CN112522787A - 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用 - Google Patents

一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用 Download PDF

Info

Publication number
CN112522787A
CN112522787A CN202011279329.8A CN202011279329A CN112522787A CN 112522787 A CN112522787 A CN 112522787A CN 202011279329 A CN202011279329 A CN 202011279329A CN 112522787 A CN112522787 A CN 112522787A
Authority
CN
China
Prior art keywords
rare earth
silicon lattice
doped
earth orthosilicate
luminescence center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011279329.8A
Other languages
English (en)
Inventor
丁栋舟
赵书文
万博
施俊杰
陈露
袁晨
王林伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202011279329.8A priority Critical patent/CN112522787A/zh
Priority to CN202311709699.4A priority patent/CN117721537A/zh
Publication of CN112522787A publication Critical patent/CN112522787A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料的化学式为RE2(1‑x)Ce2xSi1‑yMyO5;其中RE为稀土离子;M为占据硅格位的第二发光中心,选自钛Ti、铬Cr、锰Mn、钴Co中至少一种;0<x≤0.05,0<y≤0.1。

Description

一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其 制备方法和应用
技术领域
本发明涉及一种竞争发光机制调控稀土正硅酸盐闪烁材料性能的方法及其应用,属于闪烁材料技术领域。
背景技术
无机闪烁材料是一种能将高能光子(X/γ射线)或粒子(质子、中子等)的能量转换成易于探测的紫外/可见光子的晶态能量转换体。无机闪烁晶体做成的探测器被广泛应用于高能物理、核物理、空间物理、核医学诊断(XCT、PET)、地质勘探以及安全稽查等领域。随着核探测及相关技术的飞速发展,对闪烁晶体的性能提出了更高要求,传统的NaI(Tl)、BGO、PWO等闪烁晶体已经无法满足应用要求,新一代的铝酸盐和硅酸盐闪烁晶体由于其高光输出、快衰减等特性,逐渐成为研究热点。
以稀土离子Ce3+作为激活剂,利用Ce3+的5d→4f宇称允许跃迁来获得高强度快衰减发光,如:Ce:YAG、Ce:GAGG、Ce:LYSO、Ce:GSO、Ce:YAP、Ce:LuAP等是出现的一批新型闪烁材料。和传统NaI:Tl,BGO,BaF2,PWO无机闪烁晶体相比,Ce离子掺杂的高温氧化物晶体兼具有高光输出(约为BGO晶体的2-10倍)和快衰减(约为BGO晶体的1/5-1/20)特性,因此,这类性能优良的闪烁晶体引起科学界的高度重视。Ce离子掺杂的稀土正硅酸盐,具有高光输出、快发光衰减、有效原子序数多、密度大等特性,是性能优良的闪烁材料。然而高能物理和核医学成像领域对其时间特性提出更高的要求。在高能物理应用中,可通过粒子的能量辨别粒子的种类,而粒子的能量对应于闪烁上升时间行为,闪烁材料本身的上升时间越短,则分辨粒子的能力越强;在核医学成像领域,图像分辨率、扫描速度、信噪比以及辐射剂量都与闪烁材料的上升和衰减时间息息相关。在正电子发射型计算机断层显像(PET)中飞行时间(TOF)技术的使用可以将事件的位置限定在小范围内,减少了重建事件涉及到的体素数量,使局部信息浓度升高,TOF-PET是未来核医学成像发展方向。TOF技术对闪烁材料的上升时间和衰减时间要求很高,时间分辨率CTR∝(上升时间×衰减时间÷光产额)0.5达到10ps量级,将提高PET的灵敏度至少16倍,最大限度地提高PET分子成像的时空分辨率;同时可将分子成像程序的辐射剂量降低到可忽略的低水平,减少每次检查所需的放射性药物的合成量,进一步扩大分子成像对心血管、神经、代谢、炎症、传染病或代谢性疾病(如糖尿病)的诊断,检测对象包括儿科、新生儿和产前,不需要对病人进行全角度扫描。目前商业化的PET的CTR在500-250ps,新一代Ce离子掺杂的稀土正硅酸盐闪烁材料有望将CTR降至100ps以下,为了向10ps的目标前进,需要进一步地缩短稀土正硅酸盐闪烁材料的时间特性。目前对于Ce离子掺杂的稀土正硅酸盐闪烁体系,相关文献聚焦于Ce3+所在的稀土格位以及氧所在的阴离子格位的调控。例如,报道了Mg、Ca、Tb在LSO:Ce中的共掺杂效应,发现共掺杂0.2at.%的Ca能提高晶体的光输出,Ca共掺杂导致LSO:Ce中Ce1的含量增多。专利1(中国公布号CN108059957A)公开了稀土格位用Ca或者Mg掺杂,氧位则用F或者Cl阴离子共同掺杂可提高正硅酸盐光输出且降低余辉。专利2(中国公布号CN108139492A)公开了向A2SiO5硅酸盐闪烁体材料的A位掺杂Ti、Cr、Mn、Co元素实现非辐射能量转移从被激发的发光中心带离部分能量,从而导致闪烁响应的主波幅成分的持续时间被显著缩短。然而,目前对纯粹的稀土正硅酸盐闪烁材料的硅格位的掺杂未见报道。
发明内容
根据实际应用需要以及实现上述目的,本发明的目的在于提供一种竞争发光机制调控稀土正硅酸盐闪烁材料性能的方法及其应用,创造出高光产额、超快发光性能的新闪烁材料,更好地满足高能物理探测与粒子辨别、快核医学影像(TOF-PET、PET-CT、PET-MRI)的使用需求。
第一方面,本发明提供了一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料的化学式为RE2(1-x)Ce2xSi1- yMyO5;其中RE为稀土离子;M为占据硅格位的第二发光中心,选自钛Ti、铬Cr、锰Mn、钴Co中至少一种;0<x≤0.05,0<y≤0.1。
目前所研究的掺杂离子大都是光学惰性的,未曾有考虑利用第二激活中心产生的竞争机制实现时间行为的改善,即使有也仅限于稀土格位的掺杂。本发明人发现,稀土正硅酸盐闪烁材料中硅与氧形成[SiO4],硅格位的掺杂可通过氧离子以及氧空位间接地影响到稀土格位上的激活中心,意识到稀土正硅酸盐闪烁材料的硅格位掺杂竞争发光中心具有重要意义,并且有望获得性能优异的新组分材料。为此,本发明人通过大量实验及其研究发现,M离子(钛Ti、铬Cr、锰Mn、钴Co)为占据硅格位的第二发光中心,具有与Si4+离子半径相近;且在禁带中引入杂质能级并低于Ce3+的最低激发态5d1,形成Ce3+→M无辐射跃迁能量转移;M离子激发态通过无辐射过程退激或在可见光区无明显的发射峰。当将其掺杂在硅位上时,便引入除了Ce3+离子之外的第二竞争发光中心,显著缩短其时间特性,但在可见光区不引入除Ce3+外的发射峰,因为Ce3+属4f-5d偶极允许跃迁,其荧光寿命较偶极禁阻的d-d或f-f跃迁短很多,引入额外的发射必然导致出现多个时间分量,不利于核辐射探测的应用。依据上述原理的一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料具有超快发光能够更好地应用于高能物理探测与粒子辨别、快核医学影像(TOF-PET、PET-CT、PET-MRI)。
较佳的,所述RE选自镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu、钪Sc、钇Y中至少一种,优选为Lu、Y、Gd、La中的至少一种。
较佳的,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料中还加入其他掺杂元素A,化学式为RE2(1-x-a)Ce2xA2aSi1-yMyO5,0<a≤0.01;所述其他掺杂元素A选自锂Li、钠Na、钾K、铷Rb、铯Cs、镁Mg、钙Ca、锶Sr、钪Sc、铜Cu中至少一种。
较佳的,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料为硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末、硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷、或硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶。
第二方面,本发明提供了一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2、SiO2和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体在1000~2000℃下固相反应5~200小时,得到铈共掺正硅酸盐闪烁多晶粉末。
第三方面,本发明提供了一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2、SiO2和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体压制成后,在1000~2000℃下固相反应5~200小时,得到铈共掺正硅酸盐闪烁陶瓷;优选地,所述压制成型的压力为0.03GPa~5GPa。
第四方面,本发明提供了一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2、SiO2和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体加热至熔化,采用提拉法、坩埚下降法、温度梯度法、热交换法、泡生法、顶部籽晶法、助熔剂晶体生长方法或微下拉法,生长所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶。
第五方面,本发明提供了一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷和硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶在高能物理探测与粒子辨别领域和快核医学影像领域中的应用。
有益效果:
1、本专利提出在稀土正硅酸盐闪烁材料的硅格位引入发光激活中心,与稀土格位的发光中心相互竞争的技术方案,两激活中心相互分离在不同格位,防止两种激活中心在基质中发生非均匀性集聚,从一定程度上避免了浓度猝灭效应,同时增加了空间位阻导致第一激活中心的极少部分慢分量转移到第二激活中心,在无额外发射引入的条件下缩短第一激活中心的时间性能;
2、稀土正硅酸盐闪烁材料的硅格位引入竞争发光中心后,闪烁光输出/光产额提高或其发光衰减时间和上升时间大幅度缩短;
3、通过竞争发光中心掺杂稀土正硅酸盐闪烁材料的硅格位获得超快发光能够更好地应用于高能物理探测与粒子辨别、快核医学影像(TOF-PET、PET-CT、PET-MRI)。
附图说明
图1为实施例5制备的闪烁材料的闪烁衰减时间图谱与拟合结果;
图2为实施例5制备的闪烁材料的闪烁上升时间图谱;
图3为实施例12制备的非透明陶瓷的闪烁衰减时间图谱与拟合结果;
图4为实施例12制备的非透明陶瓷的闪烁上升时间图谱;
图5为实施例4制备的发射光谱(358nm激发);
图6为实施例9制备的非透明陶瓷的发射光谱(358nm激发)。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,稀土正硅酸盐闪烁材料的稀土格位含有Ce3+离子作为发光中心,通过在其硅格位掺杂第二发光中心M(=Ti、Cr、Mn、Co)与之形成竞争关系,显著改善Ce3+发光性能,具体为闪烁光输出/光产额提高或者衰减时间、上升时间缩短,化学通式可写作:RE2(1-x)Ce2xSi(1-y)MyO5(式中RE为稀土离子,0<x≤0.05(优选为0.001≤x≤0.005),M为占据硅格位的第二发光中心,0<y≤0.1(优选为0.001≤y≤0.015)。若是M过量,则会导致闪烁光输出/光产额、能量分辨率、荧光发射强度或X-射线激发发射强度任意一项劣化显著,且杂质含量太高完整单晶很难制备。所述RE为稀土离子具体包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钪(Sc)、钇(Y)中至少一种。优选,向RE2(1-x)Ce2xSi(1-y)MyO5中加入另外的掺杂剂,具体包括,锂Li、钠Na、钾K、铷Rb、铯Cs、镁Mg、钙Ca、锶Sr、钪Sc、铜Cu中至少一种。
在本发明中,通过在稀土正硅酸盐闪烁材料的硅格位掺杂第二发光中心M与Ce3+发光中心形成竞争关系,实现Ce3+最低激发态5d1的极少部分慢分量通过Ce3+→M无辐射跃迁能量转移到较低的位于禁带中的杂质M的激发态,再通过无辐射过程退激或在可见光区无明显的发射峰,显著消减慢时间分量达到缩短其时间特性的目的。其中,发光包括闪烁发光和光致发光。
在本发明中,通过在稀土正硅酸盐闪烁材料的硅格位掺杂第二发光中心,所得材料发光上升时间或衰减时间缩短,部分(例如Ti离子)实现闪烁光输出/光产额提高、能量分辨率降低、荧光发射强度或X-射线激发发射强度变强等中的至少一种。
本发明中,0.015<y≤0.1会在实现发光上升时间或衰减时间缩短的同时,导致闪烁光输出/光产额、能量分辨率、荧光发射强度或X-射线激发发射强度中任意一项,性能劣化>20%。
以下示例性地说明本发明提供的硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料的制备方法。所得硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料为多晶粉末或陶瓷或单晶。其中陶瓷包括透明陶瓷和非透明陶瓷。
采用硅位竞争发光掺杂元素氧化物(MaOb)、CeO2、SiO2、稀土氧化物(REmOn)作为原料,并按原料组分的摩尔量配比MaOb:CeO2:SiO2:REmOn=y/a:2x:(1-y):2(1-x)/m配料,并充分混合均匀,得到混合粉体。a,b,m,n为所用试剂化学式的数字部分。所用原料纯度均为99.99%(4N)即以上。
直接将混合粉末在1000-2000℃下煅烧5-200h发生固相反应获得多晶粉末。其中,固相反应的温度可为1300-1600℃,时间可为10-50h。
或者,将混合粉体经过0.03-5GPa压制成块在1000-2000℃下烧结5-200h得到陶瓷或调控烧结工艺制备透明陶瓷。例如,采用热压烧结,真空烧结等技术手段烧结工艺制备透明陶瓷。其中,固相反应的温度可为1300-1600℃,时间可为10-50h。压制成块压力优选为2-3GPa。
再或者,将多晶粉末、透明陶瓷研磨粉体、混合粉体等中的至少一种,作为原料放入容器中通过加热(电阻或电磁感应或光等)使其熔化,并缓慢从熔体中结晶出来制备单晶,具体方法包括提拉法、坩埚下降法、温梯法、热交换法、泡生法、顶部籽晶法、助熔剂晶体生长方法、微下拉法(μ-PD)进行生长。
在单晶制备过程中,容器可为石墨坩埚、铱坩埚、钼坩埚、钨钼坩埚、铼坩埚、钽坩埚、氧化铝坩埚、氧化锆坩埚。单晶生长的气氛可为空气、氩气、氮气、二氧化碳、一氧化碳中一种或多种混合。优选地,采用提拉法生长单晶,容器为铱坩埚,采用感应加热,生长气氛采用高纯氮气,边旋转边提拉,拉速为0.7~6.0mm/h,转速为3~20r/min。
另外,将上述获得的陶瓷、单晶通过破碎研磨成粉末。
在本发明中,基于稀土正硅酸盐的硅格位掺杂第二发光中心与Ce3+发光中心相互竞争明显改善Ce3+发光性能的方法,制备出优异发光性能的材料。
在本发明中,通过竞争发光中心掺杂稀土正硅酸盐闪烁材料的硅格位获得超快发光能够更好地应用于高能物理探测与粒子辨别、快核医学影像(TOF-PET、PET-CT、PET-MRI)。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1(生长Lu1.798Y0.2Ce0.002Si(1-y)TiyO5单晶)
采用提拉法生长单晶。按摩尔量配比TiO2:CeO2:SiO2:Lu2O3:Y2O3=y:0.002:(1-y):0.899:0.1配料(其中,y=0.001、0.003、0.005、0.01、0.015),充分混合均匀,将混合物于2500MPa冷等静压下压制成块,放入铱坩埚内,通过感应加热并充分熔化,通过籽晶接种后从熔体中缓慢提拉生长出预设尺寸的单晶,获得Lu1.798Y0.2Ce0.002Si(1-y)TiyO5单晶。其中,提拉法的参数包括:所需尺寸参数设计、PID质量控制温度、拉速为3~6mm/h、转速为3~5r/min。
实施例2(制备Lu1.798Y0.2Ce0.002Si(1-y)TiyO5多晶粉体)
按实施例1配料,充分混合均匀,将粉末混合物装入刚玉坩埚中放入马弗炉中于1600℃下煅烧10h发生固相反应,获得Lu1.798Y0.2Ce0.002Si(1-y)TiyO5多晶粉末。
实施例3(制备Lu1.798Y0.2Ce0.002Si(1-y)TiyO5陶瓷)
非透明状:按实施例1配料,充分混合均匀,将混合物于30MPa冷等静压下压制成块,装入刚玉坩埚中放入马弗炉中于1600℃下烧结10h发生固相反应,获得Lu1.798Y0.2Ce0.002Si(1-y)TiyO5非透明陶瓷。透明状:按实施例1配料,充分混合均匀,将混合物于5000MPa冷等静压下压制成块,在真空热压炉中发生固相反应,尽可能地排除气泡和空隙,获得Lu1.798Y0.2Ce0.002Si(1-y)TiyO5透明陶瓷。
实施例4(生长Lu1.798Y0.2Ce0.002Si(1-y)CryO5掺杂单晶)
按摩尔量配比Cr2O3:CeO2:SiO2:Lu2O3:Y2O3=y/2:0.002:(1-y):0.899:0.1配料(y=0.0005和0.002),后续步骤同实施例1,获得Lu1.798Y0.2Ce0.002Si(1-y)CryO5单晶。
实施例5(制备Lu1.798Y0.2Ce0.002Si(1-y)CryO5多晶粉体)
按实施例4配料,后续步骤同实施例2,获得Lu1.798Y0.2Ce0.002Si(1-y)CryO5多晶粉末。
实施例6(制备Lu1.798Y0.2Ce0.002Si(1-y)CryO5陶瓷)
按实施例4配料,后续步骤同实施例3,获得Lu1.798Y0.2Ce0.002Si(1-y)CryO5非透明陶瓷和透明陶瓷。
实施例7(生长Lu1.798Y0.2Ce0.002Si(1-y)MnyO5单晶)
按摩尔量配比MnO2:CeO2:SiO2:Lu2O3:Y2O3=y:0.002:(1-y):0.899:0.1配料(y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),后续步骤同实施例1,获得Lu1.798Y0.2Ce0.002Si(1-y)MnyO5单晶。
实施例8(制备Lu1.798Y0.2Ce0.002Si(1-y)MnyO5多晶粉体)
按实施例7配料,后续步骤同实施例2,获得Lu1.798Y0.2Ce0.002Si(1-y)MnyO5多晶粉末。
实施例9(制备Lu1.798Y0.2Ce0.002Si(1-y)MnyO5陶瓷)
按实施例7配料,后续步骤同实施例3,获得Lu1.798Y0.2Ce0.002Si(1-y)MnyO5非透明陶瓷和透明陶瓷。
实施例10(生长Lu1.798Y0.2Ce0.002Si(1-y)CoyO5单晶)
按摩尔量配比Co2O3:CeO2:SiO2:Lu2O3:Y2O3=y/2:0.002:(1-y):0.899:0.1配料(y=0.001和0.003),后续步骤同实施例1,获得Lu1.798Y0.2Ce0.002Si(1-y)CoyO5单晶。
实施例11(制备Lu1.798Y0.2Ce0.002Si(1-y)CoyO5多晶粉体)
按摩尔量配比Co2O3:CeO2:SiO2:Lu2O3:Y2O3=y/2:0.002:(1-y):0.899:0.1配料(y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),后续步骤同实施例2,获得Lu1.798Y0.2Ce0.002Si(1-y)CoyO5多晶粉末。
实施例12(制备Lu1.798Y0.2Ce0.002Si(1-y)CoyO5陶瓷)
按实施例10配料,后续步骤同实施例3,获得Lu1.798Y0.2Ce0.002Si(1-y)CoyO5非透明陶瓷和透明陶瓷。
实施例13(生长Lu1.798-2xY0.2Ce2xSi(1-y)TiyO5单晶)
采用提拉法生长单晶。按摩尔量配比TiO2:CeO2:SiO2:Lu2O3:Y2O3=y:2x:(1-y):0.899-x:0.1配料(x=0.001、0.003、0.005;y=0.001、0.003、0.005、0.015),充分混合均匀,将混合物于2500MPa冷等静压下压制成块,放入铱坩埚内,通过感应加热并充分熔化,通过籽晶接种后从熔体中缓慢提拉生长出预设尺寸的单晶,获得Lu1.798-2xY0.2Ce2xSi(1-y)TiyO5单晶。其中,提拉法的参数包括:所需尺寸参数设计、PID质量控制温度、拉速为2~6mm/h、转速为10~20r/min。
实施例14(生长Lu2(1-x)Ce2xSi(1-y)CryO5单晶)
采用提拉法生长单晶。按摩尔量配比Cr2O3:CeO2:SiO2:Lu2O3=y/2:2x:(1-y):(1-x)配料(x=0.001、0.003、0.005、0.01、0.03、0.05;y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),充分混合均匀,将混合物于2500MPa冷等静压下压制成块,放入铱坩埚内,通过感应加热并充分熔化,通过籽晶接种后从熔体中缓慢提拉生长出预设尺寸的单晶,获得Lu2(1-x)Ce2xSi(1-y)CryO5单晶。其中,提拉法的参数包括:所需尺寸参数设计、PID质量控制温度、拉速为0.7~2mm/h、转速为3~5r/min。
实施例15(生长Y1.998Ce0.002Si(1-y)CryO5单晶)
按摩尔量配比Cr2O3:CeO2:SiO2:Y2O3=y/2:0.002:(1-y):0.999配料(y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),充分混合均匀,后续步骤同实施例1,获得Y1.998Ce0.002Si(1-y)CryO5单晶。
实施例16(生长Gd2(1-x)Ce2xSi(1-y)CoyO5单晶)
采用提拉法生长单晶。按摩尔量配比Co2O3:CeO2:SiO2:Gd2O3=y/2:2x:(1-y):(1-x)配料(x=0.001、0.003、0.005、0.01、0.03、0.05;y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),充分混合均匀,将混合物于5000MPa冷等静压下压制成块,放入铱坩埚内,通过感应加热并充分熔化,通过籽晶接种后从熔体中缓慢提拉生长出预设尺寸的单晶,获得Gd2(1-x)Ce2xSi(1-y)CoyO5单晶。其中,提拉法的参数包括:所需尺寸参数设计、PID质量控制温度、拉速为1~4mm/h、转速为8~20r/min。
实施例17(制备Gd2(1-x)Ce2xSi(1-y)MnyO5陶瓷)
非透明状:按摩尔量配比MnO2:CeO2:SiO2:Gd2O3=y:2x:(1-y):(1-x)配料(x=0.001、0.003、0.005、0.01、0.03、0.05;y=0.001、0.003、0.005、0.01、0.03、0.05、0.1),充分混合均匀,将混合物于30MPa冷等静压下压制成块,装入刚玉坩埚中放入马弗炉中于2000℃下烧结5h发生固相反应,获得Gd2(1-x)Ce2xSi(1-y)MnyO5非透明陶瓷。透明状:按上述摩尔量配比配料,充分混合均匀,将混合物于5000MPa冷等静压下压制成块,在真空热压炉中发生固相反应,尽可能地排除气泡和空隙,获得Gd2(1-x)Ce2xSi(1-y)MnyO5透明陶瓷。
实施例18(生长Gd2(1-x-w-z)Lu2wY2zCe2xSi(1-y)MnyO5单晶)
按摩尔量配比MnO2:CeO2:SiO2:Gd2O3:Lu2O3:Y2O3=y:2x:(1-y):(1-x-w-z):w:z配料(x=0.001、0.003、0.005、0.01、0.03、0.05;y=0.001、0.003、0.005、0.01、0.03、0.05、0.1;w=0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9;z=0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1、0),后续步骤同实施例1,获得Gd2(1-x-w-z)Lu2wY2zCe2xSi(1-y)MnyO5单晶。
图1为Lu1.798Y0.2Ce0.002Si(1-y)CryO5(y=0,0.05%,0.2%)多晶粉体的闪烁衰减时间图谱与拟合结果,从图中可知硅位掺杂Cr竞争中心后衰减时间从39ns缩短至37和34ns。
图2为Lu1.798Y0.2Ce0.002Si(1-y)CryO5(y=0,0.05%,0.2%)多晶粉体的闪烁上升时间图谱(所有样品的最大值点固定在时间零点即可看出每个样品上升到最大值所需的时间,从图中可看出0.05%Cr掺杂上升时间最短)。
图3为Lu1.798Y0.2Ce0.002Si(1-y)CoyO5(y=0,0.1%,0.3%)非透明陶瓷的闪烁衰减时间图谱与拟合结果(实线为无Co掺杂的衰减时间拟合曲线;虚线为0.3%Co掺杂的衰减时间拟合曲线),从图中可知硅位掺杂Co竞争中心后衰减时间从41ns缩短至28ns。
图4为Lu1.798Y0.2Ce0.002Si(1-y)CoyO5(y=0,0.1%,0.3%)非透明陶瓷的闪烁上升时间图谱(所有样品的最大值点固定在时间零点即可看出每个样品上升到最大值所需的时间,从图中可看出0.1%Co掺杂的上升时间最短);
图5和图6分别为Y1.998Ce0.002Si(1-y)CryO5(y=0、0.1%、0.2%、0.5%、2%)单晶和Lu1.798Y0.2Ce0.002Si(1-y)MnyO5(y=0、0.3%、2%)非透明陶瓷的荧光光谱(358nm激发),从图中可知位于的发射峰为Ce3+的5d-4f跃迁,无第二发射峰。从其强度可看出,M离子的含量大于优选值时会导致荧光发射强度劣化>20%。
表1为部分硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料的衰减时间汇总。
Figure BDA0002780217140000091
Figure BDA0002780217140000101
以上实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (8)

1.一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料,其特征在于,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料的化学式为RE2(1-x)Ce2xSi1-yMyO5;其中RE为稀土离子;M为占据硅格位的第二发光中心,选自钛Ti、铬Cr、锰Mn、钴Co中至少一种;0<x≤0.05,0<y≤0.1。
2.根据权利要求1所述的稀土正硅酸盐闪烁材料,其特征在于,所述RE选自镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu、钪Sc、钇Y 中至少一种,优选为Lu、Y、Gd、La中的至少一种。
3.根据权利要求1或2所述的稀土正硅酸盐闪烁材料,其特征在于,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料中还加入其他掺杂元素A,化学式为RE2(1-x-a)Ce2xA2aSi1-yMyO5,0<a≤0.01;所述其他掺杂元素A选自锂Li、钠Na、钾K、铷Rb、铯Cs、镁Mg、钙Ca、锶Sr、钪Sc、铜Cu中至少一种。
4.根据权利要求1-3中任一项所述的稀土正硅酸盐闪烁材料,其特征在于,所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料为硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末、硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷、或硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶。
5.一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁多晶粉末的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2 、SiO2 和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体在1000~2000℃下固相反应5~200 小时,得到铈共掺正硅酸盐闪烁多晶粉末。
6.一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2 、SiO2 和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体压制成后,在1000~2000℃下固相反应5~200 小时,得到铈共掺正硅酸盐闪烁陶瓷;优选地,所述压制成型的压力为0.03GPa~5 GPa。
7.一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶的制备方法,其特征在于,包括:
(1)按照硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷的化学式称量A的氧化物和A的碳酸盐中的至少一种、M的氧化物、CeO2 、SiO2 和RE的氧化物并混合,得到混合粉体;
(2)将所得混合粉体加热至熔化,采用提拉法、坩埚下降法、温度梯度法、热交换法、泡生法、顶部籽晶法、助熔剂晶体生长方法或微下拉法,生长所述硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶。
8.一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁陶瓷和硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁单晶在高能物理探测与粒子辨别领域和快核医学影像领域中的应用。
CN202011279329.8A 2020-11-16 2020-11-16 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用 Pending CN112522787A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011279329.8A CN112522787A (zh) 2020-11-16 2020-11-16 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用
CN202311709699.4A CN117721537A (zh) 2020-11-16 2020-11-16 竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011279329.8A CN112522787A (zh) 2020-11-16 2020-11-16 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311709699.4A Division CN117721537A (zh) 2020-11-16 2020-11-16 竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112522787A true CN112522787A (zh) 2021-03-19

Family

ID=74980932

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011279329.8A Pending CN112522787A (zh) 2020-11-16 2020-11-16 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用
CN202311709699.4A Pending CN117721537A (zh) 2020-11-16 2020-11-16 竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311709699.4A Pending CN117721537A (zh) 2020-11-16 2020-11-16 竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用

Country Status (1)

Country Link
CN (2) CN112522787A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855750A (zh) * 2023-05-22 2023-10-10 山东大学 一种高光产额、超快闪烁衰减、低成本Cs3Cu2I5:Mn单晶闪烁体及其制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278832B1 (en) * 1998-01-12 2001-08-21 Tasr Limited Scintillating substance and scintillating wave-guide element
CN104508192A (zh) * 2012-04-13 2015-04-08 泽克泰克光子学有限公司 具有改进光学特性的多掺杂镥基氧正硅酸盐闪烁体
WO2015185988A1 (en) * 2014-06-03 2015-12-10 Zecotek Imaging Systems Singapore Pte. Ltd Cerium doped rare-earth ortosilicate materials having defects for improvement or scintillation parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278832B1 (en) * 1998-01-12 2001-08-21 Tasr Limited Scintillating substance and scintillating wave-guide element
CN104508192A (zh) * 2012-04-13 2015-04-08 泽克泰克光子学有限公司 具有改进光学特性的多掺杂镥基氧正硅酸盐闪烁体
WO2015185988A1 (en) * 2014-06-03 2015-12-10 Zecotek Imaging Systems Singapore Pte. Ltd Cerium doped rare-earth ortosilicate materials having defects for improvement or scintillation parameters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.SHIMURA等: "Zr Doped GSO:Ce Single Crystals and Their Scintillation Performance", 《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855750A (zh) * 2023-05-22 2023-10-10 山东大学 一种高光产额、超快闪烁衰减、低成本Cs3Cu2I5:Mn单晶闪烁体及其制备与应用

Also Published As

Publication number Publication date
CN117721537A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
US4473513A (en) Method for sintering high density yttria-gadolinia ceramic scintillators
JP2019048765A (ja) ガーネット型シンチレータのシンチレーション及び光学特性を改変するための共ドーピング方法
JP6971327B2 (ja) 一価イオンが共ドープされたガーネットシンチレータ
US4747973A (en) Rare-earth-doped yttria-gadolina ceramic scintillators
KR102087857B1 (ko) 발광 중심의 섬광 응답을 단축시키는 방법 및 단축된 섬광 응답을 갖는 신틸레이터 물질
JPWO2006049284A1 (ja) Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
US4518546A (en) Preparation of yttria-gadolinia ceramic scintillators by sintering and gas hot isostatic pressing
JP4702767B2 (ja) 放射線検出用Lu3Al5O12結晶材料の製造方法及び放射線検出用(ZxLu1−x)3Al5O12結晶材料の製造方法
WO2006033663A2 (en) Compositions comprising high light-output yellow phosphors and their methods of preparation
US4466929A (en) Preparation of yttria-gadolinia ceramic scintillators by vacuum hot pressing
CN105332056A (zh) 激光照明用二价金属阳离子与铈共掺镥铝石榴石晶体及其制备方法
JP2009046598A (ja) シンチレータ用単結晶材料
JP2011026547A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
CN112630818A (zh) 一种硅位掺杂改善稀土正硅酸盐闪烁材料及其制备方法和应用
CN112522787A (zh) 一种硅格位掺杂竞争发光中心的稀土正硅酸盐闪烁材料及其制备方法和应用
EP1489205A1 (en) LUMINOUS MATERIAL FOR SCINTILLATOR COMPRISING SINGLE CRYSTAL OF Yb MIXED CRYSTAL OXIDE
US11567223B2 (en) Scintillation material of rare earth orthosilicate doped with strong electron-affinitive element and its preparation method and application thereof
CN112573905B (zh) 一种阴离子掺杂石榴石闪烁体及其制备方法与应用
JP2016056378A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
Nikl et al. Single-crystal scintillation materials
CN105297136A (zh) 激光照明用掺铈铝酸钆镥石榴石晶体及其制备方法
CN112501684B (zh) 一种硅离子掺杂铝镓酸钆闪烁材料及其制备方法和应用
CN117186891A (zh) 一种高品质因子的过渡金属元素掺杂石榴石构型铝酸盐闪烁材料及其制备方法和应用
CN115322784A (zh) 一种八面体格位掺杂改善铝镓酸钆闪烁材料及其制备方法和应用
CN117552106B (zh) 稀土基零维钙钛矿卤化物闪烁单晶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220801

Address after: 200050 No. 1295 Dingxi Road, Shanghai, Changning District

Applicant after: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES

Address before: 200050 No. 1295 Dingxi Road, Shanghai, Changning District

Applicant before: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES

Applicant before: RESEARCH AND DEVELOPMENT CENTER, SHANGHAI INSTITUTE OF CERAMICS