WO2020259000A1 - 一种氧化镥基质的闪烁晶体制备方法及应用 - Google Patents

一种氧化镥基质的闪烁晶体制备方法及应用 Download PDF

Info

Publication number
WO2020259000A1
WO2020259000A1 PCT/CN2020/084458 CN2020084458W WO2020259000A1 WO 2020259000 A1 WO2020259000 A1 WO 2020259000A1 CN 2020084458 W CN2020084458 W CN 2020084458W WO 2020259000 A1 WO2020259000 A1 WO 2020259000A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
crystal
lutetium
temperature
preparation
Prior art date
Application number
PCT/CN2020/084458
Other languages
English (en)
French (fr)
Inventor
徐军
赵衡煜
王东海
李东振
王庆国
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Publication of WO2020259000A1 publication Critical patent/WO2020259000A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Definitions

  • the invention belongs to the field of rare earth ion crystals, and particularly relates to a preparation method and application of scintillation crystals based on lutetium oxide.
  • a scintillation material is a material that can absorb high-energy particles or rays to emit visible photons.
  • the ultrafast scintillation material refers to a scintillator material with a response time of less than 4ns (10 -9 s).
  • Such materials play a pivotal role in pulsed radiation detection, solar neutrino detection, and reaction dynamics, inertial confinement of nuclear fusion, and cosmic ray research.
  • the scintillator is used to detect ionizing radiation in most applications, so the scintillator is required to have a high blocking ability against ionizing radiation, that is, the scintillator is required to have high Density and contains elements with high atomic number.
  • Lutetium oxide Li 2 O 3
  • hafnium oxide crystal HfO 2 9.68g/cm 3 . This makes it very high in stopping all kinds of rays (x-rays, gamma rays).
  • Table 1 shows the performance of currently common ultrafast scintillators in close order.
  • Lu 2 O 3 crystals also have a series of advantages: cubic crystal system, no birefringence; wide band gap between valence band and conduction band (6.5eV), as a luminescent material
  • the matrix can accommodate the emission levels of many activator ions such as Eu, Tb, Tm, Er, etc., so it is easy to achieve various rare earth doping; high segregation coefficient; high thermal conductivity 12.5-16.5W/mK; low phonon energy ⁇ 430cm -1 , low non-radiative transition, high quantum efficiency. Therefore, lutetium oxide is favored by people as a scintillator matrix material.
  • Ce 3+ ions are a good scintillator luminescence center, which can usually achieve an ultra-fast response time of 0.2-1ns, and has good commercial applications in LYSO:Ce crystals.
  • lutetium oxide has a strong atomic shielding effect, and Ce 3+ cannot be used as an activation ion. Therefore, a new type of activating ion is needed to take advantage of the ultrafast scintillator matrix of lutetium oxide.
  • the purpose of the present invention is to solve the technical problem in the prior art that there is no suitable activating ion to play the ultrafast scintillator matrix of lutetium oxide.
  • the present invention provides a method for preparing lutetium oxide scintillation crystals, the steps are:
  • the crystal growth method in step (2) is any of the floating zone method, the cold crucible method, the micro-draw method, the warm extraction method, the heat exchange method, and the descending method.
  • the metal of the crucible in step (2) is any one of tungsten, rhenium, and tantalum, or an alloy of the foregoing metal materials.
  • the growth atmosphere used also includes an air atmosphere or a reducing atmosphere containing a higher proportion of oxygen partial pressure.
  • step (3) according to the general chemical formula (Lu 1-x M x Yb y ) 2 O 3 , ytterbium oxide Yb 2 O 3 is the luminescence in the lutetium oxide Lu 2 O 3 matrix ultrafast scintillator Center; doped with 0.01-3% oxide material to enhance light yield, in the general formula as a code, including but not limited to calcium oxide CaO, the starting material is CaCO 3 , magnesium oxide MgO, gallium oxide Ga 2 O 3 Any of them.
  • the application of the lutetium oxide crystal prepared above as a scintillation crystal is also provided. .
  • the invention provides a method for preparing lutetium oxide-based scintillation crystals, which is doped with Yb 3+ as the activating ion, and fully utilizes the advantages of the lutetium oxide-based ultrafast scintillator matrix.
  • the prepared scintillation crystals are of good quality.
  • Figure 1 is a schematic diagram of the crystal structure of Lu 2 O 3 in Example 1 of the present invention.
  • Figure 2 shows the Lu 2 O 3 crystal in Example 1 of the present invention that emits fluorescence under X-ray excitation.
  • Fig. 3 shows the fluorescence lifetime (response time) of the Lu 2 O 3 crystal in 241 Am excitation at 340 nm flashing light.
  • the crystal growth temperature is (2450 ⁇ 20)°C
  • the seed crystal inoculation temperature is 2480-2530°C
  • Crystal growth The temperature ladder method is used for crystal growth, the raw materials are put into a rhenium metal crucible, the seed crystal inoculation temperature is 2480°C, and pure Ar gas is used for protection. The temperature was raised to 2500°C and the temperature began to drop. When it dropped to about 2450°C, crystals began to form and continued to grow. The growth process is divided into two stages, and the growth time in the high temperature zone is 100 hours. Then enter the in-situ annealing stage, and after 100 hours of annealing, the dislocations and thermal stress in the crystal lattice are fully eliminated.
  • the obtained crystal is colorless and transparent. Under X-ray excitation light emission, setting 28-30kV acceleration voltage, 8.5-10keV X-ray excitation, 340nm fluorescence light emission appears. The response time is 0.67-0.79ns, accounting for 90.8%, and the slow component response time is 2.53-2.56ns, accounting for 92%.
  • Crystal growth use the floating zone method to grow crystals, load the raw materials into the high temperature floating zone furnace, increase the power until the material rods are melted, and grow after butt joint, diameter reduction, diameter expansion, equal diameter, pull-off and other processes complete.
  • the growth rate is less than 5mm/
  • the upper and lower rod speed is 5rad/s
  • the total growth time is 10 hours.
  • the crystal is taken out, it is annealed in a muffle furnace to eliminate stress. After 12 hours of annealing, the dislocation and thermal stress in the crystal lattice are fully eliminated.
  • the obtained crystal is colorless and transparent. Under X-ray excitation light emission, setting 28-30kV acceleration voltage, 8.5-10keV X-ray excitation, 340nm fluorescence light emission appears.
  • Crystal growth use descending method for crystal growth, put the raw materials into the rhenium metal crucible, the seed crystal inoculation temperature is 2500 °C, and use pure Ar gas protection. The temperature is raised to 2500°C and the temperature begins to drop. When it drops to about 2430°C, crystals begin to form and continue to grow. The growth process is divided into two stages, the growth time in the high temperature zone is 100 hours, and the decline rate is 0.1mm/h. Then enter the in-situ annealing stage, and after 48 hours of annealing, the dislocations and thermal stress in the crystal lattice are fully eliminated.
  • the obtained crystal is colorless and transparent. Under X-ray excitation light emission, setting 28-30kV acceleration voltage, 8.5-10keV X-ray excitation, 340nm fluorescence light emission appears.

Abstract

一种氧化镥基质的闪烁晶体制备方法,按照化学通式(Lu 1-xM xYb y) 2O 3称取化学计量比的氧化镥,氧化镱和所需的稀土离子氧化物,混合均匀后,根据需要等静压成料饼或料棒,烧结后,选用氧化镥陶瓷棒或单晶作为籽晶进行晶体生长,获得晶体中掺杂了Yb 3+作为激活离子。

Description

一种氧化镥基质的闪烁晶体制备方法及应用 技术领域
本发明属于稀土离子晶体领域,特别涉及一种氧化镥基质的闪烁晶体制备方法及应用。
背景技术
闪烁材料是一种能吸收高能粒子或射线而发出可见光子的材料,其中超快闪烁材料是指响应时间小于4ns(10 -9s)的闪烁体材料。此类材料在脉冲辐射探测(Pulsed radiation detection),太阳中微子探测,和反应动力学,惯性约束核聚变,宇宙射线研究中发挥着支柱性的作用。
尽管不同的应用对闪烁体会提出不同的要求,但闪烁体在绝大多数应用中都被用于检测电离辐射,所以要求闪烁体对电离辐射要有高的阻断能力,即要求闪烁体具有高密度并含有原子序数大的元素。氧化镥(Lu 2O 3)具有极高的密度(9.42g/cm 3),是目前已知的闪烁体中密度第二的基质材料,仅略低于氧化铪晶体HfO 2(9.68g/cm 3)。这使得它对各类射线(x射线、γ射线)的阻止本领相当高。
表1超快闪烁体性能(按密度排序)
Figure PCTCN2020084458-appb-000001
表1中是目前常见的按照密排序后超快闪烁体的性能。此外,作为稀土倍半氧化物晶体的一员,Lu 2O 3晶体还具有一系列优点:立方晶系、无双折射;价带和导带间能带间隙很宽(6.5eV),作为发光材料基体可容纳许多激活剂离子如Eu,Tb,Tm,Er等的发射能级,因此易实现各种稀土掺杂;高分凝系数;高热导率12.5-16.5W/mK;低声子能量~430cm -1,低无辐射跃迁、高量子效率。因此氧化镥作为闪烁体基质材料备受人们青睐。
在超快闪烁应用领域,Ce 3+离子是良好的闪烁体发光中心,通常可以实现0.2-1ns级的超快响应时间,并在在LYSO:Ce晶体有良好的商业应用。然而,氧化镥具有较强的原子屏蔽效应,无法使用Ce 3+作为激活离子。因此,需要使用一种新型的激活离子才能发挥氧化镥的超快闪烁体基质的优势。
发明内容
本发明的目的是为了解决现有技术中没有合适的激活离子来发挥氧化镥的超快闪烁体基质的技术难题,本发明提供了一种氧化镥闪烁晶体制备方法,步骤为:
(1)按照化学通式(Lu 1-xM xYb y) 2O 3称取化学计量比的氧化镥,氧化镱和所需的稀土离子氧化物,混合均匀后,根据需要等静压成料饼或料棒,等静压压力为100-220Mpa,放入马弗炉中烧结,烧结温度为1500-1780℃,恒温2-12小时,升降温速率75-120℃/h;
(2)选用氧化镥陶瓷棒或单晶作为籽晶进行晶体生长,采用合适的晶体生长方法,选择等高熔点金属作为坩埚;其中晶体生长温度为(2450±20)℃,籽晶接种温度为2480-2530℃,生长气氛为纯Ar气、(1-10%)H 2+(90-99%)Ar、(0.1-1%)O 2+(99-99.9%)H 2中任一种。
作为改进,步骤(2)晶体生长方法为浮区法,冷坩埚法,微下拉法,温提法,热交换法,下降法中任一种。
作为改进,步骤(2)所述坩埚的金属为钨,铼,钽中任意一种,或上述金属材料的合金。
作为改进,晶体生长方法选用浮区法或冷坩埚法时,采用生长气氛还包括空气气氛或含有较高比例氧气分压的还原性气氛。
作为改进,还包括步骤(3),按照化学通式(Lu 1-xM xYb y) 2O 3中,氧化镱Yb 2O 3为氧化镥Lu 2O 3基质超快闪烁体中的发光中心;掺杂0.01-3%含量的氧化物材料来增强光产额,通式中以为代号,包括但不限于氧化钙CaO,起始材料为CaCO 3,氧化镁MgO,氧化镓Ga 2O 3中任一种。
同时,还提供了上述制备的氧化镥晶体作为闪烁晶体的应用。。
有益效果:本发明提供的一种氧化镥基质的闪烁晶体制备方法,掺杂了Yb 3+作为激活离子,将氧化镥的超快闪烁体基质的优势充分发挥出来,制备方法简单易操作,且制备的闪烁晶体质量优良。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明实施例1中Lu 2O 3晶体结构示意图。
图2为本发明实施例1中Lu 2O 3晶体在X射线激发下荧光发光。
图3为本发明实施例1中Lu 2O 3晶体在 241Am激发下340nm闪烁发光的荧光寿命(响应时间)。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
其中晶体生长温度为(2450±20)℃,籽晶接种温度为2480-2530℃,
实施例1
(1)配制料块:采用纯度为99.99%的Yb 2O 3和Lu 2O 3作为初始原料,并按摩尔比0.5: 99.5进行配料。原料经过充分球磨混合后用等静压机压制成料饼,等静压压力为100Mpa,装入氧化铝陶瓷坩埚投入马弗炉中进行烧结。烧料温度为1780℃,恒温2小时,升降温速率120℃/h。
(2)晶体生长:使用温梯法进行晶体生长,将原料投入铼金属坩埚内,籽晶接种温度为2480℃,采用纯Ar气体保护。升温至2500℃并开始降温,当降至2450℃左右时开始形成晶体,并持续生长。生长过程分两个阶段,高温区的生长时间为100小时。之后进入原位退火阶段,经过100小时退火,充分消除晶格内的位错及热应力。
(3)所获晶体为无色透明。在X射线激发发光,设置28-30kV加速电压、8.5-10keV的X-ray激发下,出现340nm的荧光发光。响应时间为0.67-0.79ns,占比90.8%,慢成分响应时间为2.53-2.56ns,占比92%。
实施例2
(1)配制料块:采用纯度为99.99%的Yb 2O 3和Lu 2O 3作为初始原料,并按摩尔比0.5:99.5进行配料。原料经过充分球磨混合后填充入条形气球中,并用等静压机压制成料棒,等静压压力为220Mpa,装入氧化铝陶瓷坩埚投入马弗炉中进行烧结。烧料温度为1780℃,恒温12小时,升降温速率75℃/h。料棒高温煅烧后或形成一定程度弯曲,需打磨加工至无弯曲。
(2)晶体生长:使用浮区法进行晶体生长,将原料装入高温浮区炉内,升功率至料棒熔化,经过对接,缩径,扩径,等径,拉脱等工艺过程,生长完毕。生长速率未5mm/,上下料棒转速5rad/s,总生长时间为10小时。晶体取出后放入马弗炉退火以消除应力,经过12小时退火,充分消除晶格内的位错及热应力。
(3)所获晶体为无色透明。在X射线激发发光,设置28-30kV加速电压、8.5-10keV的X-ray激发下,出现340nm的荧光发光。
实施例3
(1)配制料块:采用纯度为99.99%的CaCO 3,Yb 2O 3和Lu 2O 3作为初始原料,并按摩尔比0.1:0.4:99.5进行配料。原料经过充分球磨混合后用等静压机压制成料饼,等静压压力为175Mpa,装入氧化铝陶瓷坩埚投入马弗炉中进行烧结。烧料温度为1650℃,恒温10小时,升降温速率100℃/h。
(2)晶体生长:使用下降法进行晶体生长,将原料投入铼金属坩埚内,籽晶接种温度为2500℃,采用纯Ar气体保护。升温至2500℃并开始降温,当降至2430℃左右时开始形成晶体,并持续生长。生长过程分两个阶段,高温区的生长时间为100小时,此时下降速率为0.1mm/h。之后进入原位退火阶段,经过48小时退火,充分消除晶格内的位错及热应力。
(3)所获晶体为无色透明。在X射线激发发光,设置28-30kV加速电压、8.5-10keV的X-ray激发下,出现340nm的荧光发光。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种氧化镥基质的闪烁晶体制备方法,其特征在于:制备方法步骤为:
    (1)按照化学通式(Lu 1-xM xYb y) 2O 3称取化学计量比的氧化镥,氧化镱和所需的稀土离子氧化物,混合均匀后,根据需要等静压成料饼或料棒,等静压压力为100-220Mpa,放入马弗炉中烧结,烧结温度为1500-1780℃,恒温2-12小时,升降温速率75-120℃/h;
    (2)选用氧化镥陶瓷棒或单晶作为籽晶进行晶体生长,采用合适的晶体生长方法,选择等高熔点金属作为坩埚;其中晶体生长温度为(2450±20)℃,籽晶接种温度为2480-2530℃,生长气氛为纯Ar气、(1-10%)H 2+(90-99%)Ar、(0.1-1%)O 2+(99-99.9%)H 2中任一种。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中晶体生长方法为浮区法,冷坩埚法,微下拉法,温提法,热交换法,下降法中任一种。
  3. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述坩埚的金属为钨,铼,钽中任意一种,或上述金属材料的合金。
  4. 根据权利要求2所述的制备方法,其特征在于:晶体生长方法选用浮区法或冷坩埚法时,采用生长气氛还包括空气气氛或含有较高比例氧气分压的还原性气氛。
  5. 根据权利要求1所述的制备方法,其特征在于:还包括步骤(3),按照化学通式(Lu 1- xM xYb y) 2O 3中,氧化镱Yb 2O 3为氧化镥Lu 2O 3基质超快闪烁体中的发光中心;掺杂0.01-3%含量的氧化物材料来增强光产额,通式中以M为代号,包括但不限于氧化钙CaO,起始材料为CaCO 3、氧化镁MgO、氧化镓Ga 2O 3中氧化物材料任一种。
  6. 权利要求1-5中任一项制备的氧化镥晶体作为闪烁晶体的应用。
PCT/CN2020/084458 2019-06-24 2020-04-13 一种氧化镥基质的闪烁晶体制备方法及应用 WO2020259000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547121.0A CN110359092A (zh) 2019-06-24 2019-06-24 一种氧化镥基质的闪烁晶体制备方法及应用
CN201910547121.0 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020259000A1 true WO2020259000A1 (zh) 2020-12-30

Family

ID=68216777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084458 WO2020259000A1 (zh) 2019-06-24 2020-04-13 一种氧化镥基质的闪烁晶体制备方法及应用

Country Status (2)

Country Link
CN (1) CN110359092A (zh)
WO (1) WO2020259000A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359092A (zh) * 2019-06-24 2019-10-22 南京同溧晶体材料研究院有限公司 一种氧化镥基质的闪烁晶体制备方法及应用
CN115821387B (zh) * 2022-12-29 2023-07-25 广西大学 一种超高熔点稀土掺杂氧化铪光学单晶体的生长方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977882A (zh) * 2018-08-31 2018-12-11 山东大学 倍半氧化物单晶光纤及其制备方法与应用
CN110359092A (zh) * 2019-06-24 2019-10-22 南京同溧晶体材料研究院有限公司 一种氧化镥基质的闪烁晶体制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689293B2 (en) * 2002-05-31 2004-02-10 The Regents Of The University Of California Crystalline rare-earth activated oxyorthosilicate phosphor
FR3008995B1 (fr) * 2013-07-24 2016-12-09 Centre Nat Rech Scient Procede de preparation de sesquioxydes cubiques monocristallins et applications
CN108265332A (zh) * 2018-01-30 2018-07-10 无锡佶达德激光技术有限公司 一种镨镝镱共掺杂红外飞秒激光晶体材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977882A (zh) * 2018-08-31 2018-12-11 山东大学 倍半氧化物单晶光纤及其制备方法与应用
CN110359092A (zh) * 2019-06-24 2019-10-22 南京同溧晶体材料研究院有限公司 一种氧化镥基质的闪烁晶体制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUN J H, JOUINI A, YOSHIKAWA A, KIM J H, FUKUDA T, LEE D J S: "Ceramic Processing Research Thermal and optical properties of Yb-doped Lu 2 O 3 single crystal grown by the micro-pulling-down method", JOURNAL OF CERAMIC PROCESSING RESEARCH, INTERNATIONAL ORGANIZATION FOR CERAMIC PROCESSING, SEOUL, KR, vol. 14, no. 5, 31 October 2013 (2013-10-31), KR, pages 636 - 640, XP055772770, ISSN: 1229-9162 *
YANAGIDA TAKAYUKI; FUJIMOTO YUTAKA; YAGI HIDEKI; YANAGITANI TAKAGIMI: "Optical and scintillation properties of transparent ceramic Yb:Lu2O3with different Yb concentrations", OPTICAL MATERIALS.,, vol. 36, no. 6, 11 February 2014 (2014-02-11), ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM., NL, pages 1044 - 1048, XP028627654, ISSN: 0925-3467, DOI: 10.1016/j.optmat.2014.01.022 *

Also Published As

Publication number Publication date
CN110359092A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2021004078A1 (zh) 一种掺谱钪酸钆可见波段激光晶体及其制备方法
Yoshikawa et al. Single Crystal Growth, Optical Properties and Neutron Response of ${\rm Ce}^{3+} $ Doped ${\rm LiCaAlF} _ {6} $
WO2020259000A1 (zh) 一种氧化镥基质的闪烁晶体制备方法及应用
WO2021000623A1 (zh) 一种稀土离子掺杂氧化镧镥超快闪烁晶体及其制备方法和应用
CN108585853B (zh) 一种铕掺杂氧化钪闪烁体及其制备方法和用途
EP3359980A1 (en) Manner of shortening scintillation response of luminescence centres and material of scintillator with shortened scintillation response
CN101560102B (zh) C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
CN106673639B (zh) 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
CN110204336B (zh) 一种硫氧化钆粉体和闪晶陶瓷的制备方法
CN103951197A (zh) 稀土离子掺杂的Cs2LiYBr6微晶玻璃及其制备方法
JP2003277191A (ja) Yb混晶酸化物単結晶からなるシンチレータ用発光材料
US11567223B2 (en) Scintillation material of rare earth orthosilicate doped with strong electron-affinitive element and its preparation method and application thereof
CN112745840B (zh) 一种近红外硅锗酸盐长余辉发光材料及其制备方法
CN112573905B (zh) 一种阴离子掺杂石榴石闪烁体及其制备方法与应用
CN103951206A (zh) 稀土离子掺杂的BaGdBr5微晶玻璃及其制备方法
CN103951246A (zh) 稀土离子掺杂的Cs2LiLuBr6微晶玻璃及其制备方法
JP2012177121A (ja) シンチレータ用単結晶及びその製造方法
JP7300127B2 (ja) シンチレータ及び撮像装置
RU2795600C2 (ru) Гранатовый сцинтиллятор, солегированный одновалентным ионом
CN103951241A (zh) 稀土离子掺杂的Cs2LiLaBr6微晶玻璃及其制备方法
CN103951242A (zh) 稀土离子掺杂的Cs2LiLaI6微晶玻璃及其制备方法
CN103774211A (zh) 一种铽镱稀土离子双掺杂氟化镥钆锂上转换发光晶体及其制备方法
CN115322784A (zh) 一种八面体格位掺杂改善铝镓酸钆闪烁材料及其制备方法和应用
CN112522787A (zh) 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用
CN103951244A (zh) 稀土离子掺杂的Cs2LiYI6微晶玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833164

Country of ref document: EP

Kind code of ref document: A1