隔基于对光伏组件产品的设计要求,技术本身没有限制。
在完成片间互联条和串间互联条的焊接后,还可以在焊接工站完成汇流条的焊接,也即在每个电池板块的两端焊接汇流条。焊接完成后,焊接工站将电池板块传送到排版工站。若在焊接工站对电池板块两端焊接汇流条,则焊接工站输出到排版工站的电池板块的两端是已经带有汇流条4的,如图4a所示。若在焊接工站没有对电池板块两端焊接汇流条,则焊接工站输出到排版工站的电池板块的两端是没有汇流条的,如图4b所示。
步骤S2,进行玻璃上料工序,将前板材传送到排版工站,前板材通常是玻璃。需要说明的是,玻璃上料工序与焊接工站执行的电池片焊接工序可以是同步进行的。
步骤S3,在排版工站,将焊接工站加工完成的至少两个电池板块按顺序且正面朝上摆放于前板材上进行排版,并进行正面加工形成电池片层,这里主要有如下几种方法:
(1)在前板材上依次铺设前胶膜层和焊接工装,则上述步骤S2在完成玻璃上料工序后,还包括前胶膜层铺设工序,也即将前胶膜层铺设到前板材上;还包括工装上料工序,也即将焊接工装摆放于前胶膜层上,焊接工装包括但不限于焊接用的环氧板治具和耐高温伺服布。然后将焊接工站加工完成的至少两个电池板块按顺序且正面朝上摆放于焊接工装上进行排版及正面加工。
(2)在前板材上直接铺设焊接工装,也即上述步骤S2在完成玻璃上料工序后执行进行工装上料工序摆放焊接工装,然后将焊接工站加工完成的至少两个电池板块按顺序且正面朝上摆放于焊接工装上进行排版及正面加工,工装上料工序为设备自动摆放。
(3)将焊接工站加工完成的至少两个电池板块按顺序且正面朝上直接摆放于前板材上并进行排版及正面加工。
若在焊接工站输出的电池板块的两端已经带有汇流条4,也即如图4a所示,则可以此时在排版工站对相邻两个电池板块的尾部的汇流条4进行连接,或者在后续工序中再进行连接。
若在焊接工站输出的电池板块的两端还没有焊接汇流条4,也即如图4b所示,则此时在排版工站在每个电池板块的两端焊接汇流条4,即形成图4a的结构。在电池板块的两端焊接汇流条4后,还可以将相邻两个电池板块的尾部的汇流条4进行连接,或者也可以在后续工序中再进行连接。
同时,无论在哪一工站中在电池板块两端焊接汇流条,都可以在汇流条4上设置标识码方便统计各个机台的运行状况,标识码包括但不限于条形码、二维码或设置RFID标签等,标识码的设置方式包括但不限于贴附、冲印、喷码和雕刻。
可选的,无论是在焊接工站还是排版工站焊接电池板块两端的汇流条4,对于两端已经焊接有汇流条4的电池板块,还可以在排版工站在相邻两个电池板块的头部的汇流条4上自动焊接引出线5。引出线5的焊接在此处是可选执行步骤,引出线的焊接也可以在后续步骤中执行。
根据正面加工时所采用工序的不同,排版工站产出的电池片层的具体结构会存在差异,本申请以在排版工站对相邻两个电池板块的尾部的汇流条4进行连接、且在排版工站进行引出线的连接为例,则排版工站产出的电池片层的结构如图5所示。
步骤S4,对电池片层的正面进行外观检测和EL检测。
外观检测主要用于检测是否有异物或者脏污留在电池串上以及检测电池片是否有破片缺角的外观不良。外观检测在排版后进行,可以与正面加工同时进行。EL检测主要用于检测电池片是否存在内部缺陷,EL检测在汇流条焊接完成后进行,EL通电的两个电极对应压在电池板块两端的汇流条上,可以避免对电池片的直接物理接触和压力损伤风险。
在外观检测和EL检测的过程中,对检测确定存在外观不良和/或EL不良的电池片进行标记,方便后续返修人员查找和维修电池片。标记的方法包括但不限于:在存在外观不良的电池片上添加预定记号,以及,按照编码原则对电池片层中的电池片进行编码并记录存在外观不良的电池片对应的编码。
步骤S5,若在外观检测和EL检测过程中检测确定电池片层的正面不存在外观不良和EL不良,则排版工站将放置有电池片层的前板材直接输送到翻转工站。
若在外观检测和EL检测过程中检测确定电池片层的正面存在外观不良和/或EL不良,则排版工站将放置有电池片层的前板材输送到返修台工站进行电池片层的正面返修。同时在外观检测和EL检测的过程中,需要对电池片拍照得到每片电池片的电池片图像。返修台工站可以获取到标记的存在外观不良和/或EL不良的电池片的电池片图像,由人工或者智能AI判断根据展示的电池片图像与电池片实物确认电池片是否存在不良需要维修,若确实需要维修的话则进行维修或更换存在不良的电池片,并在完成正面返修后将放置有完成正面返修后的电池片层的前板材输送到翻转工站进行下一步工序,否则直接将放置有电池片层的前板材输送到翻转工站进行下一步工序。返修台工站获取电池片图像的方式主要有两种情况:
在第一种情况中,加工车间使用MES(Manufacturing Execution System)系统,返修工序的加工流向由MES系统控制,则外观检测和EL检测的判定结果发送给MES系统,MES系统根据判定结果将放置有电池片层的前板材输送到返修台工站或翻转工站。同时在进行外观检测和EL检测时将获取到的电池片图像发送给MES系统,则返修台工站可以从MES系统中获取到标记的存在外观不良和/或EL不良的电池片的电池片图像。
在第二种情况中,加工车间不使用MES系统,返修工序的加工流向直接由外观检测和EL检测对应的检测组件控制,则在进行外观检测和EL检测时直接将获取到的电池片图像发送给返修台工站,返修台工站从而可以获取到存在外观不良和/或EL不良的电池片对应的电池片图像。
返修台工站除了提供对外观不良和/或EL不良的电池片的标记和对应的电池片图像之外,还可以通过投影的方式标识出存在外观不良和/或EL不良的电池片。
步骤S6,在翻转工站对电池片层进行翻转,使得原来正面朝向的电池片层变为背面朝上。若上述步骤S2中,在前板材上铺设有前胶膜层和焊接工装,在该步骤中先移除焊接工装并自动传送工装上料工序,然后对前胶膜层和前板材进行清洁,防止有焊接异物,然后将完成翻转的电池片层背面朝上摆放于前胶膜层上进行背面加工。若上述步骤S2中,在前板材上仅铺设了焊接工装,则在该步骤中先移除焊接工装并自动传送工装上料工序,然后对前板材进行清洁,然后在清洁完成的前板材上铺设前胶膜层,最后将完成翻转的电池片层背面朝上摆放于前胶膜层上进行背面加工。若上述步骤S2直接将电池片层摆放在前板材上,则在该步骤中对前板材进行清洁,然后在清洁完成的前板材上铺设前胶膜层,最后将完成翻转的电池片层背面朝上摆放于前胶膜层上进行背面加工。
步骤S7,在完成电池片层的翻转和摆放后可以进行背面加工。在进行背面加工时,若上述步骤S3中未在正面对相邻两个电池板块之间的尾部的汇流条进行连接,则此时在翻转工站对相邻两个电池板块之间的尾部的汇流条进行连接。另外,若上述步骤S3中未在正面完成引出线5的焊接,则此时在翻转工站在相邻两个电池板块的头部的汇流条上焊接引出线5,此处的引出线5的焊接通常是人工焊接。
无论采用何种方案,至此已经完成了汇流条4和引出线5的焊接且完成了电池板块之间的串联,然后根据光伏组件的产品要求,在背面加工时还可以在电池片层上铺设若干根虚拟线6,将每根虚拟线6的一端与电池板块的一根串间互联条3相连、另一端连接到引出线5位置,如图6所示。并在电池片层上铺设虚拟线绝缘层对虚拟线6和电池片2进行绝缘,防止虚拟线6和电池片2接触发生短路现象。
对电池片层中的各个电池板块进行固定,可以利用固定胶带,防止后续层压的时候电池板块之间发生位移。然后在电池片层上依次铺设后胶膜层和后板材形成光伏组件半成品。后胶膜层在引出线5位置有做开口处理,可以采用设备自动裁切开口铺设处理。后板材在引出线5位置也有做开口处理,此工序可以采用设备自动裁切开口铺设处理或设备自动铺设,后板材在单玻组件中实现为背板、在双玻组件中实现为玻璃,也即本申请对于单玻组件和双玻组件是通用的。然后采用人工方式将引出线5穿出后胶膜层和后板材并加以固定。在透明双玻双面电池组件上,虚拟线的绝缘材料可选择透明的。
步骤S8,通过翻转工站相应的检测组件对光伏组件半成品的背面进行外观检测和EL检测。若在外观检测和EL检测过程中检测确定光伏组件半成品的背面不存在外观不良和EL不良,则将光伏组件半成品直接输送到层压工站。
若在外观检测和EL检测过程中检测确定光伏组件半成品的背面存在外观不良和/或EL不良,则将光伏组件半成品输送到返修台工站进行背面返修,返修台工站对光伏组件半成品的外观不良和/或EL不良进行确认并维修及进行返修。在完成背面返修后,返修台工站将完成背面返修的光伏组件半成品输送到翻转工站重新进行背面的外观检测和EL检测。背面的外观检测和EL检测的具体细节与正面的外观检测和EL检测是类似的,本申请不再详细说明。
步骤S9,层压工站对输送过来的光伏组件半成品进行高温处理,将光伏组件半成品中的前板材、前胶膜层、电池片层、后胶膜层和后板材压合成整体,然后进行修边、EL检测、装边框、装接线盒、固化、光效、终检和包装等工序,最终加工形成板块太阳能光伏组件,得到的板块太阳能光伏组件的剖视图如图7所示,包括从上到下依次层叠的前板材74、前胶膜层72、电池片层71、后胶膜层73和后板材75,前胶膜层72和后胶膜层73填充在电池片层71的两侧对电池片层71形成包裹并将前板材74和后板材75粘接成一个整体。
以上所述的仅是本申请的优选实施方式,本申请不限于以上实施例。可以理解,本领域技术人员在不脱离本申请的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本申请的保护范围之内。

Claims (14)

  1. 一种板块太阳能光伏组件加工工艺,其特征在于,所述加工工艺包括:
    在焊接工站对电池片进行焊接形成电池板块后传送到排版工站,在所述排版工站将所述焊接工站加工完成的至少两个电池板块按顺序且正面朝上摆放于前板材上进行排版以及正面加工形成电池片层;
    对所述电池片层的正面进行外观检测和EL检测,在检测到正面存在外观不良和/或EL不良时将所述电池片层传送到返修台工站,正面返修后传送到翻转工站,否则直接传送到所述翻转工站;
    在所述翻转工站将所述电池片层翻转为背面朝上并进行背面加工形成光伏组件半成品;
    对所述光伏组件半成品的背面进行外观检测和EL检测,在检测到背面存在外观不良和/或EL不良时将所述光伏组件半成品传送到返修台工站进行背面返修后传送到所述翻转工站重新进行背面的外观检测和EL检测,否则直接传送到所述层压工站;
    在所述层压工站将所述光伏组件半成品加工形成板块太阳能光伏组件。
  2. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,
    所述焊接工站输出的电池板块的两端焊接有汇流条,则在所述排版工站将相邻两个电池板块的尾部的汇流条进行连接;
    或者,所述焊接工站输出的电池板块的两端焊接有汇流条,则在所述翻转工站将相邻两个电池板块的尾部的汇流条进行连接;
    或者,所述焊接工站输出的电池板块的两端不存在汇流条,则在所述排版工站在每个所述电池板块的两端焊接汇流条并将相邻两个电池板块的尾部的汇流条进行连接;
    或者,所述焊接工站输出的电池板块的两端不存在汇流条,则在所述排版工站在每个所述电池板块的两端焊接汇流条,并在所述翻转工站将相邻两个电池板块的尾部的汇流条进行连接。
  3. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,对于两端已经焊接有汇流条的电池板块,在所述排版工站在相邻两个电池板块的头部的汇流条上自动焊接引出线,或者,在所述翻转工站在相邻两个电池板块的头部的汇流条上焊接引出线。
  4. 根据权利要求2或3所述的板块太阳能光伏组件加工工艺,其特征在于,在电池板块两端的汇流条上设置标识码,所述标识码的设置方式包括但不限于贴附、冲印、喷码和雕刻。
  5. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,每个所述电池板块包括至少两个电池串,所述至少两个电池串通过串间互联条并联;则在所述翻转工站中进行背面加工时,在完成汇流条和引出线铺设的所述电池片层上铺设虚拟线,每根所述虚拟线的一端与电池板块中的串间互联条焊接、另一端连接到所述电池板块的引出线的位置;在所述电池片层上铺设虚拟线绝缘层对所述虚拟线和电池片进行绝缘;对所述电池片层中的各个电池板块进行固定后,依次铺设后胶膜层和后板材形成所述光伏组件半成品。
  6. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,所述在焊接工站对电池片进行焊接形成电池板块,包括:
    在焊接工站通过片间互联条将电池片串联形成电池串实现电池片焊接且同时焊接至少两个电池串;在焊接工站将串间互联条与至少两个电池串中的片间互联条进行焊接,将所述至少两个电池串并联形成一个所述电池板块。
  7. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,
    在所述排版工站,在所述前板材上依次铺设前胶膜层和焊接工装后将所述至少两个电池板块正面朝上摆放于所述焊接工装上,则在所述翻转工站对所述电池片层进行翻转,移除所述焊接工装,对所述前胶膜层和前板材进行清洁后将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工;
    或者,在所述排版工站,在所述前板材上直接铺设焊接工装后将所述至少两个电池板块正面朝上摆放于所述焊接工装或整张伺服布上,则在所述翻转工站对所述电池片层进行翻转,移除所述焊接工装,对所述前板材进行清洁后铺设前胶膜层,并将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工;
    或者,在所述排版工站,将所述至少两个电池板块正面朝上直接摆放于所述前板材上,则在所述翻转工站对所述电池片层进行翻转,对所述前板材进行清洁后铺设前胶膜层,并将完成翻转的所述电池片层背面朝上摆放于所述前胶膜层上进行背面加工。
  8. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,所述加工工艺还包括:在进行外观检测和EL检测时,对检测确定存在外观不良和/或EL不良的电池片进行标记,标记的方法包括但不限于:在存在外观不良和/或EL不良的电池片上添加预定记号,以及,按照编码原则对所述电池片层中的电池片进行编码并记录存在外观不良和/或EL不良的电池片对应的编码。
  9. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,返修工序的加工流向由MES系统控制,则所述加工工艺还包括:在进行外观检测和EL检测时获取电池片图像并发送给所述MES系统,所述返修台工站从MES系统获取存在外观不良和/或EL不良的电池片对应的电池片图像。
  10. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,返修工序的加工流向由外观检测和EL检测对应的检测组件控制,则所述加工工艺还包括:在进行外观检测和EL检测时获取电池片图像并直接发送给所述返修台工站。
  11. 根据权利要求9或10所述的板块太阳能光伏组件加工工艺,其特征在于,所述加工工艺还包括:
    当所述返修台工站获取到存在外观不良和/或EL不良的电池片对应的电池片图像后,由人工或智能AI根据展示的电池片图像与电池片实物确认是否存在不良,若确认存在不良则进行正面返修后传送到所述翻转工站,否则直接传送到所述翻转工站。
  12. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,所述加工工艺还包括:在所述返修台工站,通过投影的方式标识出存在外观不良和/或EL不良的电池片。
  13. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,对所述电池片层的正面进行外观检测时,外观检测与正面加工同时进行。
  14. 根据权利要求1所述的板块太阳能光伏组件加工工艺,其特征在于,所述对所述电池片层的正面进行EL检测,包括:在汇流条焊接完成后对所述电池片层的正面进行EL检测,EL通电的两个电极对应压在电池板块两端的汇流条上。
PCT/CN2020/097604 2019-06-28 2020-06-23 一种板块太阳能光伏组件加工工艺 WO2020259472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910571337.0 2019-06-28
CN201910571337.0A CN110299431B (zh) 2019-06-28 2019-06-28 一种板块太阳能光伏组件加工工艺

Publications (1)

Publication Number Publication Date
WO2020259472A1 true WO2020259472A1 (zh) 2020-12-30

Family

ID=68029274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097604 WO2020259472A1 (zh) 2019-06-28 2020-06-23 一种板块太阳能光伏组件加工工艺

Country Status (2)

Country Link
CN (1) CN110299431B (zh)
WO (1) WO2020259472A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299431B (zh) * 2019-06-28 2020-12-29 苏州携创新能源科技有限公司 一种板块太阳能光伏组件加工工艺
CN115148827A (zh) * 2021-03-30 2022-10-04 金阳(泉州)新能源科技有限公司 一种背接触太阳电池芯片焊带焊接方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847671A (zh) * 2009-03-23 2010-09-29 三洋电机株式会社 太阳能电池模块的制造方法
KR101075953B1 (ko) * 2011-04-20 2011-10-21 한성웰텍 (주) 태양전지모듈의 후처리제조공정
CN103372698A (zh) * 2012-04-19 2013-10-30 宁夏小牛自动化设备有限公司 太阳能电池片全自动串焊生产线
CN107256908A (zh) * 2017-06-26 2017-10-17 中节能太阳能科技(镇江)有限公司 太阳能组件的电池串阵列连续化生产工艺及其生产设备
CN108461567A (zh) * 2018-04-01 2018-08-28 格润智能光伏南通有限公司 一种单晶半片光伏组件排串方式
CN109244187A (zh) * 2018-09-21 2019-01-18 北京恒信卓元科技有限公司 一种高可靠光伏组件的制造方法
CN109256434A (zh) * 2017-07-12 2019-01-22 苏州阿特斯阳光能源科技有限公司 光伏组件及其串焊方法
CN109285920A (zh) * 2018-09-30 2019-01-29 武汉市青蚨科技有限公司 一种太阳能组件电池串排版工装
CN109509805A (zh) * 2018-12-07 2019-03-22 成都晔凡科技有限公司 叠瓦组件及用于制造叠瓦组件的方法
CN110299431A (zh) * 2019-06-28 2019-10-01 苏州携创新能源科技有限公司 一种板块太阳能光伏组件加工工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047954A1 (en) * 2007-08-31 2010-02-25 Su Tzay-Fa Jeff Photovoltaic production line
US8212139B2 (en) * 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
CN204375781U (zh) * 2015-02-06 2015-06-03 江苏东昇光伏科技有限公司 一种用于光伏组件的返修串焊模板
CN106129181A (zh) * 2016-08-02 2016-11-16 河北羿珩科技股份有限公司 一种立体太阳能电池组件生产流水线

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847671A (zh) * 2009-03-23 2010-09-29 三洋电机株式会社 太阳能电池模块的制造方法
KR101075953B1 (ko) * 2011-04-20 2011-10-21 한성웰텍 (주) 태양전지모듈의 후처리제조공정
CN103372698A (zh) * 2012-04-19 2013-10-30 宁夏小牛自动化设备有限公司 太阳能电池片全自动串焊生产线
CN107256908A (zh) * 2017-06-26 2017-10-17 中节能太阳能科技(镇江)有限公司 太阳能组件的电池串阵列连续化生产工艺及其生产设备
CN109256434A (zh) * 2017-07-12 2019-01-22 苏州阿特斯阳光能源科技有限公司 光伏组件及其串焊方法
CN108461567A (zh) * 2018-04-01 2018-08-28 格润智能光伏南通有限公司 一种单晶半片光伏组件排串方式
CN109244187A (zh) * 2018-09-21 2019-01-18 北京恒信卓元科技有限公司 一种高可靠光伏组件的制造方法
CN109285920A (zh) * 2018-09-30 2019-01-29 武汉市青蚨科技有限公司 一种太阳能组件电池串排版工装
CN109509805A (zh) * 2018-12-07 2019-03-22 成都晔凡科技有限公司 叠瓦组件及用于制造叠瓦组件的方法
CN110299431A (zh) * 2019-06-28 2019-10-01 苏州携创新能源科技有限公司 一种板块太阳能光伏组件加工工艺

Also Published As

Publication number Publication date
CN110299431B (zh) 2020-12-29
CN110299431A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
JP7223875B2 (ja) 光起電力アセンブリの加工方法
WO2020259472A1 (zh) 一种板块太阳能光伏组件加工工艺
CN107256908B (zh) 太阳能组件的电池串阵列连续化生产工艺及其生产设备
KR100903950B1 (ko) 태양전지모듈 자동화 제조장치 및 이를 이용한 제조방법
KR100783028B1 (ko) 태양전지모듈의 보수방법
CN207521862U (zh) 极耳与连接片的焊接设备
CN111129191B (zh) 用于光伏面板的组装方法和组合式双用工作站
CN106449883A (zh) 一种叠片焊接机
KR101134085B1 (ko) 태양전지모듈의 전작업처리 제조공정
CN103915518A (zh) 2.5mm双玻光伏组件制作方法
EP3498472A1 (en) Method for simulating flexible cell chip lamination process and lamination assembly
CN107658256A (zh) 一种光伏组件传输归正系统及方法
CN208806267U (zh) 切片太阳能电池光伏组件
CN204937696U (zh) 一种高效贴标牌装置
CN203312423U (zh) 一种软包锂电池顶侧封机
WO2022206609A1 (zh) 一种背接触太阳电池芯片焊带焊接方法
CN203134844U (zh) 一种太阳电池焊接作业设备
CN109449254B (zh) 一种制备太阳能电池串组的循环生产线
CN211054602U (zh) 一种层压机组件进出料定位系统
CN112420867B (zh) 一种无热斑光伏组件及其加工工艺
CN112310243B (zh) 适用于切割不良电池片串焊时的定位方法及串焊方法
CN218482212U (zh) 一种太阳能板层压框的自动化转运装置
CN212991108U (zh) 适合光伏组件快速返修的工装结构及流水线装置
CN107623491A (zh) 新型电池串智能检测系统
CN217363415U (zh) 一种线路板多工序连线自动生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20831852

Country of ref document: EP

Kind code of ref document: A1